ON THE IRREDUCIBILITY OF CONVEX BODIES
A. C. WOODS

1. Introduction. We select a Cartesian co-ordinate system in #-
dimensional Euclidean space R, with origin O and employ the usual point-
vector notation.

By a lattice A in R, we mean the set of all rational integral combinations
of # linearly independent points X1, X, . . ., X, of R,. The points X3, X, . . .,
X, are said to form a basis of A. Let {X1, X, ..., X,} denote the determinant
formed when the co-ordinates of X; are taken in order as the ith row of the
determinant for 2 = 1,2, ..., n. The absolute value of this determinant is
called the determinant d(A) of A. It is well known that d(A) is independent
of the particular basis one takes for A.

A star body in R, is a closed set of points K such that if X € K then every
point of the form ¢tX where — 1 < ¢ < 1 is an inner point of K. A star body
K is called a convex body if it is bounded and satisfies the convex property:
fXeEK YEKthentX 4+ (1 —§HY € K provided 0 = ¢ = 1. It is further
called strictly convex if X € K, ¥V € K implies that tX + (1 — ¢V is an
inner point of K when 0 < ¢t < 1 and X # Y.

Let A be a lattice and K a star body in R,. We say that A is K-admissible
if no point of A other than 0 is an inner point of K. If K is such that no K-
admissible lattice exists then K is said to be of the infinite type, otherwise K
is said to be of the finite type. If K is of the finite type the number inf d(A)
extended over all K-admissible lattices A is called the critical determinant
A(K) of K and any K-admissible lattice A of determinant d(A) = A(K) is
called a critical lattice of K. It is well known that if K is of the finite type
then at least one critical lattice of K exists.

Let K be a star body of the finite type in R,. If K is such that any star body
properly contained in K has a smaller critical determinant than K has we
say that K is S-irreducible; otherwise K is said to be S-reducible.

Let K be a convex body in R,. If K is such that any convex body properly
contained in K has a smaller critical determinant than K has then we say
that K is C-irreducible; otherwise we say that K is C-reducible.

The property of S-irreducibility was first studied by Mahler (1) who gave
necessary but insufficient conditions for a star body to be S-irreducible. Later
(2) he considered the property of C-irreducibility and showed that if n = 2
then any C-irreducible convex body is also S-irreducible. Rogers (5) then gave
a set of necessary and sufficient conditions for S-irreducibility which will be
stated later.
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The purpose here is to give an example of a convex body in R; that is
C-irreducible but not S-irreducible. The proof that the example has these
properties relies to a large extent on the work of Whitworth (6). To clarify
the picture regarding C-irreducibility we formulate a set of necessary and
sufficient conditions for C-rreducibility analogous to the set given by Rogers
for S-irreducibility, the proof following similar lines.

2. The set L(K). The results stated in this section are classical.

Let K be a convex body in R,. We define L(K) to be the set of all points
X of the boundary of K such that if X is contained in any line segment of
the boundary of K then X is an endpoint of the line segment. Such points
are sometimes called extremal points of K so that L(K) constitutes the set
of all extremal points of K. As K is symmetric in 0 it is evident that L(K) is
also symmetric in 0. Further:

LEMMA 1. The convex hull of L(K) is K.

LEMMA 2. Given X € L(K) and ¢ > 0 there exists a convex body K () C K
such that X ¢ K(e) and such that any point of K — K (e) lies within a distance
€ of one of the two points £ X.

3. C-irreducibility. Let K be a star body in R,. Further let A be a critical
lattice of K. Let X be a point of A on the boundary of K. We say that A is
free at the point X if, given ¢ > 0, there exists a lattice A(e) of determinant
d(A(e)) < d(A) = A(K) such that the interior of K contains no point of A(e)
apart from 0 and any that are within a distance e from one of the two points
+ X. Rogers’ criterion for S-irreducibility is then as follows:

LemmA 3. K is S-irreducible if, and only if, to each point of the boundary
of K there corresponds a critical lattice of K that is free at this point.

We now give an analogous criterion for C-irreducibility.

TureoREM 1. If K is a convex body then K is C-irreducible if, and only if, to
each point of L(K) there corresponds a critical lattice of K that is free at this
point.

Proof. (i) Only if: Assume that K is C-irreducible and let X be an arbitrary
point of L(K). By Lemma 2 given ¢ > 0 there exists a convex body K(e) C K
such that X € K — K(e¢) and such that any point of K — K(¢) is within a
distance e from one of the two points &= X. Since K (€) is properly contained
in K it follows that A(K(e)) < A(K). Hence there exists a critical lattice
A(e) of K(e) of determinant d(A(e)) < d(A). It is evident that K contains
no point of A(e) in its interior other than 0 and any that may lie within a
distance e from one of the two points = X. Moreover A(e) is certainly not
K-admissible and therefore taking into account the fact that K is symmetric
in 0 we conclude that there must be a point of A(€) in the interior of K and
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within a distance ¢ from the point X. The sequence A(n~1!) of lattices is
compact in the sense of Mahler (3) and so contains a convergent subsequence
with the limit A’ say. But lim,  K(#n~!) = K and A(n™") is a critical lattice
of K(n™1) for each #, hence A’ is a critical lattice of K. Further each A(n™1)
contains a point within a distance #~! from the point X. Thus A’ contains X
which implies that A’ is free at X. As X was chosen an arbitrary point of L(X)
this proves (i).

(i1) If: Assume that to each point of L(K) there corresponds a critical
lattice of K that is free at this point. Take an arbitrary convex body K’ C K
such that K’ ## K. There exists a point X € L(K) — K’ for otherwise
L(K) C K’and soby Lemma 1 K’ = K contrary to hypothesis. Let X € L(K)
— K’ be fixed. As K’ is closed there exists ¢ > 0 such that no point within
a distance e from either of the two points &= X is in K’. By hypothesis there
exists a critical lattice A of K such that A is free at the point X. In particular
this implies that there exists a lattice of determinant d(A(e)) < d(A) = A(K)
such that no point of A(e) apart from 0 and any that may lie within a distance
¢ from one of the two points & X is an inner point of K. Hence A(e) is K'-
admissible from which it follows that A(K') = d(A(e)) < A(K). Whence K
is C-irreducible. This completes the proof of the theorem.

4. An Example. In looking for a convex body that is C-irreducible and
S-reducible we may by Mabhler’s result confine our attention to dimensions
n = 3. Further if K is a strictly convex body it is obvious that L(K) is the
whole boundary of K. Hence using the previous results K is C-irreducible if,
and only if, it is S-irreducible. Again, Dr. Kathleen Ollerenshaw has obtained
the following two results (4):

(a) The n-dimensional parallelopiped is S-irreducible for every .

(b) If K is a two-dimensional S-irreducible convex body then the three-
dimensional cylinder on the base K is also S-irreducible.

A more suitable candidate for our purpose has proved to be a sawn-off
three-dimensional cube. Whitworth (6) has shown that the convex body K
in R; defined by the inequalities

[xi] £ 1, lxa] <1, [xs] = 1, [x1 + %2 + %3] < %

has the critical determinant A(K) = 3/8. He has further determined all the
critical lattices of K. It is necessary to give a table of these here but before
doing so we remark that K has the six automorphisms obtained by per-
muting the co-ordinates together with the reflections in 0. Thus given any
critical lattice of K we obtain six when we apply these transformations. In
the following table the only critical lattices of K not included are those
obtainable from the ones stated by applying the above automorphisms of K.
There are three classes:

Class I: A(pr O',B) of basis X; = (P - %1 c—1, ﬂ)vX2 = (pv o — %rﬂ - 1)7
X;=(p —1,0,8 — 1) where p 4+ ¢ + 8 = 2. Another basis for A(p, o, 8)
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would be X;, X, — X1 = (3,4, - 1), Xz — X,=(—1, 3, %,). The points
X, — X3, X3 — X, lie in the plane x; + x; + 3 = 0 while X, lies in the
plane x; + x; + x;3 = 3. Hence all points of A(p, o, 8) that lie on the boundary
of K are confined to the three planes x; + x2 + x3 = 0 or &£ 1/2. It follows
that the same is true of the automorphic images of A(p, 7, 8).

Class II: A\, u,8) of basis X;=(1,— % — 1), Xo=(—13%,1, — 3),
Xs= (=N —p,B where \+p—8=43 0< —=8=3% 0=p=1%

0 < X = 1. The points X1, X; lie in the plane x; + x2 + x3 = 0 while the
point X; lies in the plane x; 4+ x; + x3 = — 1. Hence all points of A(A, g, B)
that lie on the boundary of K are confined to the three planes %; + x2 + x3 = 0
or & 1 and the same is true of the automorphic images of A(A, u, 8).

[N

Class III: (1) A(V1, V2, X1, X2 ﬁ) Of basis X1 = (—' Vi, ﬂ, - Xl)» Xz =
(—wv,1 =8 —x), Xs=(,—3 —3%) where vi+r».=13%, xa+x2= %,
B — v — x1 = =% %. The points X1, X, lie in one of the planes x; + x2 + x3
= =+ 1 while the point X; lies in the plane x; + x2 + x3 = 0 and hence all
points of A(v1, vs, X1, X2, B) that are on the boundary of K are confined to
the planes x; + 3 + x3 = 0 or & 1.

(i) A ofbasis X1 = (1, — %, — 3, X2 = (=, — §, 1), X3 = (%,0,0).
Evidently the points of A(\) that are on the boundary of K are confined to
the lines given by (¢, — 3u1 — 3us, — 3u1 + u,) where u;, 4, have one of the
following pairs of values: (0,0), (1,0), (- 1,0), (0,1), (0, — 1), (1,1),
(=1, —1), (2,0), (— 2,0). Hence the points of all the automorphic images
of A(\) on the boundary of K are confined to the lines given above together
with those obtained from them by permuting the co-ordinates.

(iii) A of basis X1 = (— %1, -3, Xo=G, — % — %, Xs=(3,0,0).
The point X, lies in the plane x; + %2 + x3 = 0, Xy in %1 + %2 + x3 = — 1,
X;in x; + %2 + x5 = %; hence all points of A that are on the boundary of K
are confined to the planes x; + %2 4+ x3 = 0 or & %. It follows that the same
is true of the automorphic images of A.

This completes the table of the critical lattices of K. We are now in a
position to prove:

THEOREM 2. K s C-irreducible and S-reducible.

Proof. We show first that K is S-reducible. From the table given above
we see that the only critical lattices of K with points on the boundary of K
that do not lie in one of the three planes x; + x2 + x5 = 0 or & 1 are those
in Class III (ii). The point (1, — %, — %) is on the boundary of K and in the
plane x; + x; + x3 = §. Therefore if it is a point of some critical lattice of
K it must be in Class III (ii). However, it is obvious that no lattice of this
class can contain (1, — %, — }) nor can any lattice which is derived from
one of those stated by permuting the co-ordinates. Therefore (1, — %, — %)
belongs to no critical lattice of K. By Lemma 3, K is S-reducible.
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We now show that K is C-irreducible. The set L(K) consists of the twelve
points obtained by permuting the co-ordinates of the point (1, 4, — 1) and
taking the six points thus obtained together with their reflections in 0. Hence,
by virtue of Theorem 1, K is C-irreducible if we can show that there exists
a critical lattice of K which is free at the point (1, 3, — 1). Take the lattice
A(3,0,3/2) in Class I of the table above. A basis of this lattice is X; = (1,
-1,%, X.=@/2, —3% —3), X;=(%0,0). Another basis would be
Vi=Xe—Xi= (33 -1, e=X1—Xs=(}, = 1,3, Vs = X, The
points of A(3,0,3/2) on the boundary of K are Vi, V5, V3, V5 + YV, = (1,
- =3 N+YVs=(00,3 -1, V'i—-Y:;=(0,3% —1), V. — V3= (0,
-1,3, Y+ V=00, -1%, i+ Vy—Vy= (3 — 3% — % together
with their reflections in 0. In particular we see that ¥, + V3 = (1, %, — 1) is
a point of the lattice. For a given § > 0 denote by A(8) the lattice of basis
Vi=(G-63%-1,Y=0G(6+8—-13,7" =(3—-50,0). Evidently
asd—0so Yy — YV, V) — 7V, Vi — V;and therefore also A(8) — A(%, 0,
3/2). Moreover,

d(A(3)) = 1 -9 1 -1 =31 <
i1+6 —1 i
37— 9 0 5

provided only that § is sufficiently small. Since in the limit 6 — 0 the basis
given for A(8) becomes the basis given for A(3%, 0, 3/2) it follows that for all
sufficiently small § the only points of A(§) that can lie in the interior of K
are

Yl, = (% - 57 %v - 1)7 Y2, (% + 6v - 17 %)1 Y3, = (% - Bv Ov 6)1
Yll + Yg, = (]., had %, - %), Yl’ + Yg' = (1 bt 25, %, 5 - 1), YQI + Y3’
= (11~1r%+6)’
Yl’ -_ Y:;, = (O, %, - 1 - 5), Yz’ - Yg’ = (25, - 1, % bt 5), Yll + Yz' - Ya'

together with their reflections in 0. But it is clear that the only ones in the
interior of K are =+ (¥ + V3'). Moreover

lim (Yl, + Y3,) = (lv %v _]-)v

5R
hence A(3/2, 0, %) is free at the point (1, 3, — 1). Therefore K is C-irreduci-
ble. This completes the proof of Theorem 2.

Part of this work is extracted from a thesis for the degree of Doctor of
Philosophy at the University of Manchester, written under the supervision
of Professor K. Mahler to whom [ am very grateful for advice and encourage-
ment.
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