
TPLP 24 (4): 737–754, 2025. c© The Author(s), 2025. Published by Cambridge University

Press. This is an Open Access article, distributed under the terms of the Creative Commons

Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted

re-use, distribution and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068424000231

737

The Stable Model Semantics for Higher-Order Logic
Programming∗

BART BOGAERTS
Vrije Universiteit Brussel, Belgium,

Katholieke Universiteit Leuven, Belgium,

(e-mail: bart.bogaerts@vub.be)

ANGELOS CHARALAMBIDIS
Harokopio University of Athens, Greece,

(e-mail: acharal@hua.gr)

GIANNOS CHATZIAGAPIS
National and Kapodistrian University of Athens, Greece,

(e-mail: gchatziagap@di.uoa.gr)

BABIS KOSTOPOULOS
Harokopio University of Athens, Greece,

(e-mail: kostbabis@hua.gr)

SAMUELE POLLACI
Vrije Universiteit Brussel, Belgium,

Katholieke Universiteit Leuven, Belgium,

(e-mail: samuele.pollaci@vub.be)

PANOS RONDOGIANNIS
National and Kapodistrian University of Athens, Greece,

(e-mail: prondo@di.uoa.gr)

submitted 21 August 2024; accepted 13 September 2024

Abstract

We propose a stable model semantics for higher-order logic programs. Our semantics is devel-
oped using Approximation Fixpoint Theory (AFT), a powerful formalism that has successfully
been used to give meaning to diverse non-monotonic formalisms. The proposed semantics gen-
eralizes the classical two-valued stable model semantics of Gelfond and Lifschitz as well as the

∗ This work was partially supported by Fonds Wetenschappelijk Onderzoek – Vlaanderen (project
G0B2221N) and by a research project which is implemented in the framework of H.F.R.I call “Basic
research Financing (Horizontal support of all Sciences)” under the National Recovery and Resilience
Plan “Greece 2.0” funded by the European Union – NextGenerationEU (H.F.R.I. Project Number:
16116).

https://doi.org/10.1017/S1471068424000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000231
https://orcid.org/0000-0003-3460-4251
mailto:bart.bogaerts@vub.be
https://orcid.org/0000-0001-7437-410X
mailto:acharal@hua.gr
mailto:gchatziagap@di.uoa.gr
mailto:kostbabis@hua.gr
mailto:samuele.pollaci@vub.be
mailto:prondo@di.uoa.gr
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068424000231&domain=pdf
https://doi.org/10.1017/S1471068424000231

B. Bogaerts et al.738

three-valued one of Przymusinski, retaining their desirable properties. Due to the use of AFT, we
also get for free alternative semantics for higher-order logic programs, namely supported model ,
Kripke-Kleene, and well-founded . Additionally, we define a broad class of stratified higher-order
logic programs and demonstrate that they have a unique two-valued higher-order stable model
which coincides with the well-founded semantics of such programs. We provide a number of exam-
ples in different application domains, which demonstrate that higher-order logic programming
under the stable model semantics is a powerful and versatile formalism, which can potentially
form the basis of novel ASP systems.

KEYWORDS: higher-order logic programming, stable model semantics, approximation fixpoint
theory

1 Introduction

Recent research (Charalambidis et al. 2013, 2018a,b) has demonstrated that it is pos-

sible to design higher-order logic programming languages that have powerful expressive

capabilities and simple and elegant semantic properties. These languages are genuine

extensions of classical (first-order) logic programming: for example, Charalambidis et al.

(2013) showed that positive higher-order logic programs have a Herbrand model intersec-

tion property and this least Herbrand model can also be produced as the least fixpoint of

a continuous immediate consequence operator. In other words, crucial semantic results

of classical (positive) logic programs transfer directly to the higher-order setting.

The above positive results, created the hope and expectation that all major achieve-

ments of first-order logic programming could transfer to the higher-order world. Despite

this hope, it was not clear until now whether it is possible to define a stable model seman-

tics for higher-order logic programs that would generalize the seminal work of Gelfond

and Lifschitz (1988). For many extensions of standard logic programming, it is possible

to generalize the reduct construction of Gelfond and Lifschitz to obtain a stable model

semantics, as illustrated for instance by Faber et al. (2011) for an extension of logic

programs with aggregates. For higher-order programs, however, it is not clear whether

a reduct-based definition makes sense. The most important reason why it is challeng-

ing to define a higher-order reduct, is that using the powerful abstraction mechanisms

that higher-order languages provide, one can define negation inside the language, for

instance by the rule neg X← ∼ X and use neg everywhere in the program where oth-

erwise negation would be used, rendering syntactic definitions based on occurrences of

negation difficult to apply.

Apart from scientific curiosity, the definition of a stable model semantics for higher-

order logic programs also serves solid practical goals: there has been a quest for extending

the power of ASP systems (Bogaerts et al. 2016; Amendola et al. 2019; Fandinno et al.

2021), and higher-order logic programming under the stable model semantics may prove

to be a promising solution.

In this paper we define a stable model semantics for higher-order logic programs. Our

semantics is developed using Approximation Fixpoint Theory (AFT) (Denecker et al.

2004). AFT is a powerful lattice-theoretic formalism that was originally developed to

unify semantics of logic programming, autoepistemic logic (AEL) and default logic (DL)

https://doi.org/10.1017/S1471068424000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000231

The stable model semantics for higher-order logic programming 739

and was used to resolve a long-standing open question about the relation between AEL

and DL semantics (Denecker et al. 2003). Afterwards, it has been applied to several

other fields, including abstract argumentation (Strass, 2013), active integrity constraints

(Bogaerts and Cruz-Filipe 2018), stream reasoning (Antic 2020), and constraint lan-

guages for the semantic web (Bogaerts and Jakubowski 2021). In these domains, AFT

has been used to define new semantics without having to reinvent the wheel (for instance,

if one uses AFT to define a stable semantics, well-known properties such as minimality

results will be automatic), to study the relation to other formalisms, and even to discover

bugs in the original semantics (Bogaerts 2019). To apply AFT to a new domain, what we

need to do is define a suitable semantic operator on a suitable set of “partial interpreta-

tions.” Once this operator is identified, a family of well-known semantics and properties

immediately rolls out of the abstract theory. In this paper, we construct such an oper-

ator for higher-order logic programs. Since our operator coincides with Fitting’s (2002)

three-valued immediate consequence operator for the case of standard logic programs, we

immediately know that our resulting stable semantics generalizes the classical two-valued

stable model semantics of Gelfond and Lifschitz (1988) as well as the three-valued one

of Przymusinski (1990).

The main idea of our construction is to interpret the higher-order predicates of our

language as three-valued relations over two-valued objects, that is as functions that

take classical relations as arguments and return true, false, or undef . We demonstrate

that such relations are equivalent to appropriate pairs of (classical) two-valued rela-

tions. The pair-representation gives us the basis to apply AFT, and to obtain, in a

simple and transparent manner, the stable model semantics. At the same time, thanks

to the versatility of AFT, without any additional effort, we obtain several alternative

semantics for higher-order logic programs, namely supported model , Kripke-Kleene, and

well-founded semantics. In particular, we argue that our well-founded semantics remedies

certain deficiencies that have been observed in other attempts to define such a seman-

tics for higher-order formalisms (Dasseville et al. 2015; Charalambidis et al. 2018a).

We study properties of our novel semantics and to do so, we define a broad class of

stratified higher-order logic programs. This is a non-trivial task mainly due to the fact

that in the higher-order setting non-monotonicity can be well-hidden (Rondogiannis and

Symeonidou 2017) and stratification will hence have to take more than just occurrences of

negation into account. We demonstrate that stratified programs, as expected, indeed have

a unique two-valued higher-order stable model, which coincides with the well-founded

model of such programs. We feel that these results create a solid and broad foundation

for the semantics of higher-order logic programs with negation. Finally, from a practi-

cal perspective, we showcase our semantics on three different examples. In Section 2,

we start with max-clique, a simple graph-theoretic problem which we use to familiarize

the reader with our notation and to demonstrate the power of abstraction. In Section

8, we study more intricate applications, namely semantics for abstract argumentation

and Generalized Geography, which is a PSPACE-complete problem. These examples

illustrate that higher-order logic programming under the stable model semantics is a

powerful and versatile formalism, which can potentially form the basis of novel ASP

systems.

https://doi.org/10.1017/S1471068424000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000231

B. Bogaerts et al.740

1 % Pick a s e t o f v e r t i c e s (emulate c ho i c e r u l e)
2 pick X ← v X, ∼(npick X).
3 npick X ← v X, ∼(pick X).
4 % Def i n e what i t means f o r a s e t o f v e r t i c e s to be a c l i q u e
5 hasNonEdge P ← P X, P Y, ∼(X ≈ Y), ∼(e X Y).
6 clique P ← subset P v, ∼(hasNonEdge P).
7 % Def i n e what i t means to be a max− c l i q u e :
8 maxclique P ← maximal subset clique P.
9 % The s e l e c t e d s e t shou l d be a max− c l i q u e

10 f ← ∼f, ∼(maxclique pick).

Listing 1. Max-clique problem using stable semantics for higher-order logic programs.

2 A motivating example

In this section, we illustrate our higher-order logic programming language on the max-

clique problem. A complete solution is included in Listing 1. We will assume an undirected

graph is given by means of a unary predicate v (containing all the nodes of the graph) and

a binary predicate e representing the edge-relation (which we assume to be symmetric).

Lines 2 and 3 contain the standard trick that exploits an even loop of negation for

simulating a choice, which in modern ASP input formats (Calimeri et al. 2020) would

be abbreviated by a choice rule construct pick {X : v X}. Line 6 defines what it means

to be a clique. In this line the (red) variable P is a first-order variable; it ranges over all

sets of domain elements, whereas (blue) zero-order variables such as X in Line 2 range

over actual elements of the domain. A set of elements is a clique if it (i) is a subset of

v, and (ii) contains no two nodes without an edge between them. Failures to satisfy the

second condition are captured by the predicate hasNonEdge. The predicate clique is a

second-order predicate. Formally, we will say its type is (ι→ o)→ o: it takes as input a

relation of type ι→ o, that is a set of base domain elements of type ι and it returns a

Boolean (type o). In other words, the interpretation of clique will be a set of sets. Next,

line 8 defines the second-order predicate maxclique, which is true precisely for those sets

P that are subset-maximal among the set of all cliques, and line 10 asserts, using the

standard trick with an odd loop over negation that pick must indeed be in maxclique.

This definition of maxcliquemakes use of a third-order predicate maximal which works

with an arbitrary binary relation for comparing sets (here: the subset relation), as well

as an arbitrary unary predicate over sets (here: the clique predicate). Listing 2 provides

definitions of maximal, equal, and other generic predicates. Note that equality between

predicates is not a primitive of the language: we define it in Line 4 of Listing 2. On the

other hand, equality between atomic objects (=), which we use in Line 5 of Listing 1, is

a primitive of the language. These generic definitions, which can be reused in different

applications, illustrate the power of higher-order modeling: it enables reuse and provides

great flexibility, for example if we are interested in cardinality-maximal cliques, we only

need to replace subset by an appropriate relation comparing the size of two predicates.

Also note that our solution has only a single definition of what it means to be a clique.

This definition is used both to state that pick is a clique (the first atom of the rule

defining maximal guarantees this) and to check that there are no larger cliques (in the

rule defining nonmaximal).

https://doi.org/10.1017/S1471068424000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000231

The stable model semantics for higher-order logic programming 741

1 % Def i n e g e n e r i c h i ghe r − o r d e r p r e d i c a t e s : subse t , equa l , maximal
2 nonsubset P Q ← P X, ∼(Q X).
3 subset P Q ← ∼(nonsubset P Q).
4 equal P Q ← subset P Q, subset Q P.
5 % maximal Ord Prop P means : P i s Ord− maximal among s e t s s a t i s f y i n g Prop
6 maximal Ord Prop P ← Prop P, ∼(nonmaximal Ord Prop P).
7 nonmaximal Ord Prop P ← Prop Q, Ord P Q, ∼(equal P Q).

Listing 2. Definitions of generic higher-order predicates.

3 HOL: A higher-order logic programming language

In this section we define the syntax of the language HOL that we use throughout the

paper. For simplicity reasons, the syntax of HOL does not include function symbols; this

is a restriction that can easily be lifted. HOL is based on a simple type system with two

base types: o, the Boolean domain, and ι, the domain of data objects. The composite

types are partitioned into predicate ones (assigned to predicate symbols) and argument

ones (assigned to parameters of predicates).

Definition 3.1.

Types are either predicate or argument, denoted by π and ρ respectively, and

defined as:

π := o | (ρ→ π)

ρ := ι | π

As usual, the binary operator → is right-associative. It can be easily seen that every

predicate type π can be written in the form ρ1→ · · ·→ ρn→ o, n≥ 0 (for n= 0 we

assume that π= o). We proceed by defining the syntax of HOL.

Definition 3.2.

The alphabet ofHOL consists of the following: predicate variables of every predicate type

π (denoted by capital letters such as P,Q, . . .); predicate constants of every predicate

type π (denoted by lowercase letters such as p, q, . . .); individual variables of type ι

(denoted by capital letters such as X,Y, . . .); individual constants of type ι (denoted by

lowercase letters such as a, b, . . .); the equality constant ≈ of type ι→ ι→ o for comparing

individuals of type ι; the conjunction constant ∧ of type o→ o→ o; the rule operator

constant ← of type o→ o→ o; and the negation constant ∼ of type o→ o.

Arbitrary variables (either predicate or individual ones) will usually be denoted by R.

Definition 3.3.

The terms and expressions of HOL are defined as follows. Every predicate vari-

able/constant and every individual variable/constant is a term; if E1 is a term of type

ρ→ π and E2 a term of type ρ then (E1 E2) is a term of type π. Every term is also an

expression; if E is a term of type o then (∼E) is an expression of type o; if E1 and E2 are

terms of type ι, then (E1 ≈ E2) is an expression of type o.

We will omit parentheses when no confusion arises. To denote that an expression E

has type ρ we will often write E : ρ.

https://doi.org/10.1017/S1471068424000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000231

B. Bogaerts et al.742

Definition 3.4.

A rule ofHOL is a formula p R1 · · · Rn← E1 ∧ . . .∧ Em, where p is a predicate constant of

type ρ1→ · · ·→ ρn→ o, R1, . . . , Rn are distinct variables of types ρ1, . . . , ρn respectively

and the Ei are expressions of type o. The term p R1 · · · Rn is the head of the rule and

E1 ∧ . . .∧ Em is the body of the rule. A program P of HOL is a finite set of rules.

We will often follow the common logic programming notation and write E1, . . . , Em

instead of E1 ∧ · · · ∧ Em for the body of a rule. For brevity reasons, we will often denote

a rule as p R←B, where R is a shorthand for a sequence of variables R1 · · · Rn and B

represents a conjunction of expressions of type o.

4 The two-valued semantics of HOL
In this section we define an immediate consequence operator for HOL programs, which is

an extension of the classical TP operator for first-order logic programs. We start with the

semantics of the types of our language. In the following, we denote by UP the Herbrand

universe of P, namely the set of all constants of the program.

The semantics of the base type o is the classical Boolean domain {true, false} and

that of the base type ι is UP. The semantics of types of the form ρ→ π is the set of all

functions from the domain of type ρ to that of type π. We define, simultaneously with

the meaning of every type, a partial order on the elements of the type.

Definition 4.1.

Let P be an HOL program. We define the (two-valued) meaning of a type with respect

to UP, as follows:

• [[o]]UP
= {true, false}. The partial order ≤o is the usual one induced by the ordering

false <o true

• [[ι]]UP
=UP. The partial order ≤ι is the trivial one defined as d≤ι d for all d∈UP

• [[ρ→ π]]UP
= [[ρ]]UP

→ [[π]]UP
, namely the set of all functions from [[ρ]]UP

to [[π]]UP
. The

partial order ≤ρ→π is defined as: for all f, g ∈ [[ρ→ π]]UP
, f ≤ρ→π g iff f(d)≤π g(d)

for all d∈ [[ρ]]UP
.

The subscripts from the above partial orders will be omitted when they are obvious from

context. Moreover, we will omit the subscript UP assuming that our semantics is defined

with respect to a specific program P.

As we mentioned before, each predicate type π can be written in the form ρ1→ · · ·→
ρn→ o. Elements of [[π]] can be thought of, alternatively, as subsets of [[ρ1]]× · · · × [[ρn]]

(the set contains precisely those n-tuples mapped to true). Under this identification, it

can be seen that ≤π simply becomes the subset relation.

Proposition 4.1.

For every predicate type π, ([[π]],≤π) is a complete lattice.

In the following, we denote by
∨

≤π
and

∧
≤π

the corresponding lub and glb operations

of the above lattice. When viewing elements of π as sets ,
∨

≤π
is just the union operator

and
∧

≤π
the intersection. We now proceed to define Herbrand interpretations and states.

https://doi.org/10.1017/S1471068424000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000231

The stable model semantics for higher-order logic programming 743

Definition 4.2.

A Herbrand interpretation I of a program P assigns to each individual constant c of P,

the element I(c) = c, and to each predicate constant p : π of P, an element I(p)∈ [[π]].

We will denote the set of Herbrand interpretations of a program P with HP. We define a

partial order on HP as follows: for all I, J ∈HP, I ≤ J iff for every predicate constant p : π

that appears in P, I(p)≤π J(p). The following proposition demonstrates that the space

of interpretations is a complete lattice. This is an easy consequence of Proposition 4.1.

Proposition 4.2.

Let P be a program. Then, (HP,≤) is a complete lattice.

Definition 4.3.

A Herbrand state s of a program P is a function that assigns to each argument variable

R of type ρ, an element s(R)∈ [[ρ]]. We denote the set of Herbrand states with SP.

In the following, s[R1/d1, . . . , Rn/dn] is used to denote a state that is identical to s the

only difference being that the new state assigns to each Ri the corresponding value di;

for brevity, we will also denote it by s[R/d].

We proceed to define the (two-valued) semantics of HOL expressions and bodies.

Definition 4.4.

Let P be a program, I a Herbrand interpretation of P, and s a Herbrand state. Then,

the semantics of expressions and bodies is defined as follows:

1. [[R]]s(I) = s(R)

2. [[c]]s(I) = I(c) = c

3. [[p]]s(I) = I(p)

4. [[(E1 E2)]]s(I) = [[E1]]s(I) [[E2]]s(I)

5. [[(E1 ≈ E2)]]s(I) =

⎧⎨
⎩
true, if [[E1]]s(I) = [[E2]]s(I)

false, otherwise

6. [[(∼ E)]]s(I) =

⎧⎨
⎩
true, if [[E]]s(I) = false

false, otherwise

7. [[(E1 ∧ · · · ∧ Em)]]s(I) =
∧

≤o
{[[E1]]s(I), . . . , [[Em]]s(I)}

We can now formally define the notion of model for HOL programs.

Definition 4.5.

Let P be a program and M be a two-valued Herbrand interpretation of P. Then, M is a

two-valued Herbrand model of P iff for every rule p R←B in P and for every Herbrand

state s, [[B]]s(M)≤o [[p R]]s(M).

Since we have a mechanism to evaluate bodies of rules, we can define the immediate

consequence operator for HOL programs, which generalizes the corresponding operator

for classical (first-order) logic programs of van Emden and Kowalski (1976).

Definition 4.6.

Let P be a program. The mapping TP :HP→HP is called the immediate consequence

operator for P and is defined for every predicate constant p : ρ1→ · · ·→ ρn→ o and all

d1 ∈ [[ρ1]], . . . , dn ∈ [[ρn]], as: TP(I)(p) d=
∨

≤o
{[[B]]s[R/d](I) | s∈ SP and (p R←B) in P}.

https://doi.org/10.1017/S1471068424000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000231

B. Bogaerts et al.744

Since a program may contain negation, TP is not necessarily monotone. In fact, perhaps

somewhat surprisingly, TP can even be non-monotone for negation-free programs such as

p :- r(p), where p is of type o and r is a predicate constant of type o→ o.1

As expected, TP characterizes the models of P, as the following proposition suggests.

Proposition 4.3.

Let P be a program and I ∈HP. Then, I is a model of P iff I is a pre-fixpoint of TP (i.e.

TP(I)≤ I).

5 The three-valued semantics of HOL
In this section we define an alternative semantics for HOL types and expressions, based

on a three-valued truth space. As in first-order logic programming, the purpose of the

third truth value is to assign meaning to programs that contain circularities through

negation. Since we are dealing with higher-order logic programs, we must define three-

valued relations at all orders of the type hierarchy. These three-valued relations are

functions that take two-valued arguments and return a three-valued truth result.

Due to the three-valuedness of our base domain o, all our domains inherit two distinct

ordering relations, namely ≤ (the truth ordering) and � (the precision ordering).

Definition 5.1.

Let P be a program. We define the (three-valued) meaning of a type with respect to UP,

as follows:

• [[o]]∗UP
= {false, undef , true}. The partial order ≤o is the one induced by the order-

ing false <o undef <o true; the partial order �o is the one induced by the ordering

undef ≺o false and undef ≺o true.

• [[ι]]∗UP
=UP. The partial order ≤ι is defined as d≤ι d for all d∈UP. The partial order

�ι is also defined as d�ι d for all d∈UP.

• [[ρ→ π]]∗UP
= [[ρ]]UP

→ [[π]]∗UP
. The partial order ≤ρ→π is defined as follows: for all f, g ∈

[[ρ→ π]]∗UP
, f ≤ρ→π g iff f(d)≤π g(d) for all d∈ [[ρ]]UP

. The partial order �ρ→π is

defined as follows: for all f, g ∈ [[ρ→ π]]∗UP
, f �ρ→π g iff f(d)�π g(d) for all d∈ [[ρ]]UP

.

We omit subscripts when unnecessary. It can be easily verified that for every ρ it

holds [[ρ]]⊆ [[ρ]]∗. In other words, every two-valued element is also a three-valued one.

Moreover, the ≤ρ ordering in the above definition is an extension of the ≤ρ ordering in

Definition 4.1.

Proposition 5.1.

For every predicate type π, ([[π]]∗,≤π) is a complete lattice and ([[π]]∗,�π) is a complete

meet-semilattice (i.e. every non-empty subset of [[π]]∗ has a �π-greatest lower bound).

We denote by
∨

≤π
and

∧
≤π

the lub and glb operations of the lattice ([[π]]∗,≤π); it can

easily be verified that these operations are extensions of the corresponding operations

1 To see the non-monotonicity of TP for this program, consider an interpretation I0 which assigns to p
the value false and to r the negation operation neg : o→ o : true �→ false, false �→ true. Consider also an
interpretation I1 which is identical to I0 the only difference being that it assigns to p the value true.
It can be verified that I0 ≤ I1 but TP(I0) �≤ TP(I1).

https://doi.org/10.1017/S1471068424000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000231

The stable model semantics for higher-order logic programming 745

implied by Proposition 4.1. We denote by
∧

�π
the glb in ([[π]]∗,�π). Just like how a two-

valued interpretation of a predicate π of type ρ1→ · · ·→ ρn→ o can be viewed as a set , an

element of [[π]]∗ can be viewed as a partial set , assigning to each tuple in [[ρ1]]× · · · × [[ρn]]

one of three truth values (true, meaning the tuple is in the set, false meaning it is not

in the set, or undef meaning it is not determined if it is in the set or not). This explains

why the arguments are interpreted classically: a partial set decides for each actual (i.e.

two-valued) object whether it is in the set or not; it does not make statements about

partial (i.e. three-valued) objects. Due to the fact that the arguments of relations are

interpreted classically, the definition of Herbrand states that we use below, is the same

as that of Definition 4.3. A three-valued Herbrand interpretation is defined analogously

to a two-valued one (Definition 4.2), the only difference being that the meaning of a

predicate constant p : π is now an element of [[π]]∗UP
. We will use caligraphic fonts (e.g.

I,J) to differentiate three-valued interpretations from two-valued ones. The set of all

three-valued Herbrand interpretations is denoted by HP. Since [[π]]⊆ [[π]]∗ it also follows

that HP ⊆HP.

Definition 5.2.

Let P be a program. We define the partial orders ≤ and � on HP as follows: for all I,J ∈
HP, I ≤J (respectively, I �J) iff for every predicate type π and for every predicate

constant p : π of P, I(p)≤π J (p) (respectively, I(p)�π J (p)).

Definition 5.3.

Let P be a program, I a three-valued Herbrand interpretation of P, and s a Herbrand

state. The three-valued semantics of expressions and bodies is defined as follows:

1. [[R]]∗s(I) = s(R)

2. [[c]]∗s(I) = I(c) = c

3. [[p]]∗s(I) = I(p)
4. [[(E1 E2)]]

∗
s(I) =

∧
�π
{[[E1]]

∗
s(I)(d) | d∈ [[ρ]], [[E2]]

∗
s(I)�ρ d}, for E1:ρ→ π and E2:ρ

5. [[(E1 ≈ E2)]]
∗
s(I) =

⎧⎨
⎩
true, if [[E1]]

∗
s(I) = [[E2]]

∗
s(I)

false, otherwise

6. [[(∼ E)]]∗s(I) = ([[E]]∗s(I))−1, with true−1=false, false−1=true and undef −1=undef

7. [[(E1 ∧ · · · ∧ Em)]]∗s(I) =
∧

≤o
{[[E1]]

∗
s(I), . . . , [[Em]]∗s(I)}

Item 4 is perhaps the most noteworthy. To evaluate an expression (E1 E2), we cannot

just take [[E1]]
∗
s(I), which is a function [[ρ]]UP

→ [[π]]∗UP
, and apply it to [[E2]]

∗
s(I), which is

of type [[ρ]]∗UP
. Instead, we apply [[E1]]

∗
s(I) to all “two-valued extensions” of [[E2]]

∗
s(I) and

take the most precise element approximating all those results. Our definition ensures that

if [[E2]]
∗
s(I) is a partial object, the result of the application is the most precise outcome

achievable by using information from all the two-valued extensions of the argument.

Application is always well-defined, that is the set of two-valued extensions of a three-

valued element is always non-empty, as the following lemma suggests.

Lemma 5.1.

For every argument type ρ and d∗ ∈ [[ρ]]∗, there exists d∈ [[ρ]] such that d∗ �ρ d.

https://doi.org/10.1017/S1471068424000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000231

B. Bogaerts et al.746

Moreover, as the following lemma suggests, the above semantics (Definition 5.3) is

compatible with the standard semantics (see, Definition 4.4) when restricted to two-

valued interpretations.

Lemma 5.2.

Let P be a program, I ∈HP and s∈ SP. Then, for every expression E, [[E]]s(I) = [[E]]∗s(I).

This three-valued valuation of bodies, immediately gives us a notion of three-valued

model as well as a three-valued immediate consequence operator.

Definition 5.4.

Let P be a program andM be a three-valued Herbrand interpretation of P. Then,M is a

three-valued Herbrand model of P iff for every rule p R←B in P and for every Herbrand

state s, [[B]]∗s(M)≤o [[p R]]∗s(M).

For the special case where in the above definitionM∈HP, it is clear from Lemma 5.2

that Definition 5.4 coincides with Definition 4.5.

Definition 5.5.

Let P be a program. The three-valued immediate consequence operator TP :HP→HP is

defined for every predicate constant p : ρ1→ · · ·→ ρn→ o in P and all d1 ∈ [[ρ1]], . . . , dn ∈
[[ρn]], as: TP(I)(p) d=

∨
≤o
{[[B]]∗

s[R/d]
(I) | s∈ SP and (p R←B) in P}.

The proof of the following proposition is similar to that of Proposition 4.3.

Proposition 5.2.

Let P be a program and I ∈HP. Then, I is a three-valued model of P if and only if I is

a pre-fixpoint of TP.

6 Approximation fixpoint theory and the stable model semantics

We now define the two-valued and three-valued stable models of a program P. To achieve

this goal, we use the machinery of approximation fixpoint theory (AFT) (Denecker et

al. 2004). In the rest of this section, we assume the reader has a basic familiarity with

(Denecker et al. 2004). As mentioned before, the two-valued immediate consequence

operator TP :HP→HP can be non-monotone, meaning it is not clear what its fixpoints

of interest would be. The core idea behind AFT is to “approximate” TP with a function

AP which is �-monotone. We can then study the fixpoints of AP, which shed light to

the fixpoints of TP. While we already have such a candidate function, namely TP, AFT
requires a function that works on pairs (of interpretations). Therefore, we show that

there is a simple isomorphism between three-valued relations and (appropriate) pairs of

two-valued ones. This isomorphism also exists between three-valued interpretations and

(appropriate) pairs of two-valued ones.

Definition 6.1.

Let (L,≤) be a complete lattice. We define Lc = {(x, y)∈L×L | x≤ y}. Moreover, we

define the relations ≤ and �, so that for all (x, y), (x′, y′)∈Lc: (x, y)≤ (x′, y′) iff x≤ x′

and y≤ y′, and (x, y)� (x′, y′) iff x≤ x′ and y′ ≤ y.

https://doi.org/10.1017/S1471068424000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000231

The stable model semantics for higher-order logic programming 747

Proposition 6.1.

For every predicate type π there exists a bijection τπ : [[π]]∗→ [[π]]
c
with inverse τ−1

π :

[[π]]
c→ [[π]]∗, that both preserve the orderings ≤ and � of elements between [[π]]∗ and [[π]]

c
.

Moreover, there exists a bijection τ :HP→Hc
P with inverse τ−1 :Hc

P→HP, that both

preserve the orderings ≤ and � between HP and Hc
P.

When viewing elements of [[π]]∗ as partial sets and elements of [[π]] as sets, the isomor-

phism maps a partial set onto the pair with first component all the certain elements of

the partial set (those mapped to true) and second component all the possible elements

(those mapped to true or undef). Using these bijections, we can now define AP which,

as we demonstrate, is an approximator of TP. Intuitively, AP is the “pair version of TP”
(instead of handling three-valued interpretations, it handles pairs of two-valued ones).

Definition 6.2.

For each program P, AP :Hc
P→Hc

P is defined as AP(I, J) = τ(TP(τ−1(I, J))).

Lemma 6.1.

Let P be a program. In the terminology of Denecker et al. (2004), AP :Hc
P→Hc

P is a

consistent approximator of TP.

Since AP is “the pair version of TP,” it is not a surprise that it also captures all the

three-valued models of P.

Lemma 6.2.

Let P be a program and (I, J)∈Hc
P. Then, (I, J) is a pre-fixpoint of AP if and only if

τ−1(I, J) is a three-valued model of P.

Due to the above lemma, by stretching notation, when (I, J) is a pre-fixpoint of AP

we will also say that (I, J) is a model of P.

The power of AFT comes from the fact that once an approximator is defined, it imme-

diately defines a whole range of semantics. In other words, there is no need to reinvent

the wheel. The following definition summarizes the different induced semantics.

Definition 6.3.

Let P be a program, AP the induced approximator and I, J ∈HP. We call:

• (I, J) a three-valued supported model of P if it is a fixpoint of AP;

• (I, J) a three-valued stable model of P if it is a stable fixpoint of AP; that is, if

I = lfpAP(·, J)1 and J = lfpAP(I, ·)2, where AP(·, J)1 is the function that maps an

interpretation X to the first component of AP(X, J), and similarly for AP(I, ·)2;
• (I, J) the Kripke-Kleene model of P if it is the �-least fixpoint of AP;

• (I, J) the well-founded model of P if it is the well-founded fixpoint of AP, that is if

it is the �-least three-valued stable model.

Following the correspondence indicated by the isomorphism between pairs and three-

valued interpretations, we will also callM a three-valued stable model of P if τ(M) is a

three-valued stable model of P. IfM is a three-valued stable model andM∈HP (i.e.M
is actually two-valued), we will callM a stable model of P.

https://doi.org/10.1017/S1471068424000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000231

B. Bogaerts et al.748

7 Properties of the Stable Model Semantics

In this section we discuss various properties of the stable model semantics of higher-order

logic programs, which demonstrate that the proposed approach is indeed an extension of

classical stable models. In the following results we use the term “classical stable models”

to refer to stable models in the sense of Gelfond and Lifschitz (1988), “classical three-

valued stable models” to refer to stable models in the sense of Przymusinski (1990) and

the term “(three-valued) stable models” to refer to the present semantics.

Theorem 7.1.

Let P be a propositional logic program. Then,M is a (three-valued) stable model of P iff

M is a classical (three-valued) stable model of P.

A crucial property of classical (three-valued) stable models is that they are minimal

Herbrand models (Gelfond and Lifschitz 1988, Theorem 1) and (Przymusinski 1990,

Proposition 3.1). This property is preserved by our extension.

Theorem 7.2.

All (three-valued) stable models of a HOL program P are ≤-minimal models of P.

It is a well-known result in classical logic programming that if the well-founded model

of a first-order program is two-valued, then that model is its unique classical stable model

(Van Gelder et al. 1988, Corollary 5.6). This property generalizes in our setting.

Theorem 7.3.

Let P be a HOL program. If the well-founded model of P is two-valued, then this is also

its unique stable model.

A broadly studied subclass of first-order logic programs with negation, is that of stratified

logic programs (Apt et al. 1988). It is a well-known result that if a logic program is

stratified, then it has a two-valued well-founded model which is also its unique classical

stable model (Gelfond and Lifschitz 1988, Corollary 2). We extend the class of stratified

programs to the higher-order case and generalize the aforementioned result.

Definition 7.1.

AHOL program P is called stratified if there is a function S mapping predicate constants

to natural numbers, such that for each rule p R← L1 ∧ · · · ∧ Lm and any i∈ {1, . . . , m}:

• S(q)≤ S(p) for every predicate constant q occurring in Li.

• If Li is of the form ∼E, then S(q)S(p) for each predicate constant q occurring in E.

• For any subexpression of Li of the form (E1 E2), S(q)<S(p) for every predicate

constant q occurring in E2.

For readers familiar with the standard definitions of stratification in first-order logic pro-

grams, the last item might be somewhat surprising. What it says is that the stratification

function should not only increase because of negation, but also because of higher-order

predicate application. The intuitive reason for this is that (as also noted in the intro-

duction of the present paper) one can define a higher-order predicate which is identical

to negation, for example, by writing neg P ←∼ P. As a consequence, it is reasonable to

https://doi.org/10.1017/S1471068424000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000231

The stable model semantics for higher-order logic programming 749

1 % A i s a s e t o f arguments ; E sub s e t A x A i s the a t t a c k r e l a t i o n
2 attacks A E S X ← (subset S A), (S Y), (E Y X)
3 nondefends A E S X ← (subset S A), (A Y), (E Y X), ∼(attacks A E S Y)
4 defends A E S X ← (subset S A), (A X), ∼(nondefends A E S X)
5 f A E S X ← (defends A E S X)
6 u A E S X ← (subset S A), (A X), ∼(attacks A E S X)
7 % grounded A E X means : X i s an e l ement o f the grounded e x t e n s i o n
8 grounded A E X ← f A E (grounded A E) X
9 stable A E S ← (equal S (u A E S))

10 conflFree A E S ← (subset S (u A E S))
11 complete A E S ← (conflFree A E S), (equal S (f A E S))
12 admissable A E S ← (conflFree A E S), (subset S (f A E S))
13 preferred A E S ← maximal subset (complete A E) S

Listing 3. Second-order definitions of abstract argumentation concepts.

1 arg a. arg b. arg c. arg d. arg e.
2 attacks X Y ← arg X, arg Y, ∼(nattacks X Y).
3 nattacks X Y ← arg X, arg Y, ∼(attacks X Y).
4

5 ncautiousStable X ← arg X, stable arg attacks S, ∼(S X).
6 cautiousStable X ← arg X, ∼(ncautiousStable X).
7 p ← ∼p, equal cautiousStable (grounded arg attacks).

Listing 4. Toy reasoning problem for abstract argumentation.

assume that predicates occurring inside an application of neg should be treated similarly

to predicates appearing inside the negation symbol.

Theorem 7.4.

Let P be a stratified HOL program. Then, the well-founded model of P is two-valued.

By the above theorem and Theorem 7.3, every stratified HOL program has a unique

two-valued stable model.

8 Additional examples

In this section we present two examples of how higher-order logic programming can be

used. First, we showcase reasoning problems arising from the field of abstract argumen-

tation, next we model a PSPACE-complete problem known as Generalized Geography.

8.1 Abstract argumentation

In what follows, we present a set of standard definitions from the field of abstract argu-

mentation (Dung 1995). Listing 3 contains direct translations of these definitions into our

framework; the line numbers with each definition refer to Listing 3. Listing 4 illustrate

how these definitions can be used to solve reasoning problems with argumentation.

An abstract argumentation framework (AF) Θ is a directed graph (A, E) in which the

nodes A represent arguments and the edges in E represent attacks between arguments.

We say that a attacks b if (a, b)∈E. A set S ⊆A attacks a if some s∈ S attacks a

https://doi.org/10.1017/S1471068424000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000231

B. Bogaerts et al.750

1 % X i s a w inn ing p o s i t i o n i n the GG game (V, E)
2 winning V E X ← (E X Y), ∼(X ≈ Y), equal (remove V X) V’,

↪→ inducedGraph V E V’ E’,
↪→ ∼(winning V’ E’ Y).

3 % (V’ , E’) i s the induced graph by r e s t r i c t i n g (V, E) to V’
4 inducedGraph V E V’ E’ ← subset V’ V,

↪→ equal E’ (intersection E (square V’))

Listing 5. Winning positions in the Generalized Geography game.

(Line 2). A set S ⊆A defends a if it attacks all attackers of a (Line 4). An interpretation

of an AF Θ= (A, E) is a subset S of A. There exist many different semantics of AFs

that each define different sets of acceptable arguments according to different standards or

intuitions. The major semantics for argumentation frameworks can be formulated using

two operators: the characteristic function FΘ (Line 5) mapping an interpretation S to

FΘ(S) = {a∈A | S defends a}

and the operator UΘ (U stands for unattacked; Line 6) that maps an

interpretation S to

UΘ(S) = {a∈A | a is not attacked by S}.

The grounded extension of Θ is defined inductively as the set of all arguments defended

by the grounded extension (Line 8), or alternatively, as the least fixpoint of FΘ, which

is a monotone operator. The operator UΘ is an anti-monotone operator; its fixpoints

are called stable extensions of Θ (Line 9). An interpretation S is conflict-free if it is a

postfixpoint of UΘ (i.e. if S ⊆UΘ(S); Line 10). A complete extension is a conflict-free

fixpoint of FΘ (Line 11). An interpretation is admissible if it is a conflict-free postfixpoint

of FΘ (Line 12). A preferred extension is a ⊆-maximal complete extension (Line 13).

Listing 4 shows how these definitions can be used for reasoning problems related to

argumentation. There, we search for an argumentation framework with five elements

where the grounded extension does not equal the intersection of all stable extensions.

8.2 (Generalized) geography

Generalized geography is a two-player game that is played on a graph. Two players take

turn to form a simple path (i.e. a path without cycles) through the graph. The first

player who can no longer extend the currently formed simple path loses the game. The

question whether a given node in a given graph is a winning position in this game (i.e.

whether there is a winning strategy) is well-known to be PSPACE-hard (see, e.g. the

proof of Lichtenstein and Sipser (1980)). This game can be modeled in our language very

compactly: Line 2 in Listing 5 states that X is a winning node in the game V, E if there

is an outgoing edge from X that leads to a non-winning position in the induced graph

obtained by removing X from V. This definition makes use of the notion of an induced

subgraph, which has a very natural higher-order definition, which in turn makes use of

various other generic predicates about sets (see Listings 2 and 6).

https://doi.org/10.1017/S1471068424000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000231

The stable model semantics for higher-order logic programming 751

1 % X i s i n the un ion o f P and Q
2 union P Q X ← P X.
3 union P Q X ← Q X.
4 % X i s i n the i n t e r s e c t i o n o f P and Q
5 intersection P Q X ← P X, Q X.
6 % Y i s i n the s e t ob t a i n ed from P by removing X (P \ {X})
7 remove P X Y ← P Y, ∼(X ≈ Y).
8 % (X,Y) i s i n the squa r e o f P (c a r t e s i a n p roduc t o f P wi th i t s e l f)
9 square P X Y ← P X, P Y.

Listing 6. More generic definitions.

9 Related and future work

There are many extensions of standard logic programming under the stable model seman-

tics that are closely related to our current work. One of them is the extension of logic

programming with aggregates , which most solvers nowadays support. Aggregates are spe-

cial cases of second-order functions and have been studied using AFT (Pelov et al. 2007;

Vanbesien et al. 2022) and in fact our semantics of application can be viewed as a general-

ization of the ultimate approximating aggregates of Pelov et al. (2007). Also, higher-order

logic programs have been studied through this fixpoint theoretic lens. Dasseville et al.

(2015) defined a logic for templates, which are second-order definitions, for which they

use a well-founded semantics. This idea was generalized to arbitrary higher-order def-

initions in the next year (Dasseville et al. 2016). While they apply AFT in the same

space of three-valued higher-order functions as we do, a notable difference is that they

use the so-called ultimate approximator , resulting in a semantics that does not coincide

with the standard semantics for propositional programs whereas our semantics does (see

Theorem 7.1).

In 2018, a well-founded semantics for higher-order logic programs was developed using

AFT (Charalambidis et al. 2018a). There are two main ways in which that work dif-

fers from ours. The first, and arguably most important one, is how the three-valued

semantics of types is defined. While in our framework [[ρ→ o]]∗ consists of all functions

from [[ρ]] to [[o]]∗, in their framework [[ρ→ o]]∗ would consist of all �-monotonic functions

from [[ρ]]∗ to [[o]]∗. This results, in their case, to more refined, but less precise, and more

complicated, approximations. As a result, an extension of AFT needed to be developed

to accommodate this. In our current work, we show that we can stay within standard

AFT, but to achieve this, we needed to develop a new three-valued semantics of func-

tion application; see Item 4 in Definition 5.3. The formal relationship between the two

approaches remains to be further investigated. The second way in which our work differs

from that of Charalambidis et al. (2018a) is the treatment of existential predicate vari-

ables of type π that appear in the bodies of rules; we consider such variables to range

over [[π]], while Charalambidis et al. allow them to range over [[π]]∗. A consequence of

this choice is that arguably, the well-founded semantics of (Charalambidis et al. 2018a)

does not always behave as expected; even for simple non-recursive programs such as

p← R,∼ R, the meaning of the defined predicates is not guaranteed to be two-valued.

This is not an issue with their extension of AFT, but rather with the precise way their

approximator is defined. While we believe it would be possible to solve this issue by

https://doi.org/10.1017/S1471068424000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000231

B. Bogaerts et al.752

changing the definition of the approximator in Charalambidis et al. (2018a), this issue

needs to be further investigated. Importantly, we showed in Theorem 7.4 that issues such

as the one just mentioned, cannot arise in our new semantics.

Recently, there have also been some extensions of logic programming that allow second-

order quantification over answer sets. This idea was first referred to as stable-unstable

semantics (Bogaerts et al. 2016) and later also as quantified ASP (Amendola et al. 2019).

A related formalism is ASP with quantifiers (Fandinno et al. 2021), which can be thought

of as a prenex version of quantified ASP, consisting of a single logic program preceded by

a list of quantifications. A major advantage of those lines of work is that they come with

efficient implementations (Janhunen 2022; Faber et al. 2023) and applications (Fandinno

et al. 2021; Amendola et al. 2022; Bellusci et al. 2022). An advantage of true higher-order

logic programming (which allows for defining higher-order predicates) is the potential

for abstraction and reusability (following the lines of thought of the “templates” work

referred to above). As an example, consider our max-clique application from Section 2.

While it is perfectly possible to express this in stable-unstable semantics or quantified

ASP, such encodings would have two definitions of what it means to be a clique: one

for the actual clique to be found and one inside the oracle call that checks for the non-

existence of a larger clique. In our approach, the definition of clique is given only once

and used for these two purposes by giving it as an argument to the higher-order maximal

predicate. Moreover, the definition of the maximal predicate can be reused in future

applications where maximal (with respect to some given order) elements of some set are

sought.

There are several future directions that we feel are worth pursuing. In particular, it

would be interesting to investigate efficient implementation techniques for the proposed

stable model semantics. As the examples of the paper suggest, even an implementation

of second-order stable models, would give a powerful and expressive system. Another

interesting research topic is the characterization of the expressive power of higher-order

stable models. As proven in (Charalambidis et al. 2019), positive k-order Datalog pro-

grams over ordered databases, capture (k− 1)-EXPTIME (for all k≥ 2). We believe that

the addition of stable negation will result in greater expressiveness (e.g. the ordering

restriction on the database could be lifted), but this needs to be further investigated.

Supplementary material

To view supplementary material for this article, please visit http://doi.org/10.1017/

S1471068424000231.

References

Amendola, G., Cuteri, B., Ricca, F. AND Truszczynski, M.2022. Solving problems in the
polynomial hierarchy with ASP(Q). In LPNMR, Springer, 373–386.

Amendola, G., Ricca, F. AND Truszczynski, M. 2019. Beyond NP: quantifying over answer
sets. Theory and Practice of Logic Programming 19, 5-6, 705–721.

Antic, C. 2020. Fixed point semantics for stream reasoning. Artificial Intelligence 288,
103370.

https://doi.org/10.1017/S1471068424000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000231

The stable model semantics for higher-order logic programming 753

Apt, K. R., Blair, H. A. AND Walker, A. 1988. Towards a theory of declarative knowledge.
In Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann, 89–148.

Bellusci, P., Mazzotta, G. and Ricca, F. 2022. Modelling the outlier detection problem in
ASP(Q). In PADL, Springer, 15–23

Bogaerts, B. 2019. Weighted abstract dialectical frameworks through the lens of approximation
fixpoint theory. In AAAI. AAAI Press, 2686–2693.

Bogaerts, B. and Cruz-Filipe, L. 2018. Fixpoint semantics for active integrity constraints.
Artificial Intelligence 255, 43–70.

Bogaerts, B. and Jakubowski, M. 2021. Fixpoint semantics for recursive SHACL. In ICLP
Technical Communications, 41–47

Bogaerts, B., Janhunen, T. AND Tasharrofi, S. 2016. Stable-unstable semantics: beyond
NP with normal logic programs. Theory and Practice of Logic Programming 16, 5-6,
570–586.

Calimeri, F. O., Faber, W., Gebser, M., Ianni, G. I. O. V. A. M. B. A. T. T. I. S. T. A.,
Kaminski, R., Krennwallner, T., Leone, N., Maratea, M., Ricca, F. AND Schaub, T.
2020. ASP-core-2 input language format. Theory and Practice of Logic Programming 20, 2,
294–309.

Charalambidis, A., Handjopoulos, K., Rondogiannis, P. AND Wadge, W. W. 2013.
Extensional higher-order logic programming. ACM Transactions on Computational Logic 14,
3, 1–40.

Charalambidis, A., Nomikos, C. AND Rondogiannis, P. 2019. The expressive power of
higher-order datalog. Theory and Practice of Logic Programming 19, 5-6, 925–940.

Charalambidis, A., Rondogiannis, P. AND Symeonidou, I. 2018a. Approximation fixpoint
theory and the well-founded semantics of higher-order logic programs. Theory Pract. Log.
Program 18a, 3–4,421–437.

Charalambidis, A., Rondogiannis, P. AND Troumpoukis, A. 2018b. Higher-order logic
programming: an expressive language for representing qualitative preferences. Science of
Computer Programming 155b, 173–197.

Dasseville, I., Van Der Hallen, M., Bogaerts, B., Janssens, G. AND Denecker,
M.2016. A compositional typed higher-order logic with definitions. In ICLP (Technical
Communications)., 52. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, OASIcs,
14:1–14:13.

Dasseville, I., Van Der Hallen, M., Janssens, G. AND Denecker, M. 2015. Semantics
of templates in a compositional framework for building logics. Theory and Practice of Logic
Programming 15, 4-5, 681–695.

Denecker, M., Marek, V. W. AND Truszczynski, M. 2003. Uniform semantic treatment of
default and autoepistemic logics. Artificial Intelligence 143, 1, 79–122.

Denecker, M., Marek, V. W. AND Truszczynski, M. 2004. Ultimate approximation and its
application in nonmonotonic knowledge representation systems. Information and Computation
192, 1, 84–121.

Dung, P. M. 1995. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77, 2, 321–358.

Faber, W., Mazzotta, G. AND Ricca, F. 2023. An efficient solver for ASP(Q). Theory and
Practice of Logic Programming 23, 4, 948–964.

Faber, W., Pfeifer, G. AND Leone, N. 2011. Semantics and complexity of recursive aggregates
in answer set programming. Artificial Intelligence 175, 1, 278–298.

Fandinno, J., Laferriere, F., Romero, J., Schaub, T. AND Son, T. 2021. Planning with
incomplete information in quantified answer set programming. Theory and Practice of Logic
Programming 21, 5, 663–679.

https://doi.org/10.1017/S1471068424000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000231

B. Bogaerts et al.754

Fitting, M. 2002. Fixpoint semantics for logic programming a survey. Theoretical Computer
Science 278, 1-2, 25–51.

Gelfond, M. AND Lifschitz, V. 1988. The stable model semantics for logic programming. In
ICLP/SLP. MIT Press, 1070–1080.

Janhunen, T. 2022. Implementing stable-unstable semantics with ASPTOOLS and clingo. In
PADL, Springer, 135–153.

Lichtenstein, D. AND Sipser, M. 1980. GO is polynomial-space hard. Journal of the ACM
27, 2, 393–401.

Pelov, N., Denecker, M. AND Bruynooghe, M. 2007. Well-founded and stable semantics of
logic programs with aggregates. Theory and Practice of Logic Programming 7, 3, 301–353.

Pryzmusinski, T. C. 1990. The well-founded semantics coincides with the three-valued stable
semantics. Fundamenta Informaticae 13, 4, 445–463.

Rondogiannis, P. AND Symeonidou, I. 2017. The intricacies of three-valued extensional
semantics for higher-order logic programs. Theory and Practice of Logic Programming 17,
5-6, 974–991.

Strass, H. 2013. Approximating operators and semantics for abstract dialectical frameworks.
Artificial Intelligence 205, 39–70.

Van Emden, M. H. AND Kowalski, R. A. 1976. The semantics of predicate logic as a
programming language. Journal of the ACM 23, 4, 733–742.

Van Gelder, A., Ross, K. A. and Schlipf, J. S. 1988. Unfounded sets and well-founded
semantics for general logic programs. In PODS. ACM, 221–230.

Vanbesien, L., Bruynooghe, M. AND Denecker, M. 2022. Analyzing semantics of aggregate
answer set programming using approximation fixpoint theory. Theory and Practice of Logic
Programming 22, 4, 523–537.

https://doi.org/10.1017/S1471068424000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000231

	Introduction
	A motivating example
	: A higher-order logic programming language
	The two-valued semantics of
	The three-valued semantics of
	Approximation fixpoint theory and the stable model semantics
	Properties of the Stable Model Semantics
	Additional examples
	Abstract argumentation
	(Generalized) geography

	Related and future work
	References

