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The authors would like to correct an error in their original article.

Well-posedness for nonlinear SPDEs with strongly continuous perturbation,
Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol. 151,
no. 1, pp. 265-295, 2021. doi:10.1017/prm.2020.13, see [1].

Although the results of our work are correct, recently we have realized that some
arguments in Eq. (2.5) as well as in lemma 2.5 and its consequences need some
modifications. We sincerely apologise for our mistake.

In the sequel, when we mention page numbers, equations, lemmas, definitions, or
remarks, they will be systematically compatible with the reference to our article

1.

e p. 269, Eq. (2.5): thanks to the condition p > %, with d € N* being the

space dimension, it follows that, for 1 < p < d,
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and therefore LP" (D) is continuously embedded into Lpl( D)yifd>p>

Cfﬁl Now, usmg the Sobolev embeddmg theorem, we may conclude that

WoP(D) < L¥ (D) for all p > 2. (0,Cy)
(cf. [1, p. 269]) and v € Wo’p( ) such that [[v]|

Thus, for anyu € V C B WP (D)

’p(D) < 1, using Young’s

inequality ab < & —|— = for a,b >0, we get

b= [ 1P HMMx<f/WF W dt 1 < S Tl +

7P(D)

< 7@ [lull?y +1) < 704(||u|\€vl7pw) +1) < 7CU(CY + 1) (2.5)
0

with L >0 being the Lipschitz constant of F' and recalling that F(0) = 0.
e p. 275, lemma 2.5:

LEMMA. Let g := min(p,p’) and uy, My be the piecewise affine functions
defined in definition 2.1. There exists K > 0 not depending on N € N* such
that

T d —
E/ H—(uN—MN)Hq / dtSK
0

w—1.r" (D)

e Proof of lemma 2.5, p. 275 after Eq. (2.25):
recalling that p’ = -5, (a+b+c)" <3 Ha"+b"+c")
for r>1 and a,b,c > 0 as well as Holder’s inequality, we find C7,Cy > 0
such that for any v € W, (D),

ff:/kcﬂvw*WFl+cﬂM*WF?+m@MVde
D
/

/ 1/p
< ([ @wesp et @) o) el
D

/v
/ / / /
< (# [ cIvenp s e W g dn) ol
D
k+1)1p k+11p o\
< O (I I - gl ) ™ el

and, using Poincaré’s inequality, we may conclude

1/p
k+1|p v
e (i s % R A

’p(D)

Now, we turn our attention to

:L/ * Vo de
D
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ERRATUM to [1] 3
with L >0 being the Lipschitz constant of F. By Holder’s inequality,
I < Ll[u*™* |y Vo]l

Recalling that, for all p > d +1 with d € N* being the space dimension, we

have the continuous embedding
WlP(D) — L¥' (D).

Using this embedding together with u**1! € VVO1 "P(D) in the above inequality,
it follows that there exists a constant C3 > 0 such that

I < Gyl | 1 (2.27)

7P(D)H || 7P(D)

Choosing v € Wy (D) such that [ict
for all ¢t € (tg,tgr1), it follows that

19 (p) < 1, from (2.26) and (2.27)

d
A
w—L1.p" (D)
k+1 AN k+1
p p
< Ca (I W1y 191 )  + Calle ™ gt

For ¢ = min(p,p’), we have ¢ < p and ¢/p’ < 1. Consequently, using the
inequality (a + b)" < 2""!(a" + b") for r>1 and a,b > 0, it follows that
there exist constants Cy, C5 > 0 such that for all ¢ € (tg,tx+1) we have

| -S|

w—Lp' (D)
1 k41 N k41
< 94— q p p q q
<21 (f (I W Tl )OI
< k+1\p v k+1a
< Cu (I + I+ 1 B

k+1\p v
< Co (14110 1 + Dol +1).

Now we integrate this inequality over (tg,tg+1), sum over k =0,..., N — 1,
and take expectation to arrive at
dt

T
]E/
0 w—1p

T /
<Gy (E / IVl llg dt + Tl + 1))
0

d q

7 (= My)
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where uf; is the right-continuous step function defined in definition 2.1.
Now, the assertion follows from the bound given in (2.16) given in lemma
2.3. O
e p. 278, line 23:

from lemma 2.4 and lemma 2.5, it follows that (uy — M, ~N)n is bounded
in L2(Q; c(po, T); L*(D))) and (&(in — My))n is bounded in LI(Q x
(0, 7); W~ Ly (D)), with ¢ = min(p,p’). Consequently, (uny — M\N)N is
bounded in L9(£2; W), where

W= {u e L*(0,T; L*(D)) | %u e L0, T; W (D))},

e p. 280, §2.3.2, Compactness:
now, we apply the theorem of Skorokhod without changing the notation of
random variables with the same law in order not to overload the presenta-
tion: there exists a new probability space (', F’, P'), such that, passing to
a subsequence if necessary,

L - -
Yn = (uy —un,un, Uy — My, My, My, PN, Wy)

converges almost surely in ’. Moreover, the semi-implicit Euler scheme

(2.1) is satisfied on €. Then, remark A.1 and in particular the a priori

estimates developed in lemma 2.2 to lemma 2.6 hold true on (Q', F', P').

Thus, on (', F', P'),

e p. 280, 6th bullet point:
further, there exists a C([0,T]; W~ 1’pl(D))—Valued random variable Boo
on ' such that £(Bx) = 2 and limy_eo(Uny — MN) = By in
C([O,T};W‘l’p/(D)) a.s. in Q" and in LY(Q,C([0, T]); W ( ))) for any
1 < /¢ < 2 by Vitali’s theorem. Thanks to the previous convergence results,
(un) = (uny — My + ]/\4\N) converges a.s. in C([O,T];W‘l’p/(D)). Thus,
Boo = oo — Moo, uso € C([0,T); W™ ’p/(D)) and lemma 2.4, and Vitali’s
theorem yield the convergence of iy to un in LE(€Y';C([0, T7; WL’ (D)))
forall 1 </ < 2.

o p. 282, line 13:
since iy — My converges to s — Moo in LE(Q;C([0,T); W1+ (D))) for
all 1 < /¢ < 2, it follows that

T
. _ ~ 77 ’
J\}gnooll—/A/O (e = STo)(0): ¥y 1y i A0 AP
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e p. 283, line 11:
from (2.44), it follows that

d .
a(u(><> — My) —div(G+ F(ux)) =0

in L9(0,T; W‘LPI(D)) a.s. in ' with ¢ = min(p, p’).
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