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1. Introduction. In various numerical problems one is confronted with the 
task of solving a system of linear inequalities: 

n 

(1.1) U(x) = 2 aiJxJ + bi> 0 (i = 1, . . . , m)y 

assuming, of course, that the above system is consistent. Sometimes one has, 
in addition, to minimize a given linear form l(x). Thus, in linear programming 
one obtains a problem of the latter type. To cite another example, this time 
from analysis, the problem of finding the polynomial of best approximation of 
degree less than n corresponding to a discrete function defined in N points is of 
the latter type. In this paper we shall be dealing only with the simpler problem 
of finding a solution of (1.1). Nevertheless, it is known (7, lectures IV and V) 
that the more difficult problem of minimization can be reduced to a system of 
inequalities involving no minimization by the duality (or minimax) principle. 
(However, this will increase considerably the number of unknowns and 
inequalities in the equivalent system.) 

That the numerical problem of solving a system of inequalities is in general 
no easy task could be inferred from the fact that even in the case of equations 
the numerical solution is not easy, and that many ingenious methods were 
devised (2) in the hope of obtaining at least an approximate solution in a 
"reasonable" number of steps. The situation is much worse in the case of 
inequalities. Of the existing methods one could mention the double description 
method (3) and the simplex method due to Dantzig (1). The elimination 
method (proposed already by Fourier) is ruled out in general due to the huge 
number of elementary operations involved. 

We propose to discuss here an iteration procedure of finding a solution of 
(1.1). The idea of the algorithm involved was communicated to the author by 
T. S. Motzkin.1 This method, which uses orthogonal projection, will be seen 
later to be intimately connected with the so-called relaxation method in the 
case of equations (4; 5; 6), and it could be considered (after a suitable trans­
formation) to be the extension of this method to inequalities. Even in the case 
of equations it seems to us that our results are not completely devoid of 
interest, for we shall get a simple geometric proof for the convergence of the 

Received May 27, 1953. The preparation of this paper was sponsored (in part) by the Office 
of the Air Comptroller, U.S.A.F. 

Ht was through valuable conversations which the author had with T. S. Motzkin that he 
was led to consider the problems treated here. 
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relaxation procedure which will hold even if the (consistent) system of 
equations has a singular matrix, and we shall also establish the rate of con­
vergence, a feature which had been absent in previous proofs (compare 6). 

2. Preliminary remarks and lemmas. When considering the system (1.1) 
it will be convenient to use a geometric language. Thus we shall look upon 
x — (xi, . . . , xn) as a point in ^-dimensional Euclidean space, En, and each 
of the inequalities (1.1) as defining a half-space. The set of solutions will 
therefore consist of a convex polytope which we shall denote by 12. We shall 
also say that lt(x) = 0 defines an oriented hyperplane 7rt-; — U{x) — 0 is 
oppositely oriented. A point x will be said to be on the right side of ITt if 
li(x) > 0, and on the wrong side of 7r* if lt(x) < 0. It is clear that the set of 
solutions contains all those points x which are on the right side of all oriented 
hyperplanes. 

The following simple geometric lemma is basic in our discussion : 

LEMMA 2.1. Let x and y be two points in En separated by the oriented hyper­
plane w where x is on the wrong side of IT and y is on the right side of IT. Let xr 

be the orthogonal projection of x on v. Then, if 0 < X < 2, we have{2) 

(2.1) \x + \(xr — x) — y\ < \x — y\, 

where equality holds only for X = 0 or X = 2 and y on T. 

Proof. Consider the two-dimensional plane T through x, xf and y. It cuts 
the hyperplane ir in a line r. Clearly r separates x and y in T, and x! is the or­
thogonal projection of x on r. The statement (2.1) is now obvious from the 
geometric configuration. 

Alternatively, to prove the lemma analytically we may assume that w is the 
hyperplane x\ = 0, and that x is the point (£, 0, . . . , 0) with £ < 0, and y is 
the point (771, . . . , T)n) with 7)1 > 0. Then x' — (0, . . . , 0). Hence we have 

(2.2) \x + \(x' -x)-y\ = \(l-X)x-y\ = | [ ( 1 - X) J - Vif + Ç vtf, 

and 

(2.2') \x - y\ = {(ï - vif + Çi/î}'. 
The result is now obvious since [(1 — X)£ — rji]2 < (£ — 771)2, and equality 
holds only if X = 0 or X = 2 and 771 = 0. 

For future reference we note that (2.2) and (2.2') imply the following more 
precise form of (2.1) for 0 < X < 2: 

(2.3) \x + \(x' - x) - y\2 <\x- y\2 - [1 - (1 - X)2] \x' - x\\ 

LEMMA 2.2. Let ûbe a polytope defined by the inequalities (1.1) none of which 
is superfluous. Let x be a point exterior to 12 and let y be the nearest point to x on 

2In what follows we do not distinguish between the point x and the vector joining the origin 
to this point, and whose magnitude we denote by | x \ . 
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612. (The boundary of 12, denoted by 612, consists of those points of 12 which lie on at 
least one of the hyper planes 71-*). Let ik (k = 1, . . . , s) be the sub-set of indices for 
which U(y) = 0, and let fiy be the polyhedral cone defined by 

(2.4) lih(x) > 0 (k = 1, . . . ,s). 

Then x is exterior to tiy and y is also the nearest point to x on dtty. 

Proof. Let us assume, on the contrary, that x is not exterior to £ly and 
consequently is on the right side of all oriented hyperplanes irik. It follows from 
this and from the fact that y is on the right side of all hyperplanes T t (i = 1, ..., m), 
that any irt (i ^ ik) having x on its wrong side intersects the open interval xy 
at a point yt. At least one such hyperplane exists since x is exterior to 12. Let y* 
be the nearest yt to y. Then it is easy to see that y* £ 612. But this leads to the 
contradiction: \x — y*\ < \x — y\, which establishes the first part of our 
contention. 

Let now y be any point on 612̂  different from y. Obviously the whole seg­
ment yy is contained in 612y. Also, there exists a spherical neighborhood Ne in 
En, around y, such that its points are on the right side of all hyperplanes wt 

with i 9^ H- Thus, the segment which is the intersection of N€ and the seg­
ment yy is contained in 612. In particular there exists a point y' £ 612 which is 
between y and y on the segment yy. We therefore have: \x — y'\ < a±\x — y\ 
+ a2\x — y\ with ai + a2 = 1, <x\ > 0, «2 > 0. But since 
(y being the nearest point to x on 612) we conclude that 
This proves the second part of the lemma. 

LEMMA 2.3. Let a polyhedral cone C be given by: 

x — y'\ > \x — y 
x — y\ > \x — y\ 

(2.5) U(x) = 22 aijxj > 0 (i = 1, . . . , m). 
3=1 

Let E be the set of points x such that : 
(a) x is exterior to C. 
(b) The nearest point to x on dC is the origin. 

Let us denote by i(x) the subset of indices for which lt(x) < 0, and by dt(x) the 
distance of x from the hyperplane TTi'.l^x) = 0. Then 

(2.6) Inf max ^ = X(C) > 0. 
x £E t(x) \x\ 

Proof. From the homogeneity of (2.5) it follows that there is no loss of 
generality in replacing E by the subset E* consisting of those points of E 
which are also on the unit hypersphere: \x\ = 1. The set E* is clearly compact. 
But, for any x Ç E*, we have 

max ~ | 7 ~ = maxdi(x) > 0, 
i(x) \x\ i(x) 

since x is on the wrong side of at least one hyperplane. This and the compact­
ness give (2.6). 
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3. The method of orthogonal projection. We shall discuss here a special 
iteration procedure to solve (1.1) which we shall call the method of orthogonal 
projection, and where the sequence of iterates is defined in the following way: 

x(0) is arbitrary; 
X(V+D _ x(v) if x(v) [s a solution of (1.1); 

x("+1) is the orthogonal projection of x(l° on the farthest hyperplane 7r* with 
respect to which it is on the wrong side, if x(v) is not a solution of (1.1). (If 
this hyperplane is not unique one chooses one of the hyperplanes with respect 
to which x(v) is on the wrong side and whose distance from x(v) is maximum.) 

Numerically, if x(v) is not a solution we consider all indices i' for which 
li>(x(v)) < 0, and among them pick an i0 for which — lv{x{v))/\ar\ has its 
greatest value; at being the vector: (aUj . . . , ani). Then, x("+1) = x(l° + tau 

where/ = -lio(x^)/\aio\
2. 

We shall establish now: 

THEOREM 3. Let (1.1) be a consistent system of linear inequalities and let 
{x(v)} be the sequence of iterates defined above. Then x{v) —» x where x is a solution 
of (1.1). Furthermore, if R is the distance of x(0) from the nearest solution, we have 

(3.1) \xiv) - x\ < 2Rd\ v = 0, 1 , . . . , 

where 0 < 6 < 1 depends only on the matrix (atJ). 

Proof. We first claim that if y is a solution of (1.1) then x{v) approaches y 
steadily, or, more precisely 

(3.2) \x — y\ < \x — y\ — |x — x | . 

Indeed, (3.2) is trivial if x(v) is a solution. If x{v) is not a solution then (3.2) 
follows from the refinement (2.3) of Lemma 2.1 with x = x(v\ xf = x(H_1) and 
X = 1. (We use also the fact that y is a solution and hence is on the right side 
Of 7Tj.) 

Let us consider now the polyhedral cone Cix it defined by 
n 

(3.3) S &ikùxi > Q (k = 1, . . . , s), 
3=1 

where ik is a subset of the set i — 1, . . . , m, (aikj) being a submatrix of the 
matrix (atj) of (1.1). Let \tl,...,u be the " norm" associated with Cilt... i„ 
which was introduced in (2.6). Then, by Lemma 2.3, \u,...,u > 0. Therefore: 

(3.4) fi = min \ u u > 0, 
ii,..., is 

where the minimum is taken over all possible choices of ii, . . . , is from 
i = 1, . . . , m. Let 

e = V"ï_=:7, 
and let us denote by y(v) the nearest point to x(v) on dft. We assert that 
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(3.5) \x(v+l) - yiv)\ < 6\x(v) - y(v)\ (y = 0, 1, . . .). 

Indeed, let Q,V(V) be the polyhedral cone of Lemma 2.2 generated by the ori­
ented hyperplanes 7r* containing yiv). From the lemma it follows that x(v) is 
exterior to fi^oo, and that y^v) is also the nearest point to x(v) on d&y(p). Translat­
ing y(v) to the origin, and applying Lemma 2.3, taking into account (3.4) and 
the fact that |x(H_1) — x(v)\ is the distance of x(v) from the farthest hyperplane 
with respect to which it is on the wrong side, we find that 

(3.6) \x(v+1) - x{v)\ > m a x d i s t (x(v\ * ,) > \'\x(v) - y(v)\ > /i |* (F ) - y(v)\, 
ï{x{v)) 

where i'(x) has the meaning of Lemma 2.3 and A' is the associated "norm" of 
(2.6), the "primes" indicating that we are dealing with the polyhedral cone 
£2j,(„). Combining now (3.6) and (3.2) we get 
/ o T \ I (M-l) (") |2 ^ I (?) (v) i2 2i (?) ( * ) I 2 

(3.7) |x — 3/ | < \x — y \ — M \x — y \ , 
which establishes (3.5). 

The remainder of the proof now follows easily. We first note that the iterates 
x(0), x(1), . . . , x(v), . . . are all included in the hypersphere 5 (0) : \x — 3>(0)| 
< \xi0) — 3^(0)| = R. This follows from (3.2). For the same reason x(1), . . . , x{v\ 
. . . lie in the hypersphere 5 (1) : \x — 3>(1)| < |x(1) — y(1)|. But since ya) is the 
nearest point to x(1) on dO, and on account of (3.5), we have 

\xm-y™\< \xw-yw\<8R. 

In the same way we get that x(v\ x("+1), . . . are contained in the hypersphere 
S(v) : \x — y(v)\ < \x(v) — y(v)\ < 6V R. It is now evident, since we have a 
sequence of hyperspheres with non-zero intersection and whose radii tend to 
zero, that oo 

n s" = x. 

Thus we get lim x(v) = x — lim y{v) which proves the convergence of x(v) to a 
solution of (1.1). Moreover, since both x(p) and x belong to the hypersphere S(v) 

whose diameter does not exceed 2Rdv, (3.1) follows, and the proof is complete. 

In the above theorem we have established that the rapidity of convergence 
of the iterates to the solution is at least linear. However, the positive constant 
/x appearing in the definition of 6 was obtained from Lemma 2.3 where we had 
only an existence statement. More elaborate considerations can give a lower 
bound to n in terms of the matrix (a^). Let C = (ctj) (i,j= 1, . . . , r) be a 
rectangular matrix. We shall denote by \C\ the determinant of C, and by T(C) 
the expression 

(3.8) r ( c ) = [ s ( s | c ^yT 
where the C*/s are the cofactors of the elements ctj. With this notation the 
following result may be established : 
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THEOREM. If in Theorem 3 the lt(x) are normalized so that 

(3.9) £ 4 = 1, 

and if r is the rank of the matrix (a 0 ) , then 

(3.io) „ >min[i; \At::xi]/[z (rt:::if]\ 
where the summations are taken over the range 1 < ji < . . . < j r < n, and 
ii, . . . , ir are r linearly independent rows of (ai3) {the rows are held fixed in the 
brackets) ; 

is the r X r sub-matrix formed by the indicated rows and columns and 

Vji jr 
± ilt... ir 

is the associated quantity (3.8), while the minimum is to be taken over all different 
combinations of the i's which correspond to linearly independent rows. 

We omit the somewhat lengthy proof of this theorem. We remark only 
that in its proof we make use of the invariance under orthogonal transforma­
tions of the numerator and denominator in (3.10), and use induction with 
respect to n. 

4. More general procedures. The method discussed above admits different 
variants which all yield (when the system is consistent) a sequence {x{v)} of 
iterates converging to a solution of the system. The following are few examples 
which may prove useful in computations. In all these cases the convergence is 
proved easily and the rate of convergence to the solution y is found to be: 
\x(v) - y\ = 0(6V) for some 0 < 0 < 1. 

(i) The maximal residual method. This method differs only slightly from the 
method of orthogonal projection of §3. Instead of choosing x{v+l) as the ortho­
gonal projection of xiv) on the farthest hyperplane Ti with respect to which it is 
on the wrong side, we choose x(v+1) as the orthogonal projection of x(v) on this 
hyperplane Tt for which the negative residual lf(x(v)) is the greatest in absolute 
value. The two methods coincide if the system (1.1) is normalized so that 
(3.9) holds. 

(ii) Over and under projection with a fixed ratio. Here the iterates are defined 
in the following way: x("+1) = x(v) if x{v) is a solution of (1.1), or, if xiv) is not a 
solution we let 

where %(v) is the projection of x(v) on the farthest hyperplane with respect to 
which it is on the wrong side, and where 0 < |/?| < 1. We say that we over-
project, or underproject, according as /3 > 0 or 0 < 0. 
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In connection with the last procedure we remark that it is very plausible that 
overprojecting with a small positive constant /3 will accelerate the convergence 
of {x(,°}. Indeed, slowness in the convergence of the method of orthogonal 
projection as described in §3 may arise if some of the "solid angles" of the poly-
tope Q are very small. Overprojecting has the effect of opening the angles and 
this may have the effect of accelerating the convergence. 

(iii) Systematic projection. In this procedure the m hyperplanes 7r* : lt(x) = 0, 
are arranged in a periodic infinite sequence -KV (V = 1 ,2 , . . . ) where 7r„ = -KI 
and lv(x) = li(x) if v = i (mod m). The sequence of iterates x{v) (v = 0, 1, . . .) 
is defined then in the following way: x(0) is arbitrary; x(l/+1) = x(l° if x(v) is on 
the right side of irv+i (i.e., if lv+i(x{v)) > 0) while if x{v) is on the wrong side of 
7T„4-i, then x(v+1) is the orthogonal projection of x(v) on TTV+I. 

5. The equivalence of the (generalized) relaxation method, and the method 
of orthogonal projection. The method of projections described in the last two 
sections can of course be applied to equations by replacing each equality by a 
pair of inequalities. An equivalent procedure would be to change slightly the 
algorithm defining the points x{v) by considering the absolute value of all 
residuals and not only the negative ones. We shall now describe a procedure 
which will be the generalization of the relaxation method to inequalities, a 
procedure which we assume the reader to be familiar with in the case of equa­
tions. Let m 

(5.1) Lt(y) = X) gijjj + bi>0 (i = 1, . . . , m) 

be a set of m linear inequalities in m unknowns having a symmetric and positive 
semi-definite matrix G = (gtj). Clearly, one may assume that no row of G is 
identically zero. This, together with the previous assumptions, will imply that 
g H > 0. Let 6i (i = 1, . . . , m) be the m unit vectors directed along the axes 
in the Em space, and let us define the sequence {y(v)} by the following iteration 
scheme : 

3^(0) is arbitrary; 
(5.2) y(v+1) = yiv) if y(v) is a solution of (5.1); 

y(H-i) = y{v) _|_ tv6iv if y(v) j s n o t a solution of (5.1), 

where iv is such that 

Li,(yw) < 0, - Ltr(y") = max (-£,(?<'>)), 

and t is a scalar chosen so that 

Li.iy™) = 0, 
or, more explicitly, 

(5.3) t,= - Lit{yM)/gKK 

The above procedure can be considered as the extension of the relaxation 
method to inequalities. We shall now establish the following theorem : 
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THEOREM 5. If the previously discussed system (5.1) is consistent, then the 
sequence {yiv)} tends to a solution of the system. Moreover, we have 

(5.4) l y W - y K ^ l / » - ^ ' , , = 0 , 1 , . . . , 

where 0 < 6 < 1, and where the constants K and 9 depend only on the matrix G. 

Proof. We shall show that the relaxation procedure can be interpreted as an 
orthogonal projection procedure,which will enable us to use our previous results. 

Since G is symmetric and positive semi-definite, there exists a real matrix 
A — (a,ij) (ijj= 1, . . . , m) such that 

G = AA*, 

where we denote by A* the transposed matrix. Let us introduce the new 
variable x = (#i, . . . , xm) connected with y = (yu . . . , ym) by 

(5.5) x = y A. 

We shall associate with the system (5.1) (which in matrix notation can be 
written as y A A* + b > 0) the system 

m 

(5.6) li(x) = 23 aijxJ + °t > 0> i = 1, . . . , m, 

or in matrix notation 
xA* + b > 0. 

Obviously if (5.1) is consistent the same will be true for the system (5.6). Let 
us define the sequence {x(v)} by: 

(5.7) x(v) = y(v)A, v = 0, 1, . . . . 

We claim that {x(v)} is also a sequence obtained from (5.6) by the method of 
orthogonal projection (i) of §4. Indeed, we note that Li(y(v)) = li(x(v)) so that 
the residuals are the same for the two systems. Now, if y{v) is a solution of 
(5.1) then x(v) is a solution of (5.7), and xU) = x(v), j > v. If y{v) is not a solu­
tion, then: 

(H-D (") i * 
y ^ = y } + tv eip 

where 
-Liw(yM) = max (-£ , (?<")) , Lip(y

(r+1)) = 0. 
i 

Obviously, we have also: 

-liv(x
(v)) = max (-h(x(v))), liv(x

(v+1)) = 0, 
i 

so that x(v) is replaced by the point x("+1) situated on the hyperplane Tiv 

corresponding to the negative residual with the largest absolute value. Finally, 
we have 

x x == ti>ei^/i — tv\a\iv, . . . , amiv), 

which shows that xiv+1) is indeed the orthogonal projection of xiv) on wt . 
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But, we have pointed out in §4 that the sequence {x(v)} converges to a 
solution x of (5.6). More precisely, in the same manner as (3.1) was established 
one shows that: 

(5.8) \x{v) -x\< 2Rd\ 

where R is the distance of x(0) from the set of solutions of (5.6), and where 
0 < 6 < 1 depends only on A. Assuming the non-trivial case where yiv) is not a 
solution, we may write 

(5.9) 0 > Ltr(y
M) = /,,(*<") = /,,(*) + £ atM? ~ **)• 

But, lh (x) > 0 and 

I m I ( 2 V I 

so that if we define 

(5.11) Q = m a x g i / and g = min gti* 
i i 

we get from (5.8)-(5.11): 

(5.12) \Liv(y
iv))\<2RQe\ 

Combining (5.12), (5.3) and (5.2), we find that 

(5.13) \yiv+l) - yiv)\ < \Liy(y
(v))\/giviv<^Rev (? = o, i, . . .), 

from which follows the convergence of y(v) to a point y. Since the solution x of 
(5.6) is related to y by (5.5), y is also a solution of (5.1). Finally, we may 
write : 

y - y (») <E 3,0+1) _ yU) 

2 £ î <7 1 ~ 0 

In order to get the exact statement (5.4) we note that 

1* 
JR < \x 

< { Z Z (y. - y /VZ a\, \\ =\y- y(0)\{Za%) 

=b-y(o,i(zg»y<b-y°>ki<2, 
which, when combined with (5.13), gives (5.4) where 

2miQ2 

K = 
«T(l " 0) 
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We have discussed above one type of relaxation. Similar results hold for 
other types, such as relaxation with maximum change of \y^v+1) — y^v)\ (this 
corresponds to the method of orthogonal projections of §3), over and under 
relaxation and the method of systematic relaxation. It is also obvious that the 
results hold true for the case of equations after we make the necessary change 
in the algorithm defining {y(v)}. 

We shall now proceed to show that conversely the orthogonal projection 
method can be interpreted as a relaxation procedure, at least when the initial 
point x(0) is suitably chosen. We shall suppose that a consistent system of 
inequalities (1.1) is given. Or, in matrix notation, 

xA* + b > 0, 

where A is an m X n matrix, and x = (xi, . . . , xn) a row vector. Let us intro­
duce the new variable y = (yi, . . . , ym) which will again be connected with x 
by 

x = y A. 

Let us also consider the associated system 

(5.14) yAA* + b>0, 

which, when expanded, has the form of (5.1), where G = A A* is an m X m 
symmetric and positive semi-definite matrix. Let now x(0) be a starting point 
of the form 

(5.15) x(0) = ywA, 

and let us define x(1), . . . , x(v\ . . . by the orthogonal projection method (i) of 
§4. That is, xiv+1) is the orthogonal projection of xiv) on the hyperplane iriv: 
hv{°°) = 0 corresponding to the negative residual U{x^v)) with the largest abso­
lute value. We shall also define a corresponding sequence y(v) in Em as follows: 
yw is the chosen starting point in (5.15), y(v+v is the projection of y(v) on the 
hyperplane Liv{y) = 0 in the direction parallel to the yiv axis {iv being the 
sequence of indices associated with the xiv)Js). It is now easy to see (using 
(5.2)) that 

xw=y"A9 

and that, moreover, the sequence {y(v)} may also be obtained by the relaxation 
scheme (5.2). Now, since in the proof of Theorem 5 we did not use the consis­
tency of the system (5.1), but only that of (5.6), we may use the same proof to 
obtain again that y(v) converges to a solution y, and that (5.4) holds. Thus, we 
have established the equivalence of the two methods, and have also obtained, 
as a by-product, that the two systems (1.1) and (5.14) are either both consis­
tent or inconsistent. 
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