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YURI SANTOS REGO3

1

Fakultät für Mathematik, Universität Regensburg, Regensburg, Germany

(stefan.friedl@ur.de; lars.munser@ur.de)
2

Fakultät für Mathematik, Universität Bielefeld, Bielefeld, Germany

(jquintan@math.uni-bielefeld.de)
3

Fakultät für Mathematik (IAG), Otto-von-Guericke-Universität Magdeburg,

Magdeburg, Germany (yuri.santos@ovgu.de)

(Received 2 May 2023)

Abstract We prove that there exists an algorithm for determining whether two piecewise-linear spatial
graphs are isomorphic. In its most general form, our theorem applies to spatial graphs furnished with
vertex colourings, edge colourings and/or edge orientations.

We first show that spatial graphs admit canonical decompositions into blocks, that is, spatial graphs
that are non-split and have no cut vertices, in a suitable topological sense. Then, we apply a result of
Haken and Matveev in order to algorithmically distinguish these blocks.
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1. Introduction

1.1. Our main result

This article is concerned with spatial graphs, which are finite graphs embedded in
oriented 3 -spheres – not merely as subspaces, but with an explicit decomposition into
vertices and edges. They thus generalize knots and links. We give a precise definition
using piecewise-linear (PL) topology (Definition 2.1), which makes it easy to formalize the
notion of an isomorphism of spatial graphs: an orientation-preserving PL homeomorphism
of the ambient 3 -spheres mapping vertices to vertices and edges to edges bijectively
(Definition 2.2). The reader might be amused to try and decide which of the pairs of
spatial graphs in Figure 1.1 are isomorphic.
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1

12

2
Figure 1.1. Two pairs of (decorated) spatial graphs with the same combinatorial structure, but
a priori different topology.

Our main result is the following:

Theorem 1.1 (Algorithmic recognition of spatial graphs). There exists an
algorithm for determining whether two spatial graphs are isomorphic.

Theorem 1.1 is restated and proved in a more general context as Theorem 7.13, where
we allow spatial graphs to come equipped with colourings of vertices/edges and/or edge
orientations (as in the right hand side of Figure 1.1). These decorations must of course
be respected by isomorphisms.
We reduce the task of testing whether two spatial graphs are isomorphic, to the appli-

cation of algorithms in Matveev’s text on computational 3-manifold topology [14]. An
algorithm for such a test would then take as input a pair of oriented 3 -spheres given as
finite simplicial complexes, with the vertices and edges of the spatial graphs specified as
subcomplexes, and also possibly the data of decorations.
Much of the article is devoted to setting up a rigorous and self-contained theory of spa-

tial graphs, with the algorithmic aspects introduced only towards the end. We emphasize
that our proof of Theorem 1.1, alongside Matveev’s text, actually supplies an explicit
algorithm. Even though we make no claims about its computational efficiency, we believe
the existence of such an algorithm to be of independent theoretical interest. It is also
conceivable that our result might have applications to other decision problems, namely
when they involve comparing objects that can be encoded as spatial graphs.

1.2. Main idea of the proof

Our proof uses as a main ingredient a ‘Recognition Theorem’ of Matveev
[14, Theorem 6.1.6] that extends work of Haken [7], Johannson [8] and others, con-
cerning PL 3-manifolds equipped with a 1-dimensional subcomplex of their boundary
called a ‘boundary pattern’ (Definition 6.4). The Recognition Theorem (reproduced
below as Theorem 7.4) states that it is possible to algorithmically detect whether two
such 3-manifolds with boundary pattern are PL-homeomorphic (via a homeomorphism
respecting the boundary patterns), provided that they are ‘Haken’ (Definition 7.2).
We construct a PL 3-manifold with boundary pattern out of a spatial graph, its ‘marked

exterior’ (Definition 6.5), such that two spatial graphs are isomorphic precisely if their
marked exteriors are PL-homeomorphic. The marked exterior is built in a two-step pro-
cess by first removing a suitably chosen open neighbourhood of the vertices, and then
one of what is left of the edges. The boundary is then marked with a pattern that allows
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for easily reconstructing the spatial graph; Figures 6.1 and 6.3 illustrate the general idea
of the construction. The main feature of this boundary pattern is that it encodes the
curves playing the role of meridians, bypassing the usual difficulties in recognizing knots
and links from their exteriors (see Proposition 6.3 and the ensuing discussion).
We then wish to apply the Recognition Theorem to the marked exteriors to deduce

Theorem 1.1, but face the difficulty that it applies only to 3-manifolds with boundary
pattern that are Haken. This property encompasses, besides an easy to guarantee tech-
nical condition, a requirement about triviality of embedded 2 -spheres (irreducibility)
and one about triviality of properly embedded discs (boundary-irreducibility). As we
shall see, the marked exterior of a spatial graph may very well fail to be irreducible and
boundary-irreducible, and this issue will take considerable effort to resolve.

1.3. Decomposition results

To overcome the aforementioned difficulties, we establish a decomposition theory of
spatial graphs (§ 3 and 4). Consider the irreducibility requirement. The starting point is
the observation (Proposition 6.9) that irreducibility of the marked exterior of a spatial
graph Γ is equivalent to it not being the ‘disjoint union’ Γ1tΓ2 of non-empty spatial sub-
graphs, where this disjoint union is the operation of placing Γ1,Γ2 ‘next to one another’
in the same ambient 3 -sphere (Definition 3.2). A non-empty spatial graph that is not a
non-trivial disjoint union is called a ‘piece’ (Definition 3.9). In Proposition 3.4, we show
that the decomposition of a spatial graph into pieces is canonical in a suitable sense. This
reduces the task of determining whether two spatial graphs are isomorphic, to testing
whether the pieces in their decompositions are pairwise isomorphic.
The next step is to find a decomposition of non-split graphs into spatial graphs whose

marked exteriors are moreover boundary-irreducible. Here the role of the disjoint union
is played by the operation of ‘vertex sum’ (Definition 4.1). Roughly, the vertex sum of
two spatial graphs, each with a distinguished vertex, is obtained by ‘gluing them’ along
those vertices. For non-split spatial graphs Γ, there is a close correspondence between
Γ having boundary-irreducible marked exterior, and Γ being indecomposable as a non-
trivial vertex sum (Propositions 6.11 and 6.14). We show that non-split spatial graphs
admit a canonical decomposition as an iterated vertex sum (Propositions 4.21 and 4.22)
of non-split spatial graphs without cut vertices (called ‘blocks’, see Definition 4.18).
This reduces the comparison of the isomorphism type of two non-split spatial graphs,
to comparing the blocks in their decomposition. Except for one easy special case, these
blocks have marked exteriors amenable to the algorithm in the Recognition Theorem.
Iterated vertex sums can be performed along different vertices, so the canonical decom-

position must come bundled with the combinatorial data of which vertices from different
blocks are glued to which. To package this information, we introduce ‘trees of spatial
graphs’ (Definition 4.11), and in case the spatial graphs being glued are blocks, we call it
a ‘tree of blocks’ (Definition 4.18). Our main results on decompositions as iterated vertex
sums are summarized in the following theorem (see Propositions 4.21 and 4.22 for precise
statements):

Theorem 1.2 (Canonical decomposition as a tree of blocks). Non-split spatial
graphs other than a one-point graph admit a unique decomposition as a tree of blocks.
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Though most of our results on iterated vertex sums are perhaps unsurprising, their
proofs are often rather involved. In fact, proving that the vertex sum operation is
well-defined is one of the most technically demanding points of our program, with most
of the work contained in the proof of Proposition 4.2.
We point out that our theory of decompositions has analogues in the setting of abstract

graphs [9, Excercise 8.3.3]. In the topological setting, Suzuki [16] has established a unique
factorization result with respect to a ‘composition’ operation similar in spirit to our vertex
sum, but only for connected 1-subcomplexes of the 3 -sphere and up to a ‘neighbourhood
congruence’ relation. Our Theorem 1.2 differs from Suzuki’s in the following: our spa-
tial graphs come with vertex/edge decompositions and possibly decorations, we broaden
the connectedness assumption to being non-split, and we have no identification ‘up to
neighbourhood congruence’, instead keeping track of the vertices along which to glue.
We also deduce a triviality result for spatial forests, that is, spatial graphs Γ whose

underlying abstract graph 〈Γ〉 is a forest:

Theorem 1.3 (Spatial forests as their underlying graphs). If Γ1,Γ2 are spa-
tial forests, then every isomorphism 〈Γ1〉 → 〈Γ2〉 of their underlying abstract graphs is
induced by an isomorphism of spatial graphs Γ1 → Γ2. Moreover, the spatial graphs whose
isomorphism type is determined by the underlying graph are precisely the spatial forests.

This result combines Propositions 6.16 and 6.17 in the text. It reduces the isomor-
phism test for spatial forests to an isomorphism test for abstract forests, bypassing the
machinery of Haken–Matveev.

1.4. The piecewise-linear setting

The PL category is the natural home for results in computational topology, such as
our main theorem and the machinery in Matveev’s text. It is a standard framework in
the field [3, 10, 16, 17], although a theory of smooth, rather than PL, spatial graphs has
also been introduced by the first author and Herrmann [4, 5].
We refer to the textbook of Rourke and Sanderson [15] for the standard notions in PL

topology. We often give precise references for the results we import, but knowledge of
basic concepts such as that of a polyhedron, or a PL manifold (possibly oriented, or with
boundary) is assumed. In particular, PL spaces (also called polyhedra) are subspaces of
some Rn whose points admit a star neighbourhood. The ambient space Rn is equipped
with the metric induced from the `∞-norm, so by ‘balls’ and ‘spheres’ we mean polyhedra
that are PL-homeomorphic to cubes [−1, 1]n and their boundaries, respectively.
We also make heavy usage of regular neighbourhoods. If X ⊆ P are polyhedra, with

X compact, then one may think of a regular neighbourhood of X in P as a ‘small, well-
behaved neighbourhood’ of X that deformation-retracts onto X [15, Chapter 3]. If P0 is a
closed sub-polyhedron of P, there is also the notion of a regular neighbourhood N of X in
the pair (P, P0) [15, p. 52]. In this case we use a lighter notation than Rourke–Sanderson,
who would instead have written that the pair (N,N ∩ P0) is a regular neighbourhood of
the pair (X,X ∩ P0) in (P, P0).
The reader might be more familiar with the combinatorial definition of a PL space

as (the topological realization of) an abstract simplicial complex. The two theories are
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equivalent: every polyhedron is a union of geometric simplices intersecting along faces
[15, Theorem 2.11], and such a decomposition can be abstracted to a combinatorial setup
[15, Excercise 2.27(1)]. Moreover, PL maps between polyhedra can be expressed as simpli-
cial maps between subdivisions of the abstract simplicial complexes that they realize [15,
Theorem 2.14] (and although the notion of a simplicial subdivision is not combinatorial,
the Alexander–Newman Theorem [13, Theorem 4.5] allows one to phrase purely combi-
natorially the property of two abstract simplicial complexes having PL-homeomorphic
realizations).

1.5. Outline of the article

After laying out basic terminology (§ 2), we introduce the disjoint union of spatial
graphs (§ 3) and prove that the decomposition as a disjoint union of pieces is unique.
This program is mirrored in § 4, where we define the vertex sum, explain how to specify
iterated vertex sums as trees of spatial graphs, and show uniqueness of the decomposition
a tree of blocks, thus completing the proof of Theorem 1.2. Section 5 summarizes how
to extend the theory developed thus far to spatial graphs decorated with vertex/edge
colourings and/or edge orientations.
Section 6 introduces the marked exterior of a (decorated) spatial graph. We define

it, explain how it encodes the spatial graph used to construct it, and translate inde-
composability properties of spatial graphs into features of their marked exteriors. This
is also where we briefly discuss spatial forests and prove Theorem 1.3. Finally, in § 7
we import, results from computational 3-manifold topology in order to show that the
canonical decompositions of Theorem 1.2 can be computed algorithmically, and apply the
Recognition Theorem to marked exteriors of decorated blocks. Altogether, this culminates
in the proof of our main result, Theorem 1.1.

2. Basic terminology

We remind the reader that all spaces to be considered are polyhedra: subspaces of Rn

having local cone neighbourhoods at every point, and PL maps are defined as preserving
this local cone structure [15, Chapter 1]. Standard models of balls and spheres are defined
using the `∞-norm, so they are effectively cubes and their boundaries. Orientations of
PL manifolds are PL isotopy classes of embeddings of balls [15, pp. 43–46].

Definition 2.1. A spatial graph Γ is a triple (S, V, E), where:

• S is an oriented PL 3-sphere, called the ambient sphere of Γ. We say that ‘Γ
is a spatial graph in S’.

• V is a finite subset of S, whose elements are called vertices of Γ, and
• E is a finite set of subpolyhedra of S, called edges of Γ, such that:
– each edge is PL-homeomorphic to an interval or to a PL circle,
– each edge that is PL-homeomorphic to an arc intersects V precisely at its
endpoints,

– each edge that is PL-homeomorphic to a circle contains precisely one element
of V (such edges are called loops),
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– for every two distinct edges e, e′, we have e ∩ e′ ⊆ V .

The support of Γ is the union:

|Γ| := V ∪
⋃
e∈E

e ⊂ S.

The underlying graph 〈Γ〉 of Γ is the (undirected) abstract graph with vertex set
V, edge set E, and where each edge is incident to the one or two elements of V that it
contains. We say that an edge of Γ is incident to a vertex if this is true in 〈Γ〉. The
degree of a vertex v is its degree in 〈Γ〉, that is, the number of edges incident to v, with
loops counting twice. A vertex of degree 0 is called an isolated vertex, and a vertex of
degree 1 is called a leaf.
A sub-graph of Γ = (S, V, E) is a spatial graph Γ′ = (S, V ′, E′), where V ′ ⊆ V and

E′ ⊆ E.

Observe that the two subsets |Γ| and V of S determine E, since there is a canonical
bijection between E and π0(|Γ| \ V ).

Definition 2.2. Let Γ1 = (S1, V1, E1) and Γ2 = (S2, V2, E2) be spatial graphs. An
isomorphism Φ: Γ1 → Γ2 is a PL homeomorphism of triples Φ: (S1, |Γ1|, V1) →
(S2, |Γ2|, V2) respecting the orientation of the ambient spheres. We write Γ1

∼= Γ2 if
Γ1,Γ2 are isomorphic.

By the characterization of E 1 in terms of |Γ1| \ V1, and similarly for E 2, such a Φ also
induces a bijection E1 → E2, and we get an isomorphism of abstract graphs 〈Φ〉 : 〈Γ1〉 →
〈Γ2〉. We loosen notation by writing ‘Γ1 = Γ2’ whenever 〈Γ1〉 = 〈Γ2〉 and there is an
isomorphism Φ: Γ1 → Γ2 such that 〈Φ〉 is the identity morphism.
Up to isomorphism, there is a unique spatial graph with no vertices (and hence no

edges), called the empty spatial graph, and denoted by 0. Similarly, since the group of
PL self-homeomorphisms of a 3 -sphere acts transitively on its points [15, Lemma 3.33],
there is a unique spatial graph (up to isomorphism) with one vertex and no edges, called
the one-point spatial graph, denoted by 1.

3. The disjoint union of spatial graphs

We will define and establish basic properties of two operations on spatial graphs, which
have analogues in the setting of abstract graphs. For the first one, the disjoint union,
most arguments are fairly straightforward. However, the overall strategy will serve as a
guide for treating the more involved vertex sum operation (§ 4).

3.1. Assembling spatial graphs through disjoint unions

To define the disjoint union of spatial graphs, we need:
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Theorem 3.1 (Disc Theorem [15, Theorem 3.34]). Every two
orientation-preserving PL embeddings of an n-ball into the interior of a connected,
oriented n-manifold M are PL-ambient-isotopic relative ∂M .1

Definition 3.2. An enclosing ball for a spatial graph Γ in S, is a PL-embedded
3-ball B ⊂ S such that |Γ| ⊂ int(B).
For each i ∈ {1, 2}, let Γi = (Si, Vi, Ei) be a spatial graph and Bi an enclosing ball for

Γi. Suppose f : ∂B1 → ∂B2 is an orientation-reversing PL homeomorphism. Then the
spatial graph:

Γ1 tf Γ2 := (B1 ∪f B2, V1 t V2, E1 t E2),

where B1 ∪f B2 denotes the 3-sphere obtained by attaching B1 to B2 using f, is said to
be a disjoint union of Γ1 and Γ2.

The underlying graph 〈Γ1 tf Γ2〉 is the disjoint union 〈Γ1〉 t 〈Γ2〉, as usually defined
for abstract graphs.

Lemma 3.3. (Uniqueness of enclosing balls). Let Γ be a spatial graph in S, and
let B,B′ be enclosing balls for Γ. Then every orientation-preserving PL homeomorphism
Φ∂ : ∂B → ∂B′ extends to an orientation-preserving PL homeomorphism ΦB : B → B′

that restricts to the identity on |Γ|.

Proof. Fix a regular neighbourhood NΓ of |Γ| in S disjoint from ∂B ∪ ∂B′. The
subspace NΓ := S \ int(NΓ) is also a PL 3-manifold [15, Corollary 3.14]. Moreover,
B := S \ int(B) ⊆ int(NΓ) is a 3 -ball (similarly for B′ := S \ int(B′)) since closures of
complements of PL-embedded n-balls in n-spheres are n-balls [15, Corollary 3.13].
Since a PL homeomorphism between the boundaries of two balls extends to a PL

homeomorphism of their interiors [15, Lemma 1.10], we may extend Φ∂ to an orientation-
preserving PL homeomorphism ΦB : B → B′. Apply Theorem 3.1 to produce a PL

ambient isotopy of NΓ from the inclusion B ↪→ NΓ to the composition B
Φ
B−→ B′ ↪→ NΓ.

As this ambient isotopy keeps ∂NΓ fixed, the homeomorphism ΦNΓ
: NΓ → NΓ extends

to S by setting it to the identity on NΓ. This extension ΦS : S → S, when restricted to
B, is a PL homeomorphism ΦB : B → B′ satisfying the conclusion of the lemma. �

Proposition 3.4. (Disjoint union is well-defined). For each i ∈ {1, 2}, let Γi

be a spatial graph in Si with two enclosing balls Bi, B
′
i, and suppose f : ∂B1 → ∂B2,

f ′ : ∂B′
1 → ∂B′

2 are orientation-reversing PL homeomorphisms. Then Γ1 tf Γ2 = Γ1 tf ′
Γ2.

Recall from § 2 that the equality in this proposition means that there is an isomorphism
Φ: Γ1 tf Γ2 → Γ1 tf ′ Γ2 such that 〈Φ〉 is the identity on 〈Γ1〉 t 〈Γ2〉.

Proof. By Lemma 3.3 there is an orientation-preserving PL homeomorphism Φ1 :
B1 → B′

1 with Φ1||Γ1| = id. Similarly, let Φ2 : B2 → B′
2 be an orientation-preserving

1 The reference does not state that the ambient isotopy fixes ∂M , but this follows from the proof.
Later, a stronger version of the Disc Theorem (Theorem 4.4) will include the boundary condition.
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PL homeomorphism fixing |Γ2| and whose restriction to ∂B2 is f ′ ◦ Φ1|∂B1
◦ f−1. The

maps Φi assemble to a PL homeomorphism Φ: B1tf B2 → B′
1tf ′ B

′
2 giving the required

isomorphism between Γ1 tf Γ2 and Γ1 tf ′ Γ2. �

From now on we suppress f from the notation Γ1 tf Γ2 when no confusion arises.

Lemma 3.5. (Disjoint union summands as sub-graphs). Let Γ = Γ1 t Γ2

be a disjoint union of spatial graphs, and denote by Γ′
1 the sub-graph of Γ obtained by

discarding all vertices and edges of Γ2. Then Γ′
1 = Γ1.

Proof. Let Bi ⊂ Si be the enclosing balls from which the disjoint union was formed,
with attaching map f : ∂B1 → ∂B2. To construct a PL homeomorphism Φ: S1 → B1 ∪f

B2 with Φ||Γ1| = id, take Φ as the identity on B1 and on B1 := S1 \ int(B1) choose any

extension B1 → B2 of f [15, Lemma 1.10]. �

Lemma 3.6. (Disjoint union of isomorphisms). Let Φ1 : Γ1 → Γ′
1 and Φ2 : Γ2 →

Γ′
2 be isomorphisms of spatial graphs. Then there exists an isomorphism:

Φ1 t Φ2 : Γ1 t Γ2 → Γ′
1 t Γ′

2,

such that for each i ∈ {1, 2} the underlying isomorphism of abstract graphs 〈Φ1 t Φ2〉
restricts to 〈Φi〉 on 〈Γi〉.

Proof. Form the disjoint union Γ1 tf Γ2 by using a suitable PL homeomorphism
f : ∂B1 → ∂B2 between the boundaries of enclosing balls for Γ1,Γ2. Writing B′

i := Φi(Bi)
and defining f ′ : ∂B′

1 → ∂B′
2 as f ′ := Φ2|∂B2

◦f ◦Φ−1
1 |∂B′

1
, we can form the disjoint union

Γ′
1 tf ′ Γ

′
2. The restrictions Φi|Bi

then assemble to the desired isomorphism Φ1 t Φ2. �

Note that Lemma 3.6 strongly depends on the ambient 3 -spheres carrying an orienta-
tion, which is preserved by isomorphisms. Without this requirement, a spatial graph Γ
comprised of one vertex and one loop in the shape of a trefoil would be isomorphic to its
mirror-image Γ̃, while Γ t Γ � Γ t Γ̃.

Proposition 3.7. (Properties of the disjoint union). Let Γ1,Γ2,Γ3 be spatial
graphs. Then the following conditions hold:

• 0 is the identity element: Γ1 t 0 = Γ1,
• commutativity: Γ1 t Γ2 = Γ2 t Γ1,
• associativity: (Γ1 t Γ2) t Γ3 = Γ1 t (Γ2 t Γ3).

Proof. Lemma 3.5 implies the first claim, and commutativity follows by using the
same enclosing balls for both disjoint unions, and mutually inverse attaching maps.
Associativity is illustrated in Figure 3.1. Let Si be the ambient sphere of Γi and B1,

B3 enclosing balls for Γ1,Γ3, respectively, and let B21, B23 be enclosing balls for Γ2

such that int(B21) ∪ int(B23) = S2 (that is, S2 \ int(B21) ∩ S2 \ int(B23) = ∅). Choosing
attaching maps f1 : ∂B1 → ∂B21, f3 : ∂B23 → ∂B3, it follows that B1 ∪f1

(B21 ∩B23) is
an enclosing ball for Γ1 tf1

Γ2, and (B21 ∩B23)∪f3
B3 is an enclosing ball for Γ2 tf3

Γ3.
The spatial graphs (Γ1 tf1

Γ2) tf3
Γ3 and Γ1 tf1

(Γ2 tf3
Γ3) are thus the same. �
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B23 B21

S2

B1

S1

B3

S3

B1 ∪f1 (B21 ∩ B23) ∪f3 B3

Figure 3.1. The proof of associativity of the disjoint union.

We can thus unambiguously write down iterated disjoint unions. More precisely, if
{Γi}i∈I is a collection of spatial graphs with I finite, then

⊔
i∈I Γi is well-defined up to

isomorphism inducing the identity on
⊔

i∈I〈Γi〉.

3.2. Decomposing spatial graphs as disjoint unions

We want to show that spatial graphs canonically decompose into iterated disjoint
unions. We (often implicitly) use the fact that every PL-embedded 2 -sphere in a PL
3 -sphere decomposes it into two 3 -balls. (Recall that this holds in the PL category but
not in the topological setting, by work of Alexander [1, 2].)

Lemma 3.8. (If it looks like a disjoint union, it is a disjoint union). Let Γ be
a spatial graph in S and S ⊂ S \ |Γ| a PL-embedded 2-sphere. Denote the closures of the
two components of S \ S by B1 and B2. For each i ∈ {1, 2}, let Γi be the sub-graph of Γ
comprised of the vertices and edges contained in Bi. Then Γ = Γ1 t Γ2.

Proof. Use Lemma 3.5 to regard each Γi as a sub-graph of Γ1 tΓ2, and take Bi as an
enclosing ball for Γi. If f : S → S is the identity map, then Γ = Γ1 tf Γ2. �

Definition 3.9. Let Γ be a spatial graph in S.

• If S ⊂ S is a 2-sphere as in Lemma 3.8, we say that ‘S decomposes Γ as Γ1tΓ2’.
• Γ is split if it is the disjoint union of two non-empty spatial graphs; otherwise it
is non-split.

• If S is a 2-sphere in S decomposing Γ as Γ1 t Γ2 with Γ1,Γ2 non-empty, then S
is a splitting sphere for Γ.
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Figure 3.2. A non-split spatial graph with disconnected support.

• A spatial graph is a piece if it is non-empty and non-split. We also say that a
spatial graph Λ is ‘a piece of Γ’ if Λ is a piece and Γ = Γ′ t Λ for some Γ′.

We use the word ‘piece’ rather than ‘component’ to avoid suggesting that |Λ| (or
equivalently the abstract graph 〈Λ〉) is connected; see Figure 3.2.
By induction, every spatial graph can be expressed as a disjoint union of finitely many

pieces. In the sequel we establish uniqueness of such a decomposition.

Lemma 3.10. (Spheres sort pieces). Let Λ be a piece in S, and let S ⊂ S \ |Λ| be
a PL-embedded 2-sphere. Denote the closures of the two components of S \ S by B1, B2.
Then, |Λ| is contained in exactly one of the Bi.

Proof. Since Λ 6= 0, certainly |Λ| cannot be contained in both Bi. Denote by Λi the
sub-graph of Λ whose vertices and edges are contained in Bi. By Lemma 3.8, we see S
decomposes Λ as Λ1 t Λ2. Since Λ is non-split, one of the summands, say Λ1, is empty.
By the first part of Proposition 3.7, it follows that Λ2 = Λ. �

Proposition 3.11. (Uniqueness of decomposition into pieces). Let (Λi)i∈I1
and (Λi)i∈I2

be collections of pieces with I1, I2 finite. If Φ:
⊔

i∈I1
Λi →

⊔
i∈I2

Λi is

an isomorphism, there is a bijection f : I1 → I2 such that for each i ∈ I1, the PL
homeomorphism Φ is an isomorphism of the sub-graphs Φ: Λi → Λf(i).

Proof. Write Γ1 :=
⊔

i∈I1
Λi and Γ2 :=

⊔
i∈I2

Λi. We induct on #I1.

If I1 = ∅ then Γ1 = 0 = Γ2, whence I2 = ∅ and there is nothing left to show. If
I1 = {i1}, then Γ1 = Λi1

is a piece. Hence Γ2 is also a piece and therefore I2 = {i2}. We
thus set f(i1) := i2.
If I 1 has more than one element, choose any partition into non-empty subsets I1 =

I+1 t I−1 . Let S 1 be a 2 -sphere decomposing Γ1 as
(⊔

i∈I+1
Λi

)
t
(⊔

i∈I−1
Λi

)
, and write

Γ+
1 :=

⊔
i∈I+1

Λi and Γ−
1 :=

⊔
i∈I−1

Λi. Now S2 := Φ(S1) is a 2 -sphere in the ambient

sphere of Γ2 disjoint from |Γ2| whose sides correspond to Γ+
1 and Γ−

1 . By Lemma 3.10,
each |Λi| is contained in either the ‘+’-side or the ‘−’-side of S 2. Partition I 2 accordingly
as I2 = I+2 t I−2 , and write Γ±

2 :=
⊔

i∈I±2
Λi. Since Φ maps the support |Γ±

1 | into |Γ±
2 |, we

conclude that Φ doubles as a pair of isomorphisms of sub-graphs Φ± : Γ±
1 → Γ±

2 . Both I±1
have fewer elements than I 1, so by induction we obtain bijections f± : I±1 → I±2 , which
assemble to the required f : I1 → I2. �

By Lemma 3.6, the converse of Proposition 3.11 also holds. Hence, if one decomposes
Γ1,Γ2 as disjoint unions of pieces, then testing if Γ1

∼= Γ2 boils down to testing whether
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the pieces are pairwise isomorphic. To do so, we first need to further decompose pieces,
which is the content of the next section.

4. The vertex sum of spatial graphs

The next operation combines pairs of spatial graphs with distinguished vertices. Many
definitions and results have analogues in § 3.

4.1. Defining the vertex sum

A pointed spatial graph is a pair (Γ, v) consisting of a spatial graph Γ and a ver-
tex v of Γ. The underlying graph of a pointed spatial graph is pointed with the same
distinguished vertex. An isomorphism of pointed spatial graphs is an isomorphism of the
spatial graphs preserving distinguished vertices.

Definition 4.1. An enclosing ball for a pointed spatial graph (Γ, v) in S is a PL-
embedded 3-ball B ⊂ S such that |Γ| ⊂ B and |Γ| ∩ ∂B = {v}.
For each i ∈ {1, 2}, let Γi = (Si, Vi, Ei) be a non-empty spatial graph, let vi ∈ Vi, and

let Bi be an enclosing ball for (Γi, vi). Moreover, let f : ∂B1 → ∂B2 be an orientation-
reversing PL homeomorphism mapping v1 to v2. We consider the spatial graph:

Γ1 v1
•v2 Γ2 := (B1 ∪f B2, (V1 t V2)/v1 ∼ v2, E1 t E2),

where B1∪fB2 denotes the 3-sphere obtained by attaching B1 to B2 using f, and define the
pointed spatial graph (Γ1 v1

•v2 Γ2, v1 = v2) to be a vertex sum of (Γ1, v1) and (Γ2, v2).

We use the same notation for the analogous operation on pointed abstract graphs, so
〈Γ1 v1

•v2 Γ2〉 = 〈Γ1〉 v1•v2 〈Γ2〉.
The following result is key in showing that the vertex sum is well-defined.

Proposition 4.2. (Uniqueness of enclosing balls for pointed spatial graphs).
Let (Γ, v) be a pointed spatial graph in S, let B,B′ be enclosing balls for (Γ, v). Then
every orientation-preserving PL homeomorphism Φ∂ : (∂B, v) → (∂B′, v) extends to an
orientation-preserving PL homeomorphism ΦB : B → B′ restricting to the identity on
|Γ|.

Proving this proposition requires substantially more work than its non-pointed coun-
terpart, Lemma 3.3, due to the particular behaviour demanded of Φ near v. One of the
ingredients is a generalization of the Disc Theorem.

Definition 4.3. ([15, pp. 50, 51]). An unknotted ball pair (B,B0) is a pair of
polyhedra PL-homeomorphic to a standard ball pair ([−1, 1]n, [−1, 1]m × {0}n−m) (for
some n ≥ m ≥ 0). A PL manifold pair (M,M0) is a pair of polyhedra that are
manifolds, such that ∂M∩M0 = ∂M0 (‘properness’), and such that each point of M 0 has a
neighbourhood in (M,M0) PL-homeomorphic to an unknotted ball pair (‘local flatness’).2

2 The definition given by Rourke-Sanderson on p. 50 requires only that M,M0 both be manifolds, but
the remark on p. 51 adds the local flatness and properness conditions.
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Theorem 4.4 (Disc Theorem for pairs [15, Theorem 4.20]). Let (M,M0) be
a pair of connected, oriented PL manifolds, let (B,B0) be an unknotted ball pair with
the same dimensions as (M,M0), and let ι1, ι2 : (B,B0) → (int(M), int(M0)) be PL
embeddings that preserve the orientation on both components. Then there is a PL ambient
isotopy of (M,M0) relative ∂M that carries ι1 to ι2.

Corollary 4.5. (Disc Theorem at the boundary). Let M be a connected, ori-
ented PL n-manifold, let N ⊆ ∂M be a connected PL-embedded (n − 1)-manifold that
is closed in ∂M , let B be a PL n-ball, and D ⊂ ∂B a PL (n − 1)-ball. For every two
orientation-preserving PL embeddings ι1, ι2 : (B,D) → (int(M) ∪ int(N), int(N)), there
is a PL ambient isotopy of (M,N) relative ∂M \ int(N) carrying ι1 to ι2.

Proof. Consider the double DN (M) of M along N, which is a union of two copies of M
glued along the identity map on N, one of the copies with its orientation reversed. Using
the fact that N is closed in ∂M one sees that (DN (M), N) is a PL manifold pair, and
its boundary is (D∂N (∂M \ int(N)), ∂N). Doubling also B along D yields an unknotted
ball pair (DD(B), D).
Now, the maps ι1, ι2 extend to orientation-preserving PL embeddings:

D(ι1),D(ι2) : (DD(B), D) → (int(DN (M)), int(N)).

Theorem 4.4 yields a PL ambient isotopy of (DN (M), N) relative D∂N (∂M \ int(N)) that
carries D(ι1) to D(ι2). A connectivity argument shows that it restricts to an isotopy from
ι1 to ι2 relative ∂M \ int(N). �

We also need Lemma 4.6 below, but first recall some terminology. Given a polyhedron
P ⊆ Rn and v ∈ Rn, we denote by vP the polyhedron comprised of all points of the
form tp + (1 − t)v, with p ∈ P and t ∈ [0, 1]. If each point of vP admits a unique such
expression, we say vP is a cone with base P and vertex v. If vP,wQ are cones with bases
P,Q and vertices v, w, respectively, the cone of a PL map f : P → Q (with respect to
v, w) is the PL map vP →wQ given by tp + (1 − t)v 7→ tf(p) + (1 − t)w [15, Exercise
1.6(3)].

Lemma 4.6. (Interpolating annulus). Let A0 be a PL annulus in Rn, and let
v ∈ Rn be such that vA0 is a cone with base A0 and vertex v. Denote the boundary circles
of A0 by γ0, δ0, and let γ ⊂ vγ0 and δ ⊂ vδ0 be PL circles such that vγ, vδ are cones
with bases γ, δ respectively, and vertex v. Then there is a PL annulus A ⊂ vA0 with
∂A = γ ∪ δ, such that vA is a cone with base A and vertex v.

This statement is illustrated in Figure 4.1.

Proof. We may assume that A0 = C × [0, 1] ⊂ Rn for some PL circle C ⊂ Rn−1, with
γ0 = C ×{0} and δ0 = C ×{1}, because the cone v(C × [0, 1]) → vA0 preserves cones at
v for every PL homeomorphism C × [0, 1] → A0.
Choose a finite set of points in γ ⊂ v(C×{0}) subdividing γ into straight line segments

[15, Theorem 2.2]. Pushing these points radially into γ0 = C × {0} and projecting onto
C yields a finite set of points in C (note that since vγ is a cone, no two points of γ get
pushed to the same point of γ0). Doing the same with δ yields a second finite subset
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δ

γ

A0

v

A

Figure 4.1. A PL annulus A ‘interpolating’ between γ and δ.

of C. Finally, choose a third finite subset of C subdividing C itself into straight line
segments. We denote by p1, . . . , pk the points in the union of these three subsets, ordered
cyclically around C (with indices 1, . . . , k modulo k). Now push (p1, 0), . . . , (pk, 0) ∈ γ0
radially into γ to obtain points pγ1 , . . . , p

γ
k . Similarly, pushing (p1, 1), . . . , (pk, 1) radially

yields pδ1, . . . , p
δ
k.

Since the pi subdivide C into straight line segments, we see that for each i ∈ Z/k, the
points (pi, 0), (pi+1, 0), (pi, 1), (pi+1, 1) are the vertices of a rectangle Ri contained in A0.
In particular, the cone vRi ⊂ vA0 is convex.
For each i ∈ Z/k, denote by T γ

i the triangle spanned by the points pγi , p
γ
i+1, p

δ
i , and

by T δ
i the one spanned by pδi , p

δ
i+1, p

γ
i+1. By the previous observation, these triangles are

contained in vRi. The union A :=
⋃

i∈Z/k(T
γ
i ∪ T δ

i ) is then a PL annulus embedded in
vA0, with ∂A = γ ∪ δ. It is also clear that each point of A lies in a unique ray from v
through a point in A. The cone condition on vA follows. �

Proof of Proposition 4.2. Write B := S \ int(B) and B′ := S \ int(B′), and choose
any extension of Φ∂ to a PL homeomorphism ΦB : B → B′. We will find an extension
ΦS : S → S of ΦB that fixes |Γ|, and whose restriction ΦB to B therefore satisfies the
conclusion of the lemma. The intricate construction of ΦS , for which we need some
notation, is illustrated in Figure 4.2.
First, choose a star neighbourhood N 0 for v in the pair (S, B′ ∪ |Γ|). More explicitly,

N 0 is a 3 -ball such that (B′ ∪ |Γ|) ∩ N0 is a cone with base its intersection with ∂N0,
and vertex v [15, p. 50]. In particular, D0 := B′ ∩ ∂N0 is a disc and B′ ∩N0 is the cone
vD0 with base D0 and vertex v.
We then pick a smaller star neighbourhood Nv ⊂ int(N0) of v in (S, B′ ∪ |Γ|), such

that Nv is also a star neighbourhood of v in (S, B ∪ |Γ|), and B ∩Nv is mapped conically
by ΦB into int(N0). Denoting by D the disc B ∩ ∂Nv, so B ∩Nv is a cone vD with base

D and vertex v, this means that ΦB(vD) is a cone vD
′
with base the disc D′ := ΦB(D)

and vertex v, and that ΦB |vD : vD → vD′ is the cone of ΦB |D : D → D′. The existence
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B

|Γ||Γ|

Nv NvN0

B′

v v

D D′ D0

ΦB

Figure 4.2. The 3 -balls B and B′.

|Γ|

Nv

˜B

v

|Γ|

Nv
v

B′

˜DD′

Ψ

Figure 4.3. The 3 -ball B′ and its Ψ-image B̃.

of such Nv follows from the definitions of PL map and polyhedron, say, by taking Nv to
be a sufficiently small ε-neighbourhood of v. We denote by Nv the 3 -ball S \ int(Nv).
To apply the disc theorem at the boundary, we need to move B′ to the more convenient

configuration given by the following claim and illustrated in Figure 4.3.
Claim. There exists an orientation-preserving PL homeomorphism Ψ: S → S fixing |Γ|
and such that:

• Ψ maps the pair (ΦB(B ∩Nv), D
′) into the pair (Nv, ∂Nv), and

• writing D̃ := Ψ(D′), the map Ψ is given on vD
′
as the cone vD′ → vD̃ of the PL

homeomorphism D′ → D̃.

Assuming the claim for the moment, let us see how to use the resulting Ψ to construct
the desired extension ΦS of ΦB .

Let B̃ be the 3 -ball Ψ(B′) and choose a regular neighbourhood NΓ of |Γ| ∩Nv in Nv,

small enough to be disjoint from B and B̃. Denote by M the closure of Nv \NΓ in Nv, and
consider the closed codimension-0 submanifold N := ∂Nv ∩M of ∂M . By construction
of Ψ, its restriction to ΦB(B∩Nv) is a PL homeomorphism of pairs (ΦB(B∩Nv), D

′) →
(B̃ ∩ Nv, D̃). We may thus apply Corollary 4.5 to the inclusion (B ∩ Nv, D) ↪→ (M,N)
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B ∩ Nv

v

˜B ∩ Nv

v

M M

N N˜ΦM

Figure 4.4. Applying the Disc Theorem at the boundary to ambiently isotope (B ∩Nv, D) onto

(B̃ ∩Nv, D̃) within (M,N ).

and the composition:

(B ∩Nv, D)
Φ
B−→ (ΦB(B ∩Nv), D

′)
Ψ−→ (B̃ ∩Nv, D̃) ↪→ (M,N).

This is illustrated in Figure 4.4.
The final PL homeomorphism Φ̃M : M → M of the resulting PL isotopy of M extends

the composition Ψ|Φ
B
(B∩Nv)

◦ ΦB |B∩Nv
and fixes ∂M \ int(N) = ∂M ∩ NΓ. We may

thus extend Φ̃M to a PL homeomorphism Φ̃Nv
: Nv → Nv by setting it to be the identity

on NΓ. In particular, Φ̃Nv
fixes |Γ| ∩Nv. Finally, extend Φ̃Nv

to a PL homeomorphism

Φ̃S : S → S by defining it on Nv = v(∂Nv) as the cone of the already prescribed PL
homeomorphism ∂Nv → ∂Nv.
The restriction Φ̃S |B is now the composition Ψ|B ◦ ΦB : indeed, we have seen that

the two maps agree on B ∩ Nv, and on B ∩ Nv = vD both are defined as the cone of

D
Φ
B→ D′ Ψ→ D̃. Moreover, Φ̃S fixes |Γ|. Hence, the map ΦS := Ψ−1 ◦ Φ̃S extends ΦB and

fixes |Γ|, as desired. �

Proof of the Claim. The argument is illustrated in Figure 4.5. Choose a collar for
∂D0 in B′ ∩ ∂N0, that is, a PL embedding c : ∂D0 × [0, 1] → B′ ∩ ∂N0 such that c(−, 0)
is the identity on ∂D0, and c(∂D0× [0, 1[) is an open neighbourhood of ∂D0 in B′∩∂N0.
We may also assume that the image A0 of c is disjoint from |Γ|; see [15, p. 24] for more
on collars.
Let D+

0 be the ‘enlarged disc’ D0 ∪ A0, and consider the 3 -ball vD+
0 , which is a cone

with base D+
0 and vertex v. We shall define Ψ as the identity on S \ int(vD+

0 ) and then
suitably extend the identity on ∂(vD+

0 ) to all of vD+
0 .

Denote by D̃+ the disc vD+
0 ∩ ∂Nv and consider the PL circles ∂D′ and ∂D̃+, each

lying in the cone of a distinct component of ∂A0. Each of these circles is the base of a
cone with vertex v, so we can use Lemma 4.6 to find an annulus A with ∂A = ∂D′∪∂D̃+,
such that vA is a cone with base A and vertex v. Denote by D′+ the disc D′ ∪ A and
note that by construction, ∂D′+ = ∂D̃+.
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|Γ|

NvN0 v

˜D
A0

|Γ|

NvN0 v

A0

A

D′ D0 D0

B′ ˜B

Ψ

Figure 4.5. The construction of Ψ.

To define Ψ inside vD+
0 , we first choose any extension of the identity map ∂D′+ → ∂D̃+

to a PL homeomorphism D′+ → D̃+. Since both vD′+ and vD̃+ are cones at v, we can
define Ψ on vD′+ as the cone of the above PL homeomorphism D′+ → D̃+. This is
consistent with the definition of Ψ as the identity on ∂(vD+

0 ).
It remains only to define Ψ on vD+

0 \ vD′+, whose closure in S is a 3 -ball C (because
it is the complement in vD+

0 of an open regular neighbourhood of a boundary point).

Denoting by C̃ the closure in S of vD+
0 \vD̃+, which is a 3 -ball, this amounts to choosing

a PL homeomorphism C → C̃ extending the prescribed map ∂C → ∂C̃. We choose any
extension, and this completes the construction of Ψ. It is straightforward to verify that
all required conditions on Ψ are satisfied. �

With the claim established, the proof of Proposition 4.2 is complete.

Proposition 4.7 (Vertex sum is well-defined). Any two vertex sums of pointed
spatial graphs (Γ1, v1), (Γ2, v2) are isomorphic via an isomorphism that induces the
identity on (〈Γ1〉 v1•v2 〈Γ2〉, v1 = v2).

Proof. The argument can be copied almost word-by-word from the proof of
Proposition 3.4, with the role of Lemma 3.3 now played by Proposition 4.2. �

The ambiguity about enclosing balls and attaching maps in the notation ‘Γ1 v1
•v2 Γ2’

is thus immaterial.
We remark that, for abstract graphs, we can define the vertex sum along an ordered

k -tuple of distinct vertices. For spatial graphs, however, we would need to define an
enclosing ball as a 3 -ball containing the support of the spatial graph, and whose boundary
intersects it precisely at the k distinguished vertices. But such balls might be non-unique
in the sense of Proposition 4.2; see Figure 4.6.
Lemmas 3.5 and 3.6 have analogues for vertex sums, with the same proofs:

Lemma 4.8 (Vertex summands as sub-graphs). Let Γ = Γ1 v1
•v2 Γ2 be a vertex

sum of pointed spatial graphs, and denote by Γ′
1 the sub-graph of Γ obtained by discarding

all vertices and edges that are not in Γ1. Then Γ′
1 = Γ1.
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Figure 4.6. An example of non-uniqueness of enclosing balls for a spatial graph with two distin-
guished vertices.

We have slightly extended our ongoing abuse of notation when writing ‘Γ′
1 = Γ1’.

Implicit in this statement is an equality between v1 and the vertex of Γ1 v1
•v2 Γ2 obtained

from the identification v1 ∼ v2.

Lemma 4.9 (Vertex sum of isomorphisms). Let Φ1 : (Γ1, v1) → (Γ′
1, v

′
1) and

Φ2 : (Γ2, v2) → (Γ′
2, v

′
2) be isomorphisms of pointed spatial graphs. Then there exists an

isomorphism:

Φ1 v1
•v2 Φ2 : (Γ1 v1

•v2 Γ2, v1 = v2) → (Γ′
1 v′1

•v′2 Γ
′
2, v

′
1 = v′2),

such that for each i ∈ {1, 2} the underlying isomorphism 〈Φ1 v1
•v2 Φ2〉 restricts to 〈Φi〉

on 〈Γi〉.

Proposition 4.10. (Properties of the vertex sum). Let (Γ1, v1), (Γ2, v2), (Γ3, v3)
be pointed spatial graphs. Then the following conditions hold:

• 1 is the identity element: (Γ1 v1
• 1, v1) = (Γ1, v1),

• commutativity: (Γ1 v1
•v2 Γ2, v1 = v2) = (Γ2 v2

•v1 Γ1, v1 = v2),
• associativity: for v21 and v23 (not necessarily distinct) vertices of Γ2, we have

(Γ1 v1
•v21 Γ2) v23•v3 Γ3 = Γ1 v1

•v21 (Γ2 v23
•v3 Γ3).

Proof. Identical to the proof of Proposition 3.7 save for the following modifications:

• The first item relies on vertex summands being sub-graphs (Lemma 4.8), rather
than disjoint union summands being sub-graphs (Lemma 3.5).

• To prove associativity in the case v21 = v23, the requirement on enclosing balls is
that int(B1) ∪ int(B2) = S \ {v21} (equivalently, B21 ∩B23 = {v21}). �

4.2. Iterated vertex sums and trees of spatial graphs

To elucidate how iterated vertex sums are constructed without keeping track of the
order in which they are performed, we need to encode the involved combinatorics in the
notation.
First, consider the case where only one vertex of each summand is used. We denote by

(Fi∈I(Γi, vi), v) the vertex sum of a collection of pointed spatial graphs (Γi, vi) indexed
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by a finite set I (with 1 being the vertex sum over the empty set). If Vi is the vertex set
of Γi, then the vertex set of Fi∈I(Γi, vi) is

(⊔
i∈I Vi

)
/∼, where vi ∼ vi′ for all i, i′ ∈ I.

The distinguished vertex v is the one obtained from identifying all the vi. Here it is clear
from commutativity and the ‘v21 = v23’ case of associativity in Proposition 4.10 that the
omission of parentheses or an ordering of I is harmless. At the level of underlying graphs
this operation identifies the vertices vi of the 〈Γi〉:

〈Fi∈I(Γi, vi)〉 = Fi∈I(〈Γi〉, vi).

To deal with vertex sums where the vertices being glued in each spatial graph can vary,
we introduce the following notion.

Definition 4.11. A tree of spatial graphs is a tuple:

T = (T, I, J, L, (Γi)i∈I , (v(l))l∈L),

where:

• T is an abstract finite tree with vertex set I t J and edge set L.
• The partition of the vertex set of T into I and J is a bipartition of T, that is,
each edge l ∈ L has one endpoint in I and the other in J. We write i(l), j(l),
respectively, to denote the endpoints of l in I and J.

• Each vertex in J is incident to at least two edges of T.
• The Γi are spatial graphs indexed by I.
• For each l ∈ L, v(l) is a vertex of Γi(l).
• If two different edges l, l′ ∈ L satisfy i(l) = i(l′), then v(l) 6= v(l′).

One should think of T as a blueprint for assembling a spatial graph [T ], called its
realization, out of the Γi through iterated vertex sums. Roughly, when two distinct
edges l, l′ ∈ L satisfy j(l) = j(l′) (and hence i(l) 6= i(l′)), we understand this as an
instruction to glue Γi to Γi′ along vl, vl′ . Before making this precise, we invite the reader
to study the example in Figure 4.7.
We will use an inductive procedure to define [T ], and along the way verify that its

underlying graph 〈[T ]〉 is as expected:

• the vertex set of 〈[T ]〉 is
(⊔

i∈I Vi

)
/∼, where Vi is the vertex set of Γi and

v(l) ∼ v(l′) whenever j(l) = j(l′),
• the edge set of 〈[T ]〉 is

⊔
i∈I Ei, where Ei is the edge set of Γi.

We construct |T ] by induction on #J . If J = ∅, then either T is the empty tree, in
which case we set [T ] := 0, or T has a single vertex i ∈ I, in which case [T ] := Γi. Either
way, 〈[T ]〉 is as claimed.
For the inductive step, introduce the following notation: for each edge l ∈ L, the

sub-graph of T obtained by removing l has precisely two connected components, each
containing one endpoint of l. Let Tl be the component containing i(l). Moreover, denote
by Il, Jl, Ll, respectively, the subsets of I, J, L comprised of the vertices/edges in Tl. We
then define the tree of spatial graphs Tl := (Tl, Il, Jl, Ll, (Γi)i∈Il

, (v(l′))l′∈Ll
).
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1 2 3

4 5

a b

Γ1 = Γ3 :

c

T :

Γ4 = Γ5 :Γ2 :

v(c2)

v(c4) = v(c5)

v(b2)v(a2)

v(a1) = v(b3)

[T ] :

I = {1, 2, 3, 4, 5}
J = {a, b, c}
L = {a1, a2, b2, b3, c2, c4, c5}

a1 a2 b2 b3

c2
c5c4

Figure 4.7 The realization of T = (T, I, J, L, (Γi)i∈I , (v(l))l∈L).

Now, if J contains at least one vertex j 0 (whose choice will be shown to be immaterial),
let L0 ⊆ L be the set of edges incident to j 0. For each l ∈ L0, the set Jl has strictly
fewer elements than J. Hence we have by induction constructed realizations [Tl], whose
underlying graphs 〈[Tl]〉 are as described. In particular, 〈[Tl]〉 has v(l) as a vertex, hence
so does [Tl]. We then define

[T ] := F
l∈L0

([Tl], v(l)).

By the earlier description of the underlying graph of an iterated vertex sum of pointed
spatial graphs, we see,

〈[T ]〉 = 〈 F
l∈L0

([Tl], v(l))〉 = F
l∈L0

(〈[Tl]〉, v(l)),

which matches the claimed description by some straightforward bookkeeping.
This finishes a construction of [T ] such that 〈[T ]〉 is independent of choices. Next we

show that [T ] itself is also independent of the choice of j 0.

Lemma 4.12 (Tree realizations are well defined). Any two realizations of a tree
of spatial graphs T = (T, I, J, L, (Γi)i∈I , (v(l))l∈L) are isomorphic via an isomorphism
inducing the identity on 〈[T ]〉.
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l1

j1

Tl1

j2

l2

Tl

Ṫ

Figure 4.8. The tree T, the sub-trees Tl1 , Tl2 and their intersection Ṫ . Large vertices represent
elements of I, and small ones elements of J.

Proof. We again induct on #J . When J has at most one element, no choices are made
in defining [T ], so there is nothing to show.
Suppose then that J contains two elements j1 6= j2. For each k ∈ {1, 2}, denote by

[T ]k the realization of T constructed by splitting T at jk. Moreover, let Lk ⊂ L be the
set of edges incident with jk, and consider, for each l ∈ Lk, the tree of spatial graphs
Tl := (Tl, Il, Jl, Ll, (Γi)i∈Il

, (v(l′))l′∈Ll
) defined as before.

Now, there is exactly one edge l1 ∈ L1 such that Tl1
contains the vertex j 2, and one

edge l2 ∈ L2 such that Tl2
contains j 1. Consider the tree Ṫ := Tl1

∩ Tl2
. We have a tree

of spatial graphs:

Ṫ := (Ṫ , İ, J̇ , L̇, (Γi)i∈İ , (v(l
′))l′∈L̇),

where İ := Il1 ∩ Il2 , J̇ := Jl1 ∩ Jl2 , and L̇ := Ll1
∩ Ll2

; see Figure 4.8.
By induction, the realizations [Tlk ] are well-defined. One readily checks that:

[Tl1 ] = [Ṫ ] v(l2)•v2 F
l∈L2\{l2}

([Tl], v(l)),

[Tl2 ] = [Ṫ ] v(l1)•v1 F
l∈L1\{l1}

([Tl], v(l)),

where vk is the result of identifying the vertices v(l) with l ∈ Lk \ {lk}. We finish the
proof by applying the ‘v21 6= v23’ case of associativity from Proposition 4.10:

[T ]1 = [Tl1 ] v(l1)•v1

(
F

l∈L1\{l1}
([Tl], v(l))

)

=

((
F

l∈L2\{l2}
([Tl], v(l))

)
v2
•v(l2) [Ṫ ]

)
v(l1)

•v1

(
F

l∈L1\{l1}
([Tl], v(l))

)

=

(
F

l∈L2\{l2}
([Tl], v(l))

)
v2
•v(l2)

(
[Ṫ ] v(l1)•v1

(
F

l∈L1\{l1}
([Tl], v(l))

))
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=

(
F

l∈L2\{l2}
([Tl], v(l))

)
v2
•v(l2) [Tl2 ] = [T ]2.

�

Since realizations of trees are constructed by iterated vertex sums, Lemmas 4.8 and
4.9 have the following generalizations.

Lemma 4.13 (Sub-graphs of a tree of spatial graphs). For a tree of spatial
graphs T = (T, I, J, L, (Γi)i∈I , (v(l))l∈L) and for each i ∈ I, let Γ′

i be the sub-graph of
[T ] comprised of the vertices and edges of Γi. Then Γ′

i = Γi.

Lemma 4.14 (Trees of isomorphisms). For each k ∈ {1, 2} fix a tree of spatial
graphs Tk = (Tk, Ik, Jk, Lk, (Γi)i∈Ik

, (v(l))l∈Lk
). Fix also the data of:

• an isomorphism of trees f : T1 → T2 such that f(I1) = I2 (hence f(J1) = J2),
and

• for each i ∈ I1 an isomorphism Φi : Γi → Γf(i), such that the collection (Φi)i∈I1
respects the assignments l 7→ v(l) on L1 and L2, that is, for every l ∈ L1, we have
Φi(l)(v(l)) = v(f(l)).

Then, there is an isomorphism Φ: [T1] → [T2] such that for every i ∈ I1, the underlying
isomorphism 〈Φ〉 restricts to 〈Φi〉 on the sub-graph 〈Γi〉 of 〈[T1]〉.

4.3. Decomposing pieces as trees of blocks

From now on several statements include a non-split assumption on spatial graphs.
Incidentally, we collect the following observation:

Lemma 4.15 (Vertex sum preserves being non-split). Let (Γ1, v1), (Γ2, v2) be
pointed spatial graphs. Then Γ1 v1

•v2 Γ2 is non-split if and only if both Γ1,Γ2 are non-split.

Proof. If a vertex summand, say Γ1, is split, let S1 be its ambient sphere and let
S ⊂ S1 be a splitting sphere. Choose an enclosing ball B1 for (Γ1, v1) containing S in its
interior. Then if we use B1 to form the vertex sum, S will be contained in the ambient
sphere of Γ1 v1

•v2 Γ2, with both sides of S intersecting |Γ1 v1
•v2 Γ2|. Hence S is a splitting

sphere for Γ1 v1
•v2 Γ2 by Lemma 3.8.

Conversely, suppose S is a splitting sphere for Γ1 v1
•v2 Γ2. The component of S \S not

containing the vertex v1 = v2 has non-empty intersection with the support of a summand,
say Γ1. Then both components of S \S intersect |Γ1| and so, regarding Γ1 as a sub-graph
of Γ1 v1

•v2 Γ2, we see S is a splitting sphere for Γ1. �

Corollary 4.16 (Trees of spatial graphs preserve being non-split). Let,

T = (T, I, J, L, (Γi)i∈I , (v(l))l∈L)

be a tree of spatial graphs. Then [T ] is non-split if and only if each Γi is non-split.
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Figure 4.9. A spatial graph Γ whose vertices are cut in 〈Γ〉 but not in Γ.

The following analogue of Lemma 3.8 has essentially the same proof:

Lemma 4.17 (If it looks like a vertex sum, it is a vertex sum). Let Γ be a
spatial graph in S and S ⊂ S a PL-embedded 2-sphere intersecting |Γ| precisely at one
vertex v of Γ. Denote the closures of the two components of S \ S by B1 and B2. For
each i ∈ {1, 2}, let Γi be the sub-graph of Γ comprised of the vertices and edges contained
in Bi. Then Γ = Γ1 v•v Γ2.

Definition 4.18. Let Γ be a spatial graph in S.

• If S ⊂ S is a 2-sphere as in Lemma 4.17, we say that ‘S decomposes Γ as
Γ1 v•v Γ2’.

• If S is a 2-sphere decomposing Γ as Γ1 v•v Γ2 such that for each k ∈ {1, 2} the
piece of Γk containing v is not isomorphic to 1, then v is called a cut vertex of
Γ and S a cut sphere of Γ.

• Γ is called a block if Γ is a piece without cut vertices and Γ 6∼= 1.
• A tree of spatial graphs T = (T, I, J, L, (Λi)i∈I , (v(l))l∈L) where each Λi is a block
is called a tree of blocks, and we say ‘T is a tree of blocks for [T ]’.

There is a standard notion of cut vertex in the abstract setting: a vertex v of a connected
abstract graph G is cut if G is the union of sub-graphs G1, G2 intersecting precisely at
v, with neither Gi consisting of a single vertex. It is however possible for a vertex of a
spatial graph Γ to be cut in 〈Γ〉 but not in Γ; see Figure 4.9.

Lemma 4.19 (Spheres sort blocks). Let Λ be a block in S, and let S ⊂ S be a
PL-embedded 2-sphere that intersects |Λ| either at a single vertex of Λ, or not at all.
Denote the closures of the two components of S \ S by B1, B2. Then |Λ| is contained in
exactly one of the Bi.

Proof. Since Λ is a piece, the case where S ∩ |Λ| = ∅ follows from Lemma 3.10. If
S ∩ |Λ| consists of one vertex v of Λ, then since Λ 6∼= 1, certainly |Λ| is not contained in
both Bi. By Lemma 4.17, S decomposes Λ as Λ1 v•v Λ2. As Λ has no cut vertices, one of
the summands, say Γ1, is isomorphic to 1. This means Λ = Λ2. �

Cut vertices are easily read off in the realization of a tree of blocks:

Proposition 4.20 (Cut vertices in a tree of blocks). Fix a tree of blocks T =
(T, I, J, L, (Λi)i∈I , (v(l))l∈L). For each j ∈ J , denote by v(j) the vertex of [T ] that results
from identifying all v(l) with l incident to j. Then the correspondence j 7→ v(j) is a
bijection between J and the set of cut vertices of [T ].
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Proof. To see that each v(j ) is cut: by definition of a tree of spatial graphs, j has
degree at least 2, so if L0 ⊆ L is the set of edges incident to j, one has a non-trivial
partition L0 = L1 t L2. For each k ∈ {1, 2}, choose lk ∈ Lk. Then Λi(lk)

, being a block,
has an edge, hence [Tlk ] also has an edge. Thus each vertex summand in:

[T ] =

(
F

l∈L1

([Tl], v(l))
)

v(l1)
•v(l2)

(
F

l∈L2

([Tl], v(l))
)
,

has an edge and so is not isomorphic to 1. Thus v(j) = v(l1) = v(l2) is cut. Looking at
the vertex set of [T ], as given by the description of 〈[T ]〉, it is clear that the assignment
j 7→ v(j) is injective.
Conversely, suppose v is a vertex of [T ] that does not result from such an identification,

and consider a PL-embedded 2 -sphere S in the ambient sphere S of [T ] intersecting |[T ]|
precisely at v. Say S decomposes [T ] as Γ1 v•v Γ2; we argue that some Γi is 1. The on v
implies that all edges of [T ] incident to v come from the same block Λi. Using Lemma 4.13
to regard Λi as a sub-graph of [T ], we see from Lemma 4.19 that all edges of [T ] incident
to v are in one of the Γi, say in Γ1. Hence v is an isolated vertex of Γ2. But since [T ] is
non-split by Corollary 4.16, Γ2 is non-split by Lemma 4.15, which implies Γ2

∼= 1. �

Proposition 4.21 (Existence of trees of blocks). Every non-split spatial graph
Γ 6∼= 1 is the realization of some tree of blocks.

Proof. We induct on the number of edges in Γ to produce a tree of blocks T =
(T, I, J, L, (Λi)i∈I , (v(l))l∈L) realizing Γ. If Γ has no edges, then Γ = 0 and we take T to
be the empty tree.
Now suppose Γ has edges. If Γ is a block, take T to be a tree with a single vertex i ∈ I

and set Λi := Γ. Otherwise Γ can be expressed as Γ1 v•v Γ2 with each Γk not isomorphic
to 1, and also non-split by Lemma 4.15. Hence both Γk have at least one edge, and thus
fewer edges than Γ, so the induction hypothesis applies.
Let Tk = (Tk, Ik, Jk, Lk, (Λi)i∈Ik

, (v(l))l∈Lk
) be a tree of blocks for Γk. We construct

T as in Figure 4.10 from modified versions T ′
k of the Tk, according to the following two

cases:

• If v is not a cut vertex of Γk, so by Proposition 4.20 there is no edge lk ∈ Lk

with v(lk) = v, construct T ′
k from Tk by adding a new vertex jk and a new edge

lk connecting jk to the vertex ik ∈ I whose block Λik
contains v. We also write

J ′
k := Jk t {jk}, L′

k := Lk t {lk}, L0
k := {lk},

and set v(lk) := v. (In this case, T ′
k with its vertex set partitioned as Ik t J ′

k is
not admissible as the tree in a tree of spatial graphs, since jk is a leaf.)

• If v is a cut vertex of Γk, then there is a corresponding jk ∈ Jk, whose set of
incident edges we denote by L0

k. In Γk, the vertices v(l) with l ∈ L0
k are identified

into the vertex v. Set T ′
k := Tk, J

′
k := Jk, L

′
k := Lk.
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v

T2 = T ′
2 :

T1 : T ′
1 :

l1

j1

j2

i1

T :

�
i1

l1

i1
j1 = j2

v

v

v

v

v

v

Figure 4.10. Constructing T from T 1 and T 2. Large (resp. small) vertices represent elements of
I 1, I 2 (resp. of J 1, J 2). Elements of I 1, I 2 whose corresponding blocks contain v are indicated.
Here, v is not a cut vertex in Γ1, but it is in Γ2, where it corresponds to j 2.

We define

T := T ′
1 j1

•j2 T
′
2, I := I1 t I2, J := (J ′

1 t J ′
2)/j1 ∼ j2, L := L′

1 t L′
2,

and this turns T into a tree of spatial graphs whose realization is Γ:

[T ] = F
l∈L

j(l)=j1=j2

([Tl], v(l))

=

(
F

l∈L0
1

([Tl], v(l))
)

v•v
(

F
l∈L0

2

([Tl], v(l))
)

= [T1] v•v [T2] = Γ1 v•v Γ2.

�

Proposition 4.22 (Uniqueness of trees of blocks). For each k ∈ {1, 2}, let
Tk = (Tk, Ik, Jk, Lk, (Λi)i∈Ik

, (v(l))l∈Lk
) be a tree of blocks, and let Φ: [T1] → [T2] be an

isomorphism. Then there is an isomorphism of trees f : T1 → T2 satisfying f(I1) = I2,
and such that:

• for each i ∈ I1, the map Φ is an isomorphism Λi → Λf(i), and
• for each l ∈ L1, we have Φ(v(l)) = v(f(l)).

https://doi.org/10.1017/S0013091524000087 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000087


412 S. Friedl et al.

The second item implies that f respects the bijection given by Proposition 4.20 between
the Jk and the set of cut vertices of [Tk]: for each j ∈ J1 we have Φ(v(j)) = v(f(j)).

Proof. We induct on #I1. If I1 = ∅, then [T1] = 0 = [T2], so T 2 is the empty tree
and there is nothing to show. If I 1 is comprised of a single element i1, and hence J1 = ∅,
then [T1] = Λi1

is a block, so [T2] is a block. In particular, [T2] has no cut vertices and so
by Proposition 4.20 we conclude J2 = ∅. Hence I 2 contains exactly one element i2, with
[T2] = Λi2

, and we set f(i1) := i2.
Assume now that I 1 contains at least two elements, so J1 6= ∅. Choose j1 ∈ J1, write

v1 := v(j1), and let S 1 be a cut sphere for [T1] decomposing it as [T1] = Γ+
1 v1

•v1 Γ
−
1 , so

Γ+
1 ,Γ

−
1 are pieces non-isomorphic to 1. Similarly, v2 := Φ(v1) is a cut vertex for [T2], so

let j2 ∈ J2 be the corresponding element. The sphere S2 := Φ(S1) is now a cut sphere
for [T2] decomposing it as [T2] = Γ+

2 v2
•v2 Γ

−
2 , with Φ giving isomorphisms of sub-graphs

Φε : Γε
1 → Γε

2, for each ε ∈ {+,−}.
Let k ∈ {1, 2}. Our goal is to extract from Tk a description of the Γ+

k ,Γ
−
k as realizations

of trees of blocks, to which we then apply the induction hypothesis. The procedure is
analogous for all four spatial graphs, so fix ε ∈ {+,−}.
Denote by L0

k ⊆ Lk the set of edges incident to jk. By Lemma 4.19, for each i ∈ Ik,
the block Λi is a sub-graph of exactly one among Γ+

k ,Γ
−
k . Consider the partition L0

k =
L0+
k tL0−

k , where l ∈ L0
k is in L0ε

k if Λi(l) is a sub-graph of Γε
k. Then [Tk] decomposes as:

[Tk] =
(

F
l∈L0+

k

([(Tk)l], v(l))
)

vk
•vk

(
F

l∈L0−
k

([(Tk)l], v(l))
)
.

We claim that this is the same as the decomposition given by Sk, that is:

Γε
k = Fl∈L0ε

k
([(Tk)l], v(l)).

To see this, first notice that since the Λi are non-split, each [(Tk)l] is also non-split by
Corollary 4.16. Now, for every l ∈ L0

k, it follows from Proposition 4.20 that v(l) is not a
cut vertex of [(Tk)l]. Therefore, Sk decomposes [(Tk)l] as a trivial vertex sum [(Tk)l] v(l)• 1.
In other words, |[(Tk)l]| is entirely contained in one side of Sk, which must be the same as
|Λi(l)|. Thus, each Fl∈L0ε

k
([(Tk)l], v(l)) is a sub-graph of Γε

k, whence the above description

of the Γε
k holds.

Next, we write down an explicit tree of blocks T ε
k for Fl∈L0ε

k
([(Tk)l], v(l)). If L0ε

k has

only one element lεk, put T ε
k := (Tk)lε

k
. Otherwise, recover the notation introduced when

defining the realization of a tree of spatial graphs:

(Tk)l = ((Tk)l, (Ik)l, (Jk)l, (Lk)l, (Λi)i∈(Ik)l
, (v(l′))l′∈(Lk)l

),

and set T ε
k := (T ε

k , I
ε
k, J

ε
k, L

ε
k, (Λi)i∈Iε

k
, (v(l))l∈Lε

k
) to be the tree of blocks comprised of

the branches of Tk at jk that stem from edges in L0ε
k . Explicitly, T ε

k is the sub-tree of Tk
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with vertex and edge sets given by:

Iεk :=
⊔

l∈L0ε
k

(Ik)l, Jε
k := {jk} t

⊔
l∈L0ε

k

(Jk)l, Lε
k := L0ε

k t
⊔

l∈L0ε
k

(Jk)l.

Observe that in the first case [T ε
k ] does not have vk as a cut vertex, and in the second

case it does, with jk being the corresponding element of Jε
k.

It is now clear that, in either case, [T ε
k ] = Fl∈L0ε

k
([(Tk)l], v(l)) = Γε

i . By induction

hypothesis, the isomorphisms Φε : [T ε
1 ] → [T ε

2 ] yield tree isomorphisms f ε : T ε
1 → T ε

2 ,
which we now assemble to the desired f : T1 → T2. On each sub-tree T ε

1 of T 1, we want
to set f = f ε but have to ensure that f+ and f− agree where they overlap, and we must
also define f on vertices and edges of T 1 that are not in any of the T ε

1 .
Fix ε ∈ {+,−} for this paragraph. The isomorphism Φε ensures that v1 is a cut vertex

of [T ε
1 ] if and only if v2 is a cut vertex of [T ε

2 ]. If this is the case, then for both k ∈ {1, 2},
the vertex jk of Tk is in T ε

k , along with the edges in L0ε
k . Moreover, in this situation

we have in T ε
2 that v(j2) = v2 = Φε(v1) = Φε(v(j1)) = v(f ε(j1)), whence it follows by

injectivity of j 7→ v(j) that j2 = f ε(j1). On the other hand, if one (hence both) vk is not
cut in [T ε

k ], then the corresponding jk and the unique edge lεk in L0ε
k are not in T ε

k . In this
situation, i(lεk) is the only element of Iεk whose corresponding block Λi(lε

k
) contains vk as

a vertex.
At this point there are three cases to consider:

• If for some (hence both) k ∈ {1, 2} the vertex vk is cut in [T +
k ] and [T −

k ], then the
sub-trees T+

k , T−
k jointly cover Tk, and they overlap precisely at jk. As f

+(j1) =
j2 = f−(j1), we can glue together the f ε into the desired f : T1 → T2.

• Suppose, for both k ∈ {1, 2}, the vertex vk is cut in [T +
k ] but not in [T −

k ] (the
reverse situation being analogous). Then T+

k and T−
k do not overlap, and jointly

they cover all of Tk except for the edge l
−
k described above. In this case, extend the

definition of f+, f− to all of T 1 by setting f(l−1 ) := l−2 . This respects the endpoints
of the edge: we have seen that f−(j1) = j2, and the characterization of i(lεk) given
above, together with the fact that Φ−(v1) = v2, shows that f

−(i(l−1 )) = i(l−2 ).
• If for both k ∈ {1, 2} the vertex vk is not cut in [T +

k ] nor in [T −
k ], then T+

k , T−
k

are disjoint and cover all of Tk except for the vertex jk and its only two incident
edges l+k , l

−
k . We extend f+, f− by putting f(j1) := j2 and, for each ε ∈ {+,−},

setting f(lε1) := lε2. This respects the incidence of each lε1 at the endpoint j 1, and
for the other endpoint we argue as in the previous case.

Having defined the isomorphism f : T1 → T2, almost all properties stated in the
proposition are inherited from the f ε. We are only left to check that, in the second and
third cases above, the definition of f on the new edge(s) lε1 satisfies Φ(v(lε1)) = v(f(lε1)).
And indeed it does: Φ(v(lε1)) = Φ(v1) = v2 = v(lε2) = v(f(lε1)). �

Proposition 4.22 works in tandem with Proposition 3.11, which reduced recognition
of spatial graphs to recognition of pieces. To test whether two pieces are isomorphic,
first decompose them as trees of blocks – the algorithmic details are given below in
Lemma 7.8. Then, Proposition 4.22 guarantees that the pieces are isomorphic if and only
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if the blocks are pairwise isomorphic, via isomorphisms respecting the structure of the
trees. Comparing the isomorphism type of blocks is within reach using the Recognition
Theorem (Theorem 7.4).

5. Extension to decorated spatial graphs

The theory developed in the previous sections generalizes to spatial graphs equipped with
additional structure. Three natural extensions are directed spatial graphs, and spatial
graphs with colourings of edges and/or vertices. Here we formalize these concepts and
comment on how the operations and decompositions are adapted to such settings. Proofs
require no additional insight, so we omit them.
A directed spatial graph is a spatial graph Γ together with a choice of orientation

of each edge. If e is a non-loop edge of Γ and h : [−1, 1] → e is a PL homeomorphism
orienting e, we say the vertex h(−1) is the source of e, and h(1) is its target. When e is
a loop, the only vertex of Γ contained in e is simultaneously the source and the target. We
denote the source and target of an edge e by s(e) and t(e), respectively. An isomorphism
of directed spatial graphs is an isomorphism of the spatial graphs such that all induced
PL homeomorphisms between the edges are orientation-preserving.
A vertex colouring of a spatial graph Γ = (S, V, E) is a function f : V → N from

the vertex set to the non-negative integers. For each vertex v ∈ V , we refer to f (v) as
the colour of v. Given spatial graphs Γ1 = (S1, V1, E1),Γ2 = (S2, V2, E2) with vertex
colourings f1, f2, an isomorphism Φ: Γ1 → Γ2 is said to preserve vertex colourings if
the bijection Φ|V1 : V1 → V2 satisfies f1 = f2 ◦ Φ|V1 . Analogously we define an edge
colouring g : E → N, and what it means for an isomorphism of spatial graphs to preserve
edge colourings.
One may consider spatial graphs with any (possibly empty) combination of these three

types of structure, and we will broadly refer to such spatial graphs as decorated. By two
spatial graphs carrying a decoration ‘of the same type’, we mean that the combination of
additional structures is the same. An isomorphism of spatial graphs with decorations of
the same type is an isomorphism of the corresponding undecorated spatial graphs that
respects all extra structure. Sub-graphs and the underlying abstract graphs also inherit
decorations of the same type. The induced decoration on 〈Γ〉 determines the decoration
of Γ, except for one ambiguity: if Γ is directed, the orientation of a loop e cannot be
inferred from s(e) and t(e).

Lemma 5.1 (Compatibility with decorations via underlying graphs). Let
Γ1,Γ2 be spatial graphs with decorations of the same type, and Φ: Γ−

1 → Γ−
2 an isomor-

phism of the corresponding undecorated spatial graphs. Assume moreover that the Γi have
no loops, or are not directed. Then Φ respects the decorations on the Γi if and only if
〈Φ〉 : 〈Γ−

1 〉 → 〈Γ−
2 〉 respects the decorations on the 〈Γi〉.

We summarize how to adapt main definitions and statements regarding disjoint unions
and vertex sums of spatial graphs with decorations are of the same type:

• The disjoint union of decorated spatial graphs is the disjoint union of the
underlying spatial graphs, carrying a decoration of the same type.
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• The vertex sum of pointed decorated spatial graphs is similarly defined provided
that, in case a vertex colouring is part of the decoration, the basepoints are of the
same colour.

• Isomorphisms between decorated spatial graphs can be assembled along disjoint
unions and vertex sums in the sense of Lemmas 3.6 and 4.9.

• In the decorated set-up, there is a well-defined identity element 0 for the disjoint
union, but if a vertex colouring is part of the decoration, there is one isomorphism
type 1c of one-point spatial graph for each colour c ∈ N.

• The properties listed in Propositions 3.7 and 4.10 hold for decorated spatial
graphs. If a vertex colouring is part of the decoration, the occurrence of 1 in
Proposition 4.10 should read 1c, where c is the colour of v1.

• The definitions of splitting sphere, split spatial graph and piece (Definition 3.9)
remain unchanged in the decorated setting. Every decorated spatial graph can
be expressed as an iterated disjoint union of (decorated) pieces, in a way that is
unique in the sense of Proposition 3.11.

• In a tree of (decorated) spatial graphs (Definition 4.11), all Γi should have a
decoration of the same type. If a vertex colouring is part of the decoration we
additionally require that, for each j ∈ J , the vertices v(l) with l incident to j
be all of the same colour. Realizations of trees of decorated spatial graphs are
well-defined in the sense of Lemma 4.12, carrying a canonical decoration of the
same type.

• In the vertex-coloured version of cut vertex, cut sphere and block (Definition 4.18),
occurrences of the expression ‘not isomorphic to 1’ should read ‘not isomorphic
to any 1c’. The definition of tree of blocks does not change.

• Propositions 4.21 and 4.22 apply to decorated graphs: every non-split decorated
spatial graph that is not isomorphic to a one-point graph is the realization of a
tree of decorated blocks in a unique way.

Vertex colourings will be used in an essential way for establishing algorithmic recog-
nition of pieces (Proposition 7.10), even when the pieces do not have a vertex colouring.
Explicitly, we will use vertex colourings in the proof of Lemma 7.7 to encode the require-
ment that the isomorphisms between blocks in a tree of blocks respect the combinatorial
structure (the second item of Proposition 4.22).

6. The marked exterior of a spatial graph

In this section, we construct the marked exterior of a (decorated) spatial graph Γ =
(S, V, E), which will be a ‘manifold with boundary pattern’. We explain how it encodes
the spatial graph used to construct it and translate indecomposability properties of spatial
graphs into properties of their marked exteriors.

6.1. Construction and faithfulness

We first describe a simpler variant, the oriented marked exterior, which will be a
pair (X◦

Γ, P
◦
Γ), with X◦

Γ an oriented PL 3-manifold and P ◦
Γ an oriented one-dimensional

submanifold of ∂X◦
Γ; see Figure 6.1 for an illustration.
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Nv

X◦
ΓΓ

P ◦
Γ

Rv

Ne

�

v

e

Re

Figure 6.1. An oriented marked exterior of a spatial graph. Arrows indicate orientations.

First, choose a regular neighbourhood NV of V in the pair (S, |Γ|). Since V is discrete,
NV is a disjoint union of 3 -balls [15, Corollary 3.12], each containing exactly one vertex
v ∈ V . Denote the corresponding ball by Nv and let XV be the compact PL 3-manifold
S \ int(NV ).
Next, choose a regular neighbourhood NE of |Γ|∩XV in XV. As |Γ|∩XV is the disjoint

union of the properly embedded arcs e∩XV , with e ∈ E, the regular neighbourhood Ne

of each e∩XV is a 3 -ball and (Ne, e∩XV ) is an unknotted ball pair [15, Corollary 3.27].3

We now set X◦
Γ := S \ int(NV ∪NE), which is a compact PL 3-manifold with ∂X◦

Γ ⊆
∂XV ∪ ∂NE . For each vertex v ∈ V , we call Rv := ∂Nv ∩ ∂X◦

Γ the vertex region of v
and for each edge e ∈ E we call Re := ∂Ne ∩ ∂X◦

Γ the edge region of e. Notice that
Re is always an annulus, and if v has degree d, then Rv is a surface of genus 0 with d
boundary components.
To define P ◦

Γ , note that the vertex regions and edge regions of ∂X◦
Γ intersect along

circles, which we call junctures. We set P ◦
Γ :=

(⋃
v∈V Rv

)
∩
(⋃

e∈E Re

)
as the union

of these junctures. Then P ◦
Γ separates ∂X◦

Γ into the vertex and edge regions. As X◦
Γ

inherits an orientation from S, also ∂X◦
Γ has a canonical orientation. Now we orient

P ◦
Γ = ∂

(⋃
v∈V Rv

)
as the boundary of

⋃
v∈V Rv (viewing P ◦

Γ as the boundary of
⋃

e∈E Re

instead would induce the opposite orientation). Hence, the orientation of P ◦
Γ determines

which regions of ∂X◦
Γ are vertex regions. As each edge is incident to at least one vertex,

each vertex or edge region of ∂X◦
Γ that has no boundary has to be a vertex region

(corresponding to an isolated vertex).

Definition 6.1. An oriented marked exterior of a spatial graph Γ is a pair
(X◦

Γ, P
◦
Γ), where X

◦
Γ and P ◦

Γ are oriented PL manifolds obtained by the above construction.

Proposition 6.2. (Oriented marked exteriors are well-defined). Let Γ be a
spatial graph with two oriented marked exteriors (X◦

k , P
◦
k ), k ∈ {1, 2}. Then there exists

an orientation-preserving homeomorphism of pairs Φ: (X◦
1 , P

◦
1 ) → (X◦

2 , P
◦
2 ) such that,

for each vertex v of Γ, the map Φ sends the corresponding vertex region Rv,1 to Rv,2, and
similarly for edge regions.

3 The reference states only that Ne is a 3 -ball, but the proof of Rourke–Sanderson’s Theorem 3.26 in
our particular case reveals that the ball pair (Ne, e ∩XV ) is unknotted.
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Proof. Let NV,k and NE,k be the regular neighbourhoods from the construction ofX◦
k .

Similarly, use the corresponding notation Nv,k, Ne,k for the components corresponding
to single vertices and edges, as well as XV,k for S \ int(NV,k).
By the Regular Neighbourhood Theorem for pairs [15, Theorem 4.11] there is a PL

isotopy of S carrying NV,1 to NV,2 and fixing |Γ|. This induces an orientation-preserving
PL homeomorphism ΦV : NV,1 → NV,2. As |Γ| is fixed during the isotopy, ΦV maps Nv,1

to Nv,2 for each vertex v of Γ and fixes the edges as well.
Since PL homeomorphisms take regular neighbourhoods to regular neighbourhoods,

ΦV (NE,1) and NE,2 are regular neighbourhoods of |Γ| ∩XV,2 in XV,2. Using the Regular
Neighbourhood Theorem again, we find a PL isotopy of XV,2 that carries ΦV (NE,1) to
NE,2. This isotopy carries ΦV (X

◦
1 ) to X◦

2 . This shows that the two marked exteriors are
in fact PL-homeomorphic via an orientation-preserving PL homeomorphism Φ: X◦

1 →
X◦

2 . As these isotopies fix |Γ|, each vertex/edge region of the boundary gets mapped
to the corresponding vertex/edge region, thus mapping P ◦

1 to P ◦
2 . As Φ is orientation-

preserving and the orientation of the junctures is determined by the orientation of Xk, Φ
also preserves the orientation of the P ◦

k . �

We thus refer to the oriented marked exterior of a spatial graph.

Proposition 6.3 (Faithfulness of oriented marked exteriors). Let Γ1,Γ2

be spatial graphs, (X◦
1 , P

◦
1 ) and (X◦

2 , P
◦
2 ) their oriented marked exteriors, and let

ΦX : (X◦
1 , P

◦
1 ) → (X◦

2 , P
◦
2 ) be a PL homeomorphism preserving the orientation of both

factors. Then ΦX extends to an isomorphism Φ: Γ1 → Γ2.

Before the proof, we remark that although one can encode links as spatial graphs (for
example, with each link component consisting of one vertex and one loop), Proposition
6.3 does not contradict the well-known fact that there exist non-isotopic links with home-
omorphic exteriors. Indeed, the difficulty in reconstructing a link from its exterior lies
in determining the curve on each boundary component that should play the role of the
meridian. If a link is realized as a spatial graph, however, each link component has at
least one vertex, so in the marked exterior, the meridians are explicitly visible as the
junctures. This is also the reason why Proposition 6.3 is quite distinct in spirit from
Gordon-Luecke’s classical result that knots are determined by their exteriors [6].

Proof. Recall that the orientation of P ◦
Γ determines which regions of ∂X◦

Γ are vertex
regions. Thus, preserving the orientation of P ◦

k is equivalent to mapping vertex regions
to vertex regions (and edge regions to edge regions).
Denote the regular neighbourhoods used in the construction of Xk by NV,k and NE,k.

The discs NE,k ∩∂NV,k are bounded by the junctures in P ◦
k , and each disc intersects |Γk|

in exactly one point in its interior. Since discs are PL-homeomorphic to cones over any
of their interior points, we can use the cone construction to extend ΦX to a PL homeo-
morphism ΦX+ : X◦

1 ∪ (NE,1 ∩ ∂NV,1) → X◦
2 ∪ (NE,2 ∩ ∂NV,2) mapping the intersection

points of |Γk| with NE,k ∩ ∂NV,k to each other.
Note that each (Ne,k, e ∩XV,k) is an unknotted ball pair. As any PL homeomorphism

of the boundary of an unknotted ball pair extends to the interior [15, Theorem 4.4], we
can extend ΦX+ to a PL homeomorphism ΦXV

: XV,1 → XV,2 that maps |Γ1| ∩XV,1 to
|Γ2| ∩XV,2.
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Since each Nv,k is PL-homeomorphic to a cone with base a 2 -sphere containing Rv,k

and cone point v, such that |Γ| ∩Nv,k corresponds to the cone over |Γ| ∩ ∂Nv,k, we may
cone the already defined map on each ∂Nv,1. This finishes the extension of ΦX to the
ambient sphere of Γ1. �

We have thus shown how to encode a spatial graph as its oriented marked exterior.
Since our aim is to distinguish exteriors by applying the Recognition Theorem, which
is insensitive to orientations, we need to refine our boundary pattern so that it encodes
orientations, and also possibly decorations of the spatial graph.

Definition 6.4 ([14, Definition 3.3.9]). A manifold with boundary pattern
(M,P) is a PL 3-manifold M together with a 1-dimensional subpolyhedron P ⊂ ∂M
containing no isolated points. A homeomorphism of manifolds with boundary pattern
is a PL homeomorphism of pairs (M1, P1) → (M2, P2).

If we ignore orientations, then (X◦
Γ, P

◦
Γ) as defined above is an example of a manifold

with boundary pattern. In the sequel we describe the required modification of P ◦
Γ . In

order to avoid restricting spatial graph isomorphisms that can be detected by comparing
marked exteriors, we need to ensure that all changes are independent of artificial choices.
First, we shall encode which regions of ∂X◦

Γ are vertex regions, and the orientations of
X◦

Γ and P ◦
Γ . The orientation of X◦

Γ can be recovered from the orientation of the junctures
and the data of which regions of ∂X◦

Γ are vertex regions. To encode the orientation of
each juncture γ, choose three distinct points on γ. An orientation of γ is then the same
as a cyclic ordering of these points. From one of the points p1 extend one arc into the
corresponding vertex region Rv. From the next point p2 in the cyclic ordering, extend
two arcs into Rv, and three arcs from the third point p3. With these added arcs, the
boundary pattern encodes which regions are vertex regions as well as the orientations of
junctures, hence also the orientation of X◦

Γ.
To account for decorations of Γ we further modify this boundary pattern. To encode

the colour f (v) of a vertex v, rather than extending three arcs from p3, extend f(v) + 3
arcs instead. Similarly, to encode the colour g(e) of the edge e at γ, extend g(e) arcs
from p3 into the edge region Re. We are left to encode the orientations of the edges. Note
that there are two junctures around e, corresponding to its positive and negative ends
(with respect to any PL embedding [−1, 1] → e \ V orienting e). If γ corresponds to the
positive end of e, we extend a single arc from p2 into Re. After these modifications, the
resulting boundary pattern still encodes which regions of ∂X◦

Γ are vertex regions, as every
vertex region receives arcs from three points in each of its junctures, and edge regions
receive arcs from at most two. The number of arcs also clearly encodes the colourings
f, g and/or the edge orientation.
To make the above construction rigorous, we define a (k, l,m)-model disc, where

k, l ∈ N andm ∈ {0, 1}, as the standard oriented ball pair (D, I) := ([−1, 1]2, [−1, 1]×{0})
together with a few line segments in D emanating from points in I as in the left hand side
of Figure 6.2. Explicitly, consider the points p1 :=

(
−1

2 , 0
)
, p2 := (0, 0) and p3 :=

(
1
2 , 0
)

of I. From p1, extend one line segment into the upper region of D (which induces the
orientation of I ). From p2, extend two line segments into the upper region and m line
segments into the lower region. From p3, extend k +3 line segments into the upper region
and l line segments into the lower region of D.
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Figure 6.2. Left: a (2, 4, 1)-model disc. Right: model disc for PΓ at the region of an isolated
vertex v with colour f(v) = 1. Arrows indicate orientations.

1

3

2
�

Γ XΓ PΓ

Figure 6.3. The marked exterior of a decorated spatial graph. Numbers indicate the colours of
the vertices and edge.

Choose a regular neighbourhood of P ◦
Γ in ∂X◦

Γ, which is comprised of an annulus Aγ

for each juncture γ. If γ bounds the vertex region Rv and the edge region Re, choose
an orientation-preserving PL embedding of the (f(v), g(e),m)-model disc Φ: (D, I) →
(Aγ , γ), where f : V → N and g : E → N are the colourings and m ∈ {0, 1} is 1 if and
only if γ corresponds to the positive end of e. Then, add the images of the arcs in the
model disc to P ◦

Γ ; see Figure 6.3 for an example.
We still have to take care of isolated vertices, whose colours have not yet been encoded

in the boundary pattern (and if Γ has only isolated vertices, the boundary pattern does
not encode the orientation of ∂X◦

Γ). We use as a local model the disc on the right hand
side of Figure 6.2, again with 1, 2 and f(v) + 3 lines extending from the triangle in the
middle. We push forward this pattern to each region Rv corresponding to an isolated
vertex v via any orientation-preserving PL embedding.
The boundary pattern P ◦

Γ together with the added patterns near the junctures and at
vertex regions of isolated vertices makes up the new boundary pattern PΓ.

Definition 6.5. A marked exterior of a decorated spatial graph Γ is a manifold
with boundary pattern (XΓ, PΓ), where XΓ = X◦

Γ as unoriented PL manifolds and PΓ is
obtained from P ◦

Γ as described above.

We stress that whereas for an oriented marked exterior (X◦
Γ, P

◦
Γ) both X◦

Γ and P ◦
Γ

are oriented, the manifold XΓ is not oriented (and PΓ is not even a manifold). Our
construction was designed to allow for recovering the orientation data of (X◦

Γ, P
◦
Γ) from

(XΓ, PΓ).
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Proposition 6.6 (Marked exteriors are well-defined). Let Γ be a decorated
spatial graph with two marked exteriors (Xk, Pk), k ∈ {1, 2}. Then there exists a homeo-
morphism of manifolds with boundary pattern Φ: (X1, P1) → (X2, P2) such that, for each
vertex v of Γ, Φ sends the corresponding vertex regions Rv,1 to Rv,2 and similarly for
edge regions.

Proof. By Proposition 6.2, the oriented marked exteriors (X◦
k , P

◦
k ) used to construct

the (Xk, Pk) are homeomorphic as manifolds with boundary pattern via a homeomor-
phism Φ: (X◦

1 , P
◦
1 ) → (X◦

2 , P
◦
2 ) respecting vertex and edge regions of the boundary,

as well as the orientation of each factor. By the Regular Neighbourhood Theorem [15,
Theorem 3.24] there is a PL isotopy HA of ∂X2 fixing P ◦

2 and pushing the Φ-image of
the chosen regular neighbourhood of P ◦

1 onto the chosen regular neighbourhood of P ◦
2 .

Denote the final homeomorphism of this isotopy by Ψ.
For each juncture γ ⊂ P ◦

1 , apply the Disc Theorem for pairs (Theorem 4.4) to get a
PL isotopy Hγ of AΦ(γ) that fixes ∂AΦ(γ), preserves the juncture Φ(γ), and isotopes the
postcomposition with Ψ ◦ Φ of the embedding of the model disc at γ to the embedding
of the model disc at Φ(γ). Using all the PL isotopies Hγ and extending to the whole
boundary ∂X2 as the identity, we obtain a PL isotopy HD of ∂X2 carrying Ψ ◦Φ(P1) to
P2.
The isotopy of ∂X2 obtained by the concatenation of HA and HD extends to a PL

isotopy of X 2 [15, Proposition 3.22(ii)]. Its final homeomorphism, when precomposed
with Φ, yields a homeomorphism (X1, P1) → (X2, P2) respecting the vertex and edge
regions. �

Proposition 6.7 (Faithfulness of marked exteriors). Let (X1, P1) and (X2, P2)
be marked exteriors for two non-empty decorated spatial graphs Γ1 and Γ2, and
ΦX : (X1, P1) → (X2, P2) a PL homeomorphism. Then ΦX extends to an isomorphism
Φ: Γ1 → Γ2.

Proof. For k ∈ {1, 2} consider the boundary patterns P ◦
k ⊂ Pk consisting only of the

junctures. As an unoriented manifold, P ◦
k can be intrinsically characterized as the union

of all embedded circles in Pk that are not the only circle in their component of ∂Xk.
Hence, ΦX maps P ◦

1 to P ◦
2 .

Observe that ΦX preserves vertex regions and edge regions: indeed, components of
∂Xk with a single component of Pk correspond to isolated vertices and, on all other
connected components, vertex regions are those receiving arcs from 3 distinct points of
each juncture, while edge regions only receive arcs from at most two distinct points.
As the number of arcs extended into the vertex region encodes the orientation of each
juncture, ΦX has to preserve the orientation of P ◦

k as well as the orientation of the
triangles at isolated vertices. As the orientation of X◦

k is determined by the orientation
of the junctures and which side is the vertex region, ΦX also preserves the orientation of
the X◦

k .
Overall, we conclude that ΦX is a PL homeomorphism (X◦

1 , P
◦
1 ) → (X◦

2 , P
◦
2 ) preserving

the orientation of each factor. Thus, Proposition 6.3 can be applied to conclude that, up
to decorations, ΦX extends to an isomorphism Φ: Γ1 → Γ2. From the way the decorations
got encoded into the boundary patterns, it is clear that Φ respects decorations. �
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6.2. Properties of the marked exterior

Here we explain how being non-split and having no cut vertices translates into features
of marked exteriors.

Definition 6.8. Let (M,P) be a manifold with boundary pattern.

• A properly embedded PL 2-sphere that does not bound a PL 3-ball in M is called
a reducing sphere. We call M reducible if it admits a reducing sphere, and
irreducible otherwise. We apply the same terminology to (M,P).

• A subspace X ⊆ M is called clean if X ∩ P = ∅. Let D ⊂ M be a clean properly
embedded PL disc. If ∂D does not bound a clean disc in ∂M , then D is called a
reducing disc for (M,P). We say that (M,P) is boundary-reducible if it has
a reducing disc; otherwise it is boundary-irreducible.4

Proposition 6.9 (Splitting and reducibility). Let Γ be a decorated spatial graph
and (XΓ, PΓ) its marked exterior. Then Γ is split if and only if XΓ is reducible.

Proof. (=⇒) Suppose S is a splitting sphere for Γ. Building XΓ out of small enough
regular neighbourhoods NV and NE as to avoid S, we see S is a reducing 2 -sphere for
XΓ since no component of XΓ \ S is an open 3 -ball, as both have non-empty boundary.
(⇐=) Denote by S the ambient 3 -sphere of Γ, assume S is a reducing sphere for a

marked exterior XΓ ⊂ S, and let B1, B2 ⊂ S be the 3 -balls into which S splits S. If for
some i ∈ {1, 2} the intersection |Γ| ∩ Bi were empty, then we would have Bi ⊂ XΓ, in
contradiction with S being a reducing sphere. Hence, if S decomposes Γ as Γ1 tΓ2, then
none of the Γi is empty. �

The second part of the proof actually shows a finer statement:

Corollary 6.10 (Reducing spheres split). Every reducing sphere for a marked
exterior (XΓ, PΓ) is a splitting sphere for Γ.

The relationship between cut vertices of a spatial graph and boundary-reducibility of
its marked exterior is more subtle, so we study each direction of the correspondence
separately, but the general idea is depicted in Figure 6.4.

Proposition 6.11 (Boundary-reducibility from cut vertices). Let Γ be a non-
split decorated spatial graph. If Γ has a cut vertex, then its marked exterior (XΓ, PΓ) is
boundary-reducible.

4 The definition of boundary-irreducibility for manifolds with boundary pattern is given in Matveev’s
book simply as the ‘straightforward generalization’ of the notion for 3-manifolds without boundary
pattern [14, p. 126], leaving unclear whether the definition of a reducing disc D for (M,P) allows ∂D to
bound a non-clean disc in ∂M . It is stated on p. 127 that, if M is a solid torus, then (M,P) is boundary-
reducible if and only if ∂M \P contains a meridian of M. This is only true if ∂D is not allowed to bound
a disc on ∂M , even when that disc intersects P, contrary to our definition. We believe this example is due
to an oversight. Indeed, Matveev’s usage of the term (e.g., in the proofs of Lemmas 4.1.33 and 4.1.35)
relies on the boundary of a clean properly embedded disc in a boundary-irreducible (M,P) bounding a
clean disc in ∂M . This is compatible with the definition we present and with the usage elsewhere in the
literature (e.g., [12, p. 16]).
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Γ

XΓ

PΓ

DS

Figure 6.4. A cut sphere S in Γ gives rise to a reducing disc D in (XΓ, PΓ).

Proof. Let Γ = (S, V, E), let v be a cut vertex for Γ, and S a cut sphere through v.
We construct a marked exterior (XΓ, PΓ) using a small enough regular neighbourhood
NV of V so that NV is in fact a regular neighbourhood of V in (S, |Γ| ∪ S), and also, we
use NE small enough to be disjoint from S. Additionally, we ensure that PΓ is built from
disc embeddings with image small enough to be disjoint from S, so that S ∩ PΓ = ∅. As
S ∩Nv is a regular neighbourhood of {v} in S, it is a disc. The other side D := S ∩XΓ

is thus a clean properly embedded disc in (XΓ, PΓ).
We claim that D is a reducing disc for (XΓ, PΓ). To see this, consider the two balls

B1, B2 into which S separates S. The curve ∂D separates the component C of ∂XΓ

containing the vertex region Rv into the two regions Ci := C∩Bi, for i ∈ {1, 2}. We need
to show that no Ci is a clean disc. Since S is a cut sphere, there is at least one edge ei
incident to v on each Bi. As the corresponding component Nei

of NE is disjoint from S,
we have Nei

⊂ Bi, and in particular Rei
⊂ Ci. The juncture between Rei

and Rv is thus
contained in Ci, whence Ci is not clean. �

A converse statement also holds, except for one particular (isomorphism type of) spatial
graph: a spatial graph is called a one-edge graph if it has exactly two vertices and one
edge, with the edge being incident to both vertices.

Lemma 6.12. (Uniqueness of one-edge graphs). Let Λ1,Λ2 be decorated one-
edge graphs, and let F : 〈Λ1〉 → 〈Λ2〉 be an isomorphism of their underlying decorated
abstract graphs. Then there is an isomorphism Φ: Λ1 → Λ2 with 〈Φ〉 = F .

This is a straightforward consequence of the following general statement, taking M to
be a 3 -sphere.

Proposition 6.13. (Arcs in the interior of connected manifolds). Let M be a
connected PL manifold of dimension at least 2. For k ∈ {1, 2}, let Ik be a PL-embedded
arc in int(M) with endpoints vk, uk. Then there is a PL isotopy of M carrying I 1 onto
I2, v1 to v2 and u1 to u2.

It is not true in general that any two PL-embedded n-balls in the interior of a PL
manifold of dimension at least n +1 are ambient-isotopic. For example, consider the
cone D of a trefoil knot in ∂([−1, 1]4), with the origin as cone point. Then D cannot be
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ambiently isotoped in R4 onto the disc [−1, 1]2 × {0}2. This follows from the fact that
links of pairs of polyhedra are PL invariants [15, pp. 50–51].

Proof of Proposition 6.13. We need the following:
Claim. For every PL embedded arc I ⊂ int(M) with endpoints v, u, and for every
u′ ∈ I \ {v}, there is a PL isotopy of M fixing v and carrying I to the sub-arc of I with
endpoints v, u′.
Before justifying this claim we use it to prove the proposition. By homogeneity of

manifolds [15, Lemma 3.33], there is a PL isotopy of M carrying v1 to v2, so we may
assume v1 = v2 =: v. Choose a star neighbourhood Nv of v in the pair (M, I ), and denote
by u′

1, u
′
2, respectively, the points of intersection of the (n− 1)-sphere ∂Nv with each arc

I1, I2. Using the above claim on both arcs reduces the problem to showing that there is
a PL isotopy of M carrying the straight line segment [v, u′

1] onto [v, u′
2], with v being

carried to itself.
Since ∂Nv is connected, again by homogeneity of manifolds, there is a PL isotopy of

∂Nv carrying u′
1 to u′

2. By coning at v, this isotopy extends to N, taking [v, u′
1] to [v, u′

2]
as required. To extend it to all of M, we use the general fact every PL isotopy of the
boundary of a manifold (in this case M \ int(Nv)) extends to the interior [15, Proposition
3.22(ii)]. �

Proof of the Claim. It suffices to show that the subspace Q ⊂ I \ {v} of points u
′

for which the claim holds is non-empty, open and closed in I \ {v}. Clearly u ∈ Q.
Let us verify that Q is open, beginning with u. A regular neighbourhood Nu of {u}

in the pair (M, I ) is PL-homeomorphic to the standard n-ball [−1, 1]n, with Nu ∩ I
corresponding to the straight line segment from 0 to a point p0 in ∂([−1, 1]n). Let q0
be in the interior of this line segment. Since [−1, 1]n is a cone with base ∂([−1, 1]n) over
any of its interior points, the formula tp 7→ (1 − t)q0 + tp with p ∈ ∂([−1, 1]n) defines
a PL homeomorphism of [−1, 1]n fixing the boundary and taking [0, p0] to [q0, p0]. By
Alexander’s trick [15, Proposition 3.22(i)], such a map is PL-isotopic to the identity on
[−1, 1]n keeping the boundary fixed. This isotopy can then be transferred to a PL isotopy
of Nu and extended as the constant isotopy in all of M. This shows that the point q ∈ N
corresponding to q0 is in Q, and so Q contains the half-open interval int(Nu) ∩ I.
To verify the openness condition at points u′ ∈ Q \ {u}, proceed similarly: choose a

regular neighbourhood Nu′ of u
′
in (M, I ), and model (Nu′ , Nu′ ∩ I) as the standard ball

pair ([−1, 1]n, [−1, 1]×{0}n−1). The previous construction shows that int(Nu′)∩ I ⊂ Q.
The same argument shows Q is closed in I \ {v}. �

With the claim established, the proposition is proved.

Proposition 6.14 (Cut vertices from boundary-reducibility). Let Γ be a non-
split decorated spatial graph that is not a one-edge graph. If its marked exterior (XΓ, PΓ)
is boundary-reducible, then Γ has a cut vertex. Moreover, there is an algorithm to produce
a cut sphere for Γ from any reducing disc for (XΓ, PΓ).

The second statement is meant to be used in tandem with the fact that one can
algorithmically find a reducing disc for (XΓ, PΓ), given by Theorem 7.9 below. Thus,
to be precise, one should interpret the input reducing disc to be specified as a normal
surface in the triangulated XΓ.
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Proof. Let D be a reducing disc for a marked exterior (XΓ, PΓ) in the ambient sphere
S of Γ. Since ∂D is disjoint from PΓ, it is contained in a vertex region Rv or an edge
region Re of ∂XΓ.
Let us first treat the case where ∂D ⊂ ∂Rv. Consider the 3 -ball Nv containing v,

which is a component of the vertex set neighbourhood NV used in constructing (XΓ, PΓ).
Since Nv is a regular neighbourhood of {v} in (S, |Γ|), the pair (Nv, Nv ∩ |Γ|) is PL-
homeomorphic to a cone of (∂Nv, ∂Nv ∩ |Γ|), with v corresponding to the cone point.
Let Dv ⊂ Nv be the disc corresponding to the cone of ∂D, and consider the 2 -sphere
S := D ∪Dv, which intersects |Γ| precisely at v. We claim that S is a cut sphere.
Let B1, B2 ⊂ S be the 3 -balls into which S separates S, let C be the component of

∂XΓ containing ∂D, and consider the two surfaces Ci = Bi ∩ C into which ∂D cuts C.
Since D is a reducing disc, none of the Ci is a clean disc. This implies that there are edges
of Γ incident to v on both sides of S, and so none of the summands in the decomposition
Γ = Γ1 v•v Γ2 induced by S is a one-point graph. Hence S is a cut sphere for Γ, and v a
cut vertex.
Now we treat the case where ∂D ⊂ Re for some edge e of Γ. Observe that some vertex

incident to e has degree at least 2: for otherwise the component of ∂XΓ containing Re

would be a 2 -sphere in S with only the edge e in one of its sides, and no other vertices
besides its endpoints. Since Γ is non-split, Γ would be a one-edge graph, contrary to
assumption. So let v be a vertex incident to e of degree at least 2.
As no component of PΓ is contained in Re, and ∂D, being a reducing disc, does not

bound a clean disc in Re, we conclude ∂D does not bound a disc in Re. It thus cuts Re

into two annuli. Let R′
e be one such annulus having one of its boundary components in

Rv, and consider the enlarged disc D′ := D ∪ R′
e. Its boundary ∂D′ is contained PΓ,

being the juncture between Re and Rv. As before, let Dv be the disc obtained by coning
∂D′ at v, and define S := D′ ∪Dv.
We now show S is a cut sphere for Γ. Clearly, S ∩ |Γ| = {v}. From the description of

S ∩Nv as a cone of the juncture between Re and Rv, we see that one side of S contains
e, and the other side contains all other edges of Γ that are incident to v. Since v has
degree at least two, it follows that there are edges incident to v on both sides of S. Hence
S induces a non-trivial vertex sum decomposition of Γ. �

We finish this section by discussing the relation between degree-1 vertices in a spatial
graph and one-edge graphs. Uniqueness of one-edge graphs yields two propositions about
spatial forests, which in turn imply Theorem 1.3.

Lemma 6.15 (One-edge graph summands from leaves). Let Γ = (S, V, E) be a
decorated spatial graph, u a leaf of Γ, e the edge incident to u, and v be the other vertex
incident to e. For the sub-graph Γ0 := (S, V \ {u}, E \ {e}) and the one-edge sub-graph
Λ := (S, {u, v}, {e}), one has Γ = Γ0 v•v Λ.

Proof. By Lemma 4.17, we need only find a 2 -sphere S intersecting |Γ| exactly at v
such that |Γ0| is in one side of S, and |Λ| is in the other.
Let (X◦

Γ, P
◦
Γ) be an oriented marked exterior for Γ, and denote by γ the juncture

between the regions Re, Rv of ∂X◦
Γ. The component Nv of the vertex set neighbourhood

used in constructing X◦
Γ is PL-homeomorphic to a cone of the pair (∂Nv, ∂Nv∩|Γ|), with

v corresponding to the cone point. We denote by D the disc properly embedded in Nv
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that corresponds to the cone of γ, and by C the 3 -ball that corresponds to the cone over
the disc Nv ∩ Ne. Recalling that Re is a cylinder and that u is a leaf, the region Ru of
∂X◦

Γ corresponding to u is a disc. We claim the 2 -sphere S := Ru ∪Re ∪D decomposes
Γ as Γ0 v•v Λ. Indeed, it is clear that S ∩ |Γ| = {v}. Moreover, one of the sides of S is
the 3 -ball Nu ∪ Ne ∪ C, which intersects |Γ| precisely at |Λ|. The other side must then
contain |Γ0|. �

A spatial forest is a spatial graph whose underlying graph is a forest. For spatial
forests, the isomorphism problem is reduced to a search for an isomorphism of the
underlying graphs, bypassing the machinery in Matveev’s book:

Theorem 6.16 (Uniqueness of spatial forests). Let Γ,Γ′ be decorated spatial
forests, and let F : 〈Γ〉 → 〈Γ′〉 be an isomorphism of their underlying decorated graphs.
Then there is an isomorphism Φ: Γ → Γ′ with 〈Φ〉 = F .

Proof. We induct on the number of vertices of Γ. The case Γ ∼= 0 is trivial.
Suppose first that Γ has an isolated vertex v, denote by Λ the one-point sub-graph

consisting of v, and by Γ0 the sub-graph of Γ obtained by suppressing v. Since v is
isolated, one has Γ = Γ0 t Λ (e.g., by Lemma 3.8). As isolated vertices are determined
by their underlying graphs, the vertex F (v) of Γ′ is also isolated and we have a similar
decomposition Γ′ = Γ′

0 tΛ′, with 〈Γ′
0〉 = F (〈Γ0〉). By induction, there is an isomorphism

Φ0 : Γ0 → Γ′
0 inducing F |Γ0 . The fact that all one-point graphs (of the same colour) are

isomorphic then yields an isomorphism ΦΛ : Λ → Λ′. By Lemma 3.6 these combine to an
isomorphism Φ := Φ0 t ΦΛ inducing F.
Assume now that each component of 〈Γ〉 is a tree with at least two vertices. By a

standard graph-theoretic argument (see, e.g., [9, Exercise 1.2.5]), finite tress with at least
two vertices always have leaves, so 〈Γ〉, and thus also Γ, has a leaf u. Denote by e the edge
of Γ incident to u, and by v the other vertex incident to e. Let Λ be the one-edge sub-graph
of Γ comprised of u, v and e, and Γ0 be the sub-graph of Γ obtained by excluding e and u.
By Lemma 6.15, we have Γ = Γ0 v•v Λ. Similarly, let Γ′

0 be the sub-graph of Γ′ obtained
by excluding the edge F (e) and the leaf F (u), and let Λ′ be the one-edge sub-graph of Γ′

comprised of F (u), F (v) and F (e). As before, we have Γ′ = Γ′
0 F (v)•F (v) Λ

′. By induction,
the isomorphism F |Γ0 : 〈Γ0〉 → 〈Γ′

0〉 is induced by an isomorphism Φ0 : Γ0 → Γ′
0. On the

other hand, Lemma 6.12 gives an isomorphism ΦΛ : Λ → Λ′ inducing F |Λ : 〈Λ〉 → 〈Λ′〉.
By Lemma 4.9 these assemble to the desired Φ := Φ0 v•v ΦΛ. �

Spatial forests are fully characterized by Theorem 6.16, as the following shows:

Proposition 6.17 (Non-uniqueness of non-forests). Suppose Γ is a spatial graph
that is not a forest. Then there exists a spatial graph Γ′ 6∼= Γ such that 〈Γ′〉 ∼= 〈Γ〉.

Proof. A circuit of Γ is a sub-graph whose support is a PL circle. If S is the ambient
sphere of Γ, each of the (finitely many) circuits of Γ is a knot in S. As there is, up to
PL isotopy, a unique orientation-preserving homeomorphism S → S3 to the standard 3 -
sphere, one can consider the finite set KΓ of equivalence classes of knots in S3 represented
by some circuit of Γ. The set KΓ is then an invariant of Γ under isomorphism.
Take P to be a prime knot that is not a connect-summand of any knot in KΓ (which

exists as there are infinitely many prime knots [11]), and choose an edge e of Γ that
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is part of some circuit. Let N ⊂ S be a PL 3 -ball intersecting e in such a way that
(N,N ∩e) is an unknotted ball pair, but with N otherwise disjoint from |Γ| (for example,
we may take N = Ne as defined in § 6.1). Let Γ′ be obtained from Γ by performing a
surgery of P with e inside N. Then 〈Γ′〉 ∼= 〈Γ〉, but P is now a connect-summand of the
support of every circuit of Γ containing e. In particular, KΓ 6∼= KΓ′ , whence Γ 6∼= Γ′. �

7. Algorithmic theory of spatial graphs

W now import the final pieces of terminology needed to state the Recognition Theorem
and assemble the theory developed so far into a proof of Theorem 1.1.
Given a compact PL 3-manifold M and a properly PL-embedded surface Σ ⊂ M , recall

that Σ is incompressible if for every PL-embedded disc D ⊂ M such that D∩Σ = ∂D,
the boundary ∂D bounds a disc in Σ. We say Σ is two-sided if its normal bundle is
trivial [14, p. 124].

Definition 7.1 ([14, Definition 4.1.20]). A compact PL 3-manifold M is suffi-
ciently large if there exists a PL-embedded closed connected surface Σ ⊂ M that is
incompressible, two-sided, and not a 2-sphere or a real projective plane.

Definition 7.2 ([14, Definition 6.1.5]). A manifold with boundary pattern (M,P)
with M, P compact is called Haken if it is irreducible, boundary-irreducible and either:

• M is sufficiently large, or
• P 6= ∅ and M is a handlebody of positive genus.

Proposition 7.3 (Non-triviality of the boundary [14, Corollary 4.1.27]).
Every irreducible PL 3-manifold with non-empty boundary is either a handlebody or
sufficiently large.

Theorem 7.4 (Haken–Matveev Recognition Theorem [14, Theorem
6.1.6]). There is an algorithm to decide whether two given Haken 3-manifolds with
boundary pattern are PL-homeomorphic (as manifolds with boundary pattern).

We shall apply the Recognition Theorem to marked exteriors of blocks. To ensure
the ‘Haken’ condition is met, we need Proposition 7.3. However, that proposition leaves
room for the exterior of a block to be a genus-0 handlebody. We control this case with
the following:

Lemma 7.5 (Blocks with 3 -ball exteriors). Let Λ be a block with marked exterior
(XΛ, PΛ). Then XΛ is a 3-ball if and only if Λ is a one-edge graph.

Proof. (⇐=) Clearly for some one-edge graph, the marked exterior is a 3 -ball. But
by Lemma 6.12 all one-edge graphs are isomorphic.
(=⇒) Suppose XΛ is a 3 -ball and consider the oriented marked exterior (X◦

Λ, P
◦
Λ).

Clearly X◦
Λ is also a 3 -ball. Note that P ◦

Λ is a collection of circles (non-empty, since Λ
has at least one edge). The disc bounded by an innermost such circle is then the region
Ru corresponding to some leaf u. By Lemma 6.15, we obtain a vertex sum decomposition
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Λ = Λ0 v•v Λ′, where Λ′ is the one-edge sub-graph containing u. Since Λ is a block, it
follows that Λ0

∼= 1 and so Λ = Λ′. �

Proposition 7.6 (Algorithmic recognition of blocks). There is an algorithm to
decide whether two blocks with decorations of the same type are isomorphic.

Proof. For k ∈ {1, 2}, let Λk be the decorated blocks we wish to compare. First check
whether the underlying graphs 〈Λk〉 are one-edge graphs. If exactly one of them is so,
then Λ1 6∼= Λ2. If both Λk are one-edge graphs, Lemma 6.12 reduces the problem to
testing whether 〈Λ1〉 ∼= 〈Λ2〉, which is straightforward.
So suppose none of the Λk is a one-edge graph, construct marked exteriors (Xk, Pk),

and note that they are Haken:

• The Xk are irreducible by the ‘if’ direction in Proposition 6.9.
• The (Xk, Pk) are boundary-irreducible by Proposition 6.14.
• Since ∂Xk 6= ∅, Proposition 7.3 tells us they are either sufficiently large or handle-
bodies. In the latter case, genus-0 is excluded by the ‘only if’ direction in Lemma
7.5. Since blocks have edges, the condition Pk 6= ∅ is satisfied.

We can thus apply Theorem 7.4 to test whether the (Xk, Pk) are homeomorphic. By
Propositions 6.6 and 6.7, this is equivalent to the Λk being isomorphic. �

We actually make use of a refined version of Proposition 7.6:

Lemma 7.7 (Algorithmic recognition of multi-pointed blocks). There is an
algorithm that takes as input

• two blocks Λ1,Λ2 with decorations of the same type,
• a tuple (v11 , . . . , v

r
1) of distinct vertices of Λ1, and

• a tuple (v12 , . . . , v
r
2) of distinct vertices of Λ2 of the same size,

and decides whether there is an isomorphism Φ: Λ1 → Λ2 with Φ(vl1) = vl2 for every
l ∈ {1, . . . , r}.

Proof. Since having no vertex colouring is the same as having a vertex colouring
where all vertices are 0-coloured, we may assume that vertex colourings are part of the
decorations.
Let n ∈ N be such that both fk have range contained in {0, . . . , n− 1}, and let Λ+

k be
the same block as Λk, but with the modified vertex colouring:

f+
k (v) =

fk(v) if v is not one of the vlk,

nl + fk(v) if v = vlk.

The colouring f+
k encodes, for each vertex v, the original colouring fk(v) as the mod-n

residue. Moreover, the division with remainder of f+
k (v) by n returns l if v is one of the

vlk, and otherwise it returns 0.
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Thus, finding an isomorphism Λ1 → Λ2 as in the statement is equivalent to finding an
isomorphism Λ+

1 → Λ+
2 , which can be algorithmically determined by Proposition 7.6. �

We can now bootstrap our algorithm for recognition of spatial graphs. We develop it
first for pieces (Proposition 7.10) and then in full generality (Theorem 7.13). We shall
make no further explicit usage of the Recognition Theorem.

Lemma 7.8 (Algorithmic decomposition into a tree of blocks). There is an
algorithm that, given a non-split spatial graph Γ 6∼= 1, produces a tree of blocks T such
that Γ = [T ].

For the proof we need the following:

Theorem 7.9 (Algorithmic detection of boundary-reducibility [14, Theorem
4.1.13]). There exists an algorithm to decide whether a given irreducible 3-manifold with
boundary pattern is boundary-irreducible. In case it is boundary-reducible, the algorithm
constructs a reducing disc.

Proof of Lemma 7.8. The proof mimics that of Proposition 4.21, but when
constructing the tree of blocks T we must ensure all steps can be done algorithmically.
We induct on the number of edges of Γ. The case Γ = 0 is trivial and the case where Γ is

a one-point graph is excluded by assumption. Otherwise, we need to determine whether Γ
is a block and, in case it is not, we need to find a cut sphere for Γ. To that end, construct
the marked exterior (XΓ, PΓ). By Proposition 6.9, XΓ is irreducible and we can apply
Theorem 7.9 to check whether (XΓ, PΓ) is boundary-reducible. If it is not, it follows from
Proposition 6.11 that Γ has no cut vertices, hence Γ is itself a block and we are done.
In case (XΓ, PΓ) is boundary-reducible, Theorem 7.9 assures we can algorithmically

construct a reducing disc, which Proposition 6.14 converts into a cut sphere S. The two
vertex-summands in the induced decomposition Γ = Γ1 v•v Γ2 are the sub-graphs of Γ
supported on each side of S. The induction hypothesis applies, yielding algorithmically
constructed trees of blocks for them, which can be (algorithmically) assembled into T as
in the proof of Proposition 4.21. �

Proposition 7.10 (Algorithmic recognition of pieces). There is an algorithm
to decide whether two pieces with decorations of the same type are isomorphic.

Proof. Let Γ1,Γ2 be the decorated pieces to be compared. The case where some Γk

is a one-point graph is trivial.
Use Lemma 7.8 to algorithmically decompose Γk as the realization of a tree of blocks

Tk = (Tk, Ik, Jk, Lk, (Λi)i∈Ik
, (v(l))l∈Lk

). Then list the isomorphisms of abstract trees
f : T1 → T2 satisfying f(I1) = I2, which is a finite combinatorial problem. If no such
isomorphism exists, then Γ1 6∼= Γ2 by Proposition 4.22. What is more, if Γ1

∼= Γ2, then
for some such f there is a family of isomorphisms (Φi : Λi → Λf(i))i∈I1

compatible with
the assignments l 7→ v(l).
For each f in our list, use the algorithm of Lemma 7.7 at every i ∈ I1 to determine

whether there is an isomorphism Φi : Λi → Λf(i) mapping the tuple (v(l))l to (v(f(l))l,
where l ranges over the edges in L1 incident to i. If for some f : T1 → T2 we find such
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Φi, they assemble into an isomorphism Φ: Γ1 → Γ2 (see Lemma 4.14). Otherwise we
conclude Γ1 6∼= Γ2, again by Proposition 4.22. �

Lemma 7.11 (Algorithmic decomposition as the disjoint union of pieces).
There is an algorithm that, given a decorated spatial graph Γ, produces a finite collection
of pieces (Λi)i∈I such that Γ =

⊔
i∈I Λi.

The lemma above requires the following:

Theorem 7.12 (Algorithmic detection of reducibility [14, pp.
161–162]). There exists an algorithm to decide whether a given compact PL 3-
manifold is irreducible. In case it is reducible, the algorithm constructs a reducing
sphere.

Proof of Lemma 7.11. Construct a marked exterior (XΓ, PΓ) and use the algorithm
of Theorem 7.12 to test whether XΓ is reducible. If it is not, Proposition 6.9 implies that
Γ is non-split. Here, either Γ = 0, in which case we take I = ∅, or Γ is a piece, so we can
take I to be a singleton.
If XΓ is reducible, the algorithm of Theorem 7.12 produces a reducing sphere S for

XΓ, which by Corollary 6.10 is a splitting sphere for Γ. Hence, Γ = Γ1 t Γ2, where the
disjoint union summands are the non-empty graphs supported on each side of S. Since
Γ1,Γ2 both have strictly fewer vertices than Γ, we may assume by induction that Γ1,Γ2

are algorithmically decomposable into pieces, and these decompositions assemble into
one for Γ. �

Finally, we obtain our main result in full generality:

Theorem 7.13 (Algorithmic recognition of spatial graphs). There is an algo-
rithm to decide whether two spatial graphs with decorations of the same type are
isomorphic.

Proof. Let Γ1,Γ2 be the decorated graphs to be compared. For each k ∈ {1, 2}, use
Lemma 7.11 to decompose Γk as a disjoint union of pieces

⊔
i∈Ik

Λi. By Proposition 3.11,

if the indexing sets Ik have different cardinalities, then Γ1 6∼= Γ2. On the other hand,
should an isomorphism Γ1 → Γ2 exist, there should be a bijection f : I1 → I2 such that,
for every i ∈ I1, there is an isomorphism Φi : Λi → Λf(i).
We thus run through all bijections f : I1 → I2 and apply, for each one, the algorithm

of Proposition 7.10 to test whether every Λi is isomorphic to Λf(i). If no f has such a
compatible family of isomorphisms, then Γ1 6∼= Γ2. In case some f does admit a suitable
family (Φi : Λi → Λf(i))i∈I1

, an iterated application of Lemma 3.6 allows us to assemble
the Φi into an isomorphism Φ: Γ1 → Γ2. �
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