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Shadowing and the basins of terminal
chain components
Noriaki Kawaguchi

Abstract. We provide an alternative view of some results in [1, 3, 11]. In particular, we prove that (1)
if a continuous self-map of a compact metric space has the shadowing, then the union of the basins
of terminal chain components is a dense Gδ -subset of the space; and (2) if a continuous self-map of
a locally connected compact metric space has the shadowing, and if the chain recurrent set is totally
disconnected, then the map is almost chain continuous.

1 Introduction

Shadowing is an important concept in the topological theory of dynamical systems
(see [5, 18] for background). It was derived from the study of hyperbolic differentiable
dynamics [4, 6] and generally refers to a situation in which coarse orbits, or pseudo-
orbits, can be approximated by true orbits. Above all else, it is worth mentioning that
the shadowing is known to be generic in the space of homeomorphisms or continuous
self-maps of a closed differentiable manifold (see [19] and Theorem 1 of [16]) and so
plays a significant role in the study of topologically generic dynamics.

Chain components are basic objects for global understanding of dynamical systems
[9]. In this paper, we focus on attractor-like, or terminal, chain components and
the basins of them. By a result (Corollary 6.16) of [11], if a continuous flow on a
compact metric space has the so-called weak shadowing, then the union of the basins
of terminal chain components is a dense Gδ-subset of the space. For any continuous
self-map of a compact metric space, we strengthen it by assuming the standard
shadowing (Theorem 1.1). Our proof is by a method related to but independent of a
result (Proposition 22 in Section 7) of [1]. It is shown in [3] that topologically generic
homeomorphisms of a closed differentiable manifold are almost chain continuous
(see Introduction of [3] where the word “almost equicontinuous” is used). We also
give an alternative proof of this fact by using the genericity of shadowing.

First, we define the chain components. Throughout, X denotes a compact metric
space endowed with a metric d.

Definition 1.1 Given a continuous map f ∶X → X and δ > 0, a finite sequence
(x i)k

i=0 of points in X, where k > 0 is a positive integer, is called a δ-chain of f if
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2 N. Kawaguchi

d( f (x i), x i+1) ≤ δ for every 0 ≤ i ≤ k − 1. A δ-chain (x i)k
i=0 of f with x0 = xk is said

to be a δ-cycle of f.

Let f ∶X → X be a continuous map. For any x , y ∈ X and δ > 0, the notation x →δ y
means that there is a δ-chain (x i)k

i=0 of f with x0 = x and xk = y. We write x → y
if x →δ y for all δ > 0. We say that x ∈ X is a chain recurrent point for f if x → x, or
equivalently, for every δ > 0, there is a δ-cycle (x i)k

i=0 of f with x0 = xk = x. Let CR( f )
denote the set of chain recurrent points for f. We define a relation↔ in

CR( f )2 = CR( f ) × CR( f )

by the following: for any x , y ∈ CR( f ), x ↔ y if and only if x → y and y → x. Note that
↔ is a closed equivalence relation in CR( f )2 and satisfies x ↔ f (x) for all x ∈ CR( f ).
An equivalence class C of↔ is called a chain component for f. We regard the quotient
space

C( f ) = CR( f )/↔

as a space of chain components.
A subset S of X is said to be f -invariant if f (S) ⊂ S. For an f -invariant subset S

of X, we say that f ∣S ∶ S → S is chain transitive if for any x , y ∈ S and δ > 0, there is a
δ-chain (x i)k

i=0 of f ∣S with x0 = x and xk = y.

Remark 1.1 The following properties hold:
• CR( f ) = ⊔C∈C( f ) C,
• every C ∈ C( f ) is a closed f -invariant subset of CR( f ),
• f ∣C ∶C → C is chain transitive for all C ∈ C( f ),
• for any f -invariant subset S of X, if f ∣S ∶ S → S is chain transitive, then S ⊂ C for

some C ∈ C( f ).

Next, we recall the definition of terminal chain components. For x ∈ X and a subset
S of X, we denote by d(x , S) the distance of x from S:

d(x , S) = inf
y∈S

d(x , y).

Definition 1.2 We say that a closed f -invariant subset S of X is chain stable if for any
ε > 0, there is δ > 0 such that every δ-chain (x i)k

i=0 of f with x0 ∈ S satisfies d(x i , S) ≤
ε for all 0 ≤ i ≤ k. Following [3], we say that C ∈ C( f ) is terminal if C is chain stable.
We denote by Cter( f ) the set of terminal chain components for f.

Remark 1.2 For any continuous map f ∶X → X, a partial order ≤ on C( f ) is defined
by the following: for all C , D ∈ C( f ), C ≤ D if and only if x → y for some x ∈ C and y ∈
D. We can easily show that for any C ∈ C( f ), C ∈ Cter( f ) if and only if C is maximal
with respect to ≤; that is, C ≤ D implies C = D for all D ∈ C( f ).
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Shadowing and the basins of terminal chain components 3

Given a continuous map f ∶X → X and x ∈ X, the ω-limit set ω(x , f ) of x for f is
defined as the set of y ∈ X such that

lim
j→∞

f i j(x) = y

for some sequence 0 ≤ i1 < i2 < ⋯. Note that ω(x , f ) is a closed f -invariant subset of X
and f ∣ω(x , f )∶ω(x , f ) → ω(x , f ) is chain transitive. We denote by C(x , f ) the unique
C(x , f ) ∈ C( f ) such that ω(x , f ) ⊂ C(x , f ). For each C ∈ C( f ), we define the basin
W s(C) of C by

W s(C) = {x ∈ X∶ lim
i→∞

d( f i(x), C) = 0}.

For every x ∈ X, since

lim
i→∞

d( f i(x), ω(x , f )) = 0,

we have x ∈W s(C) if and only if C = C(x , f ). This implies

{x ∈ X∶C(x , f ) ∈ Cter( f )} = ⊔
C∈Cter( f )

W s(C).

We also define the chain ω-limit set ω∗(x , f ) of x for f as the set of y ∈ X such that
for any δ > 0 and N > 0, there is a δ-chain (x i)k

i=0 of f with x0 = x, xk = y, and k ≥ N .
Note that ω∗(x , f ) is a closed f -invariant subset of X and chain stable. We have

ω(x , f ) ⊂ C(x , f ) ⊂ ω∗(x , f ).

Remark 1.3 The chain ω-limit set is denoted in [3] as ωC(x , f ) instead of ω∗(x , f ).

The following lemma is obvious (see Section 1.4 of [3]).

Lemma 1.1 Let f ∶X → X be a continuous map.
(A) For any x ∈ X, the following properties are equivalent:

– C(x , f ) ∈ Cter( f ),
– ω∗(x , f ) ⊂ C(x , f ),
– ω∗(x , f ) = C(x , f ),
– f ∣ω∗(x , f )∶ω∗(x , f ) → ω∗(x , f ) is chain transitive.

(B) For any x ∈ X, the following properties are equivalent:
– ω(x , f ) = C(x , f ) = ω∗(x , f ),
– C(x , f ) ∈ Cter( f ) and ω(x , f ) = C(x , f ).

We give the definition of shadowing.

Definition 1.3 Let f ∶X → X be a continuous map and let ξ = (x i)i≥0 be a sequence
of points in X. For δ > 0, ξ is called a δ-pseudo orbit of f if d( f (x i), x i+1) ≤ δ for all
i ≥ 0. For ε > 0, ξ is said to be ε-shadowed by x ∈ X if d( f i(x), x i) ≤ ε for all i ≥ 0.
We say that f has the shadowing property if for any ε > 0, there is δ > 0 such that every
δ-pseudo orbit of f is ε-shadowed by some point of X.

https://doi.org/10.4153/S0008439524000730 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000730


4 N. Kawaguchi

For a topological space Z, a subset S of Z is called a Gδ-subset of Z if S is a countable
intersection of open subsets of Z. If Z is completely metrizable, then by Baire Category
Theorem, every countable intersection of open dense subsets of Z is dense in Z. We
know that a subspace Y of a completely metrizable space Z is completely metrizable
if and only if Y is a Gδ-subset of Z (see Theorem 24.12 of [20]).

For any continuous map f ∶X → X and x ∈ X, let Ω(x , f ) denote the set of y ∈ X
such that

lim
j→∞

f i j(x j) = y

for some sequence 0 ≤ i1 < i2 < ⋯ and x j ∈ X, j ≥ 1, with

lim
j→∞

x j = x .

Note that

ω(x , f ) ⊂ Ω(x , f ) ⊂ ω∗(x , f )

for all x ∈ X. By Proposition 22 in Section 7 of [1], we know that

{x ∈ X∶ω(x , f ) = Ω(x , f )}

is a dense Gδ-subset of X. The proof of this result in [1] is based on a nontrivial fact
that the set of continuity points of a lower semicontinuous (lsc) set-valued map is a
dense Gδ-subset. If f has the shadowing property, then we have

Ω(x , f ) = ω∗(x , f )

for all x ∈ X. This can be proved as follows. Let (ε j) j≥1 be a sequence of positive
numbers with lim j→∞ ε j = 0. Since f has the shadowing property, for each j ≥ 1, there
is δ j > 0 such that every δ j-pseudo orbit of f is ε j-shadowed by some point of X.
Let x ∈ X and y ∈ ω∗(x , f ). Since y ∈ ω∗(x , f ), we have a sequence (x( j)

i )
k j
i=0, j ≥ 1,

of δ j-chains of f with x( j)
0 = x, x( j)

k j
= y, and k j < k j+1 for all j ≥ 1. By the choice of

δ j , we obtain x j ∈ X, j ≥ 1, such that d(x j , x) = d(x j , x( j)
0 ) ≤ ε j and d( f k j(x j), y) =

d( f k j(x j), x( j)
k j
) ≤ ε j for all j ≥ 1. It follows that 0 < k1 < k2 < ⋯,

lim
j→∞

x j = x ,

and

lim
j→∞

f k j(x j) = y.

Thus, y ∈ Ω(x , f ). Since x ∈ X and y ∈ ω∗(x , f ) are arbitrary, we conclude that

ω∗(x , f ) ⊂ Ω(x , f )

for all x ∈ X, completing the proof. It follows that if a continuous map f ∶X → X has
the shadowing property, then

{x ∈ X∶ω(x , f ) = Ω(x , f ) = ω∗(x , f )}
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is a dense Gδ-subset of X; therefore,

{x ∈ X∶ω(x , f ) = C(x , f ) = ω∗(x , f )} = {x ∈ X∶C(x , f ) ∈ Cter( f ) and ω(x , f ) = C(x , f )}

is a dense Gδ-subset of X (see [11] and [17] for related results). The main aim of this
paper is to give an alternative proof of the following statement.

Theorem 1.1 If a continuous map f ∶X → X has the shadowing property, then

V( f ) = {x ∈ X∶C(x , f ) ∈ Cter( f )}

and

W( f ) = {x ∈ V( f )∶ω(x , f ) = C(x , f )}

are dense Gδ-subsets of X.

Given a continuous map f ∶X → X and x ∈ X, we say that f is chain continuous at x
if for any ε > 0, there is δ > 0 such that every δ-pseudo orbit (x i)i≥0 of f with x0 = x
is ε-shadowed by x [2]. We denote by CC( f ) the set of chain continuity points for
f. The notion of chain continuity is closely related to odometers. An odometer (or an
adding machine) is defined as follows. Let m = (m j) j≥1 be an increasing sequence of
positive integers with m j ∣m j+1 for all j ≥ 1. Let X j , j ≥ 1, denote the quotient group
Z/m jZ with the discrete topology. Let π j ∶X j+1 → X j , j ≥ 1, be the natural projections
and let

Xm = {x = (x j) j≥1 ∈ ∏
j≥1

X j ∶ π j(x j+1) = x j for all j ≥ 1}.

As a closed subspace of∏ j≥1 X j with the product topology, Xm is a compact metriz-
able space. Consider the map gm ∶Xm → Xm defined by

gm(x) j = x j + 1

for all x = (x j) j≥1 ∈ Xm and j ≥ 1. Note that gm is a homeomorphism. We say that
(Xm , gm) is an odometer with the periodic structure m. We say that a closed f -
invariant subset S of X is an odometer if (S , f ∣S) is topologically conjugate to an
odometer. This is equivalent to that S is a Cantor space and

f ∣S ∶ S → S

is a minimal equicontinuous homeomorphism (see Theorem 4.4 of [15]). By Theorem
7.5 of [3], we know that for any x ∈ X, x ∈ CC( f ) if and only if

ω(x , f ) = C(x , f ) = ω∗(x , f )

and C(x , f ) is a periodic orbit or an odometer. By Lemma 1.1, this is equivalent to
that C(x , f ) ∈ Cter( f ) and C(x , f ) is a periodic orbit or an odometer. We say that
X is locally connected if for any x ∈ X and any open subset U of X with x ∈ U , we
have x ∈ V ⊂ U for some open connected subset V of X. A subspace S of X is said
to be totally disconnected if every connected component of S is a singleton. If X is
locally connected and CR( f ) is totally disconnected, then due to Theorem 5.1 of [8]
or Theorem B of [10], every C ∈ Cter( f ) is a periodic orbit or an odometer. By these
facts, we obtain the following lemma.
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Lemma 1.2 Let f ∶X → X be a continuous map. If X is locally connected and CR( f )
is totally disconnected, then for any x ∈ X, the following properties are equivalent:
• x ∈ CC( f ),
• ω(x , f ) = C(x , f ) = ω∗(x , f ),
• C(x , f ) ∈ Cter( f ).

Let f ∶X → X be a continuous map. For any j, l ≥ 1, let C j, l denote the set of x ∈ X
such that there is a neighborhood U of x for which every 1

j -pseudo orbit (x i)i≥0 of f
with x0 ∈ U is 1

l -shadowed by x0. We see that C j, l is an open subset of X for all j, l ≥ 1
and

CC( f ) = ⋂
l≥1
⋃
j≥1

C j, l .

Thus, CC( f ) is a Gδ-subset of X. We say that f is almost chain continuous if CC( f )
is a dense Gδ-subset of X. By Theorem 1.1 and Lemma 1.2, we obtain the following
theorem.

Theorem 1.2 Let f ∶X → X be a continuous map. If X is locally connected, f has
the shadowing property, and if CR( f ) is totally disconnected, then f is almost chain
continuous.

We present a corollary of Theorem 1.2. For a closed differentiable manifold M, let
H(M) (resp.C(M)) denote the set of homeomorphisms (resp. continuous self-maps)
of M, endowed with the C0-topology. It is shown in [3] that generic f ∈H(M) (resp.
f ∈ C(M), if dim M > 1) is almost chain continuous (see Introduction of [3] where the
word “almost equicontinuous” is used). Note that the shadowing is generic in H(M)
[19] and also generic in C(M) [16, Theorem 1]. Moreover, by results of [3, 14], we
know that for generic f ∈H(M) (resp. f ∈ C(M)), CR( f ) is totally disconnected (see
Introduction of [3] and Theorem 3.3 of [14]). Thus, by Theorem 1.2, we obtain the
following corollary.

Corollary 1.1 Generic f ∈H(M) (resp. f ∈ C(M)) is almost chain continuous.

Our results also apply to the case where X is not a manifold. We say that X is a
dendrite if X is connected, locally connected, and contains no simple closed curves.
The shadowing is proved to be generic in the space of continuous self-maps of a
dendrite (see [7] and [13, Theorem 19]). However, by Corollary 5.2 of [14], a generic
continuous self-map of a dendrite has the totally disconnected chain recurrent set. By
Theorem 1.2, we conclude that a generic continuous self-map of a dendrite is almost
chain continuous.

This paper consists of two sections. In the next section, we prove Theorem 1.1.

2 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. The proof is based on the following lemma
in [12].
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Lemma 2.1 [12, Lemma 2.1] For any continuous map f ∶X → X and x ∈ X, there is
C ∈ Cter( f ) such that for every δ > 0, there is a δ-chain (x i)k

i=0 of f with x0 = x and
xk ∈ C.

We need one more lemma. In what follows, for x ∈ X and a subset S of X, we denote
by d(x , S) the distance of x from S:

d(x , S) = inf
y∈S

d(x , y).

We also denote by Ur(S), r > 0, the open r-neighborhood of S:

Ur(S) = {x ∈ X∶ d(x , S) < r}.

Lemma 2.2 For any continuous map f ∶X → X and x ∈ X, if C(x , f ) ∈ Cter( f ), then
C(⋅, f )∶X → C( f ) is continuous at x.

Proof Let x ∈ X and C = C(x , f ). If C ∈ Cter( f ) (i.e., C is chain stable), then for
any ε > 0, we have δ > 0 such that every δ-chain (x i)k

i=0 of f with d(x0 , C) ≤ δ satisfies
d(x i , C) ≤ ε/2 for all 0 ≤ i ≤ k. It follows that d(y, C) ≤ δ implies

ω∗(y, f ) ⊂ Uε(C)

for all y ∈ X. Since

lim
i→∞

d( f i(x), C) = 0,

we have d( f i(x), C) ≤ δ/2 for some i ≥ 0. By taking γ > 0 such that d(x , z) ≤ γ
implies d( f i(x), f i(z)) ≤ δ/2 for all z ∈ X, we obtain d( f i(z), C) ≤ δ and so

C(z, f ) ⊂ ω∗(z, f ) = ω∗( f i(z), f ) ⊂ Uε(C)

for all z ∈ X with d(x , z) ≤ γ. Since ε > 0 is arbitrary, this implies that C(⋅, f )∶X →
C( f ) is continuous at x, completing the proof. ∎

By using these lemmas, we prove Theorem 1.1.

Proof of Theorem 1.1 First, we show that V( f ) is a dense Gδ-subset of X. Fix a
sequence (ε j) j≥1 of positive numbers such that ε1 > ε2 > ⋯ and

lim
j→∞

ε j = 0.

For any j ≥ 1 and C ∈ Cter( f ), we take δ j,C > 0 such that x ∈ Uδ j,C (C) implies

ω∗(x , f ) ⊂ Uε j(C)

for all x ∈ X. Let

U j,C = Uδ j,C (C)

for all j ≥ 1 and C ∈ Cter( f ). We define a subset V of X by

V = ⋂
j≥1

⋃
C∈Cter( f )

⋃
m≥0

f −m(U j,C).
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Note that V is a Gδ-subset of X. Since f has the shadowing property, by Lemma 2.1,
we see that for every x ∈ X, there is C ∈ Cter( f ) such that

x ∈ ⋃
m≥0

f −m(U j,C)

for all j ≥ 1. This can be proved as follows. For x ∈ X, fix C ∈ Cter( f ) as in Lemma 2.1
and γ l > 0, l ≥ 1, with liml→∞ γ l = 0. There are β l > 0, l ≥ 1, and a sequence (x(l)

i )
k l
i=0,

l ≥ 1, of β l -chains of f such that for each l ≥ 1,
• every β l -pseudo orbit of f is γ l -shadowed by some point of X,
• x(l)

0 = x and x(l)
k l
∈ C.

By taking x l ∈ X, l ≥ 1, with d(x l , x) = d(x l , x(l)
0 ) ≤ γ l and d( f k l (x l), C) ≤

d( f k l (x l), x(l)
k l
) ≤ γ l , we obtain liml→∞ x l = x and

x l ∈ f −k l (U j,C) ⊂ ⋃
m≥0

f −m(U j,C)

for any fixed j ≥ 1 and all sufficiently large l ≥ 1, implying

x ∈ ⋃
m≥0

f −m(U j,C)

for all j ≥ 1. This proves the claim. It follows that

X ⊂ ⋃
C∈Cter( f )

⋂
j≥1
⋃

m≥0
f −m(U j,C) ⊂ ⋃

C∈Cter( f )
⋃

m≥0
f −m(U j,C) ⊂ ⋃

C∈Cter( f )
⋃

m≥0
f −m(U j,C)

for all j ≥ 1. With the aid of Baire Category Theorem, this implies that V is a dense
Gδ-subset of X. It remains to prove that V( f ) = V . Given any x ∈ V( f ), by C(x , f ) ∈
Cter( f ) and

x ∈ ⋂
j≥1
⋃

m≥0
f −m(U j,C(x , f )) ⊂ V ,

we have x ∈ V . It follows that V( f ) ⊂ V . Conversely, let x ∈ V . For each j ≥ 1, we take
C j ∈ Cter( f ) and m j ≥ 0 such that

x ∈ f −m j(U j,C j).

Then, because C( f ) = CR( f )/↔ is a compact metrizable space, there are a sequence
1 ≤ j1 < j2 < ⋯ and C ∈ C( f ) such that

lim
l→∞

C j l = C

in C( f ). Note that for every ε > 0, we have

C j l ⊂ Uε(C)

for all sufficiently large l ≥ 1. For every l ≥ 1, by

f m j l (x) ∈ U j l ,C j l
,
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we have

ω∗(x , f ) = ω∗( f m j l (x), f ) ⊂ Uε j l
(C j l ).

By

lim
l→∞

ε j l = 0,

we obtain

ω∗(x , f ) ⊂ U2ε(C)

for all ε > 0; thus, ω∗(x , f ) ⊂ C. From Lemma 1.1, it follows that C = C(x , f ) ∈
Cter( f ), implying x ∈ V( f ). Since x ∈ V is arbitrary, we conclude that V ⊂ V( f ),
proving the claim.

Next, we show that W( f ) is a dense Gδ-subset of X. Since V( f ) is a dense Gδ-
subset of X, it suffices to show that W( f ) is a dense Gδ-subset of V( f ). Letting

W = ⋂
j≥1
⋂

m≥0
{x ∈ V( f )∶C(x , f ) ⊂ U 1

j
({ f i(x)∶ i ≥ m})},

we have W =W( f ). Let

Wj,m = {x ∈ V( f )∶C(x , f ) ⊂ U 1
j
({ f i(x)∶ i ≥ m})}

for all j ≥ 1 and m ≥ 0. Given any x ∈Wj,m , j ≥ 1, m ≥ 0, by compactness of C(x , f ),
there are 0 < r < 1

j and n ≥ m such that

C(x , f ) ⊂ Ur({ f i(x)∶m ≤ i ≤ n}).

We take ε > 0 with r + 2ε < 1
j . Since x ∈ V( f ) and so C(x , f ) ∈ Cter( f ), by Lemma

2.2, there is a > 0 such that d(x , y) < a implies

C(y, f ) ⊂ Uε(C(x , f ))

for all y ∈ X. By continuity of f, we have b > 0 such that d(x , y) < b implies

{ f i(x)∶m ≤ i ≤ n} ⊂ Uε({ f i(y)∶m ≤ i ≤ n})

for all y ∈ X. It follows that d(x , y) <min{a, b} implies

C(y, f ) ⊂ Ur+2ε({ f i(y)∶m ≤ i ≤ n}) ⊂ U 1
j
({ f i(y)∶m ≤ i ≤ n}) ⊂ U 1

j
({ f i(y)∶ i ≥ m})

for all y ∈ X. Since x ∈Wj,m is arbitrary, Wj,m is an open subset of V( f ). Since j ≥ 1
and m ≥ 0 are arbitrary, we conclude that W is a Gδ-subset of V( f ). It remains to
prove that W is a dense subset of V( f ). Let j ≥ 1 and m ≥ 0. Given any x ∈ V( f ) and
ε > 0, since C(x , f ) ∈ Cter( f ), by Lemma 2.2, there is 0 < a < ε/2 such that d(x , y) <
2a implies

C(y, f ) ⊂ U 1
3 j
(C(x , f ))

for all y ∈ X. Since f has the shadowing property, we see that

C(x , f ) ⊂ U 1
3 j
({ f i(p)∶ i ≥ m})
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for some p ∈ X with d(x , p) < a. By compactness of C(x , f ), we obtain

C(x , f ) ⊂ U 1
3 j
({ f i(p)∶m ≤ i ≤ n})

for some n ≥ m. By continuity of f, we have b > 0 such that d(p, q) < b implies

{ f i(p)∶m ≤ i ≤ n} ⊂ U 1
3 j
({ f i(q)∶m ≤ i ≤ n})

for all q ∈ X. Since V( f ) is a dense subset of X, we have d(p, q) <min{a, b} for some
q ∈ V( f ). Note that

d(x , q) ≤ d(x , p) + d(p, q) < 2a < ε.

It follows that

C(q, f ) ⊂ U 1
3 j
(C(x , f )) ⊂ U 1

j
({ f i(q)∶m ≤ i ≤ n}) ⊂ U 1

j
({ f i(q)∶ i ≥ m}),

implying q ∈Wj,m . Since x ∈ V( f ) and ε > 0 are arbitrary, Wj,m is an open dense
subset of V( f ). Since j ≥ 1 and m ≥ 0 are arbitrary, we conclude that W is a dense
subset of V( f ), proving the claim. Thus, the theorem has been proved. ∎

We conclude with a remark on the proof.

Remark 2.1
• The proof shows that V( f ) and W( f ) are Gδ-subsets of X for every continuous

map f ∶X → X.
• For any continuous map f ∶X → X, we can show that if f has the shadowing

property, then

V( f ) = {x ∈ X∶C(⋅, f )∶X → C( f ) is continuous at x}.

By this, since C( f ) is a compact metrizable space, we can show that V( f ) is a Gδ-
subset of X.

• Let f ∶X → X be a continuous map and let ξ = (x i)i≥0 be a sequence of points in
X. For δ > 0, ξ is called a δ-limit-pseudo orbit of f if d( f (x i), x i+1) ≤ δ for all i ≥ 0,
and

lim
i→∞

d( f (x i), x i+1) = 0.

For ε > 0, ξ is said to be ε-limit shadowed by x ∈ X if d( f i(x), x i) ≤ ε for all i ≥ 0,
and

lim
i→∞

d( f i(x), x i) = 0.

We say that f has the s-limit shadowing property if for any ε > 0, there is δ > 0 such
that every δ-limit-pseudo orbit of f is ε-limit shadowed by some point of X. When
f has the s-limit shadowing property, by Lemma 2.1, we can easily show that W( f )
is a dense subset of X.
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[13] P. Kościelniak, M. Mazur, P. Oprocha and Ł. Kubica, Shadowing is generic on various

one-dimensional continua with a special geometric structure. J. Geom. Anal. 30(2020), 1836–1864.
[14] P. Krupski, K. Omiljanowski and K. Ungeheuer, Chain recurrent sets of generic mappings on

compact spaces. Topology Appl. 202(2016), 251–268.
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