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Abstract

The invariant Galton–Watson (IGW) tree measures are a one-parameter family of crit-
ical Galton–Watson measures invariant with respect to a large class of tree reduction
operations. Such operations include the generalized dynamical pruning (also known as
hereditary reduction in a real tree setting) that eliminates descendant subtrees according
to the value of an arbitrary subtree function that is monotone nondecreasing with respect
to an isometry-induced partial tree order. We show that, under a mild regularity condi-
tion, the IGW measures are attractors of arbitrary critical Galton–Watson measures with
respect to the generalized dynamical pruning. We also derive the distributions of height,
length, and size of the IGW trees.
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1. Introduction

In this paper we continue the study of the critical branching processes with the progeny
generating function Q(z) = z + q(1 − z)1/q for a given parameter q ∈ [1/2, 1). The importance
of these processes was previously observed in [1, 7, 9, 20, 21, 23, 25, 32]. The random tree
measures induced by these branching processes are called here the invariant Galton–Watson
(IGW) measures. This paper has two goals. First, we establish the main metric properties of
the IGW trees: the distributions of their height, length, and size (the number of edges). These
distributions are well-studied for a special case of the IGW process with q = 1/2 that coin-
cides with the critical binary Galton–Watson process [20]. Here we establish the results for
the general case of q ∈ [1/2, 1). Second, we extend the results of [21], where the IGW trees
were shown to be the attractors of the pushforward measures under the iterative application
of Horton pruning (eliminating tree leaves followed by a series reduction). Here, we obtain
analogous results under a much broader generalized dynamical pruning introduced in [19].
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Since the generalized dynamical pruning can be expressed via the hereditary reduction of [9],
the attractor property of IGW tree measures holds for the hereditary reduction as well. Also,
the IGW trees turn out to be the attractors under the Bernoulli leaf coloring, a tree reduction
studied in [8].

The paper is organized as follows. Section 2 contains all the necessary background. The
results are stated in Section 3 and proved in Section 4. The paper concludes with a discussion
in Section 5. Appendix A contains the statement of the Lagrange inversion theorem used in this
paper. In Appendix B, Karamata’s theorem and its converse are stated. Appendix C contains a
proof of Lemma 2.5.

2. Background

2.1. Spaces of trees

A tree is called rooted if one of its vertices, denoted by ρ, is designated as the tree root. The
existence of root imposes a parent–offspring relation between each pair of adjacent vertices:
the one closer to the root is called the parent, and the other the offspring. A tree is called
reduced if it has no vertices of degree 2, with the root as the only possible exception. Let
T denote the space of finite unlabeled rooted reduced trees with no planar embedding. The
absence of planar embedding is the absence of order among the offspring of the same parent.
The space T includes the empty tree φ comprising a root vertex ρ and no edges.

Let L denote the space of trees from T equipped with edge lengths. Thus, a tree in L is
itself a metric space. A metric tree T ∈L can be considered as a metric space with distance
d(·, ·) induced by the Lebesgue measure along the tree edges [20]. Hence, a metric tree T ∈L
can be represented as a pair T = (S, d), where S represents the space and d is the metric defined
on the space S. The operator SHAPE(T) : L→ T projects a tree T ∈L with edge lengths on a
tree in T that retains the combinatorial structure of T (and drops the edge length assignment).

A nonempty rooted tree is called planted if its root ρ has degree one. In this case the only
edge connected to the root is called the stem. If the root ρ is of degree ≥ 2 then the tree is called
stemless. We denote by T | and T ∨ the subspaces of T consisting of planted and stemless trees,
respectively. Similarly, L| and L∨ are the subspaces of L consisting of planted and stemless
trees. Additionally, we include the empty tree φ = {ρ} as an element in each of these subspaces,
T |, T ∨, L|, and L∨, defined above.

2.2. Galton–Watson tree measures

Consider a Galton–Watson branching process with a given progeny distribution (probability
mass function) {qk}, k = 0, 1, 2, . . .. More specifically, we consider a discrete-time Markov
process that begins with a single progenitor, which produces a single offspring (hence the trees
we examine are planted). At each later step, each existing population member produces k ≥ 0
offspring with probability qk, independently from the prior history of the process; see [3, 13].

A Galton–Watson tree is forme d by the trajectory of the Galton–Watson branching process,
with the progenitor corresponding to the tree root ρ. The single offspring of the progenitor is
represented in the tree by the vertex connected to the tree root by the stem [20]. We denote by
GW({qk}) the probability measure on T | induced by the Galton–Watson process with progeny
distribution {qk}. Assuming q1 < 1, the resulting tree is finite with probability one if and only
if
∑∞

k=0 kqk ≤ 1, i.e., the Galton–Watson process is either subcritical or critical. In this paper
we let q1 = 0 so that the Galton–Watson process generates a reduced tree.
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For a given probability mass function {qk} with q1 = 0 and a positive real λ, consider a ran-

dom tree T in L| satisfying SHAPE(T)
d∼ GW({qk}), and such that, conditioned on SHAPE(T),

the edge lengths are distributed as independent and identically distributed (i.i.d.) exponential
random variables with parameter λ. Let GW({qk}, λ) denote the distribution of the random
tree T thus defined. Measures GW({qk}) and GW({qk}, λ) induced by critical (or subcritical)
branching processes will be called critical (or subcritical) Galton–Watson measures.

2.3. Invariant Galton–Watson measures

The invariant Galton–Watson measures form a single-parameter family of critical Galton–
Watson measures GW({qk}) with q1 = 0 on T |, which we define as follows.

Definition 2.1. (Invariant Galton–Watson measures in T |) For a given q ∈ [1/2, 1), a critical
Galton–Watson measure GW({qk}) on T | is said to be the invariant Galton–Watson (IGW)
measure with parameter q, and denoted by IGW(q), if its generating function is given by

Q(z) = z + q(1 − z)1/q. (1)

The respective branching probabilities are q0 = q, q1 = 0, q2 = (1 − q)/2q, and

qk = 1 − q

k! q

k−1∏
i=2

(i − 1/q) for k ≥ 3. (2)

Here, if q = 1/2, then the distribution is critical binary, i.e., GW(q0= q2=1/2). If q ∈ (1/2, 1),
the distribution is of Zipf type with

qk = (1 − q)�(k − 1/q)

q�(2 − 1/q) k! ∼ Ck−(1+q)/q, where C = 1 − q

q �(2 − 1/q)
. (3)

We notice that

Q′(z) = 1 − (1 − z)1/q−1, Q′′(z) = (1 − z)1/q−2,

which implies that Q′(1) = 1, that is, the IGW processes are critical, and Q′′(1) < ∞, that is,
the offspring distribution’s second moment is finite, if and only if q = 1/2.

These tree measures (Definition 2.1) are also known as stable Galton–Watson trees or
Galton–Watson trees with stable offspring distribution [9]. They have previously been con-
sidered in the work of Zolotarev [32], Neveu [25], Le Jan [23], Duquesne and Le Gall [7],
Abraham and Delmas [1], and Duquesne and Winkel [9]. Moreover, in [25], Neveu regards the
generating functions (1) to be the most important in the critical case.

The definition of the IGW measure can be extended to L| by assigning i.i.d. exponentially
distributed edge lengths.

Definition 2.2. (Invariant Galton–Watson measures in L|) For a given q ∈ [1/2, 1) and λ > 0,
a random tree T in L| is said to be an exponential invariant Galton–Watson tree if it satisfies
the following properties:

(i) SHAPE(T)
d∼ IGW(q);

(ii) conditioned on SHAPE(T), the edge lengths are distributed as i.i.d. exponential random
variables with parameter λ > 0.

Such a tree is denoted by IGW(q, λ). In other words, T
d∼ GW({qk}, λ) with qk as in (2).
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2.4. Invariance and attractor properties of IGW family under Horton pruning

Horton pruning of a tree T (in T or L) is done by removing all the leaves of T (leaf ver-
tices together with the corresponding adjacent edges) followed by consecutive series reduction
(removing degree-two vertices by merging adjacent edges into one and adding up their lengths
for a tree in L). The resulting reduced tree is denoted by R(T). We refer to [20] for a detailed
treatment of Horton pruning. The Horton pruning operator R induces a map on T (or L). The
trajectory of each tree T under iterative application of R, i.e.,

T ≡R0(T) →R1(T) → · · · →Rk(T) = φ, (4)

is uniquely defined and finite with the empty tree φ as the (only) fixed point. In [19], it was
established that, under iterative Horton pruning, the IGW(q) measures are the attractors of all
critical Galton–Watson trees that satisfy the following regularity assumption.

Assumption 2.1. Consider a critical Galton–Watson measure GW({qk}) with q1 = 0 and the
respective progeny generating function Q(z). We assume that the following limit exists:

lim
x→1−

Q(x) − x

(1 − x)
(
1 − Q′(x)

) . (5)

We will use the function g(x) defined in the following proposition from [21].

Proposition 2.1. ([21].) Consider a critical Galton–Watson measure GW({qk}) with q1 = 0
and the respective progeny generating function Q(z). Then

Q(x) − x = (1 − x)2g(x),

where g(x) is defined as follows. Let X
d∼ {qk} be a progeny random variable; then

g(x) =
∞∑

m=0

E
[
(X − m − 1)+

]
xm =

∞∑
m=0

∞∑
k=m+1

(k − m − 1)qk xm, (6)

where x+ = max{x, 0}.
An important limit is defined in the following lemma.

Lemma 2.1. ([21].) Consider a critical Galton–Watson measure GW({qk}) with q1 = 0. If
Assumption 2.1 is satisfied, then for g(x) defined in (6) the limit

lim
x→1−

(
ln g(x)

− ln (1 − x)

)
= L (7)

exists, and

lim
x→1−

Q(x) − x

(1 − x)(1 − Q′(x))
= 1

2 − L
.

The following three results (Lemmas 2.2, 2.3, and 2.4) concerning the applicability of
Assumption 2.1 and the limit L in (7) were established in [21].

Lemma 2.2. ([21].) Consider a critical Galton–Watson measure GW({qk}) with q1 = 0. For a

progeny variable X
d∼ {qk} and g(x) in (6), if

E[X2−ε] =
∞∑

k=0

k2−εqk < ∞ ∀ε > 0, (8)
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then L = lim
x→1−

(
ln g(x)

− ln (1−x)

)
= 0. If moreover the second moment is finite, i.e.,

E[X2] =
∞∑

k=0

k2qk < ∞,

then Assumption 2.1 is satisfied with lim
x→1−

Q(x)−x
(1−x)(1−Q′(x)) = 1

2 .

The next lemma provides a basic regularity condition for Assumption 2.1 to hold.

Lemma 2.3. (Regularity condition [21].) Consider a critical Galton–Watson measure

GW({qk}) with q1 = 0 and infinite second moment, i.e.,
∞∑

k=0
k2qk = ∞. Suppose that for the

progeny variable X
d∼ {qk} the following limit exists:

� = lim
k→∞

k

E[X | X ≥ k]
= lim

k→∞

k
∞∑

m=k
qm

∞∑
m=k

mqm

. (9)

Then Assumption 2.1 is satisfied with lim
x→1−

Q(x)−x
(1−x)(1−Q′(x)) = 1 − � and L = 2 + 1

1−�
.

The next lemma follows immediately from Lemma 2.3.

Lemma 2.4. (Zipf distribution [21].) Consider a critical Galton–Watson process GW({qk})
with q1 = 0 and offspring distribution {qk} of Zipf type:

qk ∼ Ck−(α+1) with α ∈ (1, 2] and C > 0. (10)

Then Assumption 2.1 is satisfied, and

L = lim
x→1−

(
ln g(x)

− ln (1 − x)

)
= 2 − α. (11)

In Sections 3.2 and 3.3 of this paper we consider generalizations of the following two
theorems, which were proved in [21].

Theorem 2.1. (Self-similarity under Horton pruning [21].) Consider a critical or subcriti-
cal Galton–Watson measure μ ≡ GW({qk}) with q1 = 0 that satisfies Assumption 2.1. Then
a Galton–Watson measure μ is Horton-prune-invariant (self-similar), i.e., the pushforward
measure ν(T) = μ ◦R−1(T) = μ

(
R−1(T)

)
satisfies ν (T |T �= φ) = μ(T), if and only if μ is

the IGW measure IGW(q) with q ∈ [1/2, 1).

Theorem 2.2. (IGW attractors under iterative Horton pruning [21].) Consider a critical
Galton–Watson measure ρ0 ≡ GW({qk}) with q1 = 0 on T |. Starting with k = 0, and for
each consecutive integer, let νk =R∗(ρk) denote the pushforward probability measure
induced by the pruning operator, i.e., νk(T) = ρk ◦R−1(T) = ρk

(
R−1(T)

)
, and set ρk+1(T) =

νk (T|T �= φ). Suppose Assumption 2.1 is satisfied. Then, for any T ∈ T |,
lim

k→∞ ρk(T) = ρ∗(T),

where ρ∗ denotes the IGW measure IGW(q) with q = 1
2−L and L as defined in (7).

Finally, if the Galton–Watson measure ρ0 ≡ GW({qk}) is subcritical, then ρk(T) converges
to a point mass measure, GW(q0=1).
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2.5. Generalized dynamical pruning

Given a metric tree T = (S, d) ∈L and a point x ∈ S, let 
x,T be the descendant tree of x:
the tree comprising all points of T descendant to x, including x. Then 
x,T is itself a tree in L
with the root at x.

Let T1 = (S1, d1) and T2 = (S2, d2) be two metric rooted trees, and let ρ1 denote the root of
T1. A function f : T1 → T2 is said to be an isometry if Image[f ] ⊆ 
f (ρ1),T2 and for all pairs
x, y ∈ T1,

d2
(
f (x), f (y)

)= d1(x, y).

We use the above-defined notion of isometry to define a partial order in the space L as follows.
We say that T1 is less than or equal to T2, and write T1 � T2, if there is an isometry f : T1 → T2.
The relation � is a partial order as it satisfies the reflexivity, antisymmetry, and transitivity
conditions. We say that a function ϕ : L→R is monotone nondecreasing with respect to the
partial order � if ϕ(T1) ≤ ϕ(T2) whenever T1 � T2.

Next, we recall the definition of the generalized dynamical pruning as stated in [19, 20].
Consider a monotone nondecreasing function ϕ : L→R+ with respect to the above-defined
partial order �. We define the generalized dynamical pruning operator St(ϕ, T) : L→L
induced by ϕ for any given time parameter t ≥ 0 as

St(ϕ, T) := {ρ} ∪
{

x ∈ T \ ρ : ϕ
(

x,T

)≥ t
}
, (12)

where ρ denotes the root of the tree T . Informally, the operator St cuts all subtrees 
x,T for
which the value of ϕ is below the threshold t, and always keeps the tree root.

Below we discuss some well-studied examples of generalized dynamical pruning.

Example 2.1. (Pruning via the Horton–Strahler order) The Horton–Strahler order [5, 17, 20,
29] was initially introduced in the context of geomorphology. It can be defined via the operation
of Horton pruning R. The Horton–Strahler order ord(T) of a planted tree from L| (or T |) is
the minimal number of prunings necessary to eliminate a tree T. The Horton–Strahler order
ord(T) of a stemless tree from L∨ (or T ∨) equals one plus the minimal number of prunings
necessary to eliminate a tree T. For a tree T in either T or L, consider

ϕ(T) = ord(T) − 1. (13)

For k ∈N, let Rk denote the kth iteration of Horton pruning R, i.e., R0(T) = T and Rk =
R ◦ . . . ◦R︸ ︷︷ ︸

k times

. With the function ϕ as in (13), the generalized dynamical pruning operator St =

R�t� satisfies the discrete semigroup property [19, 20]:

St ◦ Ss = St+s for any t, s ∈N0,

as Rt ◦Rs =Rt+s. A recent survey of results related to invariance of a tree distribution with
respect to Horton pruning is given in [20].

Example 2.2. (Pruning via the tree height) If we let the ϕ(T) be the height function, i.e., for a
tree T ∈L, let

ϕ(T) = HEIGHT(T), (14)

then the generalized dynamical pruning St(·) = St(ϕ, ·) will coincide with the continuous
pruning (leaf-length erasure) studied in Neveu [25], which established the invariance of crit-
ical binary Galton–Watson measures with i.i.d. exponential edge lengths with respect to this

https://doi.org/10.1017/apr.2022.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.39


Invariant Galton–Watson trees 649

operation. In this case the operator St is known to satisfy the continuous semigroup property
[9, 19, 25]:

St ◦ Ss = St+s for any t, s ≥ 0.

Example 2.3. (Pruning via the tree length) Let the function ϕ(T) equal the total length of
T ∈L:

ϕ(T) = LENGTH(T). (15)

The pruning operator St(·) = St(ϕ, ·) with the pruning function ϕ as in (15) coincides with
the potential dynamics of the continuum mechanics formulation of the one-dimensional bal-
listic annihilation model A + A →∅ [19]. Importantly, the operator St induced by the length
function ϕ as in (15) does not satisfy the semigroup property (discrete or continuous); i.e.,
St ◦ Ss �= St+s [19].

Example 2.4. (Pruning via the number of leaves) Let LEAVES(T) denote the number of leaves
in a tree T. Then

ϕ(T) = LEAVES(T) (16)

is another monotone nondecreasing function. The generalized dynamical pruning operator
St(·) = St(ϕ, ·) induced by ϕ as in (16) does not satisfy the semigroup property, whether
discrete or continuous. This type of pruning naturally arises in the context of Shreve stream
ordering in hydrodynamics.

2.6. Generalized dynamical pruning as a hereditary reduction

Duquesne and Winkel [9] introduced a very general kind of tree reduction in the con-
text of complete locally compact rooted (CLCR) real trees, which include all the trees in L.
In [9], a hereditary property A is defined as a Borel subset in the space T of CLCR real
trees (more precisely, their equivalence classes under isometry) equipped with the pointed
Gromov–Hausdorff metric such that for a CLCR real tree T ∈T and any x ∈ T ,


x,T ∈ A ⇒ T = 
ρ,T ∈ A.

As an example of a hereditary property, one may consider A = {T ∈T : HEIGHT(T) ≥ t}.
A hereditary property A ⊂T induces a hereditary reduction operator RA : T→T defined as

RA(T) := {ρ} ∪ {
x ∈ T \ ρ : 
x,T ∈ A

}
. (17)

The following result was proved in [9, Theorem 2.18].

Theorem 2.3. (Evolution of Galton–Watson trees under hereditary reduction [9].) Consider a
critical or subcritical Galton–Watson measure μ ≡ GW({qk}, λ) (q1 = 0) on L| with generat-
ing function Q(z). For a hereditary property A ⊂T, let ν denote the corresponding pushforward
probability measure induced by the hereditary reduction RA:

ν(T) = μ ◦ R−1
A (T) = μ

(
R−1

A (T)
)
.

Then ν
(
T ∈ · |RA(T) �= φ

) d= GW
({gk}, λ

(
1 − Q′(1 − p)

))
is a Galton–Watson tree measure

over L| with independent exponential edge lengths with parameter λ
(
1 − Q′(1 − p)

)
, and

generating function

G(z) = z + Q
(
(1 − p) + pz

)− (1 − p) − pz

p
(
1 − Q′(1 − p)

) , (18)

where p = P
(
RA(T) �= φ

)
.
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Observe the following direct link between the operations of generalized dynamical prun-
ing and hereditary reduction. Consider a Borel measurable monotone nondecreasing function
ϕ : L→R+. Then, for a fixed t ≥ 0, the Borel set

A = {T ∈T : ϕ(T) ≥ t} (19)

is a hereditary property, and therefore St(ϕ, T) = RA(T) is a hereditary reduction.
The composition of two hereditary properties A and A′ was defined in [9, Definition 2.12]

as the set
A′ ◦ A = {T ∈T : RA(T) ∈ A′}.

Consequently, in Lemma 2.13 of [9], the hereditary reductions were shown to satisfy the com-
position property, RA′◦A = RA′ ◦ RA. Importantly, if we let At denote the hereditary property in
(19), then

At ◦ As �= As+t

for many (or rather, all but a few) functions ϕ, e.g. for ϕ(T) = LENGTH(T). Speaking of
the exceptions, the equation At ◦ As = As+t is known to hold for ϕ(T) = HEIGHT(T) with
real s, t ∈ [0, ∞), corresponding to Neveu (leaf-length) erasure as in Example 2.2, and for
ϕ(T) = ord(T) − 1 with integer s, t ∈Z+, corresponding to Horton pruning as in Example 2.1.

We will need the following adaptation of Theorem 2.3 for generalized dynamical pruning.

Lemma 2.5. (Pruning Galton–Watson trees) Consider a critical or subcritical Galton–Watson
measure μ ≡ GW({qk}, λ) (q1 = 0) on L| with generating function Q(z). For a monotone
nondecreasing function ϕ : L→R+, let ν denote the corresponding pushforward probability
measure induced by the pruning operator St(T) = St(ϕ, T):

ν(T) = μ ◦ S−1
t (T) = μ

(
S−1

t (T)
)
.

Then ν
(
T ∈ · |T �= φ

) d= GW
({gk}, λ

(
1 − Q′(1 − pt)

))
is a Galton–Watson tree measure over

L| with independent exponential edge lengths with parameter λ
(
1 − Q′(1 − pt)

)
, offspring

probabilities

g0 = Q(1 − pt) − (1 − pt)

pt
(
1 − Q′(1 − pt)

) , g1 = 0,

gm = pm−1
t

m! Q(m)(1 − pt) (1 − Q′(1 − pt))
−1 (m ≥ 2), (20)

where pt = pt(λ, ϕ) = P
(
St(ϕ, T) �= φ

)
, and generating function

G(z) = z + Q
(
(1 − pt) + ptz

)− (1 − pt) − ptz

pt
(
1 − Q′(1 − pt)

) . (21)

Moreover, if μ(T ∈ ·) is critical, then so is ν
(
T ∈ · ∣∣ T �= φ

)
.

An alternative proof of Lemma 2.5 can be found in Appendix C. Since Lemma 2.5 deals
with the finite-leaf trees (LEAVES(T) < ∞), for this lemma and its proof, as well as the whole
set-up of generalized dynamical pruning, we do not need to introduce the Gromov–Hausdorff
metric and to require the function ϕ : L→R+ to be Borel measurable.
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2.7. Bernoulli leaf coloring

Duquesne and Winkel considered the following type of tree reduction in [8]. Fix a prob-
ability p ∈ [0, 1). For a finite tree T ∈ T | (or L|), select a subset of its leaves via performing
LEAVES(T) independent Bernoulli trials, where each leaf is independently selected in with
probability 1 − p. Let Cp(T) be the minimal subtree of T that contains all selected leaves and
the root ρ. If T is a random tree, then so is Cp(T). Notice that Cp is a random operator induced
by a countable sequence of independent Bernoulli random variables.

Theorem 2.4. (Evolution of Galton–Watson trees under Bernoulli leaf coloring [8].) Consider
a critical or subcritical Galton–Watson measure μ ≡ GW({qk}) (q1 = 0) on T | with generating
function Q(z). Then, for a given p ∈ [0, 1), μ

(
Cp(T) ∈ · | Cp(T) �= φ

)
is a Galton–Watson tree

measure over T | with the generating function

Gp(z) = z + Q
(
(1 − p) + gpz

)− (1 − gp) − gpz

gp
(
1 − Q′(1 − gp)

) , (22)

where gp = P
(
Cp(T) �= φ

)
.

Theorem 2.4 readily implies that the IGW trees are invariant with respect to Bernoulli leaf
coloring.

3. Results

3.1. Metric properties of invariant Galton–Watson trees

Here we derive explicit formulas for selected metric properties of IGW(q) and IGW(q, λ)
trees in the respective spaces T | and L|. This includes the distributions of the tree
height (Theorem 3.1), the tree length (Theorem 3.2), and the tree size (number of edges)
(Theorem 3.3), as well as the tail asymptotics for the distributions of the tree length
(Proposition 3.1) and tree size (Proposition 3.2). The proofs are collected in Section 4.1.

Theorem 3.1. (Tree height distribution.) Let T ∈L| be an IGW tree with parameters q ∈
[1/2, 1) and λ > 0, i.e., T

d∼ IGW(q, λ). Then the height of the tree T has the cumulative
distribution function

H(x) = P
(

HEIGHT(T) ≤ x
)= 1 − (

λ(1 − q)x + 1
)−q/(1−q)

, x ≥ 0.

Notice that for the case q = 1/2, we have H(x) = λx
λx+2 , which matches the result in [20].

Theorem 3.2. (Tree length distribution.) Let T ∈L| be an IGW tree with parameters q ∈
[1/2, 1) and λ > 0, i.e., T

d∼ IGW(q, λ). Then the length of the tree T has the probability
density function

�(x) =
∞∑

n=1

(−1)n−1 �(n/q + 1)

n! (n − 1)! �(n/q − n + 2)
(λq)nxn−1, x ≥ 0, (23)

and the cumulative distribution function

L(x) = P
(

LENGTH(T) ≤ x
)=

∞∑
n=1

(−1)n−1 �(n/q + 1)

n! n! �(n/q − n + 2)
(λq)nxn, x ≥ 0. (24)
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Example 3.1. Let q = 1
2 . Then �(x) is already known (see [19, 20]):

�(x) = 1

x
e−λxI1(λx) =

∞∑
n=0

λ2n+1x2ne−λx

22n+1 (n + 1)! n! . (25)

Next, we use the multinomial approach to show that (25) matches Equation (23) for q = 1
2 .

First, we rewrite (25):

�(x) = e−λx
∞∑

n=0

λ2n+1

22n+1 (n + 1)! n!x2n

=
∞∑

k=0

(−λ)k

k! xk
∞∑

n=0

λ2n+1

22n+1 (n + 1)! n!x2n

=
∞∑

m=0

⎛
⎝ ∑

k+2n=m

(−1)k2−2n−1

k! (n + 1)! n!

⎞
⎠ λm+1xm

=
∞∑

m=0

⎛
⎝ ∑

k+2n=m

(−2)k

k! (n + 1)! n!

⎞
⎠ λm+1xm

2m+1
. (26)

Recall that (
z + z−1 + a

)m+1 =
∑

n+k+j=m+1

(m + 1)!
n! k! j! znz−jak,

and

1

2π i

∮
|z|=1

zn−jdz = δj,n+1,

and therefore

1

2π i

∮
|z|=1

(
z + z−1 + a

)m
dz

=
∑

n+k+j=m+1

(m + 1)!
n! k! j! ak 1

2π i

∮
|z|=1

zn−j dz

=
∑

k+2n=m

(m + 1)!
n! (n + 1)! k!ak,

implying ∑
k+2n=m

1

n! (n + 1)! k!ak = 1

2π i(m + 1)!
∮

|z|=1

(
z + z−1 + a

)m+1
dz.
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Now,

1

2π i

∮
|z|=1

(
z + z−1 − 2

)m+1
dz

= 1

2π i

∮
|z|=1

(z − 1)2m+2

zm+1
dz

= 1

2π i

∮
|z|=1

2m+2∑
j=0

(
2m + 2

j

)
(−1)jzj−m−1 dz

=(−1)m
(

2m + 2
m

)
.

Hence,

∑
k+2n=m

(−2)k

k! (n + 1)! n!=
1

(m + 1)!
1

2π i

∮
|z|=1

(
z + z−1 − 2

)m+1
dz

=(−1)m 1

(m + 1)!
(

2m + 2
m

)
. (27)

Thus, substituting (27) into (26), we obtain

�(x)=
∞∑

m=0

(−1)m 1

(m + 1)!
(

2m + 2
m

)
λm+1xm

2m+1

=
∞∑

m=0

(−1)m (2m + 2)!
(m + 1)! m! (m + 2)! (λq)m+1xm

=
∞∑

m=0

(−1)m �
(
(m + 1)/q + 1

)
(m + 1)! m! �((m + 1)/q − m + 1)

(λq)m+1xm

for q = 1
2 , as in Equation (23) from Theorem 3.2.

The following proposition is needed because computing the cumulative distribution func-
tion L(x) in (24) becomes difficult (even numerically) for all values of q �= 1

2 , i.e., for q ∈
(1/2, 1).

Proposition 3.1. (Tail of the tree length distribution.) Let T
d∼ IGW(q, λ) be an IGW tree in

L| with parameters q ∈ [1/2, 1) and λ > 0. Then the cumulative distribution function L(x) in
(24) satisfies

1 − L(x) ∼ 1

(λq)q �(1 − q)
x−q. (28)

Example 3.2. For q = 1
2 , L(x) is expressed as follows [19, 20]:

L(x) = 1 − e−λx(I0(λx) + I1(λx)
)
.
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Thus, since Ia(z) ∼ 1√
2πz

ez for all a ≥ 0, we have

1 − L(x) = e−λx(I0(λx) + I1(λx)
)∼

√
2

λπ
x−1/2 = 1

(λq)q �(1 − q)
x−q for q = 1

2

as �(1/2) = √
π . This matches the general case in Proposition 3.1.

The following is a discrete analogue of Theorem 3.2.

Theorem 3.3. (Tree size distribution.) Let T ∈ T | be an IGW tree with parameters q ∈ [1/2, 1),

i.e., T
d∼ IGW(q). Then the number of edges in T is distributed with the probability mass

function

α(n) =
n∑

k=1

(−1)k−1
(

n − 1
k − 1

)
�(k/q + 1)

k! �(k/q − k + 2)
qk for n = 1, 2, . . . , (29)

with the cumulative distribution function

A(x) =
�x�∑
k=1

(−1)k−1
(�x�

k

)
�(k/q + 1)

k! �(k/q − k + 2)
qk, x ≥ 1. (30)

The next proposition is analogous to Proposition 3.1 and has a similar proof. It gives an
estimate on the tail distribution 1 −A(x).

Proposition 3.2. (Tail of the tree size distribution.) Let T
d∼ IGW(q) be an IGW tree in T | with

parameters q ∈ [1/2, 1). Then the cumulative distribution function A(x) in (30) satisfies

1 −A(x) ∼ 1

qq �(1 − q)
x−q. (31)

3.2. Invariance under generalized dynamical pruning

Here we consider invariance (Proposition 3.3) and uniqueness (Lemma 3.1) properties of
IGW(q, λ) measures under generalized dynamical prunings. Although both Proposition 3.3
and Lemma 3.1 follow immediately from the results of Duquesne and Winkel [9, Section
3.2.1], alternative proofs of these statements that do not rely on a real tree setting are presented
in Section 4.2.

We say that a Galton–Watson tree measure μ is invariant under the operation of pruning

St(·) = St(ϕ, ·) if for T
d∼ μ,

P
(

SHAPE(St(T)) = τ
∣∣ St(T) �= φ

)= μ
(

SHAPE(T) = τ
)
, for all τ ∈ T |.

Proposition 3.3. (Invariance with respect to generalized dynamical pruning.) Let T
d∼

IGW(q, λ) be an IGW tree with parameters q ∈ [1/2, 1) and λ > 0. Then, for any monotone
nondecreasing function ϕ : L| →R+ and any t > 0, we have

Tt := {St(ϕ, T)|St(ϕ, T) �= φ} d∼ IGW (q, Et(λ)) ,

where Et(λ) = λp(1−q)/q
t and pt = pt(λ, ϕ) = P(St(ϕ, T) �= φ).

https://doi.org/10.1017/apr.2022.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.39


Invariant Galton–Watson trees 655

In other words, Proposition 3.3 yields the invariance of an IGW(q, λ) measure under gen-
eralized dynamical prunings St. For ϕ(T) = ord(T) − 1, Proposition 3.3 yields the ‘if’ part of
Theorem 2.1. Next, we formulate the following uniqueness result.

Lemma 3.1. (Uniqueness of IGW measures.) Consider a critical Galton–Watson tree measure

μ ≡ GW({qk}, λ) (q1 = 0) on L|, and let T
d∼ μ. Let ϕ : L→R+ be a monotone nondecreasing

function such that pt = P(St(ϕ, T) �= φ) is a decreasing function of t, mapping [0, ∞) onto
(0, 1]. Then μ is invariant under the operation of pruning St(T) = St(ϕ, T) if and only if
μ ≡ IGW(q0, λ).

Notice that Lemma 3.1 does not imply the uniqueness result in Theorem 2.1, which is
valid under the regularity assumption, Assumption 2.1. Next, we list some examples where the
assumptions of Lemma 3.1 are satisfied.

Example 3.3. Let ϕ(T) = HEIGHT(T). Consider a critical Galton–Watson tree measure μ ≡
GW({qk}, λ) (q1 = 0) on L|, and let T

d∼ μ. Then 1 − pt = P1,0(t) is the probability of extinc-
tion by time t of the critical continuous-time branching process. Since P1,0(t) is a continuous
function of t that maps [0, ∞) onto [0, 1), Lemma 3.1 implies that IGW(q, λ) is the only class
of Galton–Watson measures that are invariant under the generalized dynamical pruning with
ϕ(T) = HEIGHT(T).

Example 3.4. Let ϕ(T) = LENGTH(T). Consider a critical Galton–Watson tree measure μ ≡
GW({qk}, λ) (q1 = 0) on L|, and let T

d∼ μ. Denote by N the number of edges in T. Then

the density function of LENGTH(T) can be expressed as
∞∑

k=1
P(N = k)fk,λ(x), where fk,λ(x)

is a gamma function fk,λ(x) = λk

�(k) xk−1e−λx. Hence, the cumulative distribution function of
LENGTH(T),

P(LENGTH(T) ≤ t) = 1 − pt,

is a continuous function of t mapping [0, ∞) onto [0, 1). Thus, by Lemma 3.1, IGW(q, λ) is
the only class of Galton–Watson measures invariant under the generalized dynamical pruning
with ϕ(T) = LENGTH(T).

Next, we check that Proposition 3.3 and Theorem 3.1 are consistent with this semi-
group property of the generalized dynamical pruning induced by ϕ(T) = HEIGHT(T) as in

Example 2.2. Indeed, for T
d∼ IGW(q, λ), Proposition 3.3 yields

Tt := {St(ϕ, T)|St(ϕ, T) �= φ} d∼ IGW (q, Et(λ)) ,

where by Theorem 3.1, Et(λ) = λp(1−q)/q
t = λ

λ(1−q)t+1 . Hence,

Es ◦ Et(λ) = Es
(
Et(λ)

)= Et+s(λ),

which reaffirms the semigroup property of St for ϕ(T) = HEIGHT(T).

3.3. Invariant Galton–Watson trees IGW(q) as attractors

The following result extends Theorem 2.2 to all generalized dynamical pruning operators
St(T) = St(ϕ, T).

Theorem 3.4. (IGW attractors under generalized dynamical pruning.) Consider a Galton–
Watson measure μ ≡ GW({qk}, λ) with q1 = 0 on L|. Suppose the measure is critical and
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Assumption 2.1 is satisfied. Then, for any random tree T ∈L| distributed according to μ, i.e.,

T
d∼ μ,

lim
t→∞ P

(
SHAPE(St(T)) = τ

∣∣ St(T) �= φ
)= μ∗(τ ), for all τ ∈ T |,

where μ∗ denotes the IGW measure IGW(q) with q = 1
2−L and L defined in (7).

Finally, suppose the Galton–Watson measure μ ≡ GW({qk}, λ) (with q1 = 0) is subcritical;

then for T
d∼ μ, the distribution P

(
SHAPE(St(T)) = · ∣∣ St(T) �= φ

)
converges to a point mass

measure on the tree reduced to a stem, GW(q0=1).

Theorem 3.4 is proved in Section 4.3.
The next two corollaries of Theorem 3.4 follow immediately from Lemmas 2.2 and 2.4.

Corollary 3.1. (Attraction property of critical Galton–Watson trees of Zipf type.) Consider
a critical Galton–Watson process μ ≡ GW({qk}) with q1 = 0, with offspring distribution qk

of Zipf type, i.e., qk ∼ Ck−(α+1), with α ∈ (1, 2] and C > 0. Then, for a random tree T ∈L|

distributed according to μ, i.e., T
d∼ μ,

lim
t→∞ P

(
SHAPE(St(T)) = τ

∣∣ St(T) �= φ
)= μ∗(τ ), for all τ ∈ T |,

where μ∗ is the IGW measure IGW
(

1
α

)
.

Corollary 3.2. (Attraction property of critical binary Galton–Watson tree [5].) Consider a
critical Galton–Watson process μ ≡ GW({qk}) with q1 = 0. Assume one of the following two
conditions holds:

(a) The second moment assumption is satisfied:

∞∑
k=2

k2qk < ∞.

(b) Assumption 2.1 is satisfied, and the ‘2−’ moment assumption is satisfied, i.e.,

∞∑
k=2

k2−εqk < ∞ ∀ε > 0.

Then, for a random tree T ∈L| distributed according to μ, i.e., T
d∼ μ,

lim
t→∞ P

(
SHAPE(St(T)) = τ

∣∣ St(T) �= φ
)= μ∗(τ ), for all τ ∈ T |,

where μ∗ is the critical binary Galton–Watson measure IGW(1/2).

Next, we state a result for the Bernoulli leaf coloring operator Cp (see Section 2.7), which
is analogous to the one in Theorem 3.4.

Theorem 3.5. (IGW attractors under Bernoulli leaf coloring.) Consider a Galton–Watson mea-
sure μ ≡ GW({qk}) with q1 = 0 on T |. Suppose the measure is critical and Assumption 2.1 is

satisfied. Then, for a random tree T ∈ T | distributed according to μ, i.e., T
d∼ μ,

lim
p→1− P

(
Cp(T) = τ | Cp(T) �= φ

)= μ∗(τ ), for all τ ∈ T |,

where μ∗ denotes the IGW measure IGW(q) with q = 1
2−L and L as defined in (7).
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Suppose μ ≡ GW({qk}) (with q1 = 0) is subcritical; then for T
d∼ μ, the conditional distri-

bution P
(
Cp(T) = · | Cp(T) �= φ

)
converges to a point mass measure on the tree reduced to the

stem, GW(q0=1).

Theorem 3.5 is proved in Section 4.3.
Finally, another result analogous to Theorem 3.4 can be obtained for iterative hereditary

reductions (see Section 2.6).

Theorem 3.6. (IGW attractors under generalized hereditary reductions.) Consider a Galton–
Watson measure μ ≡ GW({qk}, λ) with q1 = 0 on L|. Suppose the measure is critical and
Assumption 2.1 is satisfied. Let T ∈L| be a random tree distributed according to μ, and let
H1, H2, . . . be a sequence of hereditary properties satisfying

lim
n→∞ P

(
RHn ◦ . . . ◦ RH1 (T) �= φ

)= 0,

where RH1 , RH2 , . . . are the corresponding hereditary reductions. Then, for T
d∼ μ,

lim
t→∞ P

(
SHAPE(St(T)) = τ

∣∣ St(T) �= φ
)= μ∗(τ ), for all τ ∈ T |,

where μ∗ denotes the IGW measure IGW(q) with q = 1
2−L and L as defined in (7).

If μ is a subcritical Galton–Watson measure, then for T
d∼ μ, the conditional distribution

P
(

SHAPE(St(T)) = · ∣∣ St(T) �= φ
)

converges to a point mass measure on the tree reduced to the
stem, GW(q0=1).

Theorem 3.6 is proved in Section 4.3.

4. Proofs

4.1. Metric properties of invariant Galton–Watson trees

Proof of Theorem 3.1. Consider a tree T
d∼ IGW(q, λ). Let X denote the length of the

stem connecting the random tree’s root ρ to the root’s only child vertex v0. Let K = br(v0)
be the branching number of v0, and let the K subtrees branching out of v0 be denoted
by Ti, 1 ≤ i ≤ K. Let H(x) be the cumulative distribution function for the height of T .

Then, for each subtree Ti
d∼ IGW(q, λ), its height HEIGHT(Ti) has the same cumula-

tive distribution function H(x). The number of subtrees K
d∼ qk has generating function

Q(z) = z + q(1 − z)1/q. Let M(x) denote the cumulative distribution function of
max

1≤i≤K
{HEIGHT(Ti)}; then

M(x) = P
(

max
1≤i≤K

{HEIGHT(Ti)} ≤ x
)=

∞∑
k=0

qkP
(

max
1≤i≤K

{HEIGHT(Ti)} ≤ x
∣∣K = k

)

=
∞∑

k=0

qkP
(

HEIGHT(T) ≤ x
)k =

∞∑
k=0

qk
(
H(x)

)k

= (Q ◦ H)(x) = H(x) + q
(
1 − H(x)

)1/q. (32)
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The stem length X is an exponentially distributed random variable with parameter λ and density
function ϕλ(x) = λ exp{−λx}1x≥0. Since HEIGHT(T) = X + max

1≤i≤K
{HEIGHT(Ti)}, we have

H(x) = ϕλ ∗ M(x). (33)

We will use the following notation: let ĝ(t) =
∞∫

−∞
eitxg(x) dx denote the Fourier transform of

g(x). Equations (32) and (33) yield

H(x) = ϕλ ∗ (Q ◦ H)(x).

Taking the Fourier transform, we obtain

Ĥ(t) = λ

λ − it

(
Ĥ(t) + q

̂(
1 − H

)1/q(t)

)
,

which simplifies to

itĤ(t) + λq
̂(

1 − H
)1/q(t) = 0,

where

̂(
1 − H

)1/q(t) =
∞∫

−∞
eitx(1 − H(x)

)1/q
dx.

Therefore,
∞∫

−∞
eitx

(
itH(x) + λq

(
1 − H(x)

)1/q
)

dx = 0 ∀t ∈R, (34)

where integration by parts yields

∞∫
−∞

eitxitH(x) dx = −
∞∫

−∞
eitxH′(x) dx. (35)

Substituting (35) back into (34) yields

∞∫
−∞

eitx
(

H′(x) − λq
(
1 − H(x)

)1/q
)

dx = 0 ∀t ∈R,

which by Parseval’s equation implies the following ordinary differential equation:

H′(x) = λq
(
1 − H(x)

)1/q. (36)

Next, we solve the differential equation (36) above via integration, obtaining

H(x) = 1 − (
(λx + C)(1 − q)

)− q
1−q , (37)
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where C is a scalar. Since H(x) is the cumulative distribution function of a positive random

variable HEIGHT(T), we have H(0) = 0, implying C = 1
1−q . Thus, for q ∈

[
1
2 , 1

)
,

H(x) = 1 −
((

λx + 1

1 − q

)
(1 − q)

)− q
1−q = 1 − (

λ(1 − q)x + 1
)−q/(1−q). �

Next, we use the following application of the Lagrange inversion theorem (Theorem A.1).

Lemma 4.1. Let q ∈ [1/2, 1) be given. Suppose W = W(z) is an analytic function satisfying the
equation

z = W

(1 − W)1/q

in a neighborhood of the origin, where we take the −π < arg (z) < π branch of the function
z1/q. Then, for z near the origin, we have

W =
∞∑

n=1

(−1)n−1 �(n/q + 1)

n! �(n/q − n + 2)
zn. (38)

Observe that the conclusion of Lemma 4.1 also applies in a real-valued setting, under the
assumption of infinite differentiability of W : R→R. Here, if z = W

(1−W)1/q for z ∈R in a neigh-
borhood of the origin on the real line, then the power series expansion (38) holds in proximity
to 0.

Proof of Lemma 4.1. We notice that the function f (w) = w
(1−w)1/q is analytic at w = 0, and

f ′(0) = 1 �= 0. Thus, we can apply the Lagrange inversion theorem (Theorem A.1) to express
W in terms of z power series. Now, since(

w

f (w)

)n

= (1 − w)n/q,

we have

dn−1

dwn−1

(
w

f (w)

)n
∣∣∣∣∣
W=0

=(−1)n−1(n/q)(n/q − 1) . . . (n/q − n + 2)

=(−1)n−1 �(n/q + 1)

�(n/q − n + 2)
.

Therefore, by the Lagrange inversion theorem (Theorem A.1), we obtain

W =
∞∑

n=1

zn

n!
[

dn−1

dwn−1

(
w

f (w)

)n]
w=0

=
∞∑

n=1

(−1)n−1 �(n/q + 1)

n! �(n/q − n + 2)
zn.

�

Proof of Theorem 3.2. Consider a tree T
d∼ IGW(q, λ) consisting of a stem of length X that

connects the root ρ to its child vertex v0, and K = br(v0) subtrees Ti, 1 ≤ i ≤ K, branching out
from v0. Let �(x) be the density function of the length of T . Notice that the length of each

subtree Ti is also �(x)-distributed. The random variable K
d∼ qk has generating function Q(z) =
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z + q(1 − z)1/q. Letting N(x) denote the probability density function of
∑

1≤i≤K
{LENGTH(Ti)},

we have

N(x) =
∞∑

k=0

qk�k(x), where �k(x) = � ∗ . . . ∗ �︸ ︷︷ ︸
k times

(x). (39)

Observe that LENGTH(T) = X + ∑
1≤i≤K

{LENGTH(Ti)}, where X has exponential probability

density function ϕλ(x) = λ exp{−λx}1x≥0. Thus, �(x) can be represented as the following
convolution:

�(x) = ϕλ ∗ N(x). (40)

For t ≥ 0, let the function L[g](t) =
∞∫
0

e−txg(x) dx denote the Laplace transform of g. Then (39)

and (40) imply

L[�](t) =L[ϕλ](t) L[N](t) =L[ϕλ](t) Q
(
L[�](t)

)= λ

λ + t

(
L[�](t) + q

(
1 −L[�](t)

)1/q
)

,

which simplifies to
tL[�](t) = λq

(
1 −L[�](t)

)1/q. (41)

Letting z = λq
t and � =L[�]

(
λq
z

)
=L[�](t), we have

z = �

(1 − �)1/q
.

Then Lemma 4.1 yields

L[�](t) = � =
∞∑

n=1

(−1)n−1 �(n/q + 1)

n! �(n/q − n + 2)

(λq)n

tn
.

Finally, we invert the Laplace transform L[�](t), obtaining

�(x) =
∞∑

n=1

(−1)n−1 �(n/q + 1)

n! (n − 1)! �(n/q − n + 2)
(λq)nxn−1.

�

Proof of Proposition 3.1. Observe that

1 −L[�](t) =
∞∫

0

(1 − e−tx) �(x) dx = t

∞∫
0

x∫
0

e−ty �(x) dy dx

= t

∞∫
0

e−ty

∞∫
y

�(x) dx dy = t

∞∫
0

e−ty (1 − L(y)
)

dy = t L[1−L](t).

Thus, by (41), we have

tL[�](t) = λq
(
1 −L[�](t)

)1/q = λq t1/q (L[1−L](t)
)1/q

,
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and therefore,

L[1−L](t) = 1

t1−q

(
L[�](t)

)q

(λq)q
, where lim

t→0+

(
L[�](t)

)q

(λq)q
= 1

(λq)q
.

Hence, by the Hardy–Littlewood–Karamata Tauberian theorem for Laplace transforms [12],

1 − L(x) ∼ 1

(λq)q �(1 − q)
x−q. �

Proof of Theorem 3.3. Observe that in a reduced tree T ∈ T | \ {φ}, the number of edges
equals one plus the number of edges in all subtrees splitting from the stem. Therefore, α(0) = 0,
α(1) = q0, and

α(n + 1) =
n∑

k=1

qk α ∗ . . . ∗ α︸ ︷︷ ︸
k times

(n), n = 1, 2, . . . .

Therefore, the generating function a(z) =
∞∑

n=1
zn α(n) satisfies a(z) = z Q

(
a(z)

)
. Hence,

a(z) = z
(

a(z) + q
(
1 − a(z)

)1/q
)
, (42)

and therefore,
w = a

(1 − a)1/q
, where a = a(z) and w = qz

1 − z
.

Lemma 4.1 yields

a(z) =
∞∑

k=1

∞∑
n=k

(−1)k−1
(

n − 1
k − 1

)
�(k/q + 1)

k! �(k/q − k + 2)
qkzn

=
∞∑

n=1

zn
n∑

k=1

(−1)k−1
(

n − 1
k − 1

)
�(k/q + 1)

k! �(k/q − k + 2)
qk.

Thus, since a(z) =
∞∑

n=1
zn α(n), Equation (29) follows. Finally, the cumulative distribution

function equals

A(x) =
�x�∑
n=1

α(n) =
�x�∑
n=1

n∑
k=1

(−1)k−1
(

n − 1
k − 1

)
�(k/q + 1)

k! �(k/q − k + 2)
qk

=
�x�∑
k=1

(−1)k−1

⎛
⎝ �x�∑

n=k

(
n − 1
k − 1

)⎞⎠ �(k/q + 1)

k! �(k/q − k + 2)
qk

=
�x�∑
k=1

(−1)k−1
(�x�

k

)
�(k/q + 1)

k! �(k/q − k + 2)
qk

for all real x ≥ 1, and (30) holds.
�
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4.2. Invariance under generalized dynamical pruning

Proof of Proposition 3.3. For q ∈ [1/2, 1) and Q(z) = z + q(1 − z)1/q, Equation (21) in
Lemma 2.5 implies

G(z) = z + Q
(
1 − pt + ptz

)− (1 − pt) − zpt

pt
(
1 − Q′(1 − pt)

)
= z + p−1/q

t
(
Q
(
z + (1 − z)(1 − pt)

)− (1 − pt) − zpt
)

= z + p−1/q
t qp1/q

t (1 − z)1/q = Q(z).

The rest of the proof follows from Lemma 2.5 as

λ
(
1 − Q′(1 − pt)

)= λp(1−q)/q
t , (43)

yielding St(T)
d∼ IGW

(
q, λp(1−q)/q

t
)
. �

Proof of Lemma 3.1. From Lemma 2.5, we have

g0 = Q
(
1 − pt

)− (1 − pt)

pt
(
1 − Q′(1 − pt)

) and G(z) = z + Q
(
1 − pt + ptz

)− (1 − pt) − ptz

pt
(
1 − Q′(1 − pt)

) .

Combining the above yields

G(z) = z + g0
Q
(
1 − pt + ptz

)− (1 − pt) − ptz

Q
(
1 − pt

)− (1 − pt)
.

Suppose μ is invariant under the operation of pruning St(T) = St(ϕ, T); then G(z) = Q(z) and
g0 = q0, implying

Q(z) = z + q0
Q
(
1 − pt + ptz

)− (1 − pt) − ptz

Q
(
1 − pt

)− (1 − pt)
. (44)

Let R(z) = Q(z)−z
q0

; then Equation (44) can be rewritten as

R(z) = R(1 − pt + ptz)

R(1 − pt)
.

Thus, for �(z) = ln (R(1 − z)), we have �(1 − z) + �(pt) = �
(
pt(1 − z)

)
as 1 − pt + ptz = 1 −

pt(1 − z).
Therefore, �

(
ptx

)= �(x) + �(pt). Let r(y) = �
(
ey
)
; then

r(y + εt) = r(y) + r(εt) ∀t ≥ 0, (45)

where εt = ln pt. Here r(0) = ln R(0) = 0.
We notice that the domain of r(y) is y ∈ (−∞, 0], and

{εt : t ∈ [0, ∞)} = (−∞, 0],

as 1 − pt is an increasing function of t mapping [0, ∞) onto [0, 1). Hence, Equation (45)
implies the following Cauchy functional equation:

r(y + ε) = r(y) + r(ε) ∀y, ε ∈ (−∞, 0]. (46)
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The general Cauchy functional equation states that, assuming

• continuity (f (x) ∈ C(R)) and

• additivity ( f (x + y) = f (x) + f (y) for all x, y ∈R),

the function f (x) = cx for some c ∈R. Notice that (46) is a sub-case of the general Cauchy
functional equation restricted to a half-line, and therefore has the same linear solution and the
same proof. Thus, (46) yields that r(y) = κy for some constant κ .

Thus, we have �(x) = κ ln (x),

κ ln (1 − z) = �(1 − z) = ln R(z) = ln

(
Q(z) − z

q0

)
,

and
Q(z) = z + q0(1 − z)κ .

Finally, q1 = 0 yields Q′(0) = 0. Therefore, Q′(z) = 1 − q0κ(1 − z)κ−1 implies κ = 1
q0

. �

4.3. Invariant Galton–Watson trees IGW(q) as attractors

First we prove the following result, related to Lemma 2.1.

Lemma 4.2. Consider a critical Galton–Watson measure GW({qk}) with q1 = 0. If Assumption
2.1 is satisfied, then for g(x) defined in (6), the limit

lim
x→1−

(1 − x)g′(x)

g(x)
(47)

exists and and is equal to the limit L defined in (7).

Proof. Note that for x ∈ (−1, 1),

Q(x) − x

(1 − x)
(
1 − Q′(x)

) = 1

2 − (1−x)g′(x)
g(x)

.

Thus, by Assumption 2.1, the limit

lim
x→1−

(1 − x)g′(x)

g(x)

either exists or is equal to ±∞. Hence, by L’Hôpital’s rule,

L = lim
x→1−

(
ln g(x)

− ln (1 − x)

)
= lim

x→1−
(1 − x)g′(x)

g(x)
.

�
Before proving Theorem 3.4, we will need the following result.

Lemma 4.3. Consider a critical Galton–Watson measure GW({qk}) with q1 = 0, let g(x) be as
defined in (6), and let L be as defined in (7). If Assumption 2.1 is satisfied, then g(1 − 1/y) is a
regularly varying function (Definition B.1) with index L, i.e.,

lim
x→1−

g
((

1 − 1
r

)
+ 1

r x
)

g(x)
= lim

y→∞
g
(

1 − 1
ry

)
g
(

1 − 1
y

) = rL for all r > 0. (48)
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Proof. For α > −L − 1, L’Hôpital’s rule and Lemma 4.2 yield

lim
y→∞

yα+1g(1 − 1/y)
y∫

a
sαg(1 − 1/s) ds

= lim
y→∞

(α + 1)yαg(1 − 1/y) + yα−1g′(1 − 1/y)

yαg(1 − 1/y)

= α + 1 + lim
y→∞

yα−1g′(1 − 1/y)

yαg(1 − 1/y)

= α + 1 + lim
x→1−

(1 − x)g′(x)

g(x)
= α + 1 + L.

Hence, by the converse of Karamata’s theorem (Theorem B.2), g(1 − 1/y) is a regularly
varying function with index L, and (48) holds. �

The following lemma will be the instrument for establishing that IGW(q) trees are
attractors.

Lemma 4.4. Consider a Galton–Watson measure GW({qk}) with q1 = 0 on T |. Suppose the
measure is critical and Assumption 2.1 is satisfied. Then its progeny generating function Q(z)
satisfies

lim
x→1−

Q
(
z + (1 − z)x

)− (
z + (1 − z)x

)
(1 − x)(1 − Q′(x))

= 1

2 − L
(1 − z)2−L,

where L is as defined in (7).
If the Galton–Watson measure GW({qk}) (with q1 = 0) is subcritical, then

lim
x→1−

Q
(
z + (1 − z)x

)− (
z + (1 − z)x

)
(1 − x)(1 − Q′(x))

= 1 − z.

Proof. Consider a critical Galton–Watson measure GW({qk}) with q1 = 0 and progeny
generating function Q(z). For x, z ∈ (−1, 1), we have

Q
(
z + (1 − z)x

)− (
z + (1 − z)x

)= (1 − z)2(1 − x)2 g
(
z + (1 − z)x

)
.

Thus, as

1 − Q′(x) = 2(1 − x)g(x) − (1 − x)2g′(x),

Lemma 4.2 yields

lim
x→1−

Q
(
z + (1 − z)x

)− (
z + (1 − z)x

)
(1 − x)(1 − Q′(x))

= (1 − z)2 lim
x→1−

g
(
z + (1 − z)x

)
2g(x) − (1 − x)g′(x)

= (1 − z)2 lim
x→1−

g
(
z + (1 − z)x

)(
2 − (1−x)g′(x)

g(x)

)
g(x)

= 1

2 − L
(1 − z)2 lim

x→1−
g
(
z + (1 − z)x

)
g(x)

= 1

2 − L
(1 − z)2(1 − z)−L = 1

2 − L
(1 − z)2−L

by (48) with r = 1
1−z . The main statement in Lemma 4.4 follows.
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Now, if we consider a subcritical Galton–Watson measure GW({qk}) with q1 = 0 and
progeny generating function Q(z), then Q′(1) < 1, and

lim
x→1−

Q
(
z + (1 − z)x

)− (
z + (1 − z)x

)
(1 − x)(1 − Q′(x))

= 1

1 − Q′(1)
lim

x→1−
Q
(
z + (1 − z)x

)− (
z + (1 − z)x

)
1 − x

= 1 − z

1 − Q′(1)
lim

x→1−
Q
(
1 − (1 − z)(1 − x)

)− Q(1) + (1 − z)(1 − x)

(1 − z)(1 − x)
= 1 − z.

�
We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4. Suppose μ ≡ GW({qk}, λ) with q1 = 0 is critical and Assumption 2.1
holds. Then, by Equation (21) in Lemma 2.5 and Lemma 4.4, the generating function of
SHAPE(St(T)) converges to

z + lim
t→∞

Q
(
z + (1 − z)(1 − pt)

)− (1 − pt) − zpt

pt
(
1 − Q′(1 − pt)

)
= z + lim

x→1−
Q
(
z + (1 − z)x

)− (
z + (1 − z)x

)
(1 − x)(1 − Q′(x))

= z + 1

2 − L
(1 − z)2−L,

the generating function of IGW(q) with q = 1
2−L and L as defined in (7).

If the Galton–Watson measure μ ≡ GW({qk}, λ) (with q1 = 0) is subcritical, then
Lemma 2.5 and Lemma 4.4 yield convergence of the generating function of SHAPE(St(T))
to

z + lim
t→∞

Q
(
z + (1 − z)(1 − pt)

)− (1 − pt) − zpt

pt
(
1 − Q′(1 − pt)

)
= z + lim

x→1−
Q
(
z + (1 − z)x

)− (
z + (1 − z)x

)
(1 − x)(1 − Q′(x))

= z + (1 − z) = 1,

the generating function of GW(q0=1). Hence, for T
d∼ μ, the conditional distribution

P
(

SHAPE(St(T)) = · ∣∣ St(T) �= φ
)

converges to a point mass measure, GW(q0=1). �
Proof of Theorem 3.5. Analogously to the proof of Theorem 3.4 above, Theorem 3.5 follows

from the formula (22) in Theorem 2.4 and Lemma 4.4. �
Proof of Theorem 3.6. Following the steps in the proof of Theorem 3.4 above, Theorem 3.6

follows from the formula (18) in Theorem 2.3 with p = P
(
RHn ◦ . . . ◦ RH1 (T) �= φ

)
and

Lemma 4.4. �

5. Discussion

In this work, we established the metric and attractor properties of the IGW branching pro-
cesses with respect to a family of the generalized dynamical pruning operators. Informally,
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these operators eliminate a tree from leaves toward the root and are flexible enough to accom-
modate a number of classic (e.g. continuous erasure) and custom (e.g. erasure by the number
of leaves) tree elimination rules. Together with the richness of the IGW family, which includes
power-law offspring distributions with tail indices in the range between 1 and 2, this makes the
results presented a useful tool for a variety of physical and mathematical problems.

Observe that erasing a random tree in accordance with the generalized dynamical pruning
describes a coalescence dynamics—the merging of particles represented by the tree leaves into
consecutively larger clusters represented by the internal vertices. The invariance and attrac-
tor properties of the IGW branching processes can be used to study a number of merger
dynamics. For example, the continuum ballistic annihilation process (a ballistic motion of
random-velocity particles that annihilate at contact) has been shown in [19] to correspond to
a generalized dynamical pruning with ϕ(T) = LENGTH(T), as in Example 2.3. The invariance
of the critical binary Galton–Watson measure IGW(1/2, λ) under the generalized dynami-
cal pruning was used in [19] to obtain an explicit analytical description of the annihilation
dynamics for a special case of the initial two-valued velocity alternating at the instances of a
Poisson process. Similarly, the generalized dynamical pruning with ϕ(T) = HEIGHT(T) as in
Example 2.2 corresponds to the one-dimensional Zeldovich model in cosmology. The invari-
ance results in this work may provide an interesting analytical insight into the dynamics of
these and other models of coalescence.

The IGW branching processes arise naturally in seismological data that are traditionally
modeled by branching processes with immigration; see [22] for a review and discussion. In
essence, a sequence of earthquakes in a region is represented as a collection of clusters, each
of which is initiated by an immigrant (the first cluster event). It has been shown in [22] that
the IGW process provides a close approximation to the existing earthquake occurrence models
and to the observed earthquake cluster statistics in southern California. The metric properties
of the IGW trees have a meaningful interpretation in the seismological setting, where the edge
lengths represent inter-event times. The attraction property of the IGW processes allows one
to construct a robust earthquake modeling framework, which is stable with respect to various
catalogue uncertainties. The IGW processes may provide a useful model in other areas that
deal with imprecisely observed data represented by trees.

We conclude with an open problem. Lemma 3.1 established the uniqueness of the IGW
processes as the invariants of the generalized dynamical pruning. The results of Duquesne
and Winkel [8] (see Theorem 2.4 of this paper) show that the IGW processes are invariant
with respect to a broader set of tree reductions. It would be interesting to describe all tree
transforming operators that preserve the IGW invariance (and attraction) property.

Appendix A. Lagrange inversion theorem

The Lagrange inversion theorem (also known as the Lagrange inversion formula) can be
found in Whittaker and Watson [31] and in Abramowitz and Stegun [2].

Theorem A.1. (Lagrange inversion theorem.) Consider a function g : C→C such that g(w) is
analytic in a neighborhood of the origin, g(0) = 0, and g′(0) �= 0. Then g−1 can be expressed
as the following power series near the origin:

g−1(z) =
∞∑

n=1

zn

n!
[

dn−1

dwn−1

(
w

g(w)

)n]
w=0

.
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Moreover, for any ϕ : C→C analytic in a neighborhood around the origin,

ϕ
(
g−1(z)

)= ϕ(0) +
∞∑

n=1

zn

n!
[

dn−1

dwn−1

(
ϕ′(w)

w

g(w)

)n]
w=0

.

Appendix B. Regularly varying functions

We define regularly varying functions and state Karamata’s theorems. See [4] for a rigorous
treatment of the theory of regularly varying functions.

Definition B.1. A positive measurable function f(x) is said to be regularly varying with index
β ∈R if

lim
x→∞

f (rx)

f (x)
= rβ for all r > 0.

Theorem B.1. (Karamata’s theorem, direct part [4].) Let f (x) : [a, ∞) → [a, ∞) be a regularly
varying function with index β ∈R. Then

lim
x→∞

xα+1f (x)
x∫

a
yαf (y) dy

= α + β + 1 for all α > −β − 1

and

lim
x→∞

xα+1f (x)
∞∫
x

yαf (y) dy

= −(α + β + 1) for all α < −β − 1.

We will use the following converse to the above Karamata’s theorem.

Theorem B.2. (Karamata’s theorem, converse [4].) Let f(x) be a positive, measurable, and
locally integrable function on [a, ∞) and β ∈R. Then the following hold:

(a) If there exists α > −β − 1 such that

lim
x→∞

xα+1f (x)
x∫

a
yαf (y) dy

= α + β + 1,

then f(x) is a regularly varying function with index β.

(b) If, for some α < −β − 1,

lim
x→∞

xα+1f (x)
∞∫
x

yαf (y) dy

= −(α + β + 1),

then f(x) is a regularly varying function with index β.

Appendix C. Proof of Lemma 2.5

Proof of Lemma 2.5. First we show that the tree St(ϕ, T) obtained by pruning a Galton–

Watson tree T
d∼ μ ≡ GW({qk}, λ) is also distributed as a Galton–Watson tree.
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For T
d∼ μ and s ≥ 0, let T|≤s denote a subtree of T consisting of all points x in the metric

space T at distance no greater than s from the root ρ, i.e.,

T|≤s = {x ∈ T : d(x, ρ) ≤ s}.
Let T|=s denote the points in T at distance s from the root ρ, i.e.,

T|=s = {x ∈ T : d(x, ρ) = s}.
Let F0

s = σ
(
T|≤s

)
be a sigma-algebra generated by the history up to time s (including branch-

ing history) of the Galton–Watson process that induces T . The future of the Galton–Watson
process after time s consists of the descendant subtrees{


x,T : x ∈ T|=s
}
.

Let F ′
s = σ

(

x,T : x ∈ T|=s

)
be a sigma-algebra generated by the future events after time s.

The measure μ being a Galton–Watson measure (i.e., μ ≡ GW({qk}, λ)) is equivalent to T|=s

being a continuous-time Markov branching process (see [3, 13]). That is, there exists a filtration
Fs ⊃F0

s such that the following hold:

1. The Markov property is satisfied:

P
(
A
∣∣Fs

) = P
(
A
∣∣T|=s

) ∀A ∈F ′
s.

2. Conditioned on T|=s, the subtrees
{

x,T : x ∈ T|=s

}
of T , denoted here by({


x,T : x ∈ T|=s
}∣∣∣T|=s

)
,

are independent.

Next, let
Is = σ

(

x,St(ϕ,T) : x ∈ St(ϕ, T)|=s

)
be a sigma-algebra generated by the future events of St(ϕ, T)|=s, after time s. Then, since{


x,St(ϕ,T) : x ∈ St(ϕ, T)|=s
}= {

St(ϕ, 
x,T ) : x ∈ St(ϕ, T)|=s
}

= {
St(ϕ, 
x,T ) : x ∈ T|=s such that St(ϕ, 
x,T ) �= φ

}
,

we have
Is = σ

(
S(ϕ, 
x,T ) : x ∈ T|=s

) ⊂F ′
s.

We claim that conditioned on the event {St(ϕ, T) �= φ}, the partition/annihilation evolution
St(ϕ, T)|=s is a continuous-time Markov branching process with respect to the filtration Fs.
Indeed, we have the following:

1. The Markov property is satisfied:

P
(
A
∣∣Fs

) = P
(
A
∣∣T|=s

) = P
(
A
∣∣St(ϕ, T)|=s

) ∀A ∈ Is ⊂F ′
s.

Let P�=φ(A) = P(A| St(ϕ, T) �= φ). Then

P�=φ

(
A
∣∣Fs

) = P�=φ

(
A
∣∣St(ϕ, T)|=s

) ∀A ∈ Is.
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2. Conditioned on St(ϕ, T)|=s, the subtrees{

x,St(ϕ,T) : x ∈ St(ϕ, T)|=s

}= {
St(ϕ, 
x,T ) : x ∈ T|=s, St(ϕ, 
x,T ) �= φ

}
of St(ϕ, T) are independent.

In order to characterize the dendritic structure of St(ϕ, T), we start an upward exploration
from the root ρ ∈ T and proceed to the nearest internal vertex v of T (i.e., par(v) = ρ). For a
pair of integers k ≥ 2 and m ≥ 0, we have

P
(
brT (v) = k, brSt(ϕ,T)(v) = m

∣∣ St(ϕ, T) �= φ
)=

(
k

m

)
(1 − pt)

k−mpm
t

qk

pt
, (49)

where brT (v) and brSt(ϕ,T)(v) denote the branching numbers of the vertex v in T and St(ϕ, T)
respectively. Here, the event brSt(ϕ,T)(v) = 1 corresponds to the case when the vertex v is
removed via series reduction. Thus, the case m = 1 will be treated separately.

Next, we would like to find an expression for the branching probability gm of a pruned tree
St(ϕ, T). For a given integer m ≥ 2,

P
(
brSt(ϕ,T)(v) = m

∣∣ St(ϕ, T) �= φ
)= (1 − pt)

−mpm−1
t

∞∑
k=m

(
k

m

)
(1 − pt)

kqk.

Therefore, for m ≥ 2,

gm = P
(
brSt(ϕ,T)(v) = m

∣∣ St(ϕ, T) �= φ, brSt(ϕ,T)(v) �= 1
)

= (1 − pt)
−mpm−1

t

∞∑
k=m

(k
m

)
pkqk

1 − (1 − pt)−1
∞∑

k=2
kpkqk

= pm−1
t

m! Q(m)(1 − pt) (1 − Q′(1 − pt))
−1.

The corresponding generating function of {gk} is equal to

G(z) =
∞∑

m=0

zmgm = g0 + p−1
t

1 − (1 − pt)−1
∞∑

k=2
kpkqk

∞∑
m=2

∞∑
k=m

(
z(1 − pt)

−1pt
)m
(

k

m

)
pkqk

= g0 + p−1
t

1 − (1 − pt)−1
∞∑

k=2
kpkqk

∞∑
k=2

k∑
m=2

(
k

m

)(
z(1 − pt)

−1pt
)m

pkqk

= g0 + p−1
t

1 − Q′(1 − pt)

(
Q
(
z + (1 − z)(1 − pt)

)− Q(1 − pt) − zp′
tQ(1 − pt)

)
= z + g0 + Q

(
z + (1 − z)(1 − pt)

)− Q(1 − pt) − zpt

pt
(
1 − Q′(1 − pt)

) , (50)

by the binomial theorem. Next, we plug z = 1 into (50), obtaining

g0 = Q(1 − pt) − (1 − pt)

pt
(
1 − Q′(1 − pt)

) ,
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as G(1) = 1. Hence, (50) can be rewritten as (21). We proceed by differentiating d
dz in (21),

obtaining

G′(z) = Q′(1 − pt + zpt) − Q′(1 − pt)

1 − Q′(1 − pt)
. (51)

An edge in St(ϕ, T) is a union of edges in the tree obtained after pruning T , but before the
series reduction, separated by the degree-two vertices. The probability of a degree-two vertex
after pruning (but before the series reduction) is

∞∑
k=2

qkkpt(1 − pt)
k−1 = p′

tQ(1 − pt).

Hence, by Wald’s equation, the edge lengths in St(ϕ, T) are independent exponential random
variables, each with rate

λ
(
1 − Q′(1 − pt)

)
.

Finally, we observe that if μ(T) is critical, then Q′(1) = 1 and (51) imply G′(1) = 1. That is,
ν(T |T �= φ) is a critical Galton–Watson measure. �
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