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Abstract

The signature four elliptic theory of Ramanujan is provided with a counterpart to the Jacobian modular
sine; this counterpart yields natural direct proofs of several hypergeometric identities recorded by
Ramanujan, bypassing the signature four transfer principle of Berndt et al. [‘Ramanujan’s theories of
elliptic functions to alternative bases’, Trans. Amer. Math. Soc. 347 (1995), 4163–4244].
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1. Introduction

The classical theory of Jacobian elliptic functions is intimately associated with
the hypergeometric function F( 1

2 , 1
2 ; 1;−): thus, the Jacobian modular sine function

sn = sn(−, k) to modulus k ∈ (0, 1) has fundamental periods 4K = 2πF( 1
2 , 1

2 ; 1; k2) and
2iK′ = iπF( 1

2 , 1
2 ; 1; 1 − k2).

In his paper on modular equations and approximations to π, Ramanujan asserted
that there are alternative elliptic theories in which the ‘classical’ hypergeometric
function F( 1

2 , 1
2 ; 1;−) is replaced by F( 1

4 , 3
4 ; 1;−), F( 1

3 , 2
3 ; 1;−) or F( 1

6 , 5
6 ; 1;−). In his

second notebook, he assembled many results pertaining to these alternative theories,
but he does not seem to have made explicit the elliptic functions to which they are
attached. All of these results were proved in [2] by Berndt, Bhargava and Garvan,
who developed transfer principles by means of which classical elliptic results generate
corresponding results in the alternative elliptic theories. The ‘signature three’ theory
associated to F( 1

3 , 2
3 ; 1;−) is the most substantial of these alternative theories: its

transfer principle is the most elaborate and it is closely related to the famous cubic
theta-function identity of the Borwein brothers. In this signature alone, the authors
of [2] brought to light an actual elliptic function that underlies the theory, remarking
that the results in the other alternative theories are more easily extracted from the
classical theory.
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[2] Jacobian elliptic functions 111

Our interest in this paper centres on the ‘signature four’ theory associated to the
hypergeometric function F( 1

4 , 3
4 ; 1;−). Shen, in [7], discovered an explicit elliptic

function dn2 that underlies this theory; he constructed this elliptic function by naturally
modifying a standard construction of the Jacobian ‘delta amplitude’ dn. As in the
classical theory, dn2 is an elliptic function of order two; in contrast to the classical
situation, dn2 has double poles and is, in this sense, more Weierstrassian than Jacobian.
We propose a variant of the construction in [7], producing a natural odd elliptic
function rn2. This function is not only of Jacobian type: up to elementary rescalings,
rn2 is, in fact, the Jacobian modular sine function to an appropriate modulus. We
recover from rn2 the full set of functions in [7]; we also extract directly from rn2
several identities of Ramanujan that were hitherto established by the signature four
transfer principle and otherwise, thereby further establishing rn2 within the signature
four theory.

2. Root function

Fix as modulus κ ∈ (0, 1). The rule

f (T) =
∫ T

0
F
(1
4

,
3
4

;
1
2

; κ2 sin2 t
)

dt

defines an odd strictly increasing bijection from R to R. The evaluation

L := f ( 1
2π) = 1

2 πF ( 1
4 , 3

4 ; 1; κ2)

is performed by termwise integration after expanding the hypergeometric series in the
integrand.

THEOREM 2.1. f (T + π) = f (T) + 2L.

PROOF. Integrate the function t �→ F( 1
4 , 3

4 ; 1
2 ; κ2 sin2 t) over the interval [0, π + T] split

at π: the integral over [0, π] is exactly 2L, while the integral over [π, π + T] is seen to
be exactly f (T) after a π shift. �

Write φ : R→ R for the inverse to f ; this inverse therefore satisfies

φ(u + 2L) = φ(u) + π.

As an auxiliary function, introduce the composite ψ := arc sin(κ sin φ). We now define
the function σ : R→ R by σ = sin 1

2ψ with the warning that this is not a ‘sigma
function’ in the traditional sense.

THEOREM 2.2. The function σ has period 4L.

PROOF. From φ(u + 2L) = φ(u) + π, it follows that sin φ(u + 2L) = − sin φ(u) and
therefore that σ(u + 2L) = −σ(u); thus, σ(u + 4L) = σ(u). It is readily checked that
the period 4L of σ is least positive. �
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Recall (say, from [3, page 101]) the hypergeometric evaluation

F
(1
4

,
3
4

;
1
2

; sin2 ψ
)
=

cos 1
2ψ

cosψ
.

THEOREM 2.3. The function σ : R→ R satisfies the initial condition σ(0) = 0 and
the differential equation (σ◦)2 = σ4 − σ2 + 1

4κ
2.

PROOF. Here, σ◦ denotes the derivative of σ; the traditional prime ′ is used later for
another (quite traditional) purpose. The initial condition is trivial; for the differential
equation, differentiate. From the definition σ = sin 1

2ψ, it follows that

σ◦ = 1
2 (cos 1

2ψ)ψ◦;

from sinψ = κ sin φ, it follows that

ψ◦ = κ
cos φ
cosψ

φ◦;

while from

u =
∫ φ(u)

0
F
(1
4

,
3
4

;
1
2

; κ2 sin2 t
)

dt

together with the hypergeometric evaluation recalled before the theorem, it follows that

φ◦ =
cosψ

cos 1
2ψ

.

Mass cancellation produces σ◦ = 1
2 κ cos φ; finally, squaring and trigonometric dupli-

cation result in

4(σ◦)2 = κ2 − sin2 ψ = κ2 − 4 sin2 1
2ψ cos2 1

2ψ = κ
2 − 4σ2(1 − σ2). �

This initial value problem has a second solution: namely, −σ. The fact that the initial
value problem has just these two solutions is evident upon further differentiation,
leading to σ◦◦ = 2σ3 − σ: as the right-hand side here is polynomial, specification of
σ(0) as zero and of σ◦(0) as a square root of 1

4κ
2 picks out a unique solution. The

solution σ = sin 1
2ψ is singled out by the specification σ◦(0) = 1

2κ; equivalently, by the
requirement that σ(t) > 0 when t > 0 is small.

As the right-hand side of the differential equation in Theorem 2.3 is a quartic with
simple zeros, its solutions are—or rather, extend to be—elliptic on the plane. We shall
identify the specific elliptic extension of σ = sin 1

2ψ in two alternative forms, each of
which has its uses: in Section 3, we identify σ in Weierstrassian terms; in Section 4,
we identify σ in Jacobian terms.

We end this section with some remarks on notation. In the Introduction, we gave
the elliptic extension of σ the name rn2 for two reasons: on the one hand, rn2 is a ‘root’
function from which the various functions in [7] may be derived; on the other hand,
the proximity of rn to sn reflects the fact that rn2 is a signature four replacement for the
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[4] Jacobian elliptic functions 113

Jacobian modular sine. Nevertheless, for largely typographical reasons, we continue to
use the notation σ for the elliptic extension of sin 1

2ψ.

3. Weierstrassian representation

Our identification of σ in Weierstrassian terms uses the result of [9, Example 2,
page 454], which is a result attributed to Weierstrass himself. Explicitly, let f be the
quartic polynomial given by

f (z) = a0z4 + 4a1z3 + 6a2z2 + 4a3z + a4

with quadrinvariant

g2 = a0a4 − 4a1a3 + 3a2
2

and cubinvariant

g3 = a0a2a4 + 2a1a2a3 − a3
2 − a0a2

3 − a2
1a4

and assume that the zeros of f are simple. Then the initial value problem

(w◦)2 = f (w), w(0) = a

has solutions given by

w = a +
Ap◦ + 1

2 f ◦(a)[p − 1
24 f ◦◦(a)] + 1

24 f ◦◦◦(a)

2[p − 1
24 f ◦◦(a)]2 − 1

48 f (a) f ◦◦◦◦(a)
,

where A is a square root of f (a) and where p = ℘(−; g2, g3) is the Weierstrass
℘-function with g2 and g3 as invariants.

THEOREM 3.1. The function σ is given by

σ =
1
4κp◦

( 1
4κ)

2 − ( 1
12 + p)2

=

1
4κp◦

( 1
4κ −

1
12 − p)( 1

4κ +
1
12 + p)

,

where p = ℘(−; g2, g3) is the Weierstrass function with invariants

g2 =
1
12 (1 + 3κ2), g3 =

1
216 (1 − 9κ2).

PROOF. Apply the result of Weierstrass to the quartic that appears on the right-hand
side of the differential equation in Theorem 2.3. The square root A = − 1

2κ of 1
4κ

2 is
preferred because σ(t) = sin 1

2ψ(t) > 0 when t > 0 is small. �

The Weierstrass function p has a fundamental pair of periods (2ω, 2ω′) with
ω > 0 and −iω′ > 0; introduce the third half-period ω′′ by the symmetrical condition
ω + ω′ + ω′′ = 0, as is customary. We present explicit evaluations of these funda-
mental periods in Section 5; their precise values are not important at present. The
differential equation (p◦)2 = 4p3 − g2 p − g3 satisfied by p factorises as

(p◦)2 = 4(p − 1
6 )(p + 1

12 −
1
4κ)(p + 1

12 +
1
4κ)
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so that p has (stationary) midpoint values given in decreasing order by

e := p(ω) = 1
6 , e′′ := p(ω′′) = − 1

12 +
1
4κ, e′ := p(ω′) = − 1

12 −
1
4κ,

and, for σ, we have the equivalent expression

σ = − 1
4κ

p◦

(p − e′′)(p − e′)
.

Such an expression forσ (namely, p◦ times a rational function of p) is to be expected
of an odd elliptic function in terms of a ℘-function having the same periods. The
following result enables us to confirm that σ and p are, in fact, coperiodic.

THEOREM 3.2. The function σ satisfies the identity σ(z + ω) = −σ(z).

PROOF. The Weierstrass function p satisfies the familiar identity

(p(z + ω) − e)(p(z) − e) = (e′′ − e)(e′ − e) =: E

from which

p(z + ω) = e +
E

p(z) − e

and therefore

p◦(z + ω) = − E p◦(z)
(p(z) − e)2 .

Introduce the function s by σ = − 1
4κs so that

s =
p◦

(p − e′)(p − e′′)

and it follows, by direct calculation, that

s(z + ω) = − E p◦(z)
(E + (e − e′)(p(z) − e))(E + (e − e′′)(p(z) − e))

;

here,

E + (e′ − e)(e) = e′′(e′ − e) and E + (e′′ − e)(e) = e′(e′′ − e)

so that, after cancellation of E, it follows that s(z + ω) = −s(z). It is perhaps of interest
to note that s has this property when p is any Weierstrass function. All that remains of
the proof is to reinstate the multiplier − 1

4κ. �

Here, we may note that the identity σ(u + 2L) = −σ(u) in the proof of Theorem 2.2
extends to the complex plane by analytic continuation.

THEOREM 3.3. The functions σ and p have the same periods.

PROOF. The reformulated expression for σ that came before Theorem 3.2 makes
it plain that each period of p is a period of σ. When α is a period of σ, two
possibilities stem from σ(α) = σ(0) = 0. One possibility is that p has a pole at α,
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where the expression for σ has a triple pole in its numerator but a quadruple pole in its
denominator; such a point is a period of p. The other possibility is that α is a zero of
p◦ but not of (p − e′′)(p − e′); such a point is congruent to ω and could not have been
a period of σ on account of Theorem 3.2. �

We are also able to identify the zeros and poles of σ.

THEOREM 3.4. The function σ has simple zeros at 0 and ω and simple poles at ω′

and ω′′.

PROOF. Inspect the expression for σ before Theorem 3.2: at each of ω′′ and ω′ the
numerator has a simple zero but the denominator has a double zero; at ω only the
numerator has a zero, while at 0 the numerator has a triple pole but the denominator
has a quadruple pole. �

In Theorem 3.2, we show that an ω shift reverses σ. The effects on σ of half-period
shifts by ω′ and ω′′ are as follows.

THEOREM 3.5.

σ(z + ω′) =
1
2 p◦(z)

1
6 − p(z)

and σ(z + ω′′) =
1
2 p◦(z)

p(z) − 1
6

.

PROOF. As σ is reversed by an ω shift, each of these two formulas follows from the
other. Either may be verified by calculations along the lines of those in the proof of
Theorem 3.2; we leave these calculations as straightforward exercises. �

In connection with the effect of an ω′′ shift, the devotee of [9] will be pleased
to consult Miscellaneous Example 12 on page 457 for the case when c = −1/6 and
e = κ/2.

The following result makes more transparent the effect on σ of an ω′ shift.

THEOREM 3.6. σ(z + ω′)σ(z) = 1
2κ.

PROOF. This follows easily by applying Theorem 3.5 to the expression for σ and
recalling the differential equation that p satisfies. Instead, we may play a familiar
elliptic game: Theorem 3.4 tells us that the ω′ shift interchanges the (simple) zeros
and (simple) poles of σ; the product of σ and its ω′ shift is thus an elliptic function
without poles and so has a constant value, the calculation of which is left as another
exercise. �

4. Jacobian representation

The elliptic function σ can also be given a manifestly Jacobian cast. Return to the
differential equation

(σ◦)2 = 1
4κ

2 − σ2 + σ4
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of Theorem 2.3 and compare it with the differential equation

(sn◦)2 = (1 − sn2)(1 − k2sn2)

that is satisfied by the Jacobian modular sine function sn = sn(−, k) of modulus k.
Alongside the modulus κ ∈ (0, 1) we set the complementary modulus λ = (1 − κ2)1/2 ∈
(0, 1) and introduce the abbreviations

μ± =
(1 ± λ

2

)1/2
∈ (0, 1)

so that

μ+μ− =
(1 − λ2

4

)1/2
=

1
2
κ

and

μ2
+ + μ

2
− = 1.

THEOREM 4.1. The function σ is given by σ(z) = μ− sn(μ+z, k), where

k =
μ−
μ+
=

(1 − λ
1 + λ

)1/2
.

PROOF. With s(z) := μ− sn(μ+z, k), we have

s◦(z) = μ−μ+ sn◦(μ+z, k) = 1
2κ sn◦(μ+z, k)

from which the differential equation satisfied by sn(−, k) yields

s◦(z)2 =
1
4
κ2
(
1 − s(z)2

μ2
−

)(
1 −
(
μ−
μ+

)2 s(z)2

μ2
−

)

and mild simplification reveals that s satisfies the differential equation

(s◦)2 = 1
4κ

2 − s2 + s4;

of course, s(0) = 0 and s(t) > 0 when t > 0 is small. Thus, s is none other than σ. �

Note that Theorem 3.2 embodies the property sn(u + 2K, k) = − sn(u, k), while
Theorem 3.6 reflects the property sn(u + iK′, k) = k/sn(u, k). As a curiosity, note
further that the real Jacobi transformation

k sn(u, k) = sn(ku, 1/k)

assumes here the symmetrical form

μ− sn
(
μ+ z,

μ−
μ+

)
= μ+ sn

(
μ− z,

μ+
μ−

)
.

Along with the modular sine sn, we have the modular cosine cn and the delta
amplitude dn, all to the same modulus k. Accordingly, the elliptic function σ belongs
to a triple (σ, γ, δ) of ‘Jacobian’ elliptic functions defined by

σ(z) = μ− sn(μ+z, k), γ(z) = μ− cn(μ+z, k), δ(z) = μ+ dn(μ+z, k).
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Here, the choice of μ+ as the multiplier in δ leads to more elegant relationships, as
follows.

THEOREM 4.2. The functions σ, γ and δ satisfy the algebraic equations

γ2 + σ2 = μ2
− and δ2 + σ2 = μ2

+.

PROOF. These equations follow directly from those for the Jacobian functions sn, cn
and dn: the first from cn2 + sn2 = 1 and the second from dn2 + k2sn2 = 1. �

By subtraction, we also have δ2 − γ2 = λ.

THEOREM 4.3. The functions σ, γ and δ satisfy the differential equations

σ◦ = γ δ, γ◦ = −σδ, δ◦ = −σγ.

PROOF. These follow at once from the familiar Jacobian identities

sn◦ = cn · dn, cn◦ = − sn · dn, dn◦ = − k2 sn · cn. �

5. Elliptic periods

Here, we derive explicit expressions for the fundamental periods 2ω and 2ω′ of
the elliptic function σ; equivalently, of its coperiodic Weierstrass function p. We offer
two such expressions: one in terms of the hypergeometric function F( 1

2 , 1
2 ; 1;−) that is

appropriate to the classical theory of elliptic functions and one in terms of the signature
four hypergeometric function F( 1

4 , 3
4 ; 1;−). Before proceeding, it is helpful to dress the

notation with the modulus on which our construction is based: thus, 2ωκ and 2ω′κ will
be the fundamental periods of σκ and pκ.

Expressions in terms of the classical hypergeometric function F( 1
2 , 1

2 ; 1;−) are
provided at once by Theorem 4.1. Here, recall that λ = (1 − κ2)1/2 is the modulus
complementary to κ and that μ+ = ( 1

2 (1 + λ))1/2.

THEOREM 5.1. The fundamental half-periods ωκ and ω′κ of σκ are given by

μ+ ωκ = πF
(1
2

,
1
2

; 1;
1 − λ
1 + λ

)
and μ+ ω

′
κ =

1
2
π i F
(1
2

,
1
2

; 1;
2λ

1 + λ

)
.

PROOF. Recall (say, from [9, Ch. XXII]) that sn(−, k) has fundamental periods 4K and
2iK′, where

K = 1
2πF( 1

2 , 1
2 ; 1; k2) and K′ = 1

2πF( 1
2 , 1

2 ; 1; 1 − k2).

It follows immediately from Theorem 4.1 that σ has 4K/μ+ as real period and
2iK′/μ+ as imaginary period. Finally, recall from Theorem 4.1 the expression for k
in terms of λ. �

An F( 1
4 , 3

4 ; 1;−) expression for the real period 2ωκ is already in hand: reference
to Theorem 2.2 procures the expression ωκ = πF( 1

4 , 3
4 ; 1; κ2) for the real half-period.

Access to the imaginary half-period ω′κ will be facilitated by means of an auxiliary
Weierstrass function.
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Explicitly, alongside the Weierstrass function

pκ = ℘(−;ωκ,ω′κ) = ℘(−; g2, g3)

that is coperiodic with σκ, we shall consider the Weierstrass function

qκ = ℘(−;ωκ/2,ω′κ) = ℘(−; h2, h3)

that comes by halving the real (half-)period.

THEOREM 5.2. The invariants h2 and h3 of qκ are given by

h2 =
4
3 − κ

2 and h3 =
8
27 −

1
3κ

2.

PROOF. Reference to [4, Section 9.8] provides us with expressions for the invariants of
qκ in terms of those for pκ. Quite generally, such period dimidiation has the following
effect:

h2 = 60p(ω)2 − 4g2, h3 = 56p(ω)3 + 8g3.

With pκ(ω) = 1/6 and with the invariants of pκ provided by Theorem 3.1, we calculate
the invariants of qκ to be as advertised. �

The Weierstrass functions qκ and pλ are, therefore, related as follows.

THEOREM 5.3. qκ(z) = −2pλ(i
√

2 z).

PROOF. Quite generally, a Weierstrass function ℘(−; G2, G3) satisfies the homogeneity
relation: ℘(z; μ4G2, μ6G3) = μ2℘(μ z; G2, G3). Here, take G2 =

1
12 (1 + 3λ2) and G3 =

1
216 (1 − 9λ2); with μ = i

√
2,

μ4G2 =
1
3 (1 + 3λ2) = 4

3 − κ
2 and μ6G3 =

1
27 (9λ2 − 1) = 8

27 −
1
3κ

2.

Finally, invoke Theorem 3.1 for the modulus κ and for the complementary
modulus λ. �

We may now make the imaginary period of σκ explicit in F( 1
4 , 3

4 ; 1;−) terms; for
reference, we record also the real period, as previously addressed.

THEOREM 5.4. The fundamental half-periods ωκ and ω′κ of σκ are given by

ωκ = πF ( 1
4 , 3

4 ; 1; κ2) and ω′κ = i πF ( 1
4 , 3

4 ; 1 − κ2)/
√

2.

PROOF. Compare expressions for the real half-period of qκ: on the one hand, it is
ωκ/2 by definition; on the other hand, it is −iω′λ/

√
2 on account of Theorem 5.3.

Switching moduli, we deduce that ω′κ = iωλ/
√

2; recalling our identification of the
real half-period, we conclude that

ω′κ = iπF ( 1
4 , 3

4 ; 1; λ2)/
√

2 = iπF( 1
4 , 3

4 ; 1; 1 − κ2)/
√

2. �

These concrete expressions for the fundamental periods of σκ at once furnish
transformation laws relating the signature four hypergeometric function F( 1

4 , 3
4 ; 1;−)

to the ‘classical’ hypergeometric function F( 1
2 , 1

2 ; 1;−).
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THEOREM 5.5. If 0 < λ < 1, then

F
(1
4

,
3
4

;1;1−λ2
)
=

√
2

1+λ
F
(1
2

,
1
2

;1;
1−λ
1+λ

)
and F

(1
4

,
3
4

; 1; λ2
)
=

√
1

1+λ
F
(1
2

,
1
2

;1;
2λ

1+λ

)
.

PROOF. This follows from direct comparison of the expressions for ωκ and ω′κ in
Theorem 5.1 and Theorem 5.4. �

These identities also appear in [2]: the first appears as Theorem 9.2 and is derived by
manipulation of an entry in the second notebook of Ramanujan; the second appears as
Theorem 9.1 and is precisely an entry in the notebook. In our approach, these identities
fall directly from the periods of the elliptic function σκ and thereby cement the place
of this function in the signature four elliptic theory.

As in [2], these transformation laws engender a relationship between the signature
four base

q4(x) = exp
[
−
√

2 π
F( 1

4 , 3
4 ; 1; 1 − x)

F( 1
4 , 3

4 ; 1; x)

]

and the classical base

q(y) = exp
[
− π

F( 1
2 , 1

2 ; 1; 1 − y)

F( 1
2 , 1

2 ; 1; y)

]
;

in fact, with x = λ2 and y = 2λ/(1 + λ), we see from Theorem 5.5 that

q4(λ2) = q
( 2λ
1 + λ

)2
.

Again as in [2], this relationship between bases supports a transfer principle
whereby classical elliptic results yield counterparts in signature four. Section 9 of [2]
contains several such instances of passage from classical results to signature four
counterparts. In our next section, we demonstrate how some such signature four
identities may be derived directly from the elliptic function σκ.

We close this section by pointing out that the identities in Theorem 5.5 may, of
course, be derived otherwise; as an illustration, the real quarter-period

L = 1
2 πF( 1

4 , 3
4 ; 1; κ2)

may be cast in F( 1
2 , 1

2 ; 1;−) terms by integration, as follows. Let θ = arc sin κ be the
modular angle, so that cos θ = λ and σ(L) = sin 1

2ψ(L) = sin 1
2θ. From

sin2 1
2θ =

1
2 (1 − cos θ) = 1

2 (1 − λ),

it follows that sin 1
2θ = μ− and, similarly, cos 1

2θ = μ+ in the notation set up ahead of
Theorem 4.1. From the differential equation in Theorem 2.3, we now deduce that

L =
∫ μ−

0

dσ√
σ4 − σ2 + 1

4κ
2

,
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where κ2 = 4 sin2 1
2θ cos2 1

2θ = 4μ2
− μ

2
+ and, therefore,

L =
∫ μ−

0

dσ√
(μ2
− − σ2)(μ2

+ − σ2)
.

Put σ = μ− sin t for 0 � t � 1
2π to see that

L =
∫ 1

2 π

0

dt√
μ2
+ − μ2

− sin2 t

and conclude that

μ+ L =
∫ 1

2 π

0

dt√
1 − k2 sin2 t

=
1
2
πF
(1
2

,
1
2

; 1; k2
)

by the familiar evaluation of a complete elliptic integral of the first kind.

6. Eisenstein series

We open this section by recalling the familiar connection between Weierstrass
functions and Eisenstein series. For additional details, see [6, Ch. VII] or [1, Ch. 7].

Let p = ℘(−;ω,ω′) = ℘(−; g2, g3) be a quite arbitrary Weierstrass function, with 2ω
and 2ω′ as fundamental periods and with g2 and g3 as invariants; take the period ratio
τ := ω′/ω to have positive imaginary part as usual. The quadrinvariant g2 is given by

g2 =
60

(2ω)4

∑′ 1
(m + nτ)4

and the Eisenstein series E4(τ) by

E4(τ) =
45
π4

∑′ 1
(m + nτ)4 ,

where, in each case, the prime ′ indicates that summation takes place over all pairs of
integers (m, n) other than (0, 0); thus,

E4(τ) =
3
4

(2ω
π

)4
g2.

Similarly, the cubinvariant g3 is given by

g3 =
140

(2ω)6

∑′ 1
(m + nτ)6

and the Eisenstein series E6(τ) by

E6(τ) =
945

2 · π6

∑′ 1
(m + nτ)6
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so that

E6(τ) =
27
8

(2ω
π

)6
g3.

It will now be convenient to employ the notational abbreviation F4 = F( 1
4 , 3

4 ; 1;−):
thus, F4(x) := F( 1

4 , 3
4 ; 1; x). In [2], this is written z(4; x) or just z(4) when x is

understood.

THEOREM 6.1. Let 0 < x < 1. If

τ =
i
√

2

F4(1 − x)
F4(x)

,

then E4(τ) = F4(x)4 (1 + 3x) and E6(τ) = F4(x)6 (1 − 9x).

PROOF. Let x = κ2 and apply the foregoing recollections to the Weierstrass function
pκ that is coperiodic with σκ. From Theorem 5.4,

2ωk

π
= 2F4(κ2),

and from Theorem 3.1, g2 =
1
12 (1 + 3κ2), from which it follows at once that

E4(τ) = 3
4 · (2 F4(κ2))4 · 1

12 (1 + 3κ2) = F4(κ2)4 (1 + 3κ2),

where

τ =
ω′κ
ωκ
=

i
√

2

F4(1 − κ2)
F4(κ2)

,

again by Theorem 5.4. This handles E4; E6 is handled similarly. �

These formulas appear as Theorems 9.5 and 9.6 in [2] as applications of the
signature four transfer principle. They also appear as (6.3) and (6.4) in [7], where they
are approached quite differently, via theta functions and the Landen transformation.

THEOREM 6.2. Let 0 < x < 1. If

τ = i
√

2
F4(1 − x)

F4(x)
,

then E4(τ) = F4(x)4 (1 − 3
4 x) and E6(τ) = F4(x)6 (1 − 9

8 x).

PROOF. Let x = κ2 and apply the recollections above to the Weierstrass function qκ
that was obtained from pκ by halving the real period. For E6,

E6(τ) = 27
8 · F4(κ2)6 · ( 8

27 −
1
3κ

2) = F4(κ2)6(1 − 9
8κ

2)

using Theorems 5.4 and 5.2; for E4 the calculations are similar. �

Again, these formulas are derived using the signature four transfer principle in [2],
where they appear as Theorems 9.7 and 9.8. They also appear in [7], where in
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Corollary 3.4 they are derived substantially as in the present paper. Theorems 6.1 and
6.2 serve to cement still further the place of σ in signature four.

7. Shen functions

The elliptic function σ originated in a study of the elliptic function dn2 that was
introduced in [7] by Shen. Here, we set out the relationship of [7] to the present paper.

With minor notational differences, the construction in [7] is based on the same
bijection φ : R→ R, according to which

u =
∫ φ(u)

0
F
(1
4

,
3
4

;
1
2

; κ2 sin2 t
)

dt,

and on the same auxiliary function

ψ := arc sin(κ sin φ)

with which we began Section 2; the elliptic function dn2 is defined in [7] as the elliptic
extension of the real function cosψ. The motivation for this construction comes from
a classical approach to the Jacobian elliptic functions, in which the hypergeometric
integrand F( 1

2 , 1
2 ; 1

2 ;−) is simply replaced by F( 1
4 , 3

4 ; 1
2 ;−); this motivation suggested

the name dn2 because use of the classical hypergeometric integrand, instead, leads
directly to the Jacobian delta amplitude dn.

More explicitly, in [7], it is shown that the function y = cosψ satisfies the
differential equation

(y◦)2 = 2(1 − y)(y2 − λ2),

while, of course, y(0) = 1. The solution to this initial value problem is a little easier
to identify than was the solution in Theorem 3.1, because the right-hand side of the
differential equation for y has the initial value as a zero, so that the simpler arguments
on [9, page 453] apply. The result is that

y = 1 −
1
2κ

1
3 + ℘(−; h2, h3)

,

where the indicated Weierstrass function has invariants

h2 =
4
3 − κ

2 and h3 =
8
27 −

1
3κ

2.

Notice that this Weierstrass function is precisely the function qκ that we introduced
immediately before Theorem 5.2. The elliptic extension dn2 of cosψ is, thus, given by

dn2 = 1 −
1
2κ

1
3 + qκ

and qκ is plainly its coperiodic Weierstrass function. Incidentally, the proof of
Theorem 6.2 that appears in [7] as Corollary 3.4 was based on the periods of dn2.
The absence of σ from [7] necessitated use of the Landen transformation to deduce the
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equivalents (6.3) and (6.4) of our Theorem 6.1. That the Landen transformation should
enter is, of course, not surprising, in view of the relationship between the Weierstrass
functions pκ and qκ.

The origin of dn2 as a signature four version of the Jacobian function dn invites
consideration of the functions cos φ and sin φ, as these yield cn and sn in the classical
theory. It is shown in [7] that, in signature four, cos φ does extend as an elliptic function
cn2 on the plane; in contrast, sin φ does not even extend to a meromorphic function on
the plane, as we show shortly.

In one significant respect, the elliptic function dn2 is imperfect as a signature
four counterpart to the classical Jacobian function dn: the classical function dn has
two simple poles in each of its period parallelograms and is, therefore, of generally
Jacobian type; but the signature four function dn2 is of Weierstrassian type, as it
has a double pole in each period parallelogram. A similar comment applies to the
elliptic function cn2; and sn2 simply fails to exist as an elliptic function. These are
the circumstances that prompted our search for a set of truly Jacobian functions in
signature four; particularly, a signature four counterpart to the odd function sn.

The precise relationships between our functions σ, γ and δ and the functions in [7]
are readily determined. First, the trigonometric duplication identity

cosψ = 1 − 2 sin2 1
2ψ

on R extends at once by analytic continuation to the identifications

dn2 = 1 − 2σ2 = 2γ2 + λ = 2δ2 − λ
with the aid of Theorem 4.2. We extract from the proof of Theorem 2.3 the
identification

1
2κ cn2 = σ

◦

to which Theorem 4.3 at once contributes the identification
1
2κ cn2 = γ δ.

As noted above, the case of sn2 is different: from

κ2 sin2 φ = sin2 ψ = 4 sin2 1
2ψ cos2 1

2ψ,

it follows that
1
4κ

2 sin2 φ = σ2(1 − σ2)

on R. The elliptic function σ2(1 − σ2) has simple zeros where σ = ±1 because (σ◦)2 =
1
4κ

2 � 0 there; this prevents σ2(1 − σ2) from having meromorphic square roots and so
prevents sin φ from having meromorphic extensions.

The preceding formulas for dn2 and cn2 have versions in terms of the classical
Jacobian functions to modulus k =

√
(1 − λ)/(1 + λ): explicitly, Theorem 4.1 at once

gives

dn2(z) = 1 − (1 − λ) sn2(μ+z, k)
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and by differentiation gives

cn2(z) = cn(μ+z, k) dn(μ+z, k).

Finally, in [8], Shen presented elliptic or hyperelliptic functions of interest in each of
the three standard alternative signatures. In each case, the proposed function satisfies
a differential equation of the form

(y◦)2 = Tn(y) − (1 − 2κ2),

where Tn is the degree n Chebyshev polynomial of the first kind. The case appropriate
to signature four has n = 4: the corresponding function y4 satisfies

(y◦)2 = 8y4 − 8y2 + 2κ2

and is required to have as its initial value one of the four zeros of the quartic on the
right; in fact, it is required that y4(0) = cos 1

2θ, where θ is the modular angle, as above.
This function y4 is plainly related to σ: indeed, y4(z) = σ(2

√
2z + c) for a suitable

choice of the shift c.
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