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(negative). We have .  Set  to be a positive sequence with .
Now, Theorem 2 is equivalent to

Bn�
1
εn

rn rn → 1

lim
n → ∞

(1 + εn)
rn
εn = e. (1)

The sign of  does not matter for this limit, so we can generalise the left-
hand side of (1). For any constant  and  a sequence with  monotone
decreasing to 0, we have

εn
k δn |δn|

lim
n → ∞

(1 + εn)δn + k = 1. (2)

Multiplying (1) by (2) we obtain

lim
n → ∞

(1 + εn)
rn
εn

+ δn + k = e. (3)

This allows the reader to choose parameters to optimise convergence.
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108.28  is a mean of 2 and 4π
A series of Mathematical Gazette contributions, [1, 2, 3, 4], deals with

limits of infinite sequences where the first  entries are specified and where
latter entries correspond to a specified type of average of the  preceding
entries. To the list of recursively defined averages may be added also the
more well-known arithmetic-geometric mean, the arithmetic-harmonic mean
and the geometric-harmonic mean. We are not aware of studies of
recursions where some property of the index  dictates what average to

n
n

k
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consider when calculating  from preceding entries. There is virtually no
limit to the possibilities we hereby face, but we will in this short Note
restrict ourselves to cases where only  and  are specified and where the
parity of  dictates which one of two specified averages to consider in order
to generate  from  and .

ak

a0 a1
k

ak ak − 1 ak − 2

We shall define six functions ,  and  as well as
,  and . The functions are, as will be seen, defined in

analogous ways and we provide a definition of  to start with.

α (x, y) β (x, y) γ (x, y)
α∗ (x, y) β∗ (x, y) γ∗ (x, y)

γ (x, y)

Definition: For non-negative real numbers  and , set  and .
When for integers  we set  equal to the geometric mean of  and

 if  is even, and the harmonic mean of  and  if  is odd, then
we refer to  as .

x y a0 = x a1 = y
k ≥ 2 ak ak − 1

ak − 2 k ak − 1 ak − 2 k
lim

n → ∞
ak γ (x, y)

Using the same non-bold text while changing the bold parts allows to
define the other functions in a compact way. If replacing the non-bold parts
with triple dots we get as compact definitions

“… arithmetic… geometric… ”α (x, y) “… geometric … arithmetic … ”α∗ (x, y)
“… arithmetic… harmonic…  ”β (x, y) “… harmonic… arithmetic … ”β∗ (x, y)
“… geometric… harmonic… ”γ (x, y) “…harmonic … geometric… ”.γ∗ (x, y)

Among trivial rules may be mentioned that

α (x, y) = α∗ (y, 1
2 (x + y)) α∗ (x, y) = α (y, xy)

β (x, y) = β∗ (y, 1
2 (x + y)) β∗ (x, y) = β (y, 2xy

x + y)
γ (x, y) = γ∗ (y, xy) γ∗ (x, y) = γ (y, 2xy

x + y)
which not only (implicitly) remind us about the definitions of the involved
averages, but also show us that whenever a general closed form solution is
established for one of the functions we get a closed form solution for one of
the other functions essentially for free (specifically the one with the same
letter, with or without the star).

Computing to high precision the values of any of the described
functions for arbitrary  and  is a straightforward exercise. Linking the
arrived-at numbers to known constants or expressions present a tougher
challenge, but the work is simplified by the rich content and handy search
functions on the Online Encyclopedia of Integer Sequences (OEIS) [5]. The
following results limited to  and  were established (validated to
machine precision) after direct or more tedious searching (references to
specific sequences on OEIS are given in brackets)

x y

x = 1 y = 2

α(1,  2) = 3 3
π [A306712] α∗(1,  2) = 2

ln(1 + 2) [divide A169800 by 2)]

β(1,  2) = ∑∞
j =02−Tj [A299998] β∗(1,  2) =

∑∞
j =021 −2Tj

∑∞
j =02−Tj

[via A299998]

γ(1,  2) = π
2 [A019669] γ∗(1,  2) = 2 ln(2 + 3)

3
[multiply A196530 by 2]

where the -th triangular number .j Tj = 1
2j (j + 1)
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A range of other special identities were established (not presented here),
but based on these we have thus far − among ,  and  −
only managed to crack the pattern for , for which we propose any of
the following relations

α (x, y) β (x, y) γ (x, y)
γ (x, y)

γ (x, y) =
y

y
x − 1

tan−1 y
x

− 1, (1)

γ (x, y) =
y

1 − y
x

tanh−1 1 −
y
x

. (2)

The equations are equivalent but the implicit use of complex arguments can
be avoided when using (1) for cases when  and (2) for cases when

. For completeness may be added the trivial result that . A
key step in approaching the equation(s) was the discovery that the
numerically determined value of , following division by ,
equalled 0.8813735 …, a decimal expansion present on OEIS [sequence
A091648] including the remark that it equals . Note that while (1)
(and (2)) has been validated numerically it lacks a rigorous proof. It seems
that (1) and (2) apply also when extending the definition of  to the
domain of complex numbers.

y > x
y < x γ (x, x) = x

γ (2,  1) 2

tanh−1 1
2

γ (x, y)

A suitable exercise (for various levels) is to show that (2), in
combination with Euler's identity , basic rules of logarithms, and
the well-known identity , aligns with the result that
justifies the title of this work

(eiπ = −1)
tanh−1 z = 1

2 ln 1 + z
1 − z

γ (2,  4) = π. (3)
Another exercise of similar complexity is to arrive at the corollary result that
for real t ≥ 1

ln t =
t2 − 1

2t
γ (1,

4t
(t + 1)2) . (4)

We end this Note with some further encouragements to the wider
community:

• Prove (1) rigorously.
• Find closed-form solutions for  and  (and prove these).α (x, y) β (x, y)
• Extend to the cases when generating the next element from a -

dependent type of average of the  most recent elements.
k

n
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108.29 A geometric mean–arithmetic mean ratio limit

One of the truly delightful results related to the natural numbers is the
following limit of the ratio of the geometric and arithmetic means of the first
 natural numbers:n

lim
n → ∞

n 1 · 2 · 3 · … · n
1
n (1 + 2 + 3 +  … +  n) =

2
e

. (1)

Obviously, the ratio in (1) approaches its limit really slowly. In fact, the
relative difference between the ratio and its limiting value is of order

, as . For example, this is about 2% when .(n + 1)(2n)−1
n → ∞ n = 100

Some generalisations of the limit can be found in [1], [2] and [3].
In this Note, we offer a short proof and generalisation of limit (1). Our

result is narrower here, but the techniques are wholly different from [1], [2]
and [3], and rely solely, in theory, on algebraic limit properties. Our proof
relies on the following well-known result.

Lemma [See e.g. [4, p. 81]]: Let  be a sequence of positive reals with

. Then .

an

lim
n → ∞

an + 1

an
= L lim

n → ∞

n an = L

We now establish a generalisation of (1) in the following theorem.

Theorem: Let  be a sequence of positive reals with .

Then

{bn} lim
n → ∞

bn − n = 0

lim
n → ∞

n b1b2b3  …  bn
1
n (b1 + b2 + b3 +  …  + bn)

=
2
e

.

Proof: We apply the Lemma to 

an =
∏n

i = 1 bi

(1
n ∑n

i = 1 bi)n .
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