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Introduction
In this paper we discuss sudoku-solving strategies and how graph theory

can be used to explain some of the advanced techniques. There are many
websites that provide tutorials on solving sudoku puzzles. The sites [1] and
[2] discuss the xy-chain technique, and the two explanations are quite
different. We will define xy-chains as paths in a graph, and properties of the
paths show why the technique works.

Sudoku puzzles have been used as teaching tools in a variety of
disciplines, including chemistry [3], statistics [4], and mathematical proof
techniques [5]. The material in this paper could be used to illustrate some
fundamental notions in graph theory.

Previous applications of graph theory to sudoku have involved k-
colouring of a graph whose vertices are all the puzzle cells [6]. Our
approach is very different, involving relatively small graphs and techniques
that can be used when solving a puzzle with pencil and paper.

Definitions
We consider traditional sudoku puzzles that consist of a  grid of

cells where some cells have been assigned values in the range 1 to 9. The
goal is to assign values to all the cells so that each of the nine values appear
in every row, column, and  box.
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FIGURE 1: Sudoku puzzle

Figure 1 shows a puzzle in which 32 cells have been assigned values.
The nine  boxes are separated by bold lines.3 × 3

We assume a puzzle has a unique solution. Figure 2 shows two partial
puzzles. The puzzle on the left has no solution because there is no place for a 4
in the right-hand box. The puzzle on the right has multiple solutions because
interchanging the 2 and 7 in columns 3 and 6 will yield a second solution.
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FIGURE 2: No solution on left, multiple solutions on right

The rows, columns and boxes are called the units of the puzzle, and two
cells are said to intersect if they are in the same unit. The ordered pair
denotes the cell in row  and column .

(x, y)
x y

The candidates of a cell are the puzzle values that can be assigned to
that cell without creating a unit with a repeated value. For example, the cell
(2, 6) in Figure 1 has candidates 1 and 3. All the other puzzle values have
been assigned to cells that intersect cell (2, 6).

Basic techniques
Sudoku strategies all rely on rules that allow you to reduce the number

of candidates. When the number of candidates for a cell is reduced to 1, then
the value of that cell is known.

Naked sets
A naked set is a set of  locations in one unit such that the union of

candidates for those locations has  values.  The  candidates for the naked
set must be the values of the  cells, so those values can be removed from
the candidate lists of the other cells in the unit.

n
n n

n

Figure 3 shows part of a puzzle where the three shaded cells form a
naked set with candidates 1, 4, and 9. Remove those values from the
candidate lists of the other cells in that row.
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5 8

26 7 9 1 4 91 6 7

FIGURE 3: Naked triple

Hidden sets
A hidden set is a set of  puzzle values that are candidates in only

cells in a unit. The  values must appear in the  cells, so you can remove
other candidates from those cells.

n n
n n

Figure 4 shows the top left box of a puzzle. Values 1 and 8 are
candidates only in the shaded cells, so those cells must have values 1 and 8.
Remove candidates 6 and 9 from the shaded cells.
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FIGURE 4: Hidden double 1,8

Locked candidate
Let  be the three cells of a box that intersect a row or a column. If a

value  is a candidate in , and it is not a candidate in any other cells in the
box, then  must be the value of one of the cells in , and you can remove
from the candidate lists of other cells in the row or column. If  is a
candidate in , and it is not a candidate in the other cells of the row or
column, then again  must be the value of a cell in , and you can remove
from the candidate lists of other cells in the box.

I
v I

v I v
v

I
v I v

Figure 5 shows the intersection of a row with a box. The value 5 is a
candidate in the intersection and it is not a candidate in the rest of the row.
So, we may remove 5 from the candidate lists of the unshaded cells of the
box.
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FIGURE 5: Locked candidate 5

Graphs
A graph  consists of a set of vertices  and a set of edges ,

where each edge is associated with an unordered pair of vertices. We say that
an edge connects the vertices associated with it, and two vertices connected
by an edge are said to be adjacent. Graphs are often represented by drawing
points for the vertices and line segments connecting the points for edges.

G V (G) E (G)

v1

v2 v3

v4

e1
e2 e3

e4

e5

FIGURE 6: Simple graph
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Figure 6 shows a graph with four vertices and five edges. Vertex  is
adjacent to both  and .

v1
v2 v4

All graphs discussed in this paper are simple, which means an edge
cannot connect a vertex to itself, and any two vertices are connected by at
most one edge. Let  and  be two distinct vertices. A path from  to ,
called an -path, is a sequence of adjacent vertices
where no vertex appears more than once, and  is adjacent to  for

. A cycle is like a path, except it begins and ends at the same
vertex. The length of a cycle or path is the number of edges. A graph is
connected if for every pair of vertices,  and , there is an -path. 

a b a b
ab a = v1v2v3… vn = b

vi vi + 1
1 ≤ i < n

a b ab

Bipartite graphs
A graph  is bipartite if there are two non-empty sets  and  such that

, and every edge of  connects a vertex of  to a vertex of
.  and  are called the parts or partite sets of the graph, and  is

called a bipartition of .

G X Y
V (G) = X ∪ Y G X
Y X Y {X, Y}

G

X

Y

FIGURE 7: Bipartite graph

Figure 7 shows a bipartite graph with ten vertices. Note that this graph
is not connected, it has two connected components.

Conjugate pair graphs
Let  be a puzzle value. If there are two cells in a unit that have  as a

candidate, and  is not a candidate for any other cells of the unit, then the
two cells form a conjugate pair with respect to , and exactly one of the two
cells will have the value .

v v
v

v
v

Definition: The conjugate pair graph with respect to v is the graph whose
nodes are the cells that are in conjugate pairs, and two nodes are connected
by an edge if they form a conjugate pair.

Figure 8 shows a conjugate pair graph with respect to 2. Note that this
graph is not connected, it has two connected components, one of which
contains just one conjugate pair (8,2) and (8,9).
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FIGURE 8: Conjugate pair graph with respect to 2

The next theorem is a well-known characterisation of bipartite graphs.
See [7, p. 14] for a proof.

Theorem 1: A graph is bipartite if, and only if, it has no cycles of odd length.

Theorem 2:  Let  be a conjugate pair graph with respect to . Then  has a
bipartition  such that either every cell in   has value  or every cell
in  has the value .

G v G
{X, Y} X v

Y v

Proof: We assume  is connected, as the following argument could be
applied to connected components independently. Let  be a
path in  with even length, so  is odd. Since adjacent cells in  form a
conjugate pair, the cells  in path  alternate between having value  and not
having value . Since  is odd, then either both  and  have value , or
neither of them do, and it follows that  and  are not adjacent in .

G
p = c1c2c3… cn

G n G
ci p v

v n c1 cn v
c1 cn G

Suppose  has a cycle with odd length. Removing an edge from the odd
cycle creates a path  where  is odd, so  is not adjacent to

. However, the path  was created by removing an edge from a cycle,
which means that  is adjacent to . This contradiction shows that  has no
cycles of odd length, and by Theorem 1,  is bipartite. Let  be a
bipartition of .

G
p = c1c2c3… cn n c1

cn p
c1 cn G

G {X, Y}
G

Let  and  be two cells in . Since  is connected, there is an -path,
and since cells in a path alternate between being in  and being in , an -
path has even length and hence an odd number of vertices. So, either both
and  have value  or neither do. Since this is true for any pair of cells in ,

a b X G ab
X Y ab

a
b v X
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either all cells of  have value  or none do.  The same is true for  and we
have proved Theorem 2.
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FIGURE 9: Bipartition

Figure 9 shows one connected component of a conjugate pair graph
with respect to 2. One partite set is marked with circles and the other is
marked with diamonds. Note that two of the cells with circles intersect, they
are both on the last row.  Therefore the cells with circles cannot have the
value 2, and the cells with diamonds do have the value 2.

Two-candidate graph
In this section we consider another graph associated with a sudoku

puzzle. The two-candidate graph has vertices that are cells with exactly two
candidates, and cells are adjacent if they intersect.

Definition: Let  be a path in a two-candidate graph.  The
path  is a linked path if for  you can choose a candidate of ,
called the link, so that the link of  is a candidate of , and the link of
is not equal to the link of . The candidate of  that is not the link of

 is called the link of .

p = c1c2c3… cn
p 1 ≤ i < n ci

ci ci + 1 ci
ci + 1 cn

cn − 1 cn
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FIGURE 10: Linked path

Figure 10 shows a linked path from cell (1, 1) to cell (5, 5). The link of
cell (1, 1) must be 7 because that is the only candidate that (1, 1) and (4, 1)
have in common. Similarly, the link of (4, 1) must be 2. The last two cells in
the path have two common candidates, but the link of (4, 5) must be 4 for
the path to be linked. The link of (5, 5) is 2.

Cell c1 c2 c3 … cn − 2 cn − 1 cn

Link a c d … g h i

Other b a c … f g h

TABLE 1: Linked path from  to c1 cn

Table 1 shows a view of a linked path from  to . The second row
contains the links of the cells, and the third row shows the candidates that
are not the links. The reverse of the linked path from  to  is also a linked
path, but all the links are switched, so the link of  will be  and the link of

 will be , and so on.

c1 cn

cn c1
cn h

cn − 1 g
The reason linked paths are useful is that if the value of the first cell is

its link, then the same is true for every cell in the path. For example, in the
linked path of Figure 10, if the value of cell (1, 1) is 7, then the value of
(4, 1) is 2, the value of (4, 5) is 4 and the value of (5, 5) is 2.

XY-chains
Definition: An -chain is a linked path from  to  in which the link of
is the candidate of  that is not the link. In Table 1, change the  under  to
 and you have an -chain.

xy c1 cn cn
c1 i cn

b xy

Cell c1 c2 c3 … cn − 2 cn − 1 cn

Link a c d … g h b

Other b a c … f g h

TABLE 2: Chain from  to c1 cn

Table 2 shows an -chain from  to . Either  or  will have the value .xy c1 cn c1 cn b
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FIGURE 11: -ChainXY

Figure 11 shows an -chain where either the first or the last cell will
have the value 9. We can eliminate 9 from the candidate list of cell (2, 2)
because it intersects the first and last cells of the -chain.

xy

xy
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