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The gas dynamics of shock-induced gas filtration through densely packed granular
columns with vastly varying shock intensity and the structural parameters are numerically
investigated using a coupled Eulerian–Lagrangian approach. The results shed fundamental
light on the thermal effects of the shock-induced gas filtration manifested by a distinctive
self-heating hot gas layer traversing the medium. The characteristics of the thermal effects
in terms of the thermal intensity and uniformity are found to vary with the shock Mach
number, Ms, and the filtration coefficient of the granular media, Π . As the incident shock
transitions from weak to strong, and (or) the filtration coefficient increases from O(10−5) to
O(104), the heating mechanisms transition between three distinct heating modes. A phase
diagram of heating modes is established on the parameter space (Ms, Π ), which enables us
to predict the characteristics of the thermal effect in different shock-induced gas filtrations.
The thermal effects markedly accelerate the pressure diffusion due to the additional heat
influx when the time scale of the former is smaller than or comparable to the latter. Based
on the contour map displaying the coupling degree of the thermal effects and the pressure
diffusion, we identify a decoupling criterion whereby the isothermal assumption holds
if only the pressure diffusion is concerned. The thermal effects may well bring about
considerable thermal shocks which pose a great threat to the integrity of the solid skeleton
and further reduce the overall shock resistance performance of the porous media.

Key words: particle/fluid flow, shock waves, gas dynamics

1. Introduction

Flow in porous media has numerous applications in environmental protection, including
groundwater mitigation (Bear & Alexander 2010; Pathak & Singh 2015; Eriksen et al.
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Figure 1. Schematic diagrams of the two fundamental processes involved in the interaction of shock waves
with porous media. (a) Compaction of the solid phase. (b) Gas filtration within the pores.

2018; Xue et al. 2019; Flekkøy, Sandnes & Måløy 2023), underground contaminant
transport (Hayek 2017; Shen et al. 2023), carbon capture and geological sequestration
(Abidoye, Khudaida & Das 2015; De Paoli, Zonta & Soldati 2016). In contrast to the
aforementioned applications characterized by relatively low speed, the primary focus of
this paper is on the phenomenon of shock-induced interstitial flow. Blast waves generated
through the detonation of high explosives pose a serious hazard to individuals and
structures in close proximity. Therefore, the mitigation of blast waves is a crucial practical
concern (Britan et al. 2001; Ji, Li & Chen 2012; Frost 2018; Gubin 2018; Pontalier et al.
2018). Numerous porous media, such as granular material or aqueous foam, have been
utilized as protective screens to mitigate blast energy (Skews 2001; Smith 2010; Petel
et al. 2011; Britan et al. 2013; Del Prete et al. 2013; Vivek & Sitharam 2019). The head-on
collision of normal shock waves with porous materials has been extensively studied as
a prototype to investigate blast mitigation mechanisms, thereby garnering considerable
attention in past decades (Gvozdeva, Faresov & Fokeev 1985; Henderson et al. 1990;
Skews 1991; Ben-Dor et al. 1994).

The interactions of shock waves with porous media consist of two fundamental
processes (Ben-Dor et al. 1997; Skews 2001; Yin et al. 2019; Han, Xue & Bai 2021; Li
et al. 2023), as shown in figure 1. One is the intricate interaction between the transmitted
wave and the skeleton of porous media. As particles constituting the porous medium move
under the impact of shock waves, the contact among the particles increases, leading to a
more densely packed medium. This phenomenon is referred to as compaction. During
compaction, the solid stress propagates through contacts between particles, forming a
compaction wave within the skeleton. The local particle volume fraction increases as
the compaction front passes. The other involves gas penetration driven by a significant
pressure difference between the reflected shock upstream and the ambient air downstream.
This phenomenon, referred to as filtration in the literature, leads to an increase in the gas
pressure within the pores, which is abbreviated as pore pressure (Britan et al. 1997). Since
the transmitted wave rapidly decays during propagation, particularly in granular materials
with low porosity, the compaction wave and gas filtration in long porous media with low to
moderate porosities are of major concern (Rogue et al. 1998; Sadot et al. 2013). For flexible
aqueous foams (polyurethane or polyethylene) or loosely packed granular materials, an
interaction between the compaction wave and gas filtration is observed (Skews et al. 1992;
Levy et al. 1993). Our previous study demonstrated that the presence of a fast-advancing
compaction front would produce a deflection in the spatial distribution of the pore pressure
due to the reduction in porosity (Li et al. 2023). The drag force exerted between the
two phases involved in gas filtration would subsequently alter the compaction process
(Ben-Dor et al. 1997; Xue et al. 2023). However, the compaction is minimal for rigid
or densely packed granular materials, where the solid skeleton can be assumed to be
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motionless (Rogg et al. 1985; Ram & Sadot 2015). In this scenario, the shock–particle
interaction is solely determined by gas filtration through granular media.

Many experimental and numerical studies have been published on the topic of
shock-induced gas filtration through rigid porous media. The experiments are typically
carried out in vertical shock tubes, with the pressure history being measured by transducers
mounted along the sidewalls and end wall. The objectives of these studies were to
investigate the impact of shock strength, porosity, particle size and propagation distance
on gas pressure. Due to the limited availability of the pressure transducers, a continuous
pressure evolution law is difficult to establish. As a result, quantitative conclusions are
derived by fitting limited pressure profiles. Experiments provide qualitative trends at the
macroscale, but they do not capture microscale information such as local flow velocity
or porosity changes. Therefore, numerical simulations provide a promising approach to
investigate gas filtration and determine the underlying mechanism.

Notable progress was made by Morrison in his endeavour to mathematically describe the
gas filtration induced by a nuclear underground explosion (Morrison 1972). In Morrison’s
approach, the pressure gradient in the filtration flow, denoted as ∂P/∂x, depends on
the interstitial gas velocity Ṽ in a generalized form that is commonly known as the
Forchheimer resistance law (Lage 1998):

∂P
∂x

= −aμṼ − bρṼ |Ṽ |. (1.1)

The first term on the right-hand side of (1.1) is called the Darcy term −aμṼ , and it
accounts for viscous losses where μ is the gas viscosity. The Darcy coefficient, a, is
related to the permeability, k, and porosity, ε, by the equation a = ε/k. The second term
is the Forchheimer term −bρṼ |Ṽ |, where ρ is the gas density and b is the Forchheimer
coefficient, and this term models the inertial loss. A non-dimensional parameter, the
effective Reynolds number, Ref , has been introduced to quantify the relative significance of
these two terms. Gas filtration with Ref < 1 and Ref → ∞, where the Forchheimer/Darcy
term becomes negligible, was specified as Darcy-flow and Forchheimer-flow domains,
respectively. Both Darcy flow and Forchheimer flow exhibit self-similar solutions for the
pore pressure field, albeit with different scaling laws. Following Morrison’s approach,
Britan et al. introduced the thresholds of Ref for classifying various flow regimes
(including Darcy flow, Forchheimer flow and mixed flow between) based on the Mach
number of the incident shock (Britan, Shapiro & Ben-Dor 2007). In addition, a hybrid
method was developed to determine the values of the Darcy and Forchheimer coefficients
(a and b) via controlled shock tube experiments and then enabled reconstruction of the
pressure profiles at different locations within a granular sample (Britan et al. 2006).

The self-similar solution obtained from the Morrison approach requires steady boundary
conditions, specifically maintaining the upstream pressure after the shock wave reflects off
the front surface of the porous column, P5, unchanged. The aforementioned requirements
are barely met in shock tube experiments due to multiple reflections and complex wave
interactions that occur within the porous column and in field tests. Hence, the Morrison
method was modified by incorporating an unsteady upstream pressure as a boundary
condition, based on the experimental data (Britan et al. 2006). The Morrison approach,
which is relatively simplified, showed performance comparable to that of the full solution
based on the complete system of conservation equations in accurately reproducing the
pressure histories in the shock-impacted granular columns (Britan et al. 2006).

Although Morrison’s model and its variants have the capability to simulate the transient
pressure diffusion of gas filtration through granular columns, they do not incorporate the
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thermodynamic evolution of interstitial flow. The flow temperature was considered to be
equivalent to that of the solid phase, with both maintaining ambient temperature. This
isothermal assumption becomes problematic as the intensity of the shock increases. Since
the temperature of the upstream reflected shock, T5, is dependent on the shock intensity,
the gases upstream experience significant heating. In addition to the temperature difference
between the upstream surface and that inside porous media, the compressible nature of
the gas infiltration enables the exchange of kinetic energy and internal energy, indicating
that the kinematic and thermodynamic parameters are interdependent during gas filtration.
Evidently, the isothermal assumption is invalid in scenarios involving strong shock waves.
Therefore, the applicability of the Morrison approach needs to be revisited. Although
some full numerical methods considering the energy conversion of the flow have been
employed in gas infiltration research in recent years, the majority of these studies focus
on the relationship between the pressure evolution and initial parameters such as shock
intensity, porosity and particle size. The fundamental question of the extent to which the
thermodynamic evolution of gases influences the flow parameters of the shock-induced
gas filtration remains unresolved.

The primary objective of this study is to gain insight into the thermal effect in
shock-induced gas filtration and to determine the correlation between the thermodynamic
and dynamic parameters. Full solutions consisting of the mass, momentum and energy
conservation equations are viable options for accessing the potential thermal effect. Some
of the full solutions treat both the gas and solid phases as a continuum, suggesting
that the average flow parameters are minimally affected by local heterogeneity (Baer &
Nunziato 1986; Petitpas et al. 2007; Saurel et al. 2017). Moreover, the gas flow velocity
is assumed to be low such that the unsteady effects are minimal (Crowe et al. 2012).
Evidently, these assumptions cannot universally hold in granular media composed of
randomly packed particles with vastly varying sizes. To overcome these constraints, the
discrete-element method (Patankar & Joseph 2001; O’Rourke & Snider 2010; Snider
et al. 2011; Balachandar 2012; Alobaid & Epple 2013; Guo et al. 2015; Mo et al.
2019; Jiang et al. 2021; Qiao et al. 2022) is employed to generate a solid skeleton with
particle-scale randomness. By coupling compressible computational fluid mechanics and
the discrete-element method, referred to as CMP-PIC in our previous publications (Tian
et al. 2020), we can consider the flow variation at the particle scale and conduct parametric
studies on the variables relevant to the granular assembly.

In the following, brief accounts of CMP-PIC and the Morrison approach are presented
in § 2. The numerical set-up is provided in § 3. The dynamics of the flow parameters
during shock-induced gas filtration is described in § 4.1. The thermal effects characterized
by the spatiotemporal evolution of the thermodynamic parameters are analysed in § 4.2.
The mechanisms governing thermal effects and their influences on the flow parameters
are discussed in § 4.3. The different domains of the thermal effects are defined in § 4.4,
and the phase diagram is established in the parameter space comprising two essential
non-dimensional parameters. The implications of thermal effects on granular media as
protective shields, as well as the validity of the isothermal assumption for shock-induced
gas infiltration, are discussed in § 5. A brief summary is provided in § 6.

2. Methods

2.1. The CMP-PIC approach
Numerical simulations were performed based on CMP-PIC, a coarse-grained
Euler–Lagrange approach suitable for gas–particle flows in laboratory-scale systems
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(Sundaresan et al. 2018; Koneru et al. 2020). The CMP-PIC approach tracks and accounts
for contact interactions between parcels. Each parcel consists of multiple individual
particles with the same physical and kinetic properties. The number of real particles
that constitutes a computational parcel is quantified using a scaling factor called the
super particle loading, α2, whose value is set based on the volume/mass fraction of the
particles and computational memory available. For particle–gas systems, the reported α2

in previous literature ranges from O(101) to O(103) (Osnes et al. 2017; Koneru et al. 2020;
Xue et al. 2020). In the present work, α2 is of O(101).

For the gas phase, the volume-averaged governing equations (2.1)–(2.3) constructed in
the Eulerian frame are based on a five-equation transport model, i.e. a simplified form
of the Baer–Nunziato model (Baer & Nunziato 1986); this model has been modified to
account for compressible multiphase flows ranging from dilute to dense gas–particle flows
(Carmouze et al. 2020; Chiapolino & Saurel 2020).

∂(ερf )

∂t
+ ∇ · (ερf uf ) = 0, (2.1)

∂(ερf uf )

∂t
+ ∇ · (ερf uf uf ) + ∇(εPf ) = Pf ∇ε +

∑
i

[φp,iρp,iDp,i(up,i − ūf )], (2.2)

∂(ερf Ef )

∂t
+ ∇ · (ερf Ef uf + εPf uf ) = Pf ∇ε · ūp +

∑
i

[φp,iρp,iDp,i(up,i − ūf ) · up,i].

(2.3)

The volume fraction of gas phase, i.e. porosity, is expressed by ε. The volume fraction
of particle phase is expressed by φp, while ε + φp = 1 in the same fluid grid. The velocity,
density, pressure and total energy of the gas are represented by uf , ρf , Pf and Ef ,
respectively. Here Ef = ef + 0.5uf uf , where ef is the specific internal energy. Terms φp.i,
ρp.i, Dp,i and up,i are local volume fraction, density, drag force coefficient and velocity of
parcel i. Parameter ūf represents the average fluid velocity at the location of particle i and
ūp represents the average velocity of particles within a fluid cell. Notably, the first term on
the right-hand side of (2.2), Pf ∇ε, is the nozzling term that becomes significant wherever
the porosity gradient is non-trivial.

We employ the Di Felice model combined with Ergun’s equation to calculate Dp, which
is essentially a nonlinear drag force model (Di Felice 1994). The Di Felice model combined
with Ergun’s equation (Ergun 1952) considers the effects of both the particle Reynolds
number, Rep, and the porosity, ε, and has been widely used in particle-laden multiphase
flows (Kafui, Thornton & Adams 2002; Feng et al. 2004). Parameter Dp is a function of
Rep and ε:

Dp,i = 3
8sg

Cd
|ūf − up,i|

rp
, (2.4)

Cd = 24
Rep

⎧⎨
⎩8.33

1 − ε

ε
+ 0.0972Rep if ε < 0.8,

fbase · ε−ζ if ε ≥ 0.8,

(2.5)

fbase =
{

1 + 0.167Re0.687
p if Rep < 1000,

0.0183Rep if Rep ≥ 1000,
(2.6)

ζ = 3.7 − 0.65 exp[−1
2 (1.5 − log10Rep)

2], (2.7)
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where Cd is the dimensionless coefficient of the drag force, sg is the specific weight of
individual particles, sg = ρp/ρf , and rp is the particle radius. For dense particle flows
(ε < 0.8), (2.4) reduces to the original Ergun equation. Otherwise, Cd takes the form of
the Stokes law multiplied by a correction coefficient which varies with Rep, as indicated
by (2.6) and (2.7).

The particle phase is represented by discrete parcels whose motion is governed by
Newton’s second law ((2.8) and (2.9)):

dup,i

dt
= Dp,i(ūf − up,i) − 1

ρp
∇〈Pf 〉 + 1

mp

∑
j

F C,ij, (2.8)

dxp,i

dt
= up,i, (2.9)

where xp,i and mp,i denote the displacement and mass of parcel i, respectively, and F C,ij
represents the collision force between parcels i and j.

A four-way coupling strategy (Ukai et al. 2010) was adopted to account for the
momentum and energy transfer between the gases and particles. Specifically, the drag
force and the associated work from particles were incorporated into the momentum (2.2)
and energy (2.3) equations of the gas phase as the source terms. The parcels are driven by
the pressure gradient force, drag force and collision force between themselves (equation
(2.8)). A soft sphere model, represented by a coupling spring and dashpot, was employed
to model the collision force between the parcels (Apte, Mahesh & Lundgren 2003). Hence,
F C,ij consists of a repulsive force and a damping force, as follows:

F C,ij = kn,pδn − γn,pun,ij, (2.10)

where kn,p and γ n,p are the stiffness and damping coefficients of the parcels, respectively,
and δn and un,ij are the overlap and normal velocity difference between parcels in contact,
respectively. Here γ n,p is a function of the parcel restitution coefficient ep (Crowe et al.
2012) and defined as follows:

γn,p = − 2 ln ep√
π2 + ln ep

√
mpkn,p. (2.11)

To solve the equations governing the gases, the weighted essentially non-oscillatory
(Liu et al. 1994) scheme was used to reconstruct the primary flow variables. A Riemann
solver proposed by Harten, Lax and van Leer (Toro 2013) was used to obtain the
intercell fluxes. The third-order Runge–Kutta method was applied for the time integration.
The equations describing the parcel velocity and position were discretized by the
velocity-Verlet algorithm (Kruggel-Emden et al. 2008). Bilinear/trilinear interpolation
functions were adopted to calculate the particle volume fraction and source terms on the
Eulerian grids, as well as the fluid variables on the Lagrangian parcels. Numerical details
with regard to CMP-PIC can be found in our previous studies (Meng et al. 2019; Tian et al.
2020; Xue et al. 2020; Li et al. 2021).

The present CMP-PIC framework has been validated against Rogue’s experiments
involving shock waves propagating through particle curtains (Tian et al. 2020), shock
tube experiments wherein particle columns are impinged head-on by incident shocks
(Tian et al. 2020) and shock dispersion of particle rings (Xue et al. 2020). Specifically,
CMP-PIC reproduces the pore pressure histories at the cross-sections along the length of
the granular columns with different distances from the front surface, and its results are
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in good agreement with the experimentally recorded pressure traces. These validations
ensure that the CMP-PIC capacity can adequately simulate the evolution of the mean flow
parameters during shock-induced gas filtration.

2.2. The Morrison approach
The Morrison approach consisting of a simplified momentum conservation equation
enables the investigation of the dynamics of the mean flow parameters in shock-induced
gas filtration under the isothermal assumption. The results serve as a comparison with the
CMP-PIC simulated results to determine the influences of the thermal effects on the mean
flow parameters. Prior to presenting the non-dimensional equation for the pressure rise
along the granular column developed by Morrison (Morrison 1972), two non-dimensional
parameters that play deciding roles in gas filtration were introduced (Britan et al. 2007).
The first is the effective Reynolds number, Ref , whose formulation is shown as follows:

Ref = P5 − P1

P1
· b

a2 · 1
l

· c2
1

ν2
1γ

, (2.12)

where P5 and P1 are the upstream and downstream pressure upon the shock reflection off
the front surface of porous column, respectively, l is the length of porous column, c1 is the
sound speed, c1 = (γ P1/ρ1)1/2, ν1 is the kinematic viscosity, ν1 =μ1/ρ1, γ is the specific
ratio and a and b are the Darcy and Forchheimer coefficients mentioned above with (1.1).
Note that the subscript 1 in (2.12) and hereafter refers to the parameters of the quiescent air
ahead of the incident shock wave. The second parameter is the non-dimensional intensity
of the pressure impact that is imposed by the shock wave reflected at the front edge of a
granular sample, N, as follows:

N = P5 − P1

P1
. (2.13)

The upstream pressure, P5, is a function of Ms given by the normal shock relation:

P5 = (7M2
s − 1)(4M2

s − 1)

3(M2
s + 5)

P1. (2.14)

Therefore, N is also a function of Ms. If the quiescent air ahead of the incident shock wave
is under ambient conditions with P1 = 101.325 kPa and T1 = 298.15 K and has a specific
heat ratio for ideal gases of 1.4, then substituting (2.14) into (2.13) we obtain the following:

N = (7M2
s − 1)(4M2

s − 1)

3(M2
s + 5)

− 1. (2.15)

Comparing the formulations of Ref and N, Ref evidently comprises N, and the remnant
constituting a third non-dimensional parameter is denoted as Π , as follows:

Π = b
a2 · 1

l
· c2

1

ν2
1γ

. (2.16)

For a granular medium composed of spherical granules, the Darcy and Forchheimer
coefficients, a and b, are functions of only the particle diameter, dp, and the granular
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medium porosity, ε, through Ergun’s relations, as follows:

a = 180
(1 − ε)2

ε2
1
d2

p
, b = 1.8

1 − ε

ε

1
dp

. (2.17a,b)

Substituting (2.17) into (2.16) leads to the following:

Π =
(

1.75

1502 · ρ1P1

μ2
1

)
·
[

1
l
(1 − φp)

3

φ3
p

d3
p

]
. (2.18)

As evident from (2.18), Π incorporates the properties of the quiescent gases inside and
downstream of the granular column prior to shock impingement as well as the structural
properties of the granular column. Notably, the CMP-PIC and Morrison models both
employ Ergun’s equation to account for the drag force between the solid skeleton and
the interstitial gases.

In line with Morrison’s derivation, the scaling factor for the length is the length of the
granular column, while the scaling factor for the time, tsc, is given by the following:

tsc = l2a
γ ν1

c2
1N

= l2a
μ1

P1N
. (2.19)

Therefore, the scaling factor for the velocity is Vsc = l/tsc. The non-dimensional variables
for the distance, χ , and the time, τ , the pressure, θ , and the velocity, V *, are as follows:

χ = x
l
, τ = t

tsc
, θ = Pf − P1

P5 − P1
, V ∗ = uf

Vsc
= aluf μ1

P5 − P1
. (2.20a–d)

As a consequence, the non-dimensional form of the Forchheimer resistance law becomes
the following:

∂θ

∂χ
= −V ∗ − Ref (1 + Nθ)V ∗|V ∗|. (2.21)

The mass conservation equation becomes the following:

N
∂θ

∂τ
+ ∂

∂χ
[V ∗(1 + Nθ)] = 0. (2.22)

Combining (2.21) and (2.22) results in the following:

∂θ

∂τ
= 1√

1 + 4Ref (1 + Nθ)

∣∣∣∣ ∂θ

∂χ

∣∣∣∣

[(
1
N

+ θ

)
∂2θ

∂χ2 +
(

∂θ

∂χ

)2
]

. (2.23)

Equation (2.23) describes the filtration flows complying with the so-called mixed
conditions, i.e. flows in which both the viscous and the inertial losses are dominant.
The numerical solution of (2.23) provides the transient pressure profiles along a granular
column under the isothermal assumption.
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Figure 2. (a) Schematic diagram of the shock-tube-based configuration in the numerical experiments.
(b) Histogram of the parcel diameter distribution. (c) Close-up image of initial particle packing coloured by the
local particle volume fraction for the case with φ0 = 45 %.

3. Numerical set-up

A two-dimensional configuration illustrated in figure 2(a) was employed to investigate
shock-induced gas filtration in densely packed granular columns with rigid solid skeletons.
Instead of simulating the impingement of an incident shock upon the front surface of
the granular column, the state of the gases upstream of the front surface is kept as that
compressed by the reflected shock arising from the reflection of the incident shock off the
rigid surface. Hence, the upstream pressure and temperature are kept constant, consistent
with the reflected pressure, P5, and temperature, T5, given by (2.14) and (3.1), respectively:

T5 = (4M2
s − 1)(M2

s + 2)

9M2
s

T1. (3.1)

In this way we reduce the unsteady reflection process characterized by the coalescence
of a major reflected shock and a number of trailing compression waves to an
instantaneous reflection so that any disturbances associated with the unsteady reflection
are eliminated. The intergrain pores and downstream regions are filled with ambient air at
P1 = 1.0 × 105 Pa and T1 = 298 K.

The granular column domain was filled by particles generated by the radius expansion
algorithm. A population of parcels with artificially small radii that ensure that no
parcel or wall overlap is first randomly created within the specified volume. Then, all
parcels are expanded until the specified particle size distribution and desired porosity
are satisfied (Yan et al. 2009). In the present work, the diameter of the real particle is
dp, while the diameter of the parcel uniformly ranges from 4dp to 7.5dp μm to avoid
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Figure 3. Distribution of the simulated systems in the non-dimensional parametric space (N, Π ). The symbol
size varies according to the diameter of spherical particles dp.

potential crystallization during shock compaction (see the histogram of the parcel diameter
distribution in figure 2b). The close-up image in figure 2(c) shows the particle packing with
φ0 = 45 % wherein the parcels are coloured by the parcel-scale particle volume fraction,
φp, calculated using Voronoi tessellation. A random but homogeneous arrangement of
parcels is achieved regardless of the overall volume fraction.

In this study, the aim is to elucidate the thermal effect in shock-induced gas filtration,
which has universal implications. Hence, we constructed a comprehensive set of systems
with distinctively varying combinations of two deciding non-dimensional parameters of
N and Π . Figure 3 shows the largely even distribution of dozens of simulated systems in
the non-dimensional parametric space (N, Π ). Since Π is a function of Ms, systems can
be readily distinguished from each other by the combination of Ms and Π as shown in
figure 3. For clarity, the system is labelled by values of Ms and Π , C-Ms-Π .

As the incident shock intensifies, N increases from zero to 50 as Ms increases from
1 to 3 while the non-dimensional upstream temperature, T∗

5 = T5/T1, increases almost
five times, as indicated in figures 4(a) and 4(b), respectively. For an incident shock with
Ms = 3, T5 is elevated as high as 1406 K, indicating a considerable temperature difference
between the upstream and the downstream.

Compared with the relatively modest variation in N, the values of Π span nine orders
of magnitude, varying from O(10−5) to O(104). To achieve this drastically wide variation
range of Π , the primary affecting variable, dp, was allowed to vary between O(10−6) and
O(10−2) m, as shown in figure 3. Another two variables, l and φ0, vary within relatively
narrow ranges, l ∼ 200dp–1000dp, φ0 ∼ 0.45 to 0.6, entailing densely packed and long
granular columns. Low porosities are needed by the approximation of the shock reflection
off the solid surface. The long column ensures that the variation length of the mean flows
is greater than the particle size. The values of φ0 presented here are those in the equivalent
three-dimensional assemblies converted from the porosity correlation between the two-
and three-dimensional packings proposed by Borchardt-Ott (2012):

ε3D = 0.2595 + ε2D − 0.0931
0.2146 − 0.0931

(0.4760 − 0.2595). (3.2)
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Figure 4. Variations in N (a) and T∗
5 (b) with the Mach number of the incident shock, Ms. Insets: close-up

images for part of the N(Ms) and T∗
5 (Ms) curves towards the lower limiting end (Ms < 1.2).

The values in (3.2), 0.2595 (0.4760) and 0.0931 (0.2146), are associated with the states of
maximum or minimum packing density in two-dimensional (three-dimensional) packings
composed of monodispersed spheres. This conversion correlation has been widely used
to convert φ2D to φ3D, and vice versa. Accordingly, three-dimensional particle volume
fractions, φ3D, from 0.45 to 0.6 correspond to two-dimensional particle volume fractions,
φ2D, from 0.75 to 0.83. The exact values of the variable parameters in each numerical case
are listed in table 1 in Appendix A.

4. Results and analysis

4.1. Pressure diffusion
Figure 5(a) shows the typical profiles of non-dimensional pressure fields in C-1.43-50
as a function of depth into the granular column, θ iso(χ ) and θnon-iso(χ ), at different
times. The variables with the subscripts ‘iso’ and ‘non-iso’ represent the results derived
from the Morrison model with the isothermal assumption and the CMP-PIC simulations
that assume non-isothermal processes, respectively. These variables are referred to as
either the isothermal or the non-isothermal results hereafter. Note that the profiles
θnon-iso(χ ) are calculated as the average pressure across the width of the granular column
(perpendicular to the flow direction). The same averaging method is applied to derive the
streamwise profile of other flow and thermodynamic parameters, such as the profiles of
gas velocity, temperature and density. Despite the universal decay characteristics of the
diffusing pressure fields, the profiles θnon-iso(χ ) are always above the profile θ iso(χ ) until
a steady diffusing pressure field is established. The coincidence of the converged profiles
θnon-iso(χ ) and θ iso(χ ) indicates that the steady pressure diffusing field is unaffected by
the nature (isothermal or non-isothermal) of the prior unsteady phase.

To qualitatively compare the two pressure diffusion processes, we look at the evolution
of a characteristic depth χ s of the pressure field with time, where χ s is the depth into
the medium with a decayed pressure profile of θ (χ s) = 0.01, as illustrated in the inset
of figure 5(a). As shown in figure 5(b), the χ s,non-iso(τ ) trajectory precedes the χ s,iso(τ )
trajectory from the very beginning, indicating markedly faster pressure diffusion during
the non-isothermal filtration. If the characteristic time of the pressure diffusion, τ diff , is
measured by the time upon which χ s reaches the rear surface of the granular column,
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Figure 5. (a) Profiles of the isothermal (dashed line) and non-isothermal (solid line) pressure fields, θ iso(χ)
and θnon-iso(χ), for C-1.43-50 during the unsteady and steady filtration phases. Unsteady phase: τ = 0.19, 0.78
and 2.29; steady phase: τ = 17.37. Note that the steady θ iso(χ) and θnon-iso(χ) profiles converge into an identical
profile. Inset: zoomed-in details of θ iso(χ) and θnon-iso(χ) at τ = 0.78 with markers indicating the characteristic
depth of the isothermal and non-isothermal pressure diffusion, χ s,iso and χ s,non-iso. (b) Trajectories of χ s,iso(τ )
and χ s,non-iso(τ ) for C-1.43-50.

χ s = 1, the isothermal pressure diffusion in C-1.43-0.5 is almost 50 % slower than its
non-isothermal counterpart since τ diff,iso = 2.84 while τ diff,non-iso = 1.9.

The heat influx carried by the high-temperature upstream gases contributes to the
expediting of unsteady pressure diffusion due to additional energy input. The expediting
of the non-isothermal pressure diffusion compared with its isothermal counterpart is
quantified by the characteristic time ratio between isothermal and non-isothermal pressure
diffusions, ξp = τ diff ,iso/τ diff ,non-iso. Figure 6(a) plots ξp for all systems using symbols
whose size and colour vary with the values of the respective ξp. By interpolating ξp in
figure 6(a), the contour map of ξp is rendered in the parameter space (Ms, Π ) as shown
in figure 6(b). In general, ξp increases with either Ms or Π resulting in the isolines
slanting from the upper left to the lower right. However, the increasing rates markedly
vary from region to region as the isolines of ξp become increasingly steeper with Ms and
Π approaching the upper limit. The varying expediting effect in the parameter space (Ms,
Π ), as a manifestation of the thermal effect, is further discussed in § 4.4.

Notably, the non-isothermal and isothermal pressure diffusion are comparable inside
the bottom left semi-triangular region delimitated by the isoline ξp = 1.1; therefore, the
isothermal assumption holds therein in terms of the pressure diffusion. Hence, this
triangular region is referred to as the pressure diffusion equivalent triangle denoted by
TRdiff . The upper boundary of TRdiff , namely isoline ξp = 1.1, can be well fitted by the
linear correlation between Ms and Π , as follows:

Ms = −0.6 lg Π + 0.22. (4.1)

In addition to the expedited unsteady diffusion phase, the non-isothermal pressure
diffusion also exhibits distinct behaviours between τ diff ,non-iso and the full development
of the steady pressure field. Figure 7 depicts the temporospatial evolutions of the thermal
and non-isothermal diffusing pressure fields for C-1.43-50 represented by the isolines
θ iso(χ ,τ ) and θnon-iso(χ ,τ ), respectively. In contrast to the monotonic convergence of the
isolines θ iso(χ ,τ ), the majority of isolines θnon-iso(χ ,τ ) undergo discernible retraction after
χ s,non-iso reaches the rear surface of the granular column. The retraction starts at the rear
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Figure 6. (a) Characteristic time ratio between isothermal and non-isothermal pressure diffusions, ξp, for all
simulated systems represented by filled circles whose size and colour vary with the values of the respective ξp.
(b) Contour map of ξp in the parameter space (Ms, Π ) rendered by interpolating the data in (a). Isolines of ξp
are superimposed in (b). Note that the isoline ξp, ξp = 1.1, which can be approximated by the linear function
given in (4.1), sets the upper boundary of TRdiff .

surface and propagates upstream with a decaying retraction extent. As discussed in § 4.2,
the retraction of θnon-iso(χ ,τ ) is associated with the flow acceleration at the immediate
neighbourhood of the rear surface due to the nozzling effect which is amplified in the
non-isothermal gas filtration.

4.2. Gas flows
Figure 8 shows the profiles of isothermal and non-isothermal gas velocity fields in
C-1.43-50 as a function of depth into the granular column, V∗

iso(χ) and V∗
non-iso(χ), at times

corresponding to figure 5. In contrast with the decaying profiles θ iso(χ ) and θnon-iso(χ ), the

999 A91-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

69
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.699


J. Li, J. Chen, B. Tian, M. Xiang and K. Xue

0.80.6

χ

τ

1.00.2 0.4

16

14

18

12

10

4

2

6

0

8

θ = 0.8 θ = 0.6 θ = 0.4 θ = 0.2

θ = 0.05

θ = 0.01

θ∗
non-iso

θ∗
iso

Figure 7. Temporospatial evolutions of the isothermal and non-isothermal diffusing pressure fields in
C-1.43-50. Dashed and solid curves represent the isolines of θ iso(χ ,τ ) and θnon-iso(χ ,τ ), respectively.

profiles V∗
iso(χ) and V∗

non-iso(χ) both exhibit non-monotonic characteristics with singular
velocity peaks formed at the very beginning of gas filtration. As the profiles V∗

iso(χ) and
V∗

non-iso(χ) extend downstream with time, the downstream-moving velocity peak quickly
flattens. After χ s,iso (and χ s,non-iso) reaches the rear surface, a rear tail emerges and lifts up
with time, indicating that the flows accelerate towards the rear surface. This phenomenon
of flow acceleration is widely observed and attributed to the rapid fluid volume fraction
changes across the rear surface, since the momentum and energy changes of the filtration
flow due to the nozzling term (in (2.2) and (2.3)) become significant (Bdzil et al. 1999;
Kalenko & Liberzon 2020; Choi & Park 2022). Therefore, we describe the increase of fluid
velocity caused by changes in volume fraction as the ‘nozzling effect’ in this paper. The
rear-surface region across which the flows increasingly accelerate is denoted as RSRacc.

For isothermal gas filtration, the correlation between the gas pressure and velocity
is described by the Forchheimer resistance law (2.21). In the Darcy-flow domain, the
Forchheimer resistance law reduces to the Darcy resistance law whereby the instantaneous
gas velocity is proportional to the local pressure gradient. The velocity gradient depends on
the quadratic differential of the pressure. Hence the profile V∗

iso(χ) peaks at the deflection
point of the pressure gradient curve, ∂χθ iso(χ ), upon which ∂χV∗

iso(χ) and ∂2
χθ∗

iso are zero.
Similarly, the signature peak in the profile V∗

non-iso(χ) also arises from the deflection of
∂χθnon-iso(χ ). Indeed, the deflection points in profiles ∂χθ iso(χ ) and ∂χθnon-iso(χ ) shown
in figure 8(b) coincide with the locations of the peak summits of profiles V∗

iso(χ) and
V∗

non-iso(χ), respectively.
The temporospatial evolutions of the non-isothermal and isothermal gas velocity fields

for C-1.43-50 plotted in figure 9(a,b) show similar patterns. However, the non-isothermal
gas flows are considerably faster than the isothermal flows. Notably, the rear-surface
acceleration for the non-isothermal filtration is much more evident and affects the regions
far removed from the rear surface. Accordingly, the rarefaction waves accompanying the
development of the rear-surface accelerating flows are stronger in the non-isothermal
filtration, sufficing to cause the marked retraction of θnon-iso(χ, τ ) contour lines in figure 7.

For compressible gas flows, the velocity fields are closely coupled with the
thermodynamic parameters. Thus, to gain a thorough understanding of the thermodynamic
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Figure 8. (a) Typical profiles of V∗
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non-iso(χ) (solid line) for C-1.43-50 during the
unsteady and steady filtration phases. Unsteady phase: τ = 0.19, 0.78 and 2.29; steady phase: τ = 17.37.
(b) Corresponding pressure gradient profiles, ∂χθ iso(χ) and ∂χθnon-iso(χ), with markers indicating the
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Figure 10. Successions of profiles V∗
non-iso(χ) for a range of systems with varying Ms and Π , displaying a

complete evolution of velocity fields. The χ s,non-iso values corresponding to the first three profiles V∗
non-iso(χ)

from left to right are 0.2, 0.5 and 1, represented by the solid black, the dashed blue and the dotted green lines,
respectively. The fourth profile in the dashed-dotted red line represents the steady flow.

parameters in the non-isothermal gas filtration, the evolving flow characteristics need to
be elucidated. Figure 10 shows the velocity profiles V∗

non-iso(χ) for a range of systems with
Ms and Π spanning the entire parameter space. The first three profiles from left to right
describe the streamwise velocity distributions at the moments of the filtration incipiency
(χ s,non-iso = 0.2), the half-column being infiltrated (χ s,non-iso = 0.5) and the flows reaching
the rear surface (χ s,non-iso = 1). The fourth profile is the converged profile corresponding
to the steady pressure diffusion phase.

Although the progression of V∗
non-iso(χ) displayed in figure 10 exhibits a similar trend to

that shown in figure 9(a), the influences from Ms and Π cause distinct flow characteristics,
from very incipient unsteady flows to well-developed steady flow. As Ms increases the
primary velocity peak in the incipient V∗

non-iso(χ) becomes increasingly prominent with
an elevated amplitude and steepened declining slope. The peak amplitude is quantified by
�V∗

peak = (V∗
peak − V∗

0 )/V∗
0 , where V∗

peak and V∗
0 represent the peak velocity and velocity

at the front surface, respectively. Figure 11 shows the dependence of �V∗
peak on Ms with

Π = 5 × 10−5, 0.5 and 5 × 104. Here, �V∗
peak is calculated based on the profile V∗

non-iso(χ)

with χ s,iso = 0.5. The Ms dependence of �V∗
peak demonstrates an asymptotic convergence

trend regardless of Π varying over nine orders of magnitude, while �V∗
peak is negligible

(�V∗
peak < 0.05) in the weakest shock domain (Ms < 1.1).

Another striking flow characteristic associated with the increased Ms is the amplified tail
rising of the velocity profile, indicating an enhanced rear-surface acceleration. Figure 12(a)
shows a comparison of the profiles V∗

non-iso(χ) for the steady flows in systems with Π = 0.5
and increasing Ms; significant steepening and narrowing of the lifting tails are observed.
Except for the lifting tail, the bulk of the velocity profiles can be effectively fitted by a
linear function as indicated in figure 12(a). Thus, the point beyond which the extrapolated
fitting line and the actual profile become non-trivial is considered to be the beginning
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line start to deviate from the actual profiles. (b) The Ms dependence of the front edge of the RSRacc, χRSR (left
axis), and the tail rising rate, ∂χV∗

tail (right axis).

point of the lifting tail, or equivalently the front edge of the RSRacc and denoted by
χRSR hereafter. The χRSR for systems with Ms = 1.43, 1.54, 1.83 and 2.22 is indicated
in figure 12(a) and gradually moves downstream with increased Ms consistent with the
narrowing trend of the lifting tail with Ms. The χRSR is not discernible in cases with
the weakest incident shocks, such as Ms = 1.09 and 1.17. The tail rising rate ∂χV∗

tail is
calculated as the average variation of V*(χ ) per unit χ within the width of the RSRacc,
�RSRacc, as follows:

∂χV∗
tail =

V∗
χ=1 − V∗

χRSR

V∗
χRSR

· �RSRacc
, (4.2)

where V∗
χ=1 and V∗

χRSR
represent the velocities at the rear surface and χ = χRSR,

respectively, �RSRacc = 1 − χRSR. Figure 12(b) shows the variations in χRSR and ∂χV∗
tail

with increasing Ms and unvaried Π , Π = 0.5. The χRSR first quickly moves downstream as
the incident shock transitions from weak to strong and then converges to ∼0.7 after Ms > 2;
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Figure 13. (a) Temporospatial evolution of the non-dimensional temperature field T* for C-1.43-50.
(b) Profiles T*(χ) at sequential times enveloped by the evolution line of T∗

peak which reaches T∗
max at χ = χT∗

max .
At every moment, the position of the temperature peak, χT∗

peak
, coincides with the position of the contact surface

particle, χCS.

this result indicates a lower limiting width of the RSRacc, �RSRacc = 0.3. Moreover, the
tail rising rate ∂χV∗

tail continues to increase. From Ms = 1.4 to Ms = 3, ∂χV∗
tail increases

almost tenfold.

4.3. Gas temperature
Figure 13(a) displays the temporospatial evolution of the non-dimensional temperature
field, T∗ = T/T5, for C-1.43-50. Notably, there is a downstream-travelling hot gas layer
whose temperature is considerably higher than T5 and continues to increase. The profiles
T*(χ ) at sequential times shown in figure 13(b) manifest the diffusive nature of the hot
gas layer which spreads out while traversing the length of the column. The envelope of the
peaks in the profiles T*(χ ) indicated by the red curve in figure 13(b) shows the variation in
the peak temperature T∗

peak as a function of χ . For C-1.43-50, the hot gas layer undergoes
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Figure 14. Profiles T*(χ) for C-1.09-50 (a) and C-2.22-0.045 (b). Envelopes of the temperature peaks at
sequential times represent the variations in T∗

peak.

a substantial self-heating phase until it travels midway through the column when T∗
peak

reaches its maximum T∗
max. The corresponding location of the temperature peak is denoted

as χT∗
max .

The trajectory of the temperature peak, χT∗
peak

, is depicted in χ–τ space as indicated
by the dashed line in figure 13(a). Another important trajectory is that of the contact
surface, χCS, which separates the initial interstitial gases and infiltrated gases flowing from
upstream. Note that the trajectory of the contact surface is actually the trace line of the first
gas particle flowing into the granular column upon shock impingement. The derivation of
χCS is presented in Appendix B. As shown in figure 13(b), the positions of χT∗

peak
and

χCS coincide with each other at every moment, implying that the temperature peak resides
upon the contact surface, or equivalently it is the very first gas particle flowing into the
column that is the hottest one. The coincidence between χT∗

peak
(τ ) and χCS(τ ) is further

explored in § 4.4.
Two more distinct heating processes of the hot gas layers are shown in figure 14(a,b).

For C-1.09-50 (see figure 14a), T∗
peak increases to its maximum near the front surface,

χT∗
max = 0.27, followed by a gently declining plateau. In this scenario, most parts of the

granular column are subjected to T∗
max albeit the values of T∗

max are modest, T∗
max = 1.035.

In contrast, for C-2.22-0.045, the increase in T∗
peak persists until the hot gas layer passes

the rear surface, χT∗
max = 1. We observe a singularly maximum temperature T∗

max = 3.11
at the rear surface.
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The traversing hot gas layer introduces additional energy into the gas filtration, part of
which fuels the pressure diffusion. The coupling between the thermal effect embodied
by the self-heating hot gas layer and the pressure diffusion is elaborated in § 4.4. The
occurrence of thermal stress in granular materials exposed to rapid temperature changes is
known as ‘thermal shock’. In fact, the propagation of the hot gas layer within the material
induces a sharp thermal shock to the local solid skeleton with a temperature amplitude
as high as a few hundred degrees. This intense thermal shock can result in significant
surface or internal damages to the material, including cracks, fractures and other forms of
degradation. For instance, a solid skeleton made of aluminium alloys loses almost its entire
strength under thermal shock with an amplitude of 500 °C (Yin et al. 2023). Throughout
the granular column the thermal shock markedly varies from part to part as indicated by
the variation in T∗

peak in figures 13(b) and 14, which causes a mismatch of the resulting
thermal stresses and thermal expansion. The property degradation in combination with
the mismatching thermal stresses poses a great threat to the structural integrity of the
solid skeleton. Consequently, the shock resistance performance of the granular medium
probably deteriorates. Therefore, the thermal resistance properties of porous materials as
candidates for shock protection shields need to be among the primary concerns when
assessing the overall shock resistance performance.

Parameters T∗
max and χT∗

max are reasonable to use as the quantitative descriptors of the
thermal effect of gas filtration. The former characterizes the intensity of the thermal
effect while the latter measures the streamwise uniformity of the thermal effect. The
contour maps of T∗

max, Tmax and χT∗
max in the parameter space (Ms, Π ) are shown in

figure 15(a–c), respectively. A distinctive but resembling pattern can be identified from
these contour maps. In general, a stronger incident shock causes a more intense and
prolonged self-heating of the hot gas layer, especially in the strong incident shock domain
Ms > 2. If we set the 10 % increase of the ambient temperature to 327.8 K as the upper
limit of Tmax below which the isothermal assumption holds, the corresponding threshold
of Ms,iso is 1.08, as shown in figure 15(b). Note that the Ms dependences of T∗

max, Tmax and
χT∗

max are substantially amplified in the domain with strong shocks, Ms > 2, and median
levels of Π , Π ∼ O(10−3)–O(10−1).

In contrast with the monotonic increase in these parameters with Ms, the Π dependences
are more complicated. In the domain of the weakest incident shock, Ms < 1.1, the isolines
are parallel to the Π axis, indicating a minimum Π effect. As the incident shock
strengthens, a nonlinear dependence of Π emerges and becomes increasingly prominent.
For a given Ms (Ms > 1.8), T∗

max and Tmax reach their maxima in the neighbourhood of
Π ∼ O(10−2). Moreover, the completion of self-heating is delayed on the rear surface,
χT∗

max = 1. The resemblance of the variation patterns in T∗
max and χT∗

max indicates an
explicit correlation between the heating intensity and the duration for which self-heating
occurs. Specifically, the delay of the temperature convergence corresponds to an elevated
maximum temperature. The hot gas layer is able to obtain a higher T∗

max if self-heating
continually persists to the rear surface. In § 4.5, we further account for the variation in
χT∗

max in the Ms–Π parameter space in terms of the heating modes.

4.4. Coupling between the thermal effect and the pressure diffusion
The influence of the thermal effect on the pressure diffusion depends on the amount of
heat carried by the hot gas layer which can be converted into the pressure potential. The
total heat and the conversion proportion both play a significant role. We employ the time
integral of the heat flux passing through the rear surface as a measurement of the total
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Figure 15. Contour maps of T∗
max (a), Tmax (b) and χT∗

max (c) in the parameter space (Ms, Π ). Three distinct
heating modes, mode I: the gas-filtration-dominated mode, mode II: the rear-surface-dominated mode and
mode III: persistent heating mode, are delineated by two boundaries. Boundaries between different modes are
represented by the pink and white solid lines which are denoted as B-I-II and B-II-III, respectively.
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Figure 16. (a) Temporal variation in Q̇rear prior to a steady heat flux being established for C-1.43-50.
(b) Contour map of Qheat in the parameter space (Ms, Π ).

heat. The heat flux at the rear surface, Q̇rear, is calculated as follows:

Q̇rear = ρrearerearVrear, (4.3)

where ρrear, erear and Vrear are the gas density, specific internal energy and gas
velocity at the rear surface, respectively. Here erear is a function of the gas temperature
at the rear surface, erear = cvTrear, where cv is the constant-volume specific heat
capacity. Substituting erear = cvTrear and the equation of state for the ideal gases,
Prear = ρrearRTrear, into (4.3), (4.3) reduces to the following:

Q̇rear = 1
γ − 1

PrearVrear. (4.4)

Figure 16(a) shows evolution of Q̇rear for C-1.43-50. When the diffusing pressure field
front arrives at the rear surface, χp = 1 (tdiff ,non-iso = 5.78 ms), Q̇rear begins to increase
until the contact surface particle passes through the rear surface (tT = 72.0 ms) when Q̇rear
reaches the maximum. Afterwards the Q̇rear curve drops slightly before converging to a
steady value at theat = 85.3 ms. If we assume that thermal effect diminishes as the hot gas
layer moves to the rear surface, the total heat relevant to the thermal effect, Qheat, can be
calculated as the integral of the Q̇rear(t) curve from tdiff ,non-iso to theat:

Qheat =
∫ theat

tdiff ,non-iso

Q̇rear dt. (4.5)

The contour map of Qheat in the parameter space (Ms, Π ) is shown in figure 16(b). The
dependence of Qheat on Π overpowers its dependence on Ms. Hence, the isolines exhibit
a horizontally tilted pattern. As Π increases from O(10−5) to O(104), Qheat increases over
five decades.

The proportion of Qheat contributing to pressure diffusion depends on the ratio between
the traversal time of the hot gas layer, τT , and the characteristic time of the pressure
diffusion, ξT = τT /τ diff ,non-iso. The contour map of ξT in the parameter space (Ms, Π )
is shown in figure 17(a); a strong dependence on Ms in the weak incident shock domain,
Ms < 1.6, is observed, and Π plays a more important role in the strong incident shock
domain, Ms ≥ 1.6. Inside the upper right corner of the parameter space delineated by the
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Figure 17. Contour maps of ξT (a), QT→p (b), Ep (c) and Q∗
T→p (d) in the parameter space (Ms, Π ).

isoline ξT = 1 (see figure 17a), the hot gas layer travels faster than the pressure diffusion;
therefore, almost all Qheat is available for expediting the pressure diffusion. Otherwise,
the cumulative heat flux in the duration of τ diff ,non-iso possibly contributes to a faster
pressure diffusion. The inverse of ξT serves as a scale factor measuring the proportion
of Qheat fuelling the pressure diffusion. The heat available for conversion into the pressure
potential, QT→p, is a function of Qheat as well as ξT :

QT→p = Qheat for ξT < 1,

QT→p = Qheat/ξT for ξT ≥ 1.

}
(4.6)

Figure 17(b) shows the contour map of QT→p which has a similar pattern to Qheat.
Specifically, the isolines of QT→p take the form of a semi-parallel inclined line in the weak
incident shock domain, Ms < 1.6, while they transition into a series of semi-horizontal
lines in the strong incident shock domain, Ms ≥ 1.6.

A non-dimensional QT→p, Q∗
T→p = QT→p/Ep, is employed to better characterize the

thermal effects on the pressure diffusion, where Ep is the cumulative pressure potential
energy along the length of the granular column subject to the steady diffusing pressure
field:

Ep =
∫ l

0
P(x) dx. (4.7)

Figure 17(c) plots the contour map of Ep in the parameter space (Ms, Π ) wherein the
isolines take the form of regularly spaced parallel lines slowly inclining from the upper left
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towards the lower right. For C-1.43-50, Q∗
T→p = 0.42 with QT→p = 1.37 × 105 J m−2 and

Ep = 3.19 × 105 J m−2, indicating the heat available to fuel the pressure diffusion is 42 %
of the pressure potential. The contour map of Q∗

T→p calculated as the ratio between QT→p

and Ep is shown in figure 17(d); this displays convoluted isolines with the highest value
Q∗

T→p∼0.7 appearing in the region as Π approaches the upper limit, Π ∼ O(104), while
the incident shock is relatively weak, Ms ∼ 1.3. Notably, the bottom region of figure 17(d)
enclosed by the isoline Q∗

T→p = 0.1 roughly coincides with the upper boundary of
TRdiff . Indeed, beneath the isoline Q∗

T→p = 0.1, the heat flux contributing to diffusion
is trivial relative to the pressure potential which is the primary driving force for diffusion.
Accordingly, the pressure diffusion therein is barely affected.

4.5. Mechanisms underlying the thermal effect
In this section, the heating mechanism governing the temperature evolution of the
traversing hot gas layer is accounted for from the perspective of energy conservation. In the
Lagrangian frame, the internal energy conservation equation for an individual gas particle
is as follows:

ρg
R

γ − 1
dT
dt

= 1 − ε

ε
ρgDpV2

g − P
∂Vg

∂x
. (4.8)

The term on the left-hand side of (4.8) represents the growth rate of the internal
energy per unit volume. The variation in the internal energy is related to the viscous
dissipation caused by the drag force between the gas and solid skeleton (the first term on
the right-hand side) as well as unsteady pressure work (the second term on the right-hand
side). Viscous dissipation always leads to gas heating. In contrast, the contribution of the
pressure work to the gas internal energy depends on the sign of the streamwise velocity
gradient. Specifically, accelerating gases undergoing expansion are doing work to the
surroundings at the expense of the internal energy. Otherwise, decelerating gases are
heated up along with being compressed. Thus, whether gas heating occurs depends on
the nature (expansion or compression) and magnitude of the pressure work relative to
viscous dissipation. Gas heating is terminated only when the gas particle commences a
sufficiently strong acceleration phase. A maximum temperature is observed inside the
granular column. Otherwise, the gas particle’s temperature continuously increases until
it passes through the rear surface.

To better illustrate the dependence of the thermal effect on the flow and thermodynamic
parameters, we substitute the drag force model, namely the Di Felice model ((2.4)–(2.7)),
and the non-dimensional variables defined in (2.20) into (4.8). Hence, (4.8) reduces to its
non-dimensional form:

dT∗

dτ
= N(γ − 1)

N + 1
μ∗

ρ∗
non-iso

(V∗
non-iso)

2 + N(γ − 1)

N + 1
NΠ

ρ5

ρ1
(V∗

non-iso)
3

− Nθnon-iso + 1
N + 1

γ − 1
ρ∗

non-iso

∂V∗
non-iso
∂χ

, (4.9)

where μ* is the non-dimensional dynamic viscosity, μ* = μg/μ1, and the non-dimensional
density ρ* satisfies the non-dimensional equation of state for ideal gases:

ρ∗
non-iso = Nθnon-iso + 1

N + 1
1

T∗ . (4.10)
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Figure 18. (a) Zoom-in plot (χ > 0.9) of the streamwise variations in the viscous loss, inertial loss and
pressure work during the steady diffusion phase for C-2.99-5000. Inset: the whole streamwise profiles of each
term. (b) Corresponding temperature growth rate and temperature distribution along the length of the granular
column.

The first and second terms on the right-hand side of (4.9) represent the (linear) viscous and
(nonlinear) inertial losses of the viscous dissipation, respectively. As indicated in (4.9), the
variation rate of the gas temperature depends on the instantaneous values of the velocity,
V∗

non-iso, the velocity gradient, ∂χV∗
non-iso, the pressure, θnon-iso, and the density, ρ∗

non-iso.
For low-speed gas filtration without the compressible effect, the gaseous density

ρ∗
non-iso remains consistent from the upstream all the way down to the downstream. As

a result, T* is proportional to θnon-iso which monotonically decays with distance from
the upstream surface. Thus, no gas heating is expected. For isothermal gas filtration with
the compressible effect which does not allow the upstream temperature to differ from the
downstream one, there is no temperature variation (dT*/dτ = 0). Equation (4.9) reduces
to the compressible version of the Forchheimer law, whereby the linear and nonlinear flow
resistance forces as well as the unsteady pressure work are all taken into account.

We first address the non-existence of the thermal effect during the steady pressure
diffusion phase during which the temperature field is uniform and consistent with T5. As
illustrated in figure 10, the converged velocity profile, V∗

non-iso(χ), of the steady flows has
a form of a gently upwards slope with (in the strong incident shock domain) or without (in
the weak incident shock domain) a lifting tail. The overall low magnitude and flatness
of the profile V∗

non-iso(χ) except for the lifting tail indicate that the gas particles flow
through the bulk of the granular column at relatively low and unvaried velocities. Hence,
outside the RSRacc all three terms on the right-hand side of (4.9) become negligible such
that the gas temperature remains constant. If the profile V∗

non-iso(χ) features a significant
lifting tail, the gas particles undergo a substantial acceleration as they pass through the
RSRacc, and the viscous dissipation and the expansion work are equally intense such that
the resulting heating and cooling effects may be effectively negated. As a result, the gas
temperature barely changes across the RSRacc. Figure 18 shows the streamwise variations
in each of the three terms on the right-hand side of (4.9) during the steady diffusion phase
for C-2.99-5000 which is supposed to manifest the strongest thermal effect. The viscous
loss (the first term) of the viscous dissipation remains minimal which is consistent with
the Forchheimer flow characteristic of gas filtration in this case with Ref = 2.5 × 105. The
inertial loss and pressure work terms, albeit having non-trivial values, offset each other due
to opposite signs leading to a neutralized temperature growth rate as shown in figure 18(b).
No thermal effect in terms of detectable heating or cooling effects can be observed during
the steady filtration phase.
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Figure 19. Comparisons of the contact surface particle’s velocity evolutions V∗
CS(χ) and converged velocity

profiles V∗
non-iso(χ) for C-1.09-50 (a), C-2.22-50 (b) and C-2.22-0.045 (c). Profile V∗

CS(χ) for C-0.5-50 deflects
upon the steady diffusing pressure fields is established and marked by the red circle in (a). The front edges of
the RSRacc for C-2.22-50 and C-2.22-0.045 are also indicated in (b,c) by χRSR. Profiles T∗

CS(χ) corresponding
to (a–c) are shown in (d–f ), respectively. The locations of T∗

max(χ) are denoted by χT∗
max marked in each panel.

In contrast to the steady flows during the steady filtration phase, gas particles flow
through the column at relatively high and markedly varying velocities during the incipient
filtration phase as indicated in figure 10. Accordingly, the viscous dissipation and the
pressure work in this phase play a non-trivial role, producing intensified thermal effects.
The very first gas particle that flows into the granular column upon shock impingement,
namely the contact surface particle, attains the highest velocities and undergoes the
most significant velocity fluctuation. Figure 19(a–c) shows a comparison of the velocity
evolutions of the contact surface particle, V∗

CS(χ), and the converged velocity profiles for
C-1.09-50, C-2.22-50 and C-2.22-0.045, respectively; considerable differences, especially
in the first half of the column, are observed. Consequently, the contact surface particle
is subjected to the most intensified heating. The trace line of the contact surface particle
forms the hottest contour line in the temperature field T* as shown in figure 13(a).

For C-1.09-50 the temperature of the contact surface particle, T∗
CS(χ), reaches its

maximum at the deflection point of the profile V∗
CS(χ) as shown in figure 19(d),

χT∗
max = 0.27. Actually, the V∗

CS(χ) curve beyond χT∗
max = 0.24 coincides with the

converged velocity profile since the steady flows are well developed when the contact
surface particle reaches χT∗

max . Gas self-heating is terminated by the premature formation
of the steady flows, which occur in cases where the filtrated gas particles lag far behind the
pressure diffusion front, ξT ∼ O(101). Since there is no gas acceleration towards the rear
surface, we refer to this heating mode as the gas-filtration-dominated mode.
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For C-2.22-50 and C-2.22-0.045, both of which have noticeable RSRacc, the maximum
temperatures of the contact surface particles are attained at the front edge of RSRacc,
χT∗

max = χRSR, and the rear surface, χT∗
max = 1, respectively. Since the heating effect

associated with the viscous dissipation and the ‘cooling effect’ caused by the expansion
work are both active inside the RSRacc, χT∗

max = χRSR indicates that the cooling effect
prevails while χT∗

max = 1 means that the heating effect dominates throughout. The cases
wherein the cooling effect inside the RSRacc suffices to reverse the persistent gas heating,
such as C-2.22-50, are referred to as the rear-surface-dominated heating mode. Otherwise,
the gases are continually heated to the rear surface in cases such as C-2.22-0.045, which
are referred to as the persistent heating mode.

The boundaries delineating these three distinct heating modes are superimposed on
the contour map of χT∗

max in figure 15(c). The boundary between the gas-filtration-
and rear-surface-dominated modes roughly aligns with the vertical line Ms ∼ 1.4
which coincides with the isoline of ξT = 2 as indicated in figure 17(a). In the
gas-filtration-dominated domain the gas temperature reaches T∗

max in the first half of the
granular column and gradually decreases as the gases flow downstream. The persistent
heating mode resides in the narrow band enveloped by the vertical line Ms ∼ 1.8, and
two horizontal lines Π ∼ 10−2 and Π ∼ 10−1. The remaining region in the Ms–Π space
belongs to the rear-surface-dominated domain, where T∗

max is reached inside the RSRacc.
Upon closer inspection of figure 15(a,c), the presence of the persistent heating domain
evidently warps the contour lines of T∗

max and Tmax therein such that T∗
max(Π) and Tmax(Π )

display significant nonlinear behaviours across the persistent heating domain.
The location of the persistent heating domain in the parameter space (Ms, Π ) can be

predicted via (4.9). The viscous loss (first term on the right-hand side), the inertial loss
(second term on the right-hand side) and the pressure work (third term on the right-hand
side) scale with (V∗

non-iso)
2, NΠ(V∗

non-iso)
3 and ∂χV∗

non-iso, respectively. Employing V∗
χRSR

and the average gradient of V*(χ ) within �RSRacc as approximations of V∗
non-iso and

∂χV∗
non-iso, respectively, gives the following:

∂χV∗
non-iso = ∂V∗

non-iso
∂χ

=
V∗

χ=1 − V∗
χRSR

�RSRacc
. (4.11)

We plot each term’s variations with Π at Ms = 1.43 and 2.22 as shown in figure 20(a,b).
For both cases the viscous loss overwhelms the inertial loss in the domain with
Π ≤ O(10−1) and Ref ≤ O(100) corresponding to the Darcy flow regime. As Π exceeds
O(10−1), the Forchheimer flow begins to develop, and the inertial loss becomes dominant.
Hence, whether gas self-heating is sustained across RSRacc (dT*/dτ > 0) depends on
the relative importance of the pressure work and the viscous loss (Π ≤ O(10−1)) or the
inertial loss (Π > O(10−1)). For the strong incident shock, Ms = 2.22, the value of viscous
loss exceeding the absolute value of the (expansion) pressure work only occurs within
a narrow interval of Π , O(10−2) < Π < O(10−1) (see figure 19a), wherein the persistent
heating mode dominates. Beyond this interval of Π , the pressure work always prevails over
either the viscous loss (Π ≤ O(10−1)) or the inertial loss (Π > O(10−1)). The gas heating
is halted within the RSRacc. The rear-surface-dominant heating mode is also the sole
heating mode for Ms = 1.43 regardless of Π since the pressure work inside the RSRacc is
always higher than the viscous and internal losses (see figure 20b). The predicted location
of the persistent heating domain in the parameter space (Ms, Π ) is consistent with the
numerically derived phase diagram shown in figure 15(a).
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Figure 20. Variations in the magnitudes of the viscous loss, inertial loss and pressure work with Π at
Ms = 1.43 (a) and 2.22 (b). Inset of (b): zoom-in plot of the variations in magnitude of each term in the domain
with Π ≤ O(10−1).

5. Discussion

The relation between the non-isothermal gas density, ρ∗
non-iso, and the non-isothermal

temperature, T∗
non-iso, as well as the non-isothermal pressure, θnon-iso, is shown in (4.10).

Differentiating (4.10) with respect to χ enables the correlation of the spatial variation of
ρ∗

non-iso with T∗
non-iso and θnon-iso as given in (5.1):

∂ρ∗
non-iso
∂χ

= 1

(N + 1)T∗
non-iso

2

[
NT∗

non-iso
∂θnon-iso

∂χ
− (Nθnon-iso + 1)

∂T∗
non-iso
∂χ

]
. (5.1)

Since θnon-iso monotonically decays with χ , ∂χθnon-iso < 0 and whether ρ∗
non-iso similarly

decays with χ depends on the sign and magnitude of ∂χT∗
non-iso. Note that the coefficients

in the two derivative terms on the right-hand side of (5.1), NT∗
non-iso and Nθnon-iso + 1,

are of the same order of magnitude. Figure 21 shows the characteristic profiles ρ∗
non-iso

and T∗
non-iso(χ) for C-3.5-50 at τ = 1.45. On the rising side of the temperature peak,

∂χT∗
non-iso > 0 such that ρ∗

non-iso decreases with χ with a steeper slope than that of the
isothermal density. On the declining side of the temperature peak, ∂χT∗

non-iso < 0. If the
absolute value of ∂χT∗

non-iso, |∂χT∗
non-iso|, is in excess of that of ∂χθnon-iso, ∂χρ∗

non-iso
becomes positive, resulting in a temporary increase in ρ∗

non-iso. As shown in figure 21(a) a
depression appears in profile ρ∗

non-iso(χ) immediately downstream of the temperature peak,
wherein |∂χT∗

non-iso| is the largest. The |∂χT∗
non-iso| becomes increasingly smaller with χ

as the tail of the profile T∗
non-iso(χ) spreads out and eventually is surpassed by |∂χθnon-iso|.

Afterwards the profile ρ∗
non-iso(χ) resumes the general decay characteristics.

The emergence of the evident temperature peak in the profile T∗
non-iso(χ) is the

signature of the thermal effects. As mentioned before, the density depression in the profile
ρ∗

non-iso(χ) is also the imprint of the thermal effects. The width and amplitude of the rising
ramp of the density depression with positive ∂χρ∗

non-iso show the influence of the thermal
effects on the density field. We denote the starting and ending points of the positive
∂χρ∗

non-iso phase as χ0
∂ρ>0 and χ1

∂ρ>0, respectively. The width of the positive ∂χρ∗
non-iso

phase, �χ∂ρ>0, is the interval between χ0
∂ρ>0 and χ1

∂ρ>0, �χ∂ρ>0 = χ1
∂ρ>0 − χ0

∂ρ>0.
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Figure 21. (a) Profiles of ρ∗
non-iso (blue dashed line), T∗

non-iso(χ) (red solid line) and θ∗
non-iso(χ) (black

dash-dot line) for C-3.5-50 at τ = 1.45. The shaded band indicates the region with a positive density gradient,
∂χρ∗

non-iso > 0. (b) Streamwise variations in the width and amplitude of the positive ∂χρ∗
non-iso phase, �χ∂ρ>0

and �ρ∗
∂ρ>0 for C-3.5-50.

The amplitude of the positive ∂χρ∗
non-iso phase is defined as �ρ∗

∂ρ>0 = ρ∗
non-iso(χ

1
∂ρ>0) −

ρ∗
non-iso(χ

0
∂ρ>0). Figure 21(b) shows the streamwise variations in �χ∂ρ>0 and �ρ∗

∂ρ>0
for C-3.5-50. As this case belongs to the rear-surface-dominated heating mode domain,
the temperature peak becomes tempered inside the RSRacc, indicating the waning of the
thermal effects. As a result, the positive ∂χρ∗

non-iso phase becomes increasingly narrower
with reduced amplitude as shown in figure 21(b).

Figure 22(a–c) displays the temporospatial evolutions of ρ∗
non-iso in C-1.09-50,

C-1.43-50 and C-2.22-0.045, which belong to the gas-filtration-dominated, rear-surface-
dominated and persistent heating domains, respectively. The temporospatial evolutions
of the corresponding ∂χρ∗

non-iso are shown in figure 22(d–f ), respectively. The thermal
effect in the gas-filtration-dominated heating mode is generally modest, shown by the
slight temperature rise, as indicated in figure 14; this does not suffice to cause a positive
∂χρ∗

non-iso phase, which is the case in C-1.09-50 (figure 22a,d). The amplified thermal
effect in the rear-surface-dominated heating mode allows the presence of a positive
∂χρ∗

non-iso phase downstream of the contact surface (figure 22b,e). However, the positive
∂χρ∗

non-iso phase diminishes as it approaches the rear surface since the thermal effect
attenuates in the RSRacc. We observe a substantial enhancement of the positive ∂χρ∗

non-iso
phase in cases controlled by the persistent heating mode in terms of the intensity, expanse
and outreach, as shown in figure 22. A sharp density gradient across the hot gas layer
enables high-speed schlieren imaging to visualize the thermal effect in this scenario.

The misalignment of contour lines between θnon-iso and ρ∗
non-iso provides the source

for the baroclinic torque, ∇θnon-iso × ∇ρ∗
non-iso, which contributes to vorticity generation.
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Figure 22. Temporospatial evolutions of ρ∗
non-iso (a–c) and ∂χρ∗

non-iso (d–f ) in C-1.09-50 (a,d), C-1.43-50
(b,e) and C-2.22-0.045 (c, f ).

If the vortices become so profuse that the laminar flow assumption is challenged, the
formulations of Morrison’s method become problematic. For mobile particle packings, the
baroclinic vorticity introduces momentum to the particles in the non-streamwise directions
and is likely responsible for the clustering or ‘channelling’ of the particles through
the vortices. The baroclinic vorticity caused by thermal effects needs to be considered
in the theory of shock-driven multiphase instability, which primarily accounts for the
drag-induced vorticity deposition.

6. Conclusion

We carried out a comprehensive numerical investigation of shock-induced gas filtration
through rigid granular columns in parameter space constructed by two defining
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non-dimensional parameters, namely the incident shock Mach number, Ms, and the
filtration coefficient, Π . In contrast to the normally adopted isothermal gas filtration
assumption, the results show an intense non-isothermal filtration process characterized
by a self-heating gas layer traversing the column. The resulting thermal effects have two
major implications. First, the pressure diffusion is accelerated due to the influx of the
additional heat which depends on the cumulative heat flux and the time-scale ratio between
the thermal effect and the pressure diffusion. Second, the heat spike associated with the
hot gas layer results in an intense thermal shock which may pose a threat to the integrity of
the solid skeleton. The maximum gas temperature and the corresponding location are of
most concern in this regard; they are used to characterize the intensity and uniformity of
the thermal effect, respectively. The contour maps of the thermal effects are constructed
in the parameter space (Ms, Π ) from these two perspectives.

The self-heating mechanisms of the hot gas layer are considered in energy analysis.
The thermal effects are further classified into three distinct modes based on the dominant
heat mechanisms: gas-filtration-dominated, rear-surface-dominated and persistent heating
modes. The phase diagram of the heating modes is also established in the parameter space
(Ms, Π ). Each heating mode correlates with distinct characteristics of the thermal effects,
which justifies the variations in the thermal effects with Ms and Π .

Glossary

English letters

Parameter Explanation Unit

a Darcy coefficient m−2

b Forchheimer coefficient m−1

c sound speed m s−1

Cd dimensionless drag force coefficient —
d diameter m
Dp drag force coefficient m−1

e specific internal energy per unit mass J kg−1

ep restitution coefficient —
E total energy per unit mass J kg−1

Ep cumulative pressure potential energy along the length of the granular column subject
to the steady diffusing pressure field

J m−2

F force N
FC collision force N
k permeability of particle column m2

kn stiffness coefficient N m−1

l length of particle column and the length scale m
m mass kg
Ms Mach number of incident shock —
N non-dimensional intensity of the pressure impact —
P pressure Pa
P1 atmospheric pressure Pa
P5 reflected pressure of the incident shock Pa
Qheat total heat relevant to the thermal effect J m−2

Q̇rear heat flux at the rear surface J m−2 s−1

QT→p heat available for being converted into the pressure potential J m−2

r radius m
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Parameter Explanation Unit

Ref effective Reynolds number —
sg specific weight —
t time s
tdiff time diffusing pressure field front arrives at the rear surface s
tT time contact surface particle passes through the rear surface s
theat time heat flux at the rear surface converging to a steady value s
tsc characteristic time scale s
T temperature K
T∗

CS temperature of the contact surface particle —
T∗

peak peak flow temperature in the temperature profile —
Tmax maximum flow temperature in the particle column K
T1 ambient temperature K
T5 temperature of the reflected shock upstream K
T∗

5 non-dimensional upstream temperature —
u velocity m s−1

ūf average fluid velocity at the location of a particle m s−1

ūp average velocity of particles within a fluid cell m s−1

V velocity m s−1

V∗
CS velocity the contact surface particle —

V* non-dimensional velocity —
V∗

peak peak flow velocity in the velocity profile —
∂χ V* average gradient of flow velocity within the rear-surface flow acceleration region —
∂χ V∗

tail rising rate within the rear-surface flow acceleration region —
V∗

0 flow velocity at the front surface —
Ṽ interstitial gas velocity m s−1

Vsc characteristic velocity scale m s−1

x distance m

Greek letters

Parameter Explanation Unit

α2 averaged super particle loading —
χ non-dimensional distance —
χCS position of the contact surface —
χRSR beginning point of the rear-surface region across which the flow increasingly

accelerates
—

χ s characteristic depth of the pressure diffusion —
χT∗

max position the traversing hot gas layer reaching its maximum —
χT∗

peak
position of the temperature peak —

χ0
∂ρ>0 starting point of the region with positive density gradient —

χ1
∂ρ>0 ending point of the region with positive density gradient —

�χ∂ρ>0 width of the region with positive density gradient —
δ overlap m
ε coefficient of restitution —
φp volume fraction of particles calculated through Voronoi tessellation —
φ0 initial volume fraction of particle column —
γ specific heat ratio —
γ n damping coefficient —
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Parameter Explanation Unit

μ dynamic viscosity N s m−2

ν kinematic viscosity m2 s−1

Π infiltration coefficient incorporating both the properties of the quiescent gases
and the structural properties of the granular column

—

θ non-dimensional pressure —
τ non-dimensional time —
τ diff characteristic time of the pressure diffusion —
ξp characteristic time ratio between isothermal and non-isothermal pressure

diffusions
—

ξT ratio between the traversing time of the hot gas layer and the characteristic time
of the pressure diffusion

—

Subscripts

Symbol Explanation

iso isothermal case
non-iso non-isothermal case

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Jiarui Li https://orcid.org/0000-0002-5148-7715;
Baolin Tian https://orcid.org/0000-0002-7929-8756;
Meizhen Xiang https://orcid.org/0000-0003-1666-9852;
Kun Xue https://orcid.org/0000-0002-2949-6498.

Appendix A. Parameters in each numerical case

Four primary variables are involved in our simulations: the Mach number of the incident
shock, Ms, the particle diameter, dp, the packing fraction of the particle column, φ0,
and the length of the column, l. With increasing Mach number from 1.094 to 2.986,
the non-dimensional reflected shock intensity, N, introduced in (2.15) varies from 0.5 to
50. The other three variables constitute the filtration coefficient, Π . Since Π is mainly
controlled by the particle diameter according to (2.18), dp varies from 1 μm to 10 mm
to ensure a wide variation range of Π . The packing fraction and particle column length
contribute relatively less to Π ; therefore, φ0 and l only vary within narrow ranges, φ0 from
0.45 to 0.58 and l/dp from 200 to 1000. The exact values of the variable parameters in each
case are provided in table 1.

Appendix B. Approach to obtain the trajectory of the contact surface

The trajectory of the contact surface, χCS, is the moving route of the first gas particle
flowing into the granular column upon shock impingement which can be obtained from
the gas velocity field shown in figure 9. The new position of this gas particle along the
flow direction can be updated from its previous position and the corresponding local gas
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The trajectory of contact surface, χCS

χ∗
CS �τ3� = χ∗

CS �τ2� + V ∗
CS �τ2� · 	τ3

χ∗
CS �τ2� = χ∗

CS �τ1��+ V ∗
CS �τ1��· 	τ2

χ∗
CS �τ1� = V ∗

CS �0��· 	τ1

	τ1

τ1

	τ2

τ2

	τ3

τ3

V ∗
CS �τ2�

V ∗
CS �τ1�

V ∗
CS �0�

Figure 23. Schematic diagram of the process to obtain the trajectory of the contact surface.

velocity, as depicted in figure 23. Therefore, the complete trajectory of the contact surface
is expressed as follows:

χCS(τ ) =
∫ τ

0
V∗

CS dτ . (B.1)
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