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This study employs three-dimensional particle-resolved simulations of planar shocks
passing through a suspension of stationary solid particles to study wake-induced gas-
phase velocity fluctuations, termed pseudo-turbulence. Strong coupling through interphase
momentum and energy exchange generates unsteady wakes and shocklets in the interstitial
space between particles. A Helmholtz decomposition of the velocity field shows that the
majority of pseudo-turbulence is contained in the solenoidal component from particle
wakes, whereas the dilatational component corresponds to the downstream edge of
the particle curtain where the flow chokes. One-dimensional phase-averaged statistics
of pseudo-turbulent kinetic energy (PTKE) are quantified at various stages of flow
development. Reduction in PTKE is observed with increasing shock Mach number
due to decreased production, consistent with single-phase compressible turbulence. The
anisotropy in Reynolds stresses is found to be relatively constant through the curtain and
consistent over all the conditions simulated. Analysis of the budget of PTKE shows that the
majority of turbulence is produced through drag and balanced by viscous dissipation. The
energy spectra of the streamwise gas-phase velocity fluctuations reveal an inertial subrange
that begins at the mean interparticle spacing and decays with a power law of −5/3 and
steepens to −3 at scales much smaller than the particle diameter. A two-equation model
is proposed for PTKE and its dissipation. The model is implemented within a hyperbolic
Eulerian-based two-fluid model and shows excellent agreement with the particle-resolved
simulations.
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1. Introduction
High-speed flows through particulate media occur in diverse applications, such as
detonation blasts (Zhang et al. 2001), volcanic eruptions (Chojnicki, Clarke & Phillips
2006; Lube et al. 2020), coal-dust explosions (Sapko et al. 2000; Zheng et al. 2009),
pulsed-detonation engines (Chang & Kailasanath 2003; Roy et al. 2004) and plume–
surface interactions during interplanetary landings (Plemmons et al. 2009; Morris
et al. 2011; Capecelatro 2022). In these examples, turbulence plays a crucial role
in governing processes like reactant mixing and particle dispersion. However, the
nature of this turbulence is distinct from both single-phase compressible turbulence
and low-speed multiphase turbulence, posing a challenge to the accuracy of existing
models.

Compressibility effects in turbulent flows are often characterized using the turbulent
Mach number (Sagaut & Cambon 2008; Jagannathan & Donzis 2016). For values of
Mt � 0.3, large-scale separation exists between acoustics and turbulence. This results
in a nearly incompressible flow called the quasi-isentropic regime. For higher values
of Mt (i.e. 0.3< Mt � 0.6), dilatational effects are significant, leading to a nonlinear
subsonic regime. The flows considered in the present study predominantly fall within this
regime.

Since the 1970s, numerous studies have investigated the role of compressibility in the
development of turbulent mixing layers and the generation of turbulent kinetic energy
(Brown & Roshko 1974; Bradshaw 1977; Sarkar et al. 1991). Early work by Zeman
(1990) and Sarkar et al. (1991) examined the effects of dilatational dissipation, εd ,
finding that its increase with Mt leads to a reduction in turbulent kinetic energy, thereby
decreasing turbulent mixing. They suggested that the suppression of growth rate is linked
to increased εd due to shocklets. They developed a mathematical model to incorporate this
effect into Reynolds stress closure models. However, Sarkar (1995) later showed, using
direct numerical simulations of turbulent homogeneous shear flow, that the reduction of
turbulent kinetic energy is primarily due to decreased turbulence production, rather than
directly caused by dilatational dissipation. Subsequent studies by Vreman, Sandham & Luo
(1996) and Pantano & Sarkar (2002) corroborated this finding, showing that dilatational
dissipation is negligible. Instead, the reduced growth rate of turbulence is linked to
diminished pressure fluctuations and, consequently, lower turbulence production resulting
from a reduction in the pressure-strain term.

Kida & Orszag (1990) were among the first to analyse the kinetic energy spectrum
in forced compressible turbulence, observing that its scaling is largely independent
of Mach number. Donzis & Jagannathan (2013) also found that the turbulent kinetic
energy spectrum in compressible isotropic turbulence follows a −5/3 power law in
the inertial range for 0.1 � Mt � 0.6, consistent with the classical Kolmogorov scaling
for incompressible flows (Kolmogorov, 1941b). Further insights into compressibility
scaling emerge from a Helmholtz decomposition of the velocity field u into its
solenoidal component us and dilatational component ud (Kida & Orszag 1990; Donzis
& Jagannathan 2013; Wang et al. 2011, 2012; San & Maulik 2018). Compressibility effects
are typically attributed to ud , and both Wang et al. (2011) and Donzis & Jagannathan
(2013) observed that the majority of turbulent kinetic energy resides in the solenoidal
component, with ud increasing with Mt . However, all of these studies have focused on
single-phase compressible turbulent flows in the absence of particles.

In multiphase flows, interphase coupling introduces additional complexity that
significantly influences energy transfer and turbulence characteristics. Fluid velocity
fluctuations induced by particle wakes are referred to as pseudo-turbulence (Lance &
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Bataille 1991; Mehrabadi et al. 2015), a term also applied to bubble-induced turbulence
(BIT) in liquid flows (Risso 2018). Lance & Bataille (1991) first demonstrated that a
homogeneous swarm of bubbles generates pseudo-turbulence with a spectral subrange
exhibiting a −3 power law. They showed that at a statistically steady state, this spectral
scaling results from a balance between viscous dissipation and energy production due to
drag forces from rising bubbles. Similar scaling has since been observed in other bubbly
flows (Mercado et al. 2010; Risso 2018; Mezui et al. 2022, 2023). Subsequent experimental
studies coupling BIT with shear-induced turbulence have found that the spectra of liquid
velocity fluctuations follow a −3 scaling at small wavenumbers, transitioning to a −5/3
scaling at higher wavenumbers, suggesting a single-phase signature is preserved at the
smallest scales (Risso 2018). Numerical simulations of gas–particle turbulent channel
flow reveal that two-way coupling between the phases results in reduction in fluid-phase
turbulent kinetic energy at the scale of individual particles, while a broadband reduction
over all scales is observed at moderate-to-high mass loading (Capecelatro, Desjardins &
Fox 2018).

Over the past few decades, turbulence models have evolved to incorporate the effects of
particles (Troshko & Hassan 2001; Fox 2014; Ma et al. 2017). A production term must be
included to account for generation of turbulence through drag. A dissipation time scale is
often employed based on the relative velocity between the phases (ur ) and particle
diameter (dp), given by τ = dp/ur . The use of two-equation transport models for gas–
solid flows dates back to the work of Elghobashi & Abou-Arab (1983), who derived a
rigorous set of equations for dilute concentrations of particles in incompressible flow
using a two-fluid approach. Since then, models have been proposed for denser regimes
in shear turbulence (Ma & Ahmadi 1990). Crowe, Troutt & Chung (1996) provided a
review of numerical models for turbulent kinetic energy in two-phase flows. However,
these models are limited to intrinsic turbulence whereby the carrier-phase turbulence
would exist even in the absence of particles, as opposed to pseudo-turbulence that is
entirely generated by the particle phase. Mehrabadi et al. (2015) recently developed an
algebraic model for pseudo-turbulent kinetic energy (PTKE) based on particle-resolved
simulation data that depends on the slip Reynolds number and particle volume fraction.
A limitation of algebraic models is that PTKE can only be predicted in regions of finite
volume fraction. In cases where turbulence is generated within a suspension of particles
and advects downstream into the surrounding gas, transport equations for PTKE are more
appropriate (Shallcross, Fox & Capecelatro 2020).

Particle-laden compressible flows challenge numerical models due to the strong
coupling between shock waves, particles and turbulence over a wide range of scales. Using
particle-resolved simulations of compressible homogeneous flows past random arrays of
particles, Khalloufi & Capecelatro (2023) found that both Mt and PTKE increase with
particle volume fraction for a fixed free stream Mach number. Experimental and numerical
studies of particle-laden underexpanded jets have demonstrated significant modification of
shock structures due to the two-way coupling between the gas and particles even at low
volume fractions where one-way coupling would be deemed appropriate for single-phase
flow (Sommerfeld 1994; Patel et al. 2024). Two-dimensional particle-resolved simulations
of shock–particle curtain interactions revealed PTKE magnitudes comparable to the
resolved kinetic energy (Regele et al. 2014; Hosseinzadeh-Nik, Subramaniam & Regele
2018). In three-dimensional inviscid simulations, Mehta, Jackson & Balachandar (2020)
reported velocity fluctuations reaching up to 50 % of the kinetic energy based on the mean
flow, with increasing velocity fluctuations observed at higher shock Mach numbers, Ms ,
and particle volume fractions, Φp. It should be noted that shock-driven multiphase flows
in radial configurations are prone to instabilities not captured in the planar geometries
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considered in the aforementioned studies (McFarland et al. 2016; Middlebrooks et al.
2018). However, because turbulence transport occurs on much shorter time scales than
particle dispersal or instability growth, such effects are not relevant to the present focus on
gas-phase turbulence.

Models for PTKE in compressible gas–particle flows have only recently begun to
emerge. Osnes et al. (2019) proposed an algebraic model for PTKE based on particle-
resolved simulations of shock–particle interactions that depends on the mean flow speed
and particle volume fraction. Shallcross et al. (2020) proposed a one-equation model for
PTKE containing a production term due to drag and an algebraic closure for dissipation.
The dissipation model employs a time scale based on the particle diameter and local
slip velocity – consistent with that used in BIT models (Ma et al. 2017) – augmented
with a blending function to account for regions devoid of particles. However, the results
were found to be highly sensitive to the closure applied to dissipation, limiting its
applicability.

Building on these efforts, the present study aims to advance understanding of turbulence
transport in compressible gas–particle flows, particularly at moderate volume fractions
and Mach numbers. The paper is organized as follows. In § 2, the simulation configuration
and governing equations are presented. Simulation results are provided in § 3, starting
with a qualitative assessment of the flow, followed by one-dimensional phase-averaged
statistics of the gas-phase velocity. The budget of PTKE is presented next, revealing key
production and dissipation mechanisms. The energy spectra within the particle curtain are
then presented and separate contributions from solenoidal and dilatational components
highlight the sources of PTKE. In § 4, a two-equation turbulence model for PTKE
and its dissipation is proposed and implemented within a hyperbolic two-fluid model.
Results from § 3 are used to guide closure. An a posteriori analysis is performed and
first- and second-order statistics are compared. Key findings and results are summarized
in § 5.

2. Simulation set-up and methods

2.1. Flow configuration
To isolate shock–particle–turbulence interactions, we perform three-dimensional, particle-
resolved simulations of a planar shock propagating through a suspension of stationary,
monodisperse particles. The assumption of frozen particles is justified, as the acoustic time
scale is several orders of magnitude shorter than the particle response time for the high
density ratios (ρp/ρ > 103) typical of gas–solid flows (Ling, Haselbacher & Balachandar
2011). The simulations are designed to emulate the multiphase shock-tube experiments
of Wagner et al. (2012). Figure 1 shows a volume rendering of the gas-phase velocity
magnitude within the simulation domain at a moment when the shock has advanced
significantly beyond the curtain and exited the domain. The velocity increases across the
particle curtain with maximum values at the downstream curtain edge where the flow
chokes due to the sudden change in volume fraction.

Particles with diameter D = 115 µm and density ρp = 2520 kg m−3 are randomly
distributed within a curtain of thickness L = 2 mm (L = 17.4D). A minimum of two
grid points is maintained between particle surfaces. A planar shock is initially placed
at a non-dimensional length of x = 5.5D with the flow direction parallel to the x-axis.
The upstream edge of the curtain is placed at x = 7D. Periodic boundary conditions
are imposed in the two spanwise (y and z) directions. The domain size for all but one
case is [Lx × L y × Lz] = [30 × 12 × 12]D. Here L y and Lz were chosen based on a
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Figure 1. The simulation domain showing particle position and a volume rendering of the gas-phase velocity
magnitude after the shock has passed the curtain (t/τL = 2) with Φp = 0.2 and Ms = 1.66.

domain size independence study summarized in Appendix A. The domain is discretized
with uniform grid spacing �x = D/40, corresponding to [1201 × 480 × 480] grid
points.

The pre-shock gas-phase density is ρ∞ = 0.987 kg m−3, pressure P∞ = 82.7 kPa, sound
speed c∞ = 343 m s−1 and velocity u∞ = 0 m s−1. Post-shock properties, denoted by the
subscript ps, are obtained via the Rankine–Hugoniot conditions. The shock Mach number
is defined as Ms = us/c∞, where us is the shock speed. A reference time scale based on
the distance (in terms of particle curtain length) that the shock travels is defined as τL =
L/us . The particle Reynolds number based on post-shock properties is defined as Reps =
ρpsu ps D/μps , where μps is the gas-phase viscosity at temperature Tps . The number of
particles Np within the curtain is determined from the average volume fraction, Φp. A
summary of the cases considered in this study is given in table 1. Cases 1−9 represent
different combinations of Ms and Φp. Case 10 exhibits a longer domain length to study
turbulence transport downstream of the particle curtain.

2.2. Governing equations
The gas-phase is governed by the viscous compressible Navier–Stokes, given by

∂ρ

∂t
+ ∇ · (ρu)= 0, (2.1)

∂ρu
∂t

+ ∇ · (ρu ⊗ u + pI− σ )= 0 (2.2)

and
∂ρE

∂t
+ ∇ · ({ρE + p}u + q − u · σ )= 0, (2.3)
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Case No. Ms Φp Reps Np Lx/D L y/D

1 1.2 0.1 813 467 30 12
2 1.2 0.2 813 935 30 12
3 1.2 0.3 813 1402 30 12
4 1.66 0.1 3251 467 30 12
5 1.66 0.2 3251 935 30 12
6 1.66 0.3 3251 1402 30 12
7 2.1 0.1 5591 467 30 12
8 2.1 0.2 5591 935 30 12
9 2.1 0.3 5591 1402 30 12
10 1.66 0.3 3251 1402 58 12

Table 1. Parameters for the various runs used in this study.

where ρ is the gas-phase density, u = (u, v, w) is the velocity and E is the total energy.
The viscous stress tensor is

σ =μ(∇u + ∇uT )+μ′∇ · u (2.4)

and the heat flux is

q = −k∇T (2.5)

where k is the thermal conductivity. The dynamic viscosity is modelled as a power law,
μ=μ0[(γ − 1)T/T0]n , where γ = 1.4 is the ratio of specific heats and n = 0.666. The
second coefficient of viscosity is μ′ =μB − 2/3μ where the bulk viscosity μB = 0.6μ is
chosen as a model for air. The thermal conductivity is varied with a similar power law
as viscosity to maintain a constant Prandtl number of 0.7. Thermodynamic relations for
temperature and pressure are given by

T = γ p

(γ − 1)ρ
and p = (γ − 1)

(
ρE − 1

2
ρu · u

)
. (2.6)

No-slip, adiabatic boundary conditions are enforced at the particle surfaces. Details on the
numerical implementation are provided in the following section.

2.3. Numerics
The simulations are performed using the compressible multiphase flow solver jCode
(Capecelatro 2023). Spatial derivatives are approximated using narrow-stencil finite-
difference operators that satisfy the summation by parts (SBP) property (Strand 1994;
Svärd et al. 2007). A sixth-order centred finite-difference scheme is used for the interior
points, and a fourth-order, one-sided finite difference is applied at the boundaries.
Kinetic energy preservation is achieved using a skew-symmetric-type splitting of the
inviscid fluxes (Pirozzoli 2011), providing nonlinear stability at low Mach number. To
ensure proven temporal stability, the SBP scheme is combined with the simultaneous
approximation-term treatment that weakly enforces characteristic boundary conditions
at the inflow and outflow (Svärd et al. 2007). High-order SBP dissipation operators
(Mattsson, Svärd & Nordström 2004) are employed to dampen spurious high-wavenumber
modes. Localized artificial diffusivity is used as a means of shock capturing by following
the ‘LAD-D2-0’ formulation in Kawai, Shankar & Lele (2010). To limit the artificial
diffusivity to regions of high compression (shocks), we employ the sensor originally
proposed by Ducros et al. (1999) and later improved by Hendrickson, Kartha & Candler
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(2018). More details can be found in Khalloufi & Capecelatro (2023). The equations are
advanced in time using a standard fourth-order Runge–Kutta scheme, with a constant
Courant–Friedrichs–Lewy number of 0.8.

A ghost-point immersed boundary method originally proposed by Mohd-Yusof (1997)
and later extended to compressible flows by Chaudhuri, Hadjadj & Chinnayya (2011)
is employed to enforce boundary conditions at the surface of the particles. Values
of the conserved variables at ghost points residing within the solid are assigned
after each Runge–Kutta subiteration to enforce no-slip, adiabatic boundary conditions.
The framework was validated in our previous study (Khalloufi & Capecelatro 2023),
demonstrating that 40 grid points across the particle diameter is sufficient to capture drag
and PTKE. An assessment of the domain size and sensitivity to random particle placement
is reported in Appendix A.

3. Results

3.1. Flow visualization
Instantaneous snapshots of the flow field (see supplementary Movie S1) corresponding
to Case 5 (Ms = 1.66, Φp = 0.2) at t/τL = 0.5, 1 and 2 are presented in figure 2. A two-
dimensional slice in the x−y plane shows the local gas-phase Mach number and numerical
schlieren in the vicinity of the particles. The incident shock travels in the positive x
direction and impinges the particle curtain located at x0 at time t = 0. Upon impact,
the shock splits into a weaker transmitted shock that penetrates the curtain, as shown
in figure 2(a). At the upstream edge of the curtain, the arrival of the shock generates
multiple shocklets at the surface of each particle, which coalesce into a reflected shock
wave. Shock–particle interactions are seen to generate significant fluctuations in the gas-
phase velocity. Contour lines of M = 1 (shown in purple) demarcate local supersonic
regions. In figure 2(b), the shock has nearly reached the downstream curtain edge, and
the local supersonic regions move downstream with the flow. Figure 2(c) shows that the
flow has stabilized with both the transmitted and reflected shocks having exited the domain
boundaries. The particles restrict the area of the transmitted shock, causing the gas phase to
choke near the downstream edge of the curtain due to the abrupt change in volume fraction,
followed by a supersonic expansion. Velocity fluctuations induced by the particles advect
downstream from the curtain and dissipate, akin to grid-generated turbulence.

3.2. Averaging operations
The flows under consideration are unsteady and statistically homogeneous in the two
spanwise directions. Averaged quantities depend solely on one spatial dimension (x)
and time. Due to the presence of particles and gas-phase density variations, special
attention must be given to the averaging process. To facilitate statistical phase-averaging,
an indicator function is defined as

I(x)=
{

1 if x ∈ gas phase,
0 if x ∈ particle.

(3.1)

Spatial averages are taken as integrals over y−z slices. The integration of the indicator
function yields a volume fraction α (or area fraction in this case) that depends solely on x
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M
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6
(a)

(b)

(c)

Figure 2. Two-dimensional planes at the centre (z/D = 0) showing schlieren (top-half of each panel) and local
Mach number M = ‖u‖/c (bottom-half of each panel) at (a) t/τL = 0.5, (b) t/τL = 1 and (c) t/τL = 2 for
Ms = 1.66 and Φp = 0.2. Contour lines of M = 1 shown in purple. Blue circles depict particle cross-sections.

(time is omitted since the particles being stationary), given by

αg(x)= 〈I〉 ≡ 1
L y Lz

∫
L y

∫
Lz

I dy dz, (3.2)
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where angled brackets denote a spatial average. Two other important averaging operations
that will be used throughout this study are phase averages and density-weighted (Favre)
averages. If ψ(x, t) represents a random field variable, these averages are defined as

Spatial-average: 〈ψ〉(x, t)≡ 1
L y Lz

∫
L y

∫
Lz

ψ dy dz,

Phase-average: ψ(x, t)≡ 〈Iψ〉
〈I〉 ≡ 〈Iψ〉

αg
,

Favre-average: ψ̃(x, t)≡ 〈Iρψ〉
〈Iρ〉 ≡ ρψ

ρ
.

(3.3)

Spatial averages and phase averages are related via 〈Iψ〉 = αgψ and similarly ρψ =
ρψ̃ . A field variable can be decomposed into its phase-average and a fluctuating quantity
as ψ =ψ +ψ ′. Similarly, the Favre decomposition is ψ = ψ̃ +ψ ′′.

3.3. Mean velocity, fluctuations and anisotropy
The Favre-averaged gas-phase velocity, ũ, as a function of the streamwise direction at
three different time instances (t/τL = 0.5, 1 and 2) is shown in figure 3. The abrupt drop
in velocity observed at early times (t/τL = 0.5 and 1) marks the location of the transmitted
shock. The flow decelerates significantly as it approaches the particle curtain due to drag,
with greater reduction in velocity relative to the post-shock velocity at higher volume
fractions. The flow then accelerates as it traverses the curtain. At the latest time (t/τL = 2),
a sharp increase in ũ at the downstream edge of the curtain is seen across all cases,
indicating a region of choked flow transitioning to supersonic velocities. Similar trends
in the velocity field have been reported previously (e.g. Mehta et al. 2018; Theofanous,
Mitkin & Chang 2018; Osnes et al. 2019). Mehta et al. (2018) obtained an analytical
solution of the Riemann problem for a duct with a sudden change in cross-sectional area
as a simpler means of predicting the flow through a particle curtain. The solution was
found to compare well with inviscid simulations of shock–particle interactions, though it
is unable to predict the choking behaviour leading to supersonic velocities observed here.

The amplitude and speed of the reflected shocks, indicated by the abrupt increase in
velocity upstream of the particle curtain, increase with Φp. The transmitted shock travels
faster through the curtain at lowerΦp where the flow is less obstructed. For a given volume
fraction, the magnitude of ũ decreases with increasing Ms , and the flow-expansion region
at the downstream edge rises sharply with increasing Ms .

The root-mean-square (r.m.s.) gas-phase velocity fluctuations in the streamwise
direction is defined as u2

rms = ũ′′u′′. Due to symmetry, the spanwise fluctuations are
taken as v2

rms = (ṽ′′v′′ + w̃′′w′′)/2. Figure 4 shows these components at t/τL = 1 and
2. All values are normalized by the post-shock kinetic energy, u2

ps . Velocity fluctuations
originate almost immediately within the particle curtain. The magnitude of the streamwise
fluctuations is nearly twice the spanwise components. The fluctuations are higher at
initial times, shortly after the shock passes over the particles. The maximum velocity
fluctuations occur at the downstream edge where the flow chokes. Overall, the fluctuations
decrease in magnitude with increasing Ms . This reduction can be attributed to an increase
in compressibility effects with higher Ms . The precise dissipation mechanisms will be
quantified in § 3.4, where individual terms of the PTKE budget are reported.

It is interesting to note that the normalized fluctuations are nearly invariant with volume
fraction except for the lowest shock Mach number case at early times (see figure 4a).
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Figure 3. Mean gas-phase velocity profiles. Darker lines indicate higher volume fractions: Φp = 0.1 (light
pink), Φp = 0.2 (pink), Φp = 0.3 (purple). Here (a,d,g) t/τL = 0.5, (b,e,h) t/τL = 1 and (c,f,i) t/τL = 2; (a)–
(c) Ms = 1.2, (d)–( f ) Ms = 1.66, (g)–(i) Ms = 2.1. The grey-shaded region indicates the location of the
particle curtain.

Previous studies by Mehta et al. (2020) observed an increase in velocity fluctuations with
Φp. However, we only observe significant variation due to Φp at the downstream edge of
the curtain.

To better quantify the level of anisotropy, we define the gas-phase anisotropy tensor as

bi j = Ri j

2kg
− δi j

3
, (3.4)

where Ri j = ũ′′
i u′′

j is the pseudo-turbulent Reynolds stress, kg = ũ′′
i u′′

i /2 (repeated indices
imply summation) is the PTKE and δi j is the Dirac delta function. The streamwise
component b11 is dominant compared with the components perpendicular to the flow
direction b22 and b33. The cross-correlation of velocity fluctuations, b12, is often negligible
in gas–solid flows (Mehrabadi et al. 2015). Due to symmetry in the flow, only b11 and b22
are reported.

All nine cases are overlaid in figure 5 at t/τL = 2 with each line style representing
a distinct volume fraction and each shade of colour representing a distinct shock
Mach number. The values for anisotropy obtained here are in close agreement with
those reported by Osnes et al. (2019). Interestingly, the level of anisotropy remains
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Figure 4. Velocity fluctuations at (a,c,e) t/τL = 1 and (b,d,f) t/τL = 2. Here (a, b) Ms = 1.2, (c, d) Ms = 1.66
and (e, f ) Ms = 2.1. Streamwise fluctuations u2

rms (pink/purple), spanwise fluctuations v2
rms (shades of green).

Here Φp = 0.1 (light shade), Φp = 0.1 (intermediate shade), Φp = 0.3 (dark shade).

approximately constant across the curtain, with b11 ≈ 0.2 and b22 ≈ −0.1 for all cases,
regardless of Φp and Ms . Variations are confined to the edges of the curtain, where
the streamwise component becomes increasingly dominant. Upstream of the curtain,
the anisotropy tensor becomes ill-defined as kg vanishes in the absence of turbulence
production. At the curtain boundaries, peaks in the anisotropy tensor emerge, resulting
from localized turbulence generation driven by mean gradients of streamwise velocity
fluctuations and particle-induced drag. As turbulence propagates downstream through the
curtain, velocity fluctuations are redistributed into the spanwise directions through the
pressure–dilatation term (see § 3.4). At the downstream edge, flow expansion triggers
renewed turbulence production in the streamwise direction, further amplifying anisotropy.
Overall, the level of anisotropy within the curtain indicates that approximately 50 % of
PTKE is contained in ũ′′u′′, with the remaining 50 % equally partitioned between ṽ′′v′′
and w̃′′w′′.
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Figure 5. Components of the Reynolds stress anisotropy tensor for Cases 1–9 at t/τL = 2. Here Φp =
0.1 ( ), Φp = 0.2 ( ) and Φp = 0.3 ( ). Parallel component b11 (light pink, pink, purple) and
perpendicular component b22 (light green, green, dark green) for Ms = 1.2, 1.66 and 2.1 (light to dark).
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Figure 6. (a) Components of r.m.s. velocities u2
rms (pink) and v2

rms (green) for Case 10 downstream of
the particle curtain at t/τL = 5. The inset shows the components in log-scale. (b) Ratio of the spanwise to
streamwise r.m.s. velocities as a function of streamwise distance normalized by interparticle spacing λ.

The PTKE advects and decays downstream of the particle curtain. Case 10 extends 3L
downstream of the particle curtain to examine this behaviour in greater detail. Figure 6
shows the r.m.s. velocity components at t/τL = 5, where the flow reaches a steady state.
It can be seen that the flow remains anisotropic beyond the curtain and eventually the
fluctuations completely decay. This is analogous to grid-generated turbulence (Batchelor
& Townsend 1948; Mohamed & Larue 1990; Kurian & Fransson 2009). According to
Batchelor & Townsend (1948), the decay of turbulence intensity downstream of a grid (or
screen) with mesh width �M follows a power law, given by(

urms

u0

)2

= A

(
x − xL

�M

)n

, (3.5)

where u0 is the velocity of the gas phase at a point of virtual origin of turbulence x0 and A
is an empirical constant. An analogy can be drawn to our shock–particle configuration by
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Figure 7. Turbulent Mach number for Cases 1 − 9 at t/τL = 2. Same legend as b11 in figure 5.

setting the mesh width to the average interparticle spacing, λ, which can be defined as

λ= D

(
π

6Φp

)1/3

. (3.6)

Additionally, we set the point of origin of turbulence decay to the location of the
downstream curtain edge, xL = x0 + L , and consider the velocity at this point uL = ũ(x =
xL; t = 5τL) when normalizing the turbulence intensity.

Figure 6(a) shows the decay of streamwise and spanwise components of r.m.s. velocities
as a function of the downstream distance normalized by λ. The inset illustrates this decay
in log scale, from which we conclude that the decay does indeed follow a power-law
behaviour with an exponent n = −1.7. This value is slightly higher than the reported
values for n in incompressible, single-phase grid-generated turbulence reported in the
literature, which range from −1.13 to −1.6 (Mohamed & Larue 1990; Kurian & Fransson
2009). The ratio vrms/urms shown in figure 6(b) highlights significant anisotropy of
approximately 0.7, while downstream it reduces to ≈ 0.5 suggesting that the flow remains
anisotropic even at later time periods.

The turbulent Mach number, defined as Mt = √
2kg/c, is shown at t/τL = 2 for

Cases 1−9 in figure 7. Here Mt tends to increase rapidly at the upstream edge of
the curtain where turbulence is first generated, then gradually increases throughout the
curtain and peaks at the downstream edge where the flow chokes. The turbulent Mach
number increases monotonically with the incident shock speed. Within the curtain, Mt
is relatively independent of Φp, but increases with increasing Φp at the downstream
edge. For the cases with the lowest shock Mach number (Ms = 1.2), Mt ≈ 0.2, which
falls in the quasi-isentropic regime, as classified by Sagaut & Cambon (2008), where
pressure fluctuations are not significant. These cases are distinct from the higher Ms
cases in that the velocity does not rapidly increase at the downstream edge of the curtain
(see figure 3c) and the mean sound speed remains relatively constant (not shown) and
thus the trends in Mt are qualitatively different from the two higher Ms cases. For
the two higher shock Mach number cases, Mt varies between 0.3 and 0.8, placing
them in the nonlinear subsonic regime where dilatational fluctuations are expected to be
important.
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3.4. Budget of PTKE
The presence of particles in the flow generates local gas-phase velocity fluctuations
characterized by the PTKE, defined as kg = (ũ′′

i u′′
i )/2. Reynolds-averaged transport

equations for compressible flows have previously been derived by Sarkar et al. (1991),
among others. In this study, the transport equation for PTKE is derived in a similar
manner, but the presence of particles is accounted for by including the indicator function
in the averaging process as defined in § 3.2. Multiplying through the Navier–Stokes
equations in § 2.2 by the indicator function and averaging over the homogeneous y- and
z-directions yields a one-dimensional, time-dependent transport equation for PTKE (a
similar derivation is given by Vartdal & Osnes (2018)), given by

∂

∂t
(αg ρ kg)+ ∂

∂x
(αg ρ ũ kg)=PS + T +Π + αgρε +M+PD. (3.7)

The terms on the right-hand side represent various mechanisms for producing, dissipating
and transporting PTKE. Here Ps is production due to mean shear, T is a term
akin to diffusive transport, Π is the pressure-dilatation correlation term and ε is the
viscous dissipation tensor. The trailing terms arising from the averaging procedure
are lumped into M. Here PD =P P

D +PV
D is production due to drag that contains

contributions from pressure and viscous stresses, respectively. These terms are each
defined as

PS = −αgρũ′′u′′ ∂ ũ

∂x
, (3.8)

T = −1
2
∂

∂x
(αgρu′′

i u′′
i u′′)− ∂

∂x
(αg p′u′′)+ ∂

∂x
(αgu′′

i σ
′
i1), (3.9)

Π = αg p′ ∂u′′
i

∂xi
, (3.10)

αgρε = −αg σ
′
ik

∂u′′
i

∂xk
, (3.11)

M= − ∂

∂xi
(αg pu′′

i )+ αg p
∂u′′

i

∂xi
+ ∂

∂xi
(αgσ11u′′

i )− αgσ11
∂u′′

i

∂xi
, (3.12)

PD =P P
D +PV

D = p′u′′
i
∂I
∂xi

− σ ′
iku′′

i
∂I
∂xk

. (3.13)

Figure 8 shows the budget of PTKE at t/τL = 0.5 and 2 for different Ms and Φp. The
terms are normalized by post-shock quantities: ρpsu3

ps/D. The statistics from the particle-
resolved simulations are noisy due to the indicator function and to provide reliable data, a
low-pass (Gaussian) filter is applied in the streamwise direction with a standard deviation
3D after averaging in the periodic directions. It should be noted that most coarse-grain
simulations of particle-laden flows use grid spacing larger than D. Also, the resulting
profiles were found to be insensitive to a wide range of filter sizes. Note in figures 8(c), 8(e)
and 8(h), small oscillations upstream of the curtain indicate the location of the reflected
shock.

The majority of PTKE is generated via drag production, which is balanced by viscous
dissipation. The remaining terms are negligible except for shear production, Ps , and the
pressure-dilatation correlation termΠ near the shock and at the edge of the curtain where
the volume fraction gradient is large. Here Ms is omitted from the plots since it was found
to be negligible. At later times after the shock has passed through the curtain, mean-shear
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Figure 8. Budgets of PTKE at (a,c,e) t/τL = 0.5 and (b,d,f ) t/τL = 2. Here (a, b) Ms = 1.2, (c, d)
Ms = 1.66 and (e, f ) Ms = 2.1. Here Φp = 0.1 ( ), Φp = 0.2 ( ) and Φp = 0.3 ( ).

production and the pressure-strain correlation act as the dominant production terms at
the downstream edge of the curtain. Downstream of the curtain, there are no production
mechanisms and viscous dissipation dominates.

The magnitude of the terms in the budget are observed to increase with increasing Φp
and decrease with increasing shock Mach number. This reduction at higher Mach number
is not due to enhanced dilatational dissipation, but rather a reduction of all terms, similar to
what has been observed in single-phase compressible shear layers (Sarkar 1995; Pantano
& Sarkar 2002).
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Figure 9. One-dimensional spectra of streamwise velocity fluctuations for Ms = 1.66 and Φp = 0.2 at t/τL =
2. The colour bar corresponds to different locations in the particle curtain. Ensemble average of all the spectra
within the curtain (thick cyan line). Vertical lines indicate relevant length scales in the flow. Solid and dashed
lines correspond to slopes of −5/3 and −3, respectively.

3.5. Energy spectra
Two-dimensional energy spectra of the phase-averaged streamwise velocity fluctuations
are computed at different locations along the curtain. Special care is taken to account
for the presence of particles. At each location along the x-axis, the instantaneous energy
spectrum is defined as

Euu(x, t)= √̂
Iρu′′√̂Iρu′′

∗
, (3.14)

where the (̂·) notation denotes the two-dimensional Fourier transform and ∗ indicates its
complex conjugate. The integration of Euu at each streamwise location is taken over a
circular shell in the [κy × κz] space, where κ represents the wavenumber. This definition
of the Fourier coefficient is consistent with the classic compressible turbulence literature
(Kida & Orszag 1990; Lele 1992), extended to include the indicator function to account
for particles.

Figure 9 shows the energy spectra for Case 5 (Ms = 1.66, Φp = 0.2) at various x
locations within the particle curtain at t/τL = 2. The spectra for the initial 40 grid
points (x − x0 < D) are excluded because the turbulence is not fully developed in this
region. It is evident that the spectra remain relatively consistent across the streamwise
positions, exhibiting minimal variation from the ensemble average of all spectra. Thus,
although the flow is inhomogeneous in x , the turbulence is relatively homogeneous in the
majority of the curtain. Consequently, subsequent figures will only display the ensemble
average.

The inclusion of the discontinuous indicator function in (3.14) introduces oscillations
throughout the spectrum, known as a ‘ringing’ artefact. While the ringing can be mitigated
by applying a Butterworth filter or similar methods, such filtering was not employed to
avoid the introduction of ad hoc user-defined parameters.
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Most of the energy resides at length scales that coincide with the mean interparticle
spacing, λ. The interparticle spacing is found to differentiate the energy-containing range
from the inertial subrange, indicating that wakes in the interstitial spaces between particles
are responsible for the generation of PTKE. An inertial subrange is evident at scales
smaller than λ, characterized by an energy spectrum that follows a −5/3 power law
before transitioning to a steeper −3 power law at higher wavenumbers. The energy
diminishes rapidly at scales below 2�x , which is attributed to numerical dissipation.
Interestingly, part of the inertial subrange aligns with characteristics of homogeneous
single-phase turbulence, displaying a −5/3 power law, while the smaller scales align with
BIT, evidenced by a −3 power law. However, the presence of noise in the spectra makes it
challenging to draw definitive conclusions.

In figure 10, the ensemble-averaged spectra are compared across different cases at
t/τL = 2. A broadband reduction in Euu is observed with increasing Ms , which is
consistent with the observations made in the PTKE budget. As before, the turbulence
levels are largely invariant with Φp. For each case, the mean interparticle spacing is found
to delineate the inertial subrange. Compensated spectra are also shown to better identify
the power-law scaling, which appears consistent in each case. The spectrum decays with
a −5/3 law for non-dimensional wavenumbers roughly between 5 and 40, while at higher
wavenumbers there is a steeper −3 decay. It remains unclear whether this steepening
is due to gas-phase compressibility, interphase exchange with particles, or both. The
following section decomposes the turbulent velocity field into solenoidal and dilatational
components to gain further insight.

3.5.1. Helmholtz decomposition
A Helmholtz decomposition of the velocity field is performed to analyse the solenoidal
(divergence-free) and dilatational (curl-free) components separately, according to (Kida &
Orszag 1990; Yu, Xu & Pirozzoli 2019)

u = usol + udil , (3.15)

where usol = ∇ × A and udil = ∇ϕ. Here A is the vector potential satisfying ∇2 A = −ω,
where ω = ∇ × u is the local vorticity. The velocity potential ϕ satisfies ∇2ϕ = ∇ · u.

Figure 11 shows two-dimensional slices of the instantaneous streamwise velocity
components. The solenoidal component exhibits significant fluctuations throughout the
curtain, capturing particle wakes. In contrast, the dilatational velocity field remains
relatively small within the curtain and increases sharply at the downstream edge, where
the flow chokes. This indicates that the majority of PTKE is concentrated in the solenoidal
portion, with compressibility playing a minor role except near large volume fraction
gradients.

Figure 12 shows energy spectra of the streamwise solenoidal and dilatational velocity
components at t/τL = 2. The solenoidal energy spectrum is approximately two orders
of magnitude larger than the dilatational component across all wavenumbers and
tends to decrease with increasing Ms , while the dilatational component increases with
increasing Mach number. These findings align with observations from direct numerical
simulations of compressible homogeneous isotropic turbulence (Donzis & Jagannathan
2013). Interestingly, only the solenoidal spectrum demonstrates a −3 power law decay,
while the dilatational component maintains an approximate −5/3 scaling throughout
the inertial subrange. Consequently, the −3 power law decay may be attributed to
incompressible wakes rather than compressible effects.

A similar decomposition of the dissipation rate was performed following Sarkar et al.
(1991) and Donzis & John (2020), yielding solenoidal (ρ̄εs =μω′′

i ω
′′
i ; ω′′ = ∇ × u′′) and
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Figure 10. (a,c,e) Mean and (b,d,f ) compensated energy spectra of streamwise velocity fluctuations within the
particle curtain at t/τL = 2 for (a, b) Φp = 0.1, (c, d) Φp = 0.2 and (e, f ) Φp = 0.3. Here Ms = 1.2 (light
blue, square), Ms = 1.66 (lavender, circle) and Ms = 2.1 (purple, triangle).

dilatational (ρ̄εd = 4/3μ(∂u′′
i /∂xi )2) components. It was found that εs dominates the total

dissipation of PTKE, exceeding εd by approximately two orders of magnitude.

4. Two-fluid turbulence model
In this section, we propose a two-equation model for PTKE and its dissipation.
This turbulence model is integrated into a one-dimensional Eulerian-based two-fluid
framework. The hyperbolic equations for particle-laden compressible flows include added
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Figure 11. A two-dimensional slice of the (a) solenoidal and (b) dilatational streamwise velocity fields at
t/τL = 2 for Case 5.

mass and internal energy contributions, derived from kinetic theory based on the recent
work of Fox (2019) and Fox, Laurent & Vié (2020). The section ends with an a posteriori
analysis of the turbulence model and comparisons are made with the particle-resolved
simulations.

4.1. A kinetic-based hyperbolic two-fluid model
Particle-resolved simulations require grid spacing significantly smaller than the particle
diameter to adequately resolve boundary layers and capture relevant aerodynamic
interactions. Eulerian-based two-fluid models are a widely used coarse-grained modelling
approach that assume the properties of both solid and fluid phases can be expressed
as interpenetrating continua interacting through interphase drag terms. Unlike particle-
resolved simulations, the computational cost of modelling the particle phase scales with
the number of grid cells rather than the number of particles, making it a more efficient
option for simulating systems with a large number of particles.

The added mass is included in the mass, momentum and energy balances, augmented
to account for particle wakes. These equations are fully hyperbolic and avoid the ill-
posedness common in conventional compressible two-fluid models with two-way coupling
(Fox et al. 2020). To match the conditions used in the particle-resolved simulations,
stationary monodisperse particles are considered (i.e. the particle velocity up = 0,
granular temperatureΘp = 0 and αpρp is constant in the curtain, where αp = 1 − αg is the
particle volume fraction and ρp is the particle density). Heat transfer between the phases
is neglected. For brevity, brackets and tildes are omitted and it is implied that the equations
are written in terms of Favre- and phase-averaged quantities.
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Figure 12. (a,c,e) Mean and (b,d,f ) compensated spectra of the streamwise velocity fluctuations computed
using solenoidal ( ) and dilatational ( ) velocity fields at t/τL = 2 for (a, b) Φp = 0.1, (c, d) Φp = 0.2
and (e, f ) Φp = 0.3. Colour scheme same as figure 10.

The governing equation for mass balance (added mass, gas phase) in one spatial
dimension are given by

∂

∂t
(αaρa)= Sa,

∂

∂t
(α�gρ)+

∂

∂x
(α�gρu)= −Sa .

(4.1)
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The gas-phase momentum balance is

∂

∂t
(α�gρu)+ ∂

∂x
(α�gρu2 + p̂ + α�pα

�
gρu2)= −α

�
pρ

τp
u + α�p

( ∂
∂x

p̂ + Fpg

)
− Sgp,

(4.2)
and the gas-phase total energy balance is

∂

∂t
(α�gρE)+ ∂

∂x
(α�gρuE + α�gu p̂)= −SE . (4.3)

The added-mass internal energy balance is

∂

∂t
(αaρaea)= SE . (4.4)

Here, αa is the volume fraction of the added-mass phase and ρa is its density. The
gas-phase volume fraction is replaced by α�g = αg − αa , α�p = αp + αa , α�g = 1 − α�p and
ea is the specific internal energy of the added mass. The gas- and added-mass phases
have the same pressure p, but different temperatures T and Ta , found from e and ea ,
respectively. Here Sa represents mass exchange between the two phases through added
mass, leading to momentum Sgp and energy SE exchange. The particle response time
scale τp = 4ρp D2/(3μCD Rep) depends on the drag coefficient CD modelled using the
drag law from Osnes et al. (2023). This model takes into account the effects of local
volume fraction, the particle Reynolds number Rep = ρ|u|D/μ and particle Mach number
Mp = |u|/c based on slip velocity |u| (|u| = |u − u p|, u p = 0). The remaining parameters
are provided in Appendix B. Note that PTKE contributes to the modified pressure p̂.

The equations are solved using a standard finite-volume method implemented in
MATLAB. A HLLC (Harten–Lax–van Leer–Contact) scheme (Toro, Spruce & Speares
1994) is employed to solve the hyperbolic part of the system. Further details on the
implementation and discretization of the one-dimensional two-fluid model can be found
in Boniou & Fox (2023).

4.2. Two-equation model for PTKE
To capture PTKE in the Eulerian framework, a two-equation kg–ε model is proposed that
retains only the significant source terms from the budget,

∂

∂t
(α�gρkg)+ ∂

∂x
(α�gρkgu )=Ps +PD − (1 + M2

t )α
�
gρε, (4.5)

∂

∂t
(α�gρε)+

∂

∂x
(α�gρεu )= Cε,1

ε

kg
PS + Cε,D

τD
PD − Cε,2 α

�
gρ
ε2

kg
, (4.6)

where Cε,1 = 1.44 and Cε,2 = 1.92 are constants from single-phase turbulence modelling
(Pope 2000). The mean-shear production term is Ps = −α�gρũ′′u′′(∂u/∂x). Drag
production is PD = α�pρpu2/τp. Here τD = D/|u| is the rate of drag dissipation. Here
ε represents the solenoidal component of dissipation, while the dilatational component is
captured by the compressibility correction (1 + M2

t ) (Sarkar et al. 1991).
The mean-shear production term, Ps , includes the streamwise component of the

Reynolds stress, ũ′′u′′. Based on the findings from § 3.3, the anisotropy was found to
be relatively constant across the curtain and independent of volume fraction and shock
Mach number (see figure 5). The streamwise component of Reynolds stress is therefore
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given by

ũ′′u′′ = 2
(

b11 + 1
3

)
kg,

ṽ′′v′′ = w̃′′w′′ = 2
(

b22 + 1
3

)
kg,

(4.7)

with b11 = 0.2 and b22 = −0.1.
In the two-equation model, the only remaining term requiring closure is Cε,D , a model

coefficient that controls the portion of PTKE produced through drag that ultimately gets
dissipated. In the limits of homogeneity and steady state with Mt = 0, the unsteady,
convective and mean shear production terms go to zero, thus reducing (4.5) and (4.6) to

PD = α�gρε=⇒ ε = α�pρp

α�gρ

u2

τp
(4.8)

and
Cε,D
τD

PD = Cε,2α
�
gρ
ε2

kg
=⇒Cε,D = Cε,2τDτp

u2

α�gρ

α�pρp

ε2

kg
, (4.9)

respectively. Substituting (4.8) into (4.9) yields

kg

u2 = Cε,2
Cε,D

α�pρp

α�gρ

τD

τp
=⇒Cε,D = 3

4

α�p

α�g

u2

kg
Cε,2CD. (4.10)

We now calibrate the algebraic model for PTKE proposed by Mehrabadi et al. (2015) for
homogeneous particle suspensions valid for αg Rep < 300, Mp = 0 and αp � 0.1 as

kg

u2 = 2αp

(
1 + 1.25α3

g exp(−αp
√
αg Rep)

)
. (4.11)

Plugging (4.11) into (4.10) provides closure for Cε,D and ensures the model returns
the correct level of PTKE in the limit of incompressible, homogeneous, steady flow.
Because α�p → αp when αp → 0, Cε,D remains finite outside the particle curtain.
With the expression for Cε,D , the two-equation transport model for PTKE and
dissipation is now fully closed and is implemented in the two-fluid model from
§ 4.1.

4.3. A posteriori analysis
One-dimensional shock–particle interactions are simulated using the two-fluid model
detailed above with the parameters used in the particle-resolved simulations. It
should be noted that the results will depend significantly on the volume fraction
profile. To ensure a fair comparison, one-dimensional volume fraction profiles
are extracted from the particle-resolved simulations and used in the model (see
figure 13).

Figure 14 shows comparisons of the mean streamwise velocity between the two-equation
model and particle-resolved simulations. Overall excellent agreement is observed. The
locations of the transmitted and reflected shocks are predicted correctly. The model can
be seen to predict choked flow at the downstream edge resulting in supersonic expansion,
closely matching the particle-resolved simulations.

Figure 15 shows comparisons of PTKE between the two-equation model and particle-
resolved simulations at two time instances. Results show good agreement for all cases

1023 A35-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
83

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10831


Journal of Fluid Mechanics

(x – x0)/L

αp

1.00.50

0.4

0.3

0.1

0

0.2

Figure 13. One-dimensional particle volume fraction profiles obtained from the particle-resolved simulations
for Φp = 0.1 (light pink), Φp = 0.2 (pink) and Φp = 0.3 (purple).
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ũ/
u p

s

(e)

(x – x0)/L
1.00.50

1.2

1.0

0.8

0.6

0.4

0.2

0

ũ/
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Figure 14. Comparison of mean streamwise velocity from particle-resolved simulations ( ) with results
from the two-equation model ( ). Here (a, d) Ms = 1.2, (b, e) Ms = 1.66, (c, f ) Ms = 2.1. Here (a–
c) t/τL = 1 and (d–f ) t/τL = 2. The colour scheme for different volume fraction cases is the same as in
figure 13.

considered except for the cases with Ms = 1.2 at higher volume fractions. The model
predicts an increase in PTKE with Φp, which is not observed in the particle-resolved
simulations. Despite this, the model results show overall good agreement both within the
curtain and downstream.

The terms in the PTKE budget computed from the two-equation model are compared
with particle-resolved simulation data to identify and explain the observed discrepancies
in PTKE. Specifically, the dominant terms – drag production PD , viscous dissipation αgρε

and mean-shear production Ps – are examined. Figure 16 presents the comparison for one
case, with similar results observed across all cases. Overall, excellent agreement is found
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Figure 15. Comparison of PTKE between particle-resolved simulations ( ) with the two-equation model
( ). Here (a, d) Ms = 1.2, (b, e) Ms = 1.66, (c, f ) Ms = 2.1. Here (a–c) t/τL = 1 and (d–f ) t/τL = 2. The
colour scheme for different volume fraction cases is the same as in figure 13.
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Figure 16. Comparison of terms in the PTKE budget between the two-equation model ( ) and particle-
resolved simulations ( ) for (a) Ms = 1.2 and Φp = 0.2, (b) Ms = 1.66 and Φp = 0.2 and (c) Ms = 2.1 and
Φp = 0.3 at t/τL = 2. Here P P

D (red), Ps (purple) and αgρgεg (blue).

over the three time instances shown. The largest discrepancies occur at the upstream and
downstream edges of the curtain, where the particle-resolved simulations predict a sharper
increase in drag production at the upstream edge and greater dissipation at the downstream
edge. These differences may be attributed to numerical diffusion in the coarse-grained
model.

The streamwise and spanwise fluctuations are reconstructed using (4.7) and compared
with particle-resolved simulations in figure 17. Overall, the results show good agreement,
with Cases 2 and 3 exhibiting the most discrepancies. These discrepancies may arise from
the drag model, the choice of Cε,D , or the omission of the viscous term in the two-fluid
model. At the downstream edge, streamwise fluctuations are slightly underpredicted, likely
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Figure 17. Comparison of pseudo-turbulent Reynolds stresses between the particle-resolved simulations ( )
and the model ( ). Here (a, d) Ms = 1.2, (b, e) Ms = 1.66, (c, f ) Ms = 2.1. Colour scheme defined in
figure 4.

due to an overprediction of viscous dissipation, as observed in the previous figure. This
overprediction is ultimately linked to the choice of Cε,D or the drag model. Despite these
issues, the two-equation model predicts the overall behaviour well, including the PTKE
downstream of the curtain, in the pure gas.

The gas-phase turbulence downstream of the curtain lacks any production terms and,
according to the budget, should only advect and diffuse. The cases considered so far
extend only 6D from the downstream curtain edge to the right domain boundary. Here, we
examine Case 10 from table 1, with Ms = 1.66, Φp = 0.3, and a domain extending 34D
(2L) downstream. Figure 18 shows PTKE comparisons after the flow reaches a statistically
stationary state. The PTKE decay resembles grid-generated turbulence, and the model
captures the turbulence transport and decay well.
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Figure 18. Comparison of PTKE of the longer domain (Case 10) between particle-resolved simulations ( )
and the two-equation model ( ) at (a) t/τL = 3, (b) t/τL = 4 and (c) t/τL = 5.

5. Conclusions
When a shock wave interacts with a suspension of solid particles, momentum and energy
exchanges between the phases give rise to complex flow. Particle wakes induced by the
transmitted shock generate velocity fluctuations referred to as ‘pseudo-turbulence’. Phase-
averaging the viscous compressible Navier–Stokes equations reveals a route for turbulence
generation through drag production within the particle curtain and localized mean-shear
production at the edge of the curtain. This turbulence generation is balanced by viscous
and dilatational dissipation.

Three-dimensional particle-resolved simulations of planar shocks interacting with
stationary spherical particles were used to analyse the characteristics of pseudo-turbulence
for a range of shock Mach numbers and particle volume fractions. In each case, PTKE
is generated through interphase drag coupling, contributing to 20 %−50 % of the post-
shock kinetic energy. The abrupt change in volume fraction at the downstream edge of
the curtain chokes the flow, resulting in supersonic expansion where PTKE is maximum.
The pseudo-turbulent Reynolds stress is highly anisotropic but approximately constant
throughout for the range of volume fractions and Mach numbers considered. The energy
spectra of the streamwise gas-phase velocity fluctuations reveal an inertial subrange that
begins at the mean interparticle spacing and decays with a −5/3 power law then steepens
to −3 at smaller scales. This −3 scaling only exists in the solenoidal component of the
velocity field and is attributed to particle wakes.

A one-dimensional two-equation turbulence model was formulated for PTKE and its
dissipation and implemented within a hyperbolic two-fluid framework. Drag production
is closed using a drag coefficient that takes into account local volume fraction, Reynolds
number and Mach number. A new closure is proposed for drag dissipation that ensures the
proper amount of PTKE is obtained in the limit of statistically stationary and homogeneous
flow. An a posteriori analysis demonstrated the ability of the model to predict PTKE
accurately during shock–particle interactions and capture flow-choking behaviour. Such a
turbulence model can be adopted into Eulerian two-fluid models or Eulerian–Lagrangian
frameworks.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2025.10831.

Acknowledgements. The authors would like to acknowledge the computing resources and assistance
provided by Advanced Research Computing at the University of Michigan, Ann Arbor. The authors would
also like to thank the resources provided by the NASA High-End Computing (HEC) Program through the
NASA Advanced Supercomputing (NAS) Division at Ames Research Center.

1023 A35-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
83

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10831
https://doi.org/10.1017/jfm.2025.10831


Journal of Fluid Mechanics

Case Lx/D L y/D Lz/D Nx × Ny × Nz Np

A 30 8.5 8.5 1200 × 340 × 340 470
B 30 12 12 1200 × 480 × 480 936
C 30 24 24 1200 × 960 × 960 3740

Table 2. Parameters used for the domain size study. For each case, Ms = 1.66 and Φp = 0.2.
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Figure 19. Effect of domain size on the PTKE budget for Ms = 1.66 and Φp = 0.2 at t/τL = 1.5. Case A
( ), Case B ( ), Case C ( ). Colours correspond to figure 8.
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Appendix A. Convergence studies
This section quantifies the effects of varying domain size and particle configurations
within the curtain in particle-resolved simulations. A grid refinement study of the
numerical solver for periodic compressible flow over a homogeneous suspension is
detailed in our previous work (Khalloufi & Capecelatro 2023).

A.1. Effect of domain size
In this section, we examine the effects of varying the domain size in the periodic spanwise
(y and z) directions. A series of three-dimensional simulations were performed with Ms =
1.66 and Φp = 0.2 to evaluate the impact of domain size on the individual terms in the
PTKE budget. Table 2 summarizes the cases considered. The streamwise domain length
Lx is kept constant, while the spanwise dimensions L y and Lz are varied. Uniform grid
spacing is maintained at �= D/40.

Figure 19 presents comparisons of the individual PTKE budget terms. The results
indicate that variations in the periodic domain lengths have minimal influence on the
budget terms, suggesting that volume-averaging over two-dimensional y−z slices can be
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Figure 20. Effect of random particle placement on the PTKE budget for Ms = 1.2 and Φp = 0.3 at t/τL = 1.
Realization 1 ( ), realization 2 ( ), realization 3 ( ). Colours correspond to figure 8.

performed without significantly affecting the one-dimensional statistics. Consequently, for
the case studies presented in the main paper, we adopt L y = Lz = 12D.

A.2. Effect of varying random particle distributions
Particles are randomly distributed within the curtain while avoiding overlap. The
drag force on individual particles is known to depend on the arrangement of their
neighbours (Akiki, Moore & Balachandar 2017; Lattanzi et al. 2022; Osnes et al.
2023). This section investigates the impact of different random particle configurations
within the curtain on PTKE for Ms = 1.2 and Φp = 0.3. Three distinct realizations
are considered, keeping all parameters constant except for the random arrangement of
particles.

Figure 20 shows the PTKE budget terms for each realization at t/τL = 1, when the
shock has just passed the downstream edge of the curtain. All realizations exhibit similar
trends with negligible discrepancies. Therefore, we conclude that the random distribution
of particles does not significantly affect the statistics.

Appendix B. One-dimensional two-fluid model parameters
Starting from the conserved variables X1 = αaρa and X2 = α�gρ with known αp, the
primitive variables are found using the following formulae:

κ̂ = X1

X2
; κ = T

Ta
; T = γ e

C p
; Ta = γ ea

C p
; e = E − 1

2
u2 − kg; (B1)

αg = 1 − αp; αa = κ̂

κ̂ + κ
αg; α�p = αp + αa; α�g = αg − αa; ρ = X2

α�g
; (B2)

p = (γ − 1)ρe; p̂ = p + 2/3ρkg. (B3)

The remaining model parameters are defined as follows:

Pp f p = ρ(α�pu)2; Fpg = u2∂xρ + 2/3ρ(∂α�gu/∂x)u; (B4)
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Sa = ρ

τa
(c�mαpαg − αa); Sgp = max(Sa, 0)u; SE = max(Sa, 0)E + min(Sa, 0)ea;

(B5)

Rep = ρDu

μ
; Pr = C pμ

k
; (B6)

c�m = 1
2

min(1 + 2αp, 2); τa = 0.001τp; τp = 4ρp D2

3μCD Rep
. (B7)

The drag coefficient CD is given by Osnes et al. (2023).
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