QUADRATIC OPERATORS DO NOT GENERATE MAXIMAL LEFT IDEALS OF THE WEYL ALGEBRA

S. C. COUTINHO*

Departamento de Ciências da Computação, Instituto de Matemática, Universidade Federal do Rio de Janeiro, P.O. Box 68530, 21945-970 Rio de Janeiro, RJ, Brazil e-mail:collier@impa.br

(Received 2 November, 1998)

Abstract. We prove that if $n \ge 2$ then $A_n d$ cannot be a maximal left ideal of the *n*-th Weyl algebra A_n over \mathbb{C} for almost every operator *d* of degree 2 of A_n .

1991 Mathematics Subject Classification. Primary 16S32.

In Section 5.2 of [1], Bernstein and Lunts claim that an operator of A_n of degree 2 (with respect to the Bernstein filtration) cannot generate a maximal left ideal of A_n . For the sake of simplicity they give a proof under the assumption that the operator of degree 2 has a generic principal symbol. Moreover, their proof is more of a sketch than a complete proof, and it is not really elementary. In this note we give a completely elementary proof of a result that includes the generic result proved by Bernstein and Lunts. For unexplained terminology and for more information on the Weyl algebra see [2].

Throughout this note we will denote by B_k the k-th component of the Bernstein filtration of the complex Weyl algebra A_n . Recall that A_n is generated over \mathbb{C} by *n* commuting variables x_1, \ldots, x_n and their partial differential operators, denoted respectively by $\partial_1, \ldots, \partial_n$. We will say that an element of A_n is a *homogeneous operator of degree* $r \ge 1$ if it can be written as a linear combination of standard monomials $x^{\alpha} \partial^{\beta}$ for which $|\alpha| + |\beta| = r$. The principal symbol of $d \in A_n$ with respect to the Bernstein filtration will be denoted by $\sigma(d)$. Thus, setting $\sigma(x_i) = y_i$ and $\sigma(\partial_i) = \xi_i$ we have $\sigma(x^{\alpha} \partial^{\beta}) = y^{\alpha} \xi^{\beta}$. Therefore, by assuming that the monomials of a symbol are always to be written in the form $y^{\alpha} \xi^{\beta}$, we conclude that a homogeneous operator is uniquely determined by its symbol.

Let V_1 be the complex vector space with basis x_1, \ldots, x_n and $\partial_1, \ldots, \partial_n$. One easily checks that

$$[x^{\alpha}\partial^{\beta}, x_i] = \beta_i x^{\alpha}\partial^{\beta-e_i}$$
 and $[x^{\alpha}\partial^{\beta}, \partial_i] = -\alpha_i x^{\alpha-e_i}\partial^{\beta}$,

where e_i is the *n*-vector with 1 in the *i*-th entry and zeros elsewhere. Thus a homogeneous operator *P* of degree 2 induces a vector space endomorphism ad_d of V_1 by mapping $u \in V_1$ to [P, u]. Moreover if *P* has degree 1, then the same rule determines an element of the dual V_1^* .

The symbols of operators of degree 2 in *n* variables are quadratic polynomials in 2*n* variables and are thus parametrized by \mathbb{C}^N , where N = (2n+1)(n+1). Let \mathcal{O}_n be

*The work on this paper was partially supported by grants from CNPq and PRONEX(Commutative Algebra and Algebraic Geometry).

the set of points in \mathbb{C}^N that correspond to polynomials p that satisfy both of the following conditions:

(1) *p* is irreducible;

(2) if *P* is the homogeneous operator of degree 2 whose symbol is *p* then $ad_p^n \neq 0$.

One immediately checks that \mathcal{O}_n is a Zariski open set of \mathbb{C}^N . Moreover if $n \ge 2$, then \mathcal{O}_n is not empty because the symbol of $P = x_1\partial_1 + x_2\partial_2$ is irreducible, and $[P, x_1] = x_1$. In particular, conditions (1) and (2) hold 'generically', in the sense of [1], when $n \ge 2$.

THEOREM. If d is an operator of degree 2 of A_n whose symbol corresponds to a point in \mathcal{O}_n , then $A_n d$ is not a maximal left ideal of A_n .

Proof. We may write d in the form $d = d_2 + d_1 + d_0$, where d_i is a homogeneous operator of degree *i*. Since the vector space endomorphism ad_{d_2} is not nilpotent by condition (2), it follows that it must have a non-zero eigenvalue $\lambda \in \mathbb{C}$. Thus there must exist $0 \neq v \in V_1$, an operator of degree 1, such that $[d_2, v] = \lambda v$. Choose $c \in \mathbb{C}$ such that $[d_1, v] = c\lambda$, and write u = v + c. A straightforward computation shows that $[d, u] = \lambda u$. We claim that $A_n d + A_n u$ is a proper left ideal of A_n . Since this ideal contains $A_n d$ properly, it follows that $A_n d$ is not maximal.

Suppose, by contradiction, that $A_nd + A_nu$ is not a proper ideal of A_n ; in other words $A_nd + A_nu = A_n$. Choose $a, b \in A_n$ such that ad + bu = 1, with a of the smallest possible degree. Note that neither a nor b can be zero. Taking principal symbols we have that

$$\sigma(a)\sigma(d) + \sigma(b)\sigma(u) = 0.$$

Since $\sigma(u)$ has degree 1 and $\sigma(d)$ is irreducible by condition (1), we conclude that there exist α , a', $b' \in A_n$, $\alpha \neq 0$, such that $a = -\alpha u + a'$ and $b = \alpha d + b'$, where a' has smaller degree than a, and b' has smaller degree than b. Hence

$$1 = (-\alpha u + a')d + (\alpha d + b')u,$$

so that

$$1 = \alpha[d, u] + (a'd + b'u).$$

Since $[d, u] = \lambda u$ we end up with

$$1 = a'd + (b' + \lambda\alpha)u,$$

which contradicts the minimality of the degree of a. Therefore $A_n d + A_n u \neq A_n$, and the proof is complete.

REFERENCES

1. I. N. Bernstein and V. Lunts, On non-holonomic irreducible *D*-modules, *Invent*. *Math.* 94 (1988), 223–243.

2. S. C. Coutinho, *A primer of algebraic D-modules*, London Mathematical Society Student Texts No. 33 (Cambridge University Press, 1995).