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ON A THEOREM OF HEILBRONN 
CONCERNING THE FRACTIONAL PART OF en2 

MING-CHIT LIU 

1. In 1948 Heilbronn [4] proved the following theorem. 

THEOREM H. For every real 6 and every positive integer N, there is an integer n 
satisfying 

(1.1) 1 ^ n S N, \\dn2\\ < C(e)N~l/2+', 

where e is an arbitrarily small number, C(e) depends only on e, and \\t\\ means 
the distance from t to the nearest integer. 

The interest of the result (1.1) is that the inequality is uniform in 0, and is 
therefore analogous to the classical inequality of Dirichlet for the fractional 
part of On. In this paper we shall prove the following theorem. 

THEOREM. For every real 6 and every positive integer N, there is an integer n 
satisfying 

(1.2) 1 ^ n ^ N, \\6n2\\ < AN~l,2+^N\ 

where A is an absolute constant and e(N) = 1/log log N. Furthermore, there is a 
positive integer Ni such that for each N ^ Ni, (1.2) is true for A = 1. 

2. In what follows, we always assume that N is a sufficiently large positive 
integer, say N ^ No, such that all the subsequent asymptotic approximations 
and inequalities are satisfied. Thus it is difficult to define N0 at the beginning 
or at any particular point. We use the following notation: x <<C y means 
x < Ay, where A is a positive absolute constant. [/] is the integral part of t. 
e(N) means 1/log log N and for real a, we write e(a) = exp{27rai}. 

We need several lemmas. 

LEMMA 1. Let d(n) be the number of divisors of an integer n, including 1 and n. 
Then there exists some positive integer n0 such that for all n ^ n0we have 

(2.1) d(n) < n(«/4)«w. 

Proof. Lemma 1 follows if in [3, p. 262, Theorem 317] we choose e > 0 such 
that 21+€ ^ es/\ 

It is remarked that for n > ee, n(3/4U(n) is an increasing sequence tending to 
infinity and log n = o(naeW) for any positive constant a. 
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LEMMA 2. Suppose that A is a number satisfying 0 < A < J and r is a positive 
integer. Then there exists a real function ^(x), periodic with period 1, which 
satisfies 

(2.2) *(*) =0 if \\x\\ ^ A, 

and 
CO 

lK*0 = Z) cke{kx)} 
k=—œ 

where ck are real and 

(2.3) Co = A, |c*| « m i n ( A , ( ^ j V ^ p - 1 ) 

/ or k 9* 0. 

Proof. This is a particular case of [6, p. 32, Lemma 12] with £ = —a = JA. 

LEMMA 3. Le/ 5 = £ L i e(0n2). rfte» 

(2.4) | S | * « ( W + * < • » • » f m i ^ J V , ^ ) ) . 

Proof. Replacing € in [1, p. 229, Theorem 5.7] by fe(iV) and using our 
Lemma 1 we can prove Lemma 3 in exactly the same way as [1, Theorem 5.7]. 

LEMMA 4. Let 

a>0, 

Then 

0--j<j, (fl,q) = l. 

^ + i \ 110/11 
where p is some positive integer. 

Proof. Lemma 4 is well known. See, for example, [5, p. 23, Lemma 3.5]. 

3. The proof of the theorem is essentially a refinement of Davenport's 
method [2]. We suppose that 
(3 .1) ||0tt2 | | ^ JV-l/2+«(AD 

for n = 1, 2, . . . , N. Putting A = N~1/2+^N) in Lemma 2 we have 

I > ( ^ 2 ) = E £ cke(kdn2) =c0N+t, ckSk + £ c_*S_* = 0, 
w = l w = l k=—oo A ; = l & = 1 

where S* = Y,n=ie(kdn2). Hence 

(3.2) AN ^ £ |c*5*| + £ k-*S-*| = Ti + T2, say. 

We first estimate the value of T\. 

oo l M co \ 

r i = E |c*5*| = 1 + 1 |c*5*| = Tu + r12 , say, 
A;=l \ fc=l M + l / 
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where M = [#i/»-<"/"> «<»>]. By (2.3) we have 

oo 

(3.3) r«= E Mil 

«;v(-)V E *_ 

« J V r ' - V ' J I ^ ' 

« J V A C r ' A - ^ A r ' ) . 

(3.4) Tu = E M*| 

M 

Since S-k = Skj we have the same estimate of the value of T2. It follows from 
(3.2), (3.3), and (3.4) that 

M 

(3.5) N(l - Arr*-r-lM-r) « £ \Sk\, 

where A is some absolute constant. Putting r = [32/e(iV)] = [32 log log N], 
we see that 

rTfc-r-\ Jtf-r^ rrjyi/2-(l/32)re(N)-e(N) 

« (32 log log NY32 l0g ^gN)N-i/2 

= 0(1), 

as N ->oo . It follows from (3.5) that iV « X;f=i |S*|. Using Holder's inequality 
we have 

M 

ikf-W2«E l^l2-

By Lemma 3 we see that 

M~1N2« t (N + N™4*™ Z min ( i V , - ^ ) ) 

« MiV + iV ( 3 / 4 )^ £ X min U — ^ . 

Since ikTW"1 g iV~ e^ = o(l) as N -»oo, we have 

M 2N I -, \ 

(3.6) M-iN2-^um « ^ ^ m i n ^ 1 \ ^ 
jfci " i \ \\dkm\\/ 

Letj = km(k = l,2,...,M;m = l,2,..., 2N). Since, by Lemma 1, 

d(j) « (2AfiV)(3/4)^2MiV) 
<^^<9/8)«(2V) 
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we have 

(3.7) ^^-(«/«.w, << g min ̂  _j_j _ 

Suppose that a/g is any irreducible fraction such that 

(3.8) < 1/g2. 

We divide the sum on the right of (3.7) into blocks of q terms. The number of 
blocks is at most q~x2MN + 1. By Lemma 4 we see that 

M-iN2-(n/s)e(N) <<c (q-iMN + 1) (N + q log q). 

q ^ M~lN2~2ei-N\ 

Let 

(3.9) 

We see that 

N <<C jyr"'1iV2"(15/8)€(iNr)iV~1/2 = o(ikf~W2_(15/8)€(iV)); 
MiV log g « M-W2-<15/8>e(iV) (jy-(1/16> «<*> log iV) 

= 0(M-W*-<15/8> «<*>); 

g log q « M-W 2 -< 1 6 / 8 ^^( iV-^ / 8 ^^ log N) 

= o(M-W2-<16/8> «<*>), 

as iV —>oo. Thus 
^-W2-(15/8)e(iV) <^g-lMN\ 

or 

(3.10) g « ikf2iV(15/8)e(iV) 

< ^ ^ l - ( l / 1 6 ) e ( A T ) 

Then the consequence of the assumption (3.1) made at the beginning of this 
section is that if a/q satisfies (3.8) and (3.9), then it necessarily satisfies (3.10). 
By Dirichlet's theorem, there exists a/q such that q ^ M~lN2~2*(N) and 

e-a- < q-'MN-^2^. 

This q must also satisfy (3.10). Hence 

ll«as I K I < 
<<z 

•)q2 - aq\ 

Jl£/y-2+2«(iV) 

^ - l / 2 + ( 3 1 / 3 2 ) e ( i V ) 

JV-(l/82).(W)j^-l/2+«(W)< 

Put q = n and define Nx > N0 such that ANr<1/z»«Nà < 1. This proves the 
theorem. 
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