

Shadowing and the basins of terminal chain components

Noriaki Kawaguchi

Abstract. We provide an alternative view of some results in [1, 3, 11]. In particular, we prove that (1) if a continuous self-map of a compact metric space has the shadowing, then the union of the basins of terminal chain components is a dense G_δ -subset of the space; and (2) if a continuous self-map of a locally connected compact metric space has the shadowing, and if the chain recurrent set is totally disconnected, then the map is almost chain continuous.

1 Introduction

Shadowing is an important concept in the topological theory of dynamical systems (see [5, 18] for background). It was derived from the study of hyperbolic differentiable dynamics [4, 6] and generally refers to a situation in which coarse orbits, or *pseudoorbits*, can be approximated by true orbits. Above all else, it is worth mentioning that the shadowing is known to be *generic* in the space of homeomorphisms or continuous self-maps of a closed differentiable manifold (see [19] and Theorem 1 of [16]) and so plays a significant role in the study of topologically generic dynamics.

Chain components are basic objects for global understanding of dynamical systems [9]. In this paper, we focus on attractor-like, or *terminal*, chain components and the basins of them. By a result (Corollary 6.16) of [11], if a continuous flow on a compact metric space has the so-called *weak shadowing*, then the union of the basins of terminal chain components is a dense G_{δ} -subset of the space. For any continuous self-map of a compact metric space, we strengthen it by assuming the standard shadowing (Theorem 1.1). Our proof is by a method related to but independent of a result (Proposition 22 in Section 7) of [1]. It is shown in [3] that topologically generic homeomorphisms of a closed differentiable manifold are almost chain continuous (see Introduction of [3] where the word "almost equicontinuous" is used). We also give an alternative proof of this fact by using the genericity of shadowing.

First, we define the chain components. Throughout, X denotes a compact metric space endowed with a metric d.

Definition 1.1 Given a continuous map $f: X \to X$ and $\delta > 0$, a finite sequence $(x_i)_{i=0}^k$ of points in X, where k > 0 is a positive integer, is called a δ -chain of f if

Received by the editors March 3, 2024; revised October 15, 2024; accepted October 15, 2024. AMS Subject Classification: 37B65.

Keywords: Shadowing, basin, chain component, generic, chain continuous.

 $d(f(x_i), x_{i+1}) \le \delta$ for every $0 \le i \le k-1$. A δ -chain $(x_i)_{i=0}^k$ of f with $x_0 = x_k$ is said to be a δ -cycle of f.

Let $f: X \to X$ be a continuous map. For any $x, y \in X$ and $\delta > 0$, the notation $x \to_{\delta} y$ means that there is a δ -chain $(x_i)_{i=0}^k$ of f with $x_0 = x$ and $x_k = y$. We write $x \to y$ if $x \to_{\delta} y$ for all $\delta > 0$. We say that $x \in X$ is a *chain recurrent point* for f if $x \to x$, or equivalently, for every $\delta > 0$, there is a δ -cycle $(x_i)_{i=0}^k$ of f with $x_0 = x_k = x$. Let CR(f) denote the set of chain recurrent points for f. We define a relation \leftrightarrow in

$$CR(f)^2 = CR(f) \times CR(f)$$

by the following: for any $x, y \in CR(f)$, $x \leftrightarrow y$ if and only if $x \to y$ and $y \to x$. Note that \leftrightarrow is a closed equivalence relation in $CR(f)^2$ and satisfies $x \leftrightarrow f(x)$ for all $x \in CR(f)$. An equivalence class C of \leftrightarrow is called a *chain component* for f. We regard the quotient space

$$\mathcal{C}(f) = CR(f)/\leftrightarrow$$

as a space of chain components.

A subset S of X is said to be f-invariant if $f(S) \subset S$. For an f-invariant subset S of X, we say that $f|_S: S \to S$ is *chain transitive* if for any $x, y \in S$ and $\delta > 0$, there is a δ -chain $(x_i)_{i=0}^k$ of $f|_S$ with $x_0 = x$ and $x_k = y$.

Remark 1.1 The following properties hold:

- $CR(f) = \bigsqcup_{C \in \mathcal{C}(f)} C$,
- every $C \in \mathcal{C}(f)$ is a closed f-invariant subset of CR(f),
- $f|_C: C \to C$ is chain transitive for all $C \in \mathcal{C}(f)$,
- for any f-invariant subset S of X, if $f|_S: S \to S$ is chain transitive, then $S \subset C$ for some $C \in \mathcal{C}(f)$.

Next, we recall the definition of terminal chain components. For $x \in X$ and a subset S of X, we denote by d(x, S) the distance of x from S:

$$d(x,S) = \inf_{y \in S} d(x,y).$$

Definition 1.2 We say that a closed f-invariant subset S of X is *chain stable* if for any $\varepsilon > 0$, there is $\delta > 0$ such that every δ -chain $(x_i)_{i=0}^k$ of f with $x_0 \in S$ satisfies $d(x_i, S) \le \varepsilon$ for all $0 \le i \le k$. Following [3], we say that $C \in \mathcal{C}(f)$ is *terminal* if C is chain stable. We denote by $\mathcal{C}_{\text{ter}}(f)$ the set of terminal chain components for f.

Remark 1.2 For any continuous map $f: X \to X$, a partial order ≤ on $\mathcal{C}(f)$ is defined by the following: for all $C, D \in \mathcal{C}(f), C \le D$ if and only if $x \to y$ for some $x \in C$ and $y \in D$. We can easily show that for any $C \in \mathcal{C}(f), C \in \mathcal{C}_{ter}(f)$ if and only if C is maximal with respect to ≤; that is, $C \le D$ implies C = D for all $D \in \mathcal{C}(f)$.

Given a continuous map $f: X \to X$ and $x \in X$, the ω -limit set $\omega(x, f)$ of x for f is defined as the set of $y \in X$ such that

$$\lim_{j\to\infty}f^{i_j}(x)=y$$

for some sequence $0 \le i_1 < i_2 < \cdots$. Note that $\omega(x,f)$ is a closed f-invariant subset of X and $f|_{\omega(x,f)}: \omega(x,f) \to \omega(x,f)$ is chain transitive. We denote by C(x,f) the unique $C(x,f) \in \mathcal{C}(f)$ such that $\omega(x,f) \subset C(x,f)$. For each $C \in \mathcal{C}(f)$, we define the *basin* $W^s(C)$ of C by

$$W^{s}(C) = \{x \in X: \lim_{i \to \infty} d(f^{i}(x), C) = 0\}.$$

For every $x \in X$, since

$$\lim_{i\to\infty}d(f^i(x),\omega(x,f))=0,$$

we have $x \in W^s(C)$ if and only if C = C(x, f). This implies

$$\{x \in X: C(x, f) \in \mathcal{C}_{ter}(f)\} = \bigsqcup_{C \in \mathcal{C}_{ter}(f)} W^{s}(C).$$

We also define the *chain* ω -*limit set* $\omega^*(x, f)$ of x for f as the set of $y \in X$ such that for any $\delta > 0$ and N > 0, there is a δ -chain $(x_i)_{i=0}^k$ of f with $x_0 = x$, $x_k = y$, and $k \ge N$. Note that $\omega^*(x, f)$ is a closed f-invariant subset of X and chain stable. We have

$$\omega(x,f)\subset C(x,f)\subset \omega^*(x,f).$$

Remark 1.3 The chain ω -limit set is denoted in [3] as $\omega \mathcal{C}(x, f)$ instead of $\omega^*(x, f)$.

The following lemma is obvious (see Section 1.4 of [3]).

Lemma 1.1 Let $f: X \to X$ be a continuous map.

- (A) For any $x \in X$, the following properties are equivalent:
 - $-C(x,f) \in \mathcal{C}_{\mathrm{ter}}(f),$
 - $-\omega^*(x,f)\subset C(x,f),$
 - $-\omega^*(x,f)=C(x,f),$
 - $f|_{\omega^*(x,f)}:\omega^*(x,f)\to\omega^*(x,f)$ is chain transitive.
- (B) For any $x \in X$, the following properties are equivalent:
 - $-\omega(x,f)=C(x,f)=\omega^*(x,f),$
 - $C(x, f) \in \mathcal{C}_{ter}(f)$ and $\omega(x, f) = C(x, f)$.

We give the definition of shadowing.

Definition 1.3 Let $f: X \to X$ be a continuous map and let $\xi = (x_i)_{i \ge 0}$ be a sequence of points in X. For $\delta > 0$, ξ is called a δ -pseudo orbit of f if $d(f(x_i), x_{i+1}) \le \delta$ for all $i \ge 0$. For $\varepsilon > 0$, ξ is said to be ε -shadowed by $x \in X$ if $d(f^i(x), x_i) \le \varepsilon$ for all $i \ge 0$. We say that f has the shadowing property if for any $\varepsilon > 0$, there is $\delta > 0$ such that every δ -pseudo orbit of f is ε -shadowed by some point of X.

For a topological space Z, a subset S of Z is called a G_{δ} -subset of Z if S is a countable intersection of open subsets of Z. If Z is completely metrizable, then by Baire Category Theorem, every countable intersection of open dense subsets of Z is dense in Z. We know that a subspace Y of a completely metrizable space Z is completely metrizable if and only if Y is a G_{δ} -subset of Z (see Theorem 24.12 of [20]).

For any continuous map $f: X \to X$ and $x \in X$, let $\Omega(x, f)$ denote the set of $y \in X$ such that

$$\lim_{j\to\infty}f^{i_j}(x_j)=y$$

for some sequence $0 \le i_1 < i_2 < \cdots$ and $x_j \in X$, $j \ge 1$, with

$$\lim_{j\to\infty}x_j=x.$$

Note that

$$\omega(x, f) \subset \Omega(x, f) \subset \omega^*(x, f)$$

for all $x \in X$. By Proposition 22 in Section 7 of [1], we know that

$${x \in X: \omega(x, f) = \Omega(x, f)}$$

is a dense G_{δ} -subset of X. The proof of this result in [1] is based on a nontrivial fact that the set of continuity points of a lower semicontinuous (lsc) set-valued map is a dense G_{δ} -subset. If f has the shadowing property, then we have

$$\Omega(x,f)=\omega^*(x,f)$$

for all $x \in X$. This can be proved as follows. Let $(\varepsilon_j)_{j \ge 1}$ be a sequence of positive numbers with $\lim_{j \to \infty} \varepsilon_j = 0$. Since f has the shadowing property, for each $j \ge 1$, there is $\delta_j > 0$ such that every δ_j -pseudo orbit of f is ε_j -shadowed by some point of X. Let $x \in X$ and $y \in \omega^*(x, f)$. Since $y \in \omega^*(x, f)$, we have a sequence $(x_i^{(j)})_{i=0}^{k_j}$, $j \ge 1$, of δ_j -chains of f with $x_0^{(j)} = x$, $x_{k_j}^{(j)} = y$, and $k_j < k_{j+1}$ for all $j \ge 1$. By the choice of δ_j , we obtain $x_j \in X$, $j \ge 1$, such that $d(x_j, x) = d(x_j, x_0^{(j)}) \le \varepsilon_j$ and $d(f^{k_j}(x_j), y) = d(f^{k_j}(x_j), x_{k_j}^{(j)}) \le \varepsilon_j$ for all $j \ge 1$. It follows that $0 < k_1 < k_2 < \cdots$,

$$\lim_{j\to\infty}x_j=x,$$

and

$$\lim_{j\to\infty}f^{k_j}(x_j)=y.$$

Thus, $y \in \Omega(x, f)$. Since $x \in X$ and $y \in \omega^*(x, f)$ are arbitrary, we conclude that

$$\omega^*(x,f) \subset \Omega(x,f)$$

for all $x \in X$, completing the proof. It follows that if a continuous map $f: X \to X$ has the shadowing property, then

$$\{x\in X:\omega(x,f)=\Omega(x,f)=\omega^*(x,f)\}$$

is a dense G_{δ} -subset of X; therefore,

$$\{x \in X: \omega(x, f) = C(x, f) = \omega^*(x, f)\} = \{x \in X: C(x, f) \in \mathcal{C}_{ter}(f) \text{ and } \omega(x, f) = C(x, f)\}$$

is a dense G_{δ} -subset of X (see [11] and [17] for related results). The main aim of this paper is to give an alternative proof of the following statement.

Theorem 1.1 If a continuous map $f: X \to X$ has the shadowing property, then

$$V(f) = \{x \in X : C(x, f) \in \mathcal{C}_{ter}(f)\}$$

and

$$W(f) = \{x \in V(f) : \omega(x, f) = C(x, f)\}$$

are dense G_{δ} -subsets of X.

Given a continuous map $f: X \to X$ and $x \in X$, we say that f is *chain continuous* at x if for any $\varepsilon > 0$, there is $\delta > 0$ such that every δ -pseudo orbit $(x_i)_{i \geq 0}$ of f with $x_0 = x$ is ε -shadowed by x [2]. We denote by CC(f) the set of chain continuity points for f. The notion of chain continuity is closely related to *odometers*. An *odometer* (or an *adding machine*) is defined as follows. Let $m = (m_j)_{j \geq 1}$ be an increasing sequence of positive integers with $m_j | m_{j+1}$ for all $j \geq 1$. Let X_j , $j \geq 1$, denote the quotient group $\mathbb{Z}/m_j\mathbb{Z}$ with the discrete topology. Let $\pi_j: X_{j+1} \to X_j$, $j \geq 1$, be the natural projections and let

$$X_m = \{x = (x_j)_{j \ge 1} \in \prod_{j \ge 1} X_j : \pi_j(x_{j+1}) = x_j \text{ for all } j \ge 1\}.$$

As a closed subspace of $\prod_{j\geq 1} X_j$ with the product topology, X_m is a compact metrizable space. Consider the map $g_m: X_m \to X_m$ defined by

$$g_m(x)_j = x_j + 1$$

for all $x = (x_j)_{j \ge 1} \in X_m$ and $j \ge 1$. Note that g_m is a homeomorphism. We say that (X_m, g_m) is an odometer with the periodic structure m. We say that a closed f-invariant subset S of X is an *odometer* if $(S, f|_S)$ is topologically conjugate to an odometer. This is equivalent to that S is a Cantor space and

$$f|_{S}: S \to S$$

is a minimal equicontinuous homeomorphism (see Theorem 4.4 of [15]). By Theorem 7.5 of [3], we know that for any $x \in X$, $x \in CC(f)$ if and only if

$$\omega(x,f) = C(x,f) = \omega^*(x,f)$$

and C(x, f) is a periodic orbit or an odometer. By Lemma 1.1, this is equivalent to that $C(x, f) \in \mathcal{C}_{ter}(f)$ and C(x, f) is a periodic orbit or an odometer. We say that X is *locally connected* if for any $x \in X$ and any open subset U of X with $x \in U$, we have $x \in V \subset U$ for some open connected subset V of X. A subspace S of X is said to be *totally disconnected* if every connected component of S is a singleton. If X is locally connected and CR(f) is totally disconnected, then due to Theorem 5.1 of [8] or Theorem B of [10], every $C \in \mathcal{C}_{ter}(f)$ is a periodic orbit or an odometer. By these facts, we obtain the following lemma.

Lemma 1.2 Let $f: X \to X$ be a continuous map. If X is locally connected and CR(f) is totally disconnected, then for any $x \in X$, the following properties are equivalent:

- $x \in CC(f)$,
- $\omega(x,f) = C(x,f) = \omega^*(x,f)$,
- $C(x, f) \in \mathcal{C}_{ter}(f)$.

Let $f: X \to X$ be a continuous map. For any $j, l \ge 1$, let $C_{j,l}$ denote the set of $x \in X$ such that there is a neighborhood U of x for which every $\frac{1}{j}$ -pseudo orbit $(x_i)_{i\ge 0}$ of f with $x_0 \in U$ is $\frac{1}{l}$ -shadowed by x_0 . We see that $C_{j,l}$ is an open subset of X for all $j, l \ge 1$ and

$$CC(f) = \bigcap_{l \ge 1} \bigcup_{j \ge 1} C_{j,l}.$$

Thus, CC(f) is a G_{δ} -subset of X. We say that f is almost chain continuous if CC(f) is a dense G_{δ} -subset of X. By Theorem 1.1 and Lemma 1.2, we obtain the following theorem.

Theorem 1.2 Let $f: X \to X$ be a continuous map. If X is locally connected, f has the shadowing property, and if CR(f) is totally disconnected, then f is almost chain continuous.

We present a corollary of Theorem 1.2. For a closed differentiable manifold M, let $\mathcal{H}(M)$ (resp. $\mathcal{C}(M)$) denote the set of homeomorphisms (resp. continuous self-maps) of M, endowed with the C^0 -topology. It is shown in [3] that generic $f \in \mathcal{H}(M)$ (resp. $f \in \mathcal{C}(M)$, if dim M > 1) is almost chain continuous (see Introduction of [3] where the word "almost equicontinuous" is used). Note that the shadowing is generic in $\mathcal{H}(M)$ [19] and also generic in $\mathcal{C}(M)$ [16, Theorem 1]. Moreover, by results of [3, 14], we know that for generic $f \in \mathcal{H}(M)$ (resp. $f \in \mathcal{C}(M)$), CR(f) is totally disconnected (see Introduction of [3] and Theorem 3.3 of [14]). Thus, by Theorem 1.2, we obtain the following corollary.

Corollary 1.1 Generic $f \in \mathcal{H}(M)$ (resp. $f \in \mathcal{C}(M)$) is almost chain continuous.

Our results also apply to the case where X is not a manifold. We say that X is a *dendrite* if X is connected, locally connected, and contains no simple closed curves. The shadowing is proved to be generic in the space of continuous self-maps of a dendrite (see [7] and [13, Theorem 19]). However, by Corollary 5.2 of [14], a generic continuous self-map of a dendrite has the totally disconnected chain recurrent set. By Theorem 1.2, we conclude that a generic continuous self-map of a dendrite is almost chain continuous.

This paper consists of two sections. In the next section, we prove Theorem 1.1.

2 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. The proof is based on the following lemma in [12].

Lemma 2.1 [12, Lemma 2.1] For any continuous map $f: X \to X$ and $x \in X$, there is $C \in \mathcal{C}_{ter}(f)$ such that for every $\delta > 0$, there is a δ -chain $(x_i)_{i=0}^k$ of f with $x_0 = x$ and $x_k \in C$.

We need one more lemma. In what follows, for $x \in X$ and a subset S of X, we denote by d(x, S) the distance of x from S:

$$d(x,S) = \inf_{y \in S} d(x,y).$$

We also denote by $U_r(S)$, r > 0, the open r-neighborhood of S:

$$U_r(S) = \{x \in X : d(x, S) < r\}.$$

Lemma 2.2 For any continuous map $f: X \to X$ and $x \in X$, if $C(x, f) \in C_{ter}(f)$, then $C(\cdot, f): X \to C(f)$ is continuous at x.

Proof Let $x \in X$ and C = C(x, f). If $C \in \mathcal{C}_{ter}(f)$ (i.e., C is chain stable), then for any $\varepsilon > 0$, we have $\delta > 0$ such that every δ -chain $(x_i)_{i=0}^k$ of f with $d(x_0, C) \le \delta$ satisfies $d(x_i, C) \le \varepsilon/2$ for all $0 \le i \le k$. It follows that $d(y, C) \le \delta$ implies

$$\omega^*(y, f) \subset U_{\varepsilon}(C)$$

for all $y \in X$. Since

$$\lim_{i\to\infty}d(f^i(x),C)=0,$$

we have $d(f^i(x), C) \le \delta/2$ for some $i \ge 0$. By taking $\gamma > 0$ such that $d(x, z) \le \gamma$ implies $d(f^i(x), f^i(z)) \le \delta/2$ for all $z \in X$, we obtain $d(f^i(z), C) \le \delta$ and so

$$C(z,f)\subset\omega^*(z,f)=\omega^*(f^i(z),f)\subset U_\varepsilon(C)$$

for all $z \in X$ with $d(x, z) \le \gamma$. Since $\varepsilon > 0$ is arbitrary, this implies that $C(\cdot, f): X \to \mathcal{C}(f)$ is continuous at x, completing the proof.

By using these lemmas, we prove Theorem 1.1.

Proof of Theorem 1.1 First, we show that V(f) is a dense G_{δ} -subset of X. Fix a sequence $(\varepsilon_j)_{j\geq 1}$ of positive numbers such that $\varepsilon_1 > \varepsilon_2 > \cdots$ and

$$\lim_{j\to\infty}\varepsilon_j=0.$$

For any $j \ge 1$ and $C \in \mathcal{C}_{ter}(f)$, we take $\delta_{j,C} > 0$ such that $x \in U_{\delta_{j,C}}(C)$ implies

$$\omega^*(x,f) \subset U_{\varepsilon_i}(C)$$

for all $x \in X$. Let

$$U_{i,C} = U_{\delta_{i,C}}(C)$$

for all $j \ge 1$ and $C \in \mathcal{C}_{ter}(f)$. We define a subset V of X by

$$V = \bigcap_{j \geq 1} \bigcup_{C \in \mathcal{C}_{\text{ter}}(f)} \bigcup_{m \geq 0} f^{-m}(U_{j,C}).$$

Note that V is a G_{δ} -subset of X. Since f has the shadowing property, by Lemma 2.1, we see that for every $x \in X$, there is $C \in \mathcal{C}_{ter}(f)$ such that

$$x\in\overline{\bigcup_{m>0}f^{-m}(U_{j,C})}$$

for all $j \ge 1$. This can be proved as follows. For $x \in X$, fix $C \in \mathcal{C}_{ter}(f)$ as in Lemma 2.1 and $\gamma_l > 0$, $l \ge 1$, with $\lim_{l \to \infty} \gamma_l = 0$. There are $\beta_l > 0$, $l \ge 1$, and a sequence $(x_i^{(l)})_{i=0}^{k_l}$, $l \ge 1$, of β_l -chains of f such that for each $l \ge 1$,

- every β_l -pseudo orbit of f is γ_l -shadowed by some point of X,
- $x_0^{(l)} = x$ and $x_{k_l}^{(l)} \in C$.

By taking $x_l \in X$, $l \ge 1$, with $d(x_l, x) = d(x_l, x_0^{(l)}) \le y_l$ and $d(f^{k_l}(x_l), C) \le d(f^{k_l}(x_l), x_{k_l}^{(l)}) \le y_l$, we obtain $\lim_{l \to \infty} x_l = x$ and

$$x_l \in f^{-k_l}(U_{j,C}) \subset \bigcup_{m > 0} f^{-m}(U_{j,C})$$

for any fixed $j \ge 1$ and all sufficiently large $l \ge 1$, implying

$$x\in\overline{\bigcup_{m\geq 0}f^{-m}\big(U_{j,C}\big)}$$

for all $j \ge 1$. This proves the claim. It follows that

$$X \subset \bigcup_{C \in \mathcal{C}_{\operatorname{ter}}(f)} \bigcap_{j \geq 1} \overline{\bigcup_{m \geq 0}} f^{-m}(U_{j,C}) \subset \bigcup_{C \in \mathcal{C}_{\operatorname{ter}}(f)} \overline{\bigcup_{m \geq 0}} f^{-m}(U_{j,C}) \subset \overline{\bigcup_{C \in \mathcal{C}_{\operatorname{ter}}(f)} \bigcup_{m \geq 0}} f^{-m}(U_{j,C})$$

for all $j \ge 1$. With the aid of Baire Category Theorem, this implies that V is a dense G_{δ} -subset of X. It remains to prove that V(f) = V. Given any $x \in V(f)$, by $C(x, f) \in \mathcal{C}_{\operatorname{ter}}(f)$ and

$$x \in \bigcap_{j \ge 1} \bigcup_{m \ge 0} f^{-m} (U_{j,C(x,f)}) \subset V,$$

we have $x \in V$. It follows that $V(f) \subset V$. Conversely, let $x \in V$. For each $j \ge 1$, we take $C_j \in \mathcal{C}_{ter}(f)$ and $m_j \ge 0$ such that

$$x \in f^{-m_j}(U_{j,C_i}).$$

Then, because $\mathcal{C}(f) = CR(f)/\leftrightarrow$ is a compact metrizable space, there are a sequence $1 \le j_1 < j_2 < \cdots$ and $C \in \mathcal{C}(f)$ such that

$$\lim_{l\to\infty} C_{j_l} = C$$

in $\mathcal{C}(f)$. Note that for every $\varepsilon > 0$, we have

$$C_{j_l} \subset U_{\varepsilon}(C)$$

for all sufficiently large $l \ge 1$. For every $l \ge 1$, by

$$f^{m_{j_l}}(x)\in U_{j_l,C_{j_l}},$$

we have

$$\omega^*(x,f)=\omega^*(f^{m_{j_l}}(x),f)\subset U_{\varepsilon_{j_l}}(C_{j_l}).$$

By

$$\lim_{l\to\infty}\varepsilon_{j_l}=0,$$

we obtain

$$\omega^*(x,f) \subset U_{2\varepsilon}(C)$$

for all $\varepsilon > 0$; thus, $\omega^*(x, f) \subset C$. From Lemma 1.1, it follows that $C = C(x, f) \in \mathcal{C}_{\text{ter}}(f)$, implying $x \in V(f)$. Since $x \in V$ is arbitrary, we conclude that $V \subset V(f)$, proving the claim.

Next, we show that W(f) is a dense G_{δ} -subset of X. Since V(f) is a dense G_{δ} -subset of X, it suffices to show that W(f) is a dense G_{δ} -subset of V(f). Letting

$$W = \bigcap_{j \ge 1} \bigcap_{m \ge 0} \left\{ x \in V(f) \colon C(x, f) \subset U_{\frac{1}{j}}(\left\{ f^i(x) \colon i \ge m \right\}) \right\},\,$$

we have W = W(f). Let

$$W_{j,m} = \{x \in V(f) : C(x,f) \subset U_{\frac{1}{i}}(\{f^{i}(x) : i \geq m\})\}$$

for all $j \ge 1$ and $m \ge 0$. Given any $x \in W_{j,m}$, $j \ge 1$, $m \ge 0$, by compactness of C(x, f), there are $0 < r < \frac{1}{j}$ and $n \ge m$ such that

$$C(x,f) \subset U_r(\{f^i(x): m \leq i \leq n\}).$$

We take $\varepsilon > 0$ with $r + 2\varepsilon < \frac{1}{j}$. Since $x \in V(f)$ and so $C(x, f) \in \mathcal{C}_{ter}(f)$, by Lemma 2.2, there is a > 0 such that d(x, y) < a implies

$$C(y,f) \subset U_{\varepsilon}(C(x,f))$$

for all $y \in X$. By continuity of f, we have b > 0 such that d(x, y) < b implies

$$\{f^i(x): m \le i \le n\} \subset U_{\varepsilon}(\{f^i(y): m \le i \le n\})$$

for all $y \in X$. It follows that $d(x, y) < \min\{a, b\}$ implies

$$C(y,f) \subset U_{r+2\varepsilon}(\{f^i(y): m \leq i \leq n\}) \subset U_{\frac{1}{i}}(\{f^i(y): m \leq i \leq n\}) \subset U_{\frac{1}{i}}(\{f^i(y): i \geq m\})$$

for all $y \in X$. Since $x \in W_{j,m}$ is arbitrary, $W_{j,m}$ is an open subset of V(f). Since $j \ge 1$ and $m \ge 0$ are arbitrary, we conclude that W is a G_{δ} -subset of V(f). It remains to prove that W is a dense subset of V(f). Let $j \ge 1$ and $m \ge 0$. Given any $x \in V(f)$ and $\varepsilon > 0$, since $C(x, f) \in \mathcal{C}_{\operatorname{ter}}(f)$, by Lemma 2.2, there is $0 < a < \varepsilon/2$ such that d(x, y) < 2a implies

$$C(y,f) \subset U_{\frac{1}{3i}}(C(x,f))$$

for all $y \in X$. Since f has the shadowing property, we see that

$$C(x,f) \subset U_{\frac{1}{3i}}(\{f^i(p): i \geq m\})$$

for some $p \in X$ with d(x, p) < a. By compactness of C(x, f), we obtain

$$C(x,f) \subset U_{\frac{1}{3i}}(\{f^i(p): m \le i \le n\})$$

for some $n \ge m$. By continuity of f, we have b > 0 such that d(p, q) < b implies

$$\left\{f^i(p)\colon m\leq i\leq n\right\}\subset U_{\frac{1}{3i}}\big(\left\{f^i(q)\colon m\leq i\leq n\right\}\big)$$

for all $q \in X$. Since V(f) is a dense subset of X, we have $d(p,q) < \min\{a,b\}$ for some $q \in V(f)$. Note that

$$d(x,q) \le d(x,p) + d(p,q) < 2a < \varepsilon$$
.

It follows that

$$C(q,f) \subset U_{\frac{1}{3}i}(C(x,f)) \subset U_{\frac{1}{i}}(\{f^i(q): m \leq i \leq n\}) \subset U_{\frac{1}{i}}(\{f^i(q): i \geq m\}),$$

implying $q \in W_{j,m}$. Since $x \in V(f)$ and $\varepsilon > 0$ are arbitrary, $W_{j,m}$ is an open dense subset of V(f). Since $j \ge 1$ and $m \ge 0$ are arbitrary, we conclude that W is a dense subset of V(f), proving the claim. Thus, the theorem has been proved.

We conclude with a remark on the proof.

Remark 2.1

- The proof shows that V(f) and W(f) are G_{δ} -subsets of X for every continuous map $f: X \to X$.
- For any continuous map $f: X \to X$, we can show that if f has the shadowing property, then

$$V(f) = \{x \in X : C(\cdot, f) : X \to \mathcal{C}(f) \text{ is continuous at } x\}.$$

By this, since $\mathcal{C}(f)$ is a compact metrizable space, we can show that V(f) is a G_{δ} -subset of X.

• Let $f: X \to X$ be a continuous map and let $\xi = (x_i)_{i \ge 0}$ be a sequence of points in X. For $\delta > 0$, ξ is called a δ -limit-pseudo orbit of f if $d(f(x_i), x_{i+1}) \le \delta$ for all $i \ge 0$, and

$$\lim_{i\to\infty}d(f(x_i),x_{i+1})=0.$$

For $\varepsilon > 0$, ξ is said to be ε -limit shadowed by $x \in X$ if $d(f^i(x), x_i) \le \varepsilon$ for all $i \ge 0$, and

$$\lim_{i\to\infty}d(f^i(x),x_i)=0.$$

We say that f has the s-limit shadowing property if for any $\varepsilon > 0$, there is $\delta > 0$ such that every δ -limit-pseudo orbit of f is ε -limit shadowed by some point of X. When f has the s-limit shadowing property, by Lemma 2.1, we can easily show that W(f) is a dense subset of X.

Acknowledgements The author would like to thank the reviewer for helpful suggestions.

References

- [1] E. Akin, *The general topology of dynamical systems*. Graduate Studies in Mathematics, Vol. 1, American Mathematical Society, Providence, RI, 1993.
- [2] E. Akin, On chain continuity. Discrete Contin. Dyn. Syst. 2(1996), 111–120.
- [3] E. Akin, M. Hurley and J. Kennedy, *Dynamics of topologically generic homeomorphisms*. Mem. Amer. Math. Soc. 164(2003).
- [4] D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature. Proc. Steklov Inst. Math. 90(1967), 235 p.
- N. Aoki and K. Hiraide, Topological theory of dynamical systems. Recent advances.
 North-Holland Mathematical Library, Vol. 52, North-Holland Publishing Co., 1994.
- [6] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer– Verlag, 1975.
- [7] W. Brian, J. Meddaugh and B. Raines, Shadowing is generic on dendrites. Discrete Contin. Dyn. Syst. Ser. S 12(2019), 2211–2220.
- [8] J. Buescu and I. Stewart, *Liapunov stability and adding machines*. Ergodic Theory Dynam. Systems 15(1995), 271–290.
- [9] C. Conley, *Isolated invariant sets and the Morse index*, CBMS Regional Conference Series in Mathematics, Vol. 38, American Mathematical Society, Providence, RI, 1978.
- [10] M. W. Hirsch and M. Hurley, Connected components of attractors and other stable sets. Aequationes Math. 53(1997), 308–323.
- [11] M. Hurley, Attractors: Persistence, and density of their basins. Trans. Amer. Math. Soc. 269(1982), 247–271.
- [12] N. Kawaguchi, Generic and dense distributional chaos with shadowing. J. Difference Equ. Appl. 27(2021), 1456–1481.
- [13] P. Kościelniak, M. Mazur, P. Oprocha and Ł. Kubica, *Shadowing is generic on various one-dimensional continua with a special geometric structure*. J. Geom. Anal. 30(2020), 1836–1864.
- [14] P. Krupski, K. Omiljanowski and K. Ungeheuer, *Chain recurrent sets of generic mappings on compact spaces*. Topology Appl. 202(2016), 251–268.
- [15] P. Kůrka, Topological and symbolic dynamics, Societe Mathematique de France, Paris, 2003.
- [16] M. Mazur and P. Oprocha, S-limit shadowing is C⁰-dense. J. Math. Anal. Appl. 408(2013), 465–475.
- [17] S. Yu. Pilyugin, The space of dynamical systems with the C⁰-topology, Lecture Notes in Mathematics, Vol. 1571, Springer– Verlag, 1994.
- [18] S. Yu. Pilyugin, Shadowing in dynamical systems, Lecture Notes in Mathematics, Vol. 1706, Springer-Verlag, 1999.
- [19] S. Yu. Pilyugin and O.B. Plamenevskaya, *Shadowing is generic*. Topology Appl. 97(1999), 253–266
- [20] S. Willard, General topology, Dover Publications, Inc., Mineola, NY, 2004.

Research Institute of Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan

e-mail: gknoriaki@gmail.com