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Homotopy Decompositions Involving
the Loops of Coassociative Co-H Spaces

Stephen D. Theriault

Abstract. James gave an integral homotopy decomposition of ΣΩΣX, Hilton-Milnor one for

Ω(ΣX ∨ ΣY ), and Cohen-Wu gave p-local decompositions of ΩΣX if X is a suspension. All are natu-

ral. Using idempotents and telescopes we show that the James and Hilton-Milnor decompositions have

analogues when the suspensions are replaced by coassociative co-H spaces, and the Cohen-Wu decom-

position has an analogue when the (double) suspension is replaced by a coassociative, cocommutative

co-H space.

1 Introduction

The thrust of this paper is to show that many common decompositions involving
loop spaces which are valid for suspensions are also valid for coassociative co-H

spaces. This is done through a straightforward use of idempotents and telescopes.
In particular, we consider decomposition theorems of James, Hilton-Milnor, and
Cohen-Wu. As the methods we use are general, they should be applicable in other
contexts.

Suppose X is a simply connected space. One consequence of the James construc-
tion is a homotopy equivalence

ΣΩΣX '
∞
∨

k=1

ΣX(k)

which is natural for maps X
f
→ Y . We prove the following generalization.

Theorem 1.1 Let A be a simply connected, homotopy coassociative co-H space. Then
there is a homotopy equivalence

ΣΩA '
∞
∨

k=1

Mk,

where Σk−1Mk ' A(k). This is natural for co-H maps A
f
→ B between coassociative co-

H spaces. Further, each Mk is a homotopy coassociative co-H space, and if A is homotopy
cocommutative then so is each Mk.
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The Hilton-Milnor theorem is a decomposition

Ω(ΣX ∨ ΣY ) '
∏

α∈I

ΩΣ(X(α1) ∧ Y (α2)),

where each α corresponds to an iterated Whitehead product ΣX(α1) ∧ Y (α2) →
ΣX ∨ ΣY . This generalizes to:

Theorem 1.2 If A and B are simply connected, homotopy coassociative co-H spaces
then there is a homotopy equivalence

Ω(A ∨ B) '
∏

α∈I

ΩNα,

where Σα1+α2−1Nα ' A(α1) ∧ B(α2), and each α corresponds to a “Whitehead product”

Nα → A ∨ B. This is natural for co-H maps A
f
→ C and B

g
→ D between coassociative

co-H spaces. Further, each Nα is a homotopy coassociative co-H space and if at least one
of A or B is homotopy cocommutative then so is Nα.

Note that for any simply connected spaces A and B there is a homotopy equiva-
lenceΩ(A∨B) ' ΩA×ΩB×Ω(ΣΩA∧ΩB). So if A and B are homotopy coassociative

co-H spaces then Theorem 1.1 allows one to iteratively obtain a product decomposi-
tion as in Theorem 1.2. The problem, as in the usual case when we deal with spaces
which are suspensions, is to keep track of the terms in the decomposition. This is the
purpose of the Hilton-Milnor theorem and Theorem 1.2.

Both Theorems 1.1 and 1.2 are valid integrally. Localizing at a prime p we can
prove natural loop space decomposition theorems. Cohen and Wu [CW] prove that
if X is a suspension and (p, k) = 1 then there is a map φk : Uk → ΩΣX which in
mod-p homology is an injection onto the module of primitives of tensor length k,

and a natural decomposition ΩΣX ' ΩΣUk × Fk. This can be generalized by the
following theorem. Recall that if A is a co-H space then H∗(ΩA; Z/pZ) is isomorphic
to a tensor algebra generated by Σ−1H̃∗(A; Z/pZ).

Theorem 1.3 Localize spaces and maps at a prime p. Let (p, k) = 1. Suppose A is a
homotopy coassociative, cocommutative co-H space. Then there is a map φk : Uk → A

with (Ωφk)∗ an isomorphism onto the subalgebra of H∗(ΩA; Z/pZ) generated by the
primitives of tensor length k, and a natural homotopy decomposition

ΩA ' ΩUk × Fk.

The tool for proving Theorems 1.1, 1.2, and 1.3 is the following proposition. For

spaces X1, . . . ,Xk let
∧k

i=1 Xi = X1 ∧ · · · ∧ Xk.

Proposition 1.4 Suppose A1, . . . ,Ak are coassociative co-H spaces. Then there is

a coassociative co-H space Lk and a co-H map lk : Lk → Σ
∧k

i=1(ΩAi) satisfying the
following properties:
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(a) lk has a left homotopy inverse,

(b) lk is natural for co-H maps Ai
εi→ Bi between coassociative co-H spaces,

(c) Σk−1Lk '
∧k

i=1 Ai ,

(d) If Ai = ΣYi for each i then Lk ' Σ
∧k

i=1 Yi ,
(e) If one of A1 through Ak is homotopy cocommutative then so is Lk.

A notable corollary is the k = 2 case of Proposition 1.4(c).

Corollary 1.5 The smash product of two coassociative co-H spaces is a suspension. In
fact, it is the suspension of another coassociative co-H space.

The space Lk is constructed as the telescope of an idempotent on Σ
∧k

i=1(ΩAi)
which is constructed by sequentially evaluating ΣΩAi → Ai and including Ai →
ΣΩAi for each 1 ≤ i ≤ k. The space Mk which appears in Theorem 1.1 is a renaming
of Lk in the case when A1, . . . ,Ak all equal the same coassociative co-H space A.

It should be emphasized that Theorems 1.1, 1.2, and 1.3 extend not just the list
of spaces for which the respective decompositions hold, but also the list of maps. In

particular, the theorems apply to mapsΣX
f
→ ΣY which are co-H but not necessarily

suspensions.
The combination of coassociativity and cocommutativity in Theorem 1.3 comes

from needing to perform the arithmetic necessary to show that certain self-maps
on the Mk’s are idempotents (see Section 7 for details). In Theorems 1.1 and 1.2

the coassociative hypothesis is necessary. As an example, consider the (p-localized)
cofibration

S2p α1−→ S3 −→ C,

where α1 is the first nontrivial homotopy class. The standard argument for the
co-H deviation of a map easily shows that α1 is co-H. Thus C is a co-H space. To
show that C is not homotopy coassociative, Berstein [B1] argues as follows (using

mod-p coefficients in homology). If A is a co-H space then H∗(ΩA) is isomor-
phic as an algebra to the tensor algebra primitively generated by Σ−1H̃∗(A). If A
has a homotopy coassociative comultiplication ∆ : A → A ∨ A then by [B2] alge-
bra generators {a1, . . . , an, . . . } ∈ H∗(ΩA) can be chosen to satisfy (Ω∆)∗(ai) =

ai ⊗ 1 + 1 ⊗ ai + Σα j,k
a j ⊗ ak for some coefficients α j,k ∈ Z/pZ. In particular,

H∗(ΩA) is primitively generated if α j,k = 0 for all j and k. Applying this to C , we
see that H∗(ΩC) has two algebra generators, one in dimension 2 and one in dimen-
sion 2p. For dimensional reasons, the coefficients α j,k are all zero and so H∗(ΩC)

is primitively generated. The condition of being primitively generated implies that
p-th-powers in H∗(ΩA) are zero. Now consider the generator x ∈ H2(ΩC). For
dimensional reasons P1(x) = xp and so P1(x) = 0. On the other hand, the top
and bottom cell in C are connected by P1, and since C is a retract of ΣΩC we must

have P
1(x) 6= 0 in H∗(ΩC). The contradiction shows that C cannot be homotopy

coassociative. It also shows that we do have P(x) = xp 6= 0. This nontrivial p-th-
power then shows that Theorem 1.1 cannot hold for ΣΩC , as σ(x) and σ(xp) would
appear in different wedge summands but be connected by a Steenrod operation. As
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for Theorem 1.2, including the wedge into the product gives a homotopy fibration
ΣΩC ∧ ΩS2 → C ∨ S2 → C × S2. Here, ΣΩC ∧ ΩS2 is homotopy equivalent to a

wedge of suspensions of ΣΩC . Theorem 1.2 would decompose these suspensions of
ΣΩC as in Theorem 1.1, which as we already have seen, cannot happen, even stably.

One interpretation of Theorem 1.1 is as follows. If A is a co-H space then [R]

shows there is a homotopy equivalence A∨(A∧ΩA)
s⊥t
→ ΣΩA where t factors through

the Hopf construction. Iterating this on A ∧ ΩA gives a homotopy decomposition

Σ
k
ΩA '

(

k
∨

i=1

Σ
k−iA(i)

)

∨ (A(k) ∧ ΩA).

In this context, Theorem 1.1 is a desuspension theorem. When A is coassociative, ΩA
has a complete wedge decomposition after only a single suspension. Similar state-

ments can be made about Theorems 1.2 and 1.3.
The results in this paper may be useful elsewhere. In [T] several of the construc-

tions appearing here are used to help prove critical Lie algebra properties of the lifts
of some mod -p homotopy classes to a certain coassociative, cocommutative space

Gk. In another direction, Berstein and Harper [BH] are concerned with proving the
existence of coassociative co-H spaces which are not suspensions. If A is such a space
then Proposition 1.4 generates a supply of coassociative co-H spaces. It is not clear,
however, when the Lk’s are not suspensions.

This paper is organized as follows. Section 2 records some facts about co-H spaces
while Section 3 does the same for idempotents and telescopes. In Section 4 we con-
struct the idempotent which has the space Lk as its telescope and prove the properties
of Lk in Proposition 1.4. Section 5 proves the generalized James decomposition of

Theorem 1.1 and Section 6 proves the generalized Hilton-Milnor of Theorem 1.2.
Section 7 constructs idempotents on the spaces Mk of Theorem 1.1 and these are
used in Section 8 to prove the Cohen-Wu decomposition of Theorem 1.3.

Finally, note that unless otherwise indicated all statements in the paper are valid

integrally. The only assumption we make from here on is that our co-H spaces are
simply connected.

2 Preliminaries on Co-H Spaces

This section records some facts about co-H spaces. The first two describe the homol-
ogy of looped co-H spaces, the remainder describe homotopical properties.

Lemma 2.1 Let A be a co-H space. Then H∗(ΩA) is isomorphic as an algebra to the
tensor algebra T

(

Σ
−1H̃∗(A)

)

primitively generated by Σ−1H̃∗(A).

Proof See [B2].

Lemma 2.2 Let A be a coassociative, cocommutative co-H space. Give T
(

Σ
−1H̃∗(A)

)

a coalgebra structure by requiring that the set of generators is primitive and then multi-
plicatively extending to the whole tensor algebra. Then H∗(A) is isomorphic as a Hopf
algebra to T

(

Σ
−1H̃∗(A)

)

.
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Proof Berstein [B2] does not explicitly state this, but it is a consequence of combin-
ing his Corollary 2.6 and Corollary 3.3.

Lemma 2.3 Let A be a co-H space.

(a) There is a one-to-one correspondence between co-H structures on A and maps A→
ΣΩA which are right homotopy inverses to the evaluation map ΣΩA→ A.

(b) The co-H structure on A is homotopy coassociative if and only if the corresponding

map A→ ΣΩA in part (a) is a co-H map.

Proof See [Ga].

Lemma 2.4 Suppose A and B are co-H spaces and f : A → B is a co-H map. Then
there is a homotopy commutative diagram

A
f

−−−−→ B




y

s





y

t

ΣΩA
ΣΩ f
−−−−→ ΣΩB

where s and t correspond as in Theorem 2.3 to the co-H structures on A and B respec-

tively.

Proof See, for example, [Gr1, 3.6].

Lemma 2.5 Suppose A retracts off a homotopy cocommutative co-H space X. Give A
the co-H structure determined by this retraction. Then A is also homotopy cocommuta-

tive.

Proof Let ∆ : X → X ∨ X be the comultiplication on X. Let τ : X ∨ X → X ∨ X be
the twist map. Consider the diagram

A // X
∆

//

∆ ""E

E

E

E

E

E

E

E

E

X ∨ X //

τ

��

A ∨ A

τ

��

X ∨ X // A ∨ A.

The middle triangle homotopy commutes because X is homotopy cocommutative.
The right square homotopy commutes because τ is natural. The top row defines the
co-H structure∆A on A. The diagram now shows that τ ◦∆A ' ∆A.

Two co-H spaces A and B are co-H equivalent if there is a map f : A→ B which is
both a co-H map and a homotopy equivalence. Note that, as a formal consequence,
the inverse f−1 : B→ A is also a co-H map.
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Lemma 2.6 Let A, B, and C be co-H spaces. Suppose there are co-H maps A→ B and
A→ C such that their sum A→ B∨C is a co-H equivalence, where the co-H structure

on B ∨ C is from the wedge. If A is homotopy coassociative (cocommutative) then the
given co-H structures on B and C are also homotopy coassociative (cocommutative).

Proof We prove the statements for B, those for C following symmetrically. Let
∆A : A → A ∨ A be the co-H structure on A and similarly define ∆B for B. Let
f : A → B be the given co-H map. The homotopy equivalence A → B ∨ C lets us

define a left homotopy inverse g : B→ A of f .
The given co-H structure∆B on B is homotopic to the composite

B
g
−→ A

∆A−→ A ∨ A
f∨ f
−→ B ∨ B

because ( f ∨ f ) ◦∆A ◦ g ' ∆B ◦ f ◦ g ' ∆B.
For any space X, let τ : X ∨ X → X ∨ X be the twist map. If A is homotopy

cocommutative then by definition there is a homotopy ∆A ' τ ◦ ∆A. This implies
τ ◦∆B ' τ ◦ ( f ∨ f ) ◦∆A ◦ g ' ( f ∨ f ) ◦ τ ◦∆A ◦ g ' ( f ∨ f ) ◦∆A ◦ g ' ∆B.

Thus B is also homotopy cocommutative.
If A is homotopy coassociative then by definition there is a homotopy (1 ∨∆A) ◦

∆A ' (∆A ∨ 1) ◦∆A. Arguing as in the cocommutative case, it follows that B is also
homotopy coassociative.

3 Preliminaries on Telescopes of Idempotents

This section reviews some basic facts about the telescopes of idempotent maps. We
will usually denote the telescope of a self-map e : X → X by T(e).

Lemma 3.1 Suppose Y is a space and e : Y → Y is an idempotent. Let T(e) be the

telescope of e and je : Y → T(e) be the canonical map. Then up to homotopy there is a
unique map je : T(e)→ Y such that ie ◦ je ' e and je ◦ ie is homotopic to the identity
on T(e). Further, if e is a co-H map then so are ie and je.

Proof See [Gr2].

The telescopes of idempotents also satisfy a naturality property.

Lemma 3.2 Let f : Y → Z be a map. Suppose eY : Y → Y and eZ : Z → Z are

idempotents such that f ◦ eY ' eZ ◦ f . Then there is a homotopy commutative diagram

Y −−−−→ T(eY ) −−−−→ Y




y

f





y

T( f )





y

f

Z −−−−→ T(eZ ) −−−−→ Z,

where the top row is homotopic to eY , the bottom row is homotopic to eZ , and T( f ) is
an induced map of telescopes. Further, T( f ) is the unique map between the telescopes
which makes the above diagram commute.
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Proof The outer rectangle commutes by the hypothesis f ◦ eY ' eZ ◦ f . The left
square commutes by naturality in taking telescopes. Now precomposing the outer

rectangle with T(eY )→ Y shows that the right square commutes.

If g : T(eY ) → T(eZ) were another choice of an induced map between telescopes,
then the same argument gives a homotopy commutative diagram as asserted by the
lemma with T( f ) replaced by g. But then we have a homotopy commutative diagram

T(eY ) −−−−→ Y −−−−→ T(eY )




y

g





y

f





y

T( f )

T(eZ) −−−−→ Z −−−−→ T(eZ),

where the top and bottom rows are both homotopic to the respective identity maps.

Hence g ' T( f ).

We will also need some additional information that comes out of Lemma 3.2 in
two special cases.

Lemma 3.3 Given the same setup as in Lemma 3.2.

(a) If Y
f
→ Z has a left homotopy inverse then so does T( f ).

(b) If Y
f
→ Z is a co-H map between co-H spaces then T(eY )

T( f )
→ T(eZ) is also a co-H

map between co-H spaces.

Proof For part (a), assume f has a left homotopy inverse. Precompose the outer
rectangle in the statement of Lemma 3.2 with the map T(eY )→ Y and postcompose

with Z → Y → T(eY ); a diagram chase shows that T( f ) also has a left homotopy
inverse.

For part (b), the co-H property of f and Lemma 3.2 imply there is a homotopy
commutative diagram,

T(eY ) −−−−→ Y −−−−→ Y ∨Y −−−−→ T(eY ) ∨ T(eY )




y

T( f )





y

f





y

f∨ f





y

T( f )∨T( f )

T(eZ) −−−−→ Z −−−−→ Z ∨ Z −−−−→ T(eZ) ∨ T(eZ).

The top row defines the co-H structure on T(eY ) from the retraction off Y , and sim-
ilarly for T(eZ) along the bottom row. The diagram as a whole says that T( f ) is a
co-H map.

4 Construction and Properties of the Space Lk

The strategy of the proof is to construct the space Lk as the telescope of a certain

idempotent on Σ
∧k

i=1(ΩAi). It first takes a bit of work to identify the self-map on

Σ
∧k

i=1(ΩAi) as an idempotent. If A is a suspension then the identification is easy. If
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A is not a suspension but is a coassociative co-H space then we use a co-H map A→
ΣΩA to extrapolate from the easy case of the suspensionΣΩA to the non-immediate

case of A. The assorted properties of Lk are then extracted from the construction.

To begin, let X be a space. Let ev : ΣΩX → X be the evaluation map. Let j : X →
ΩΣX be the inclusion. Let λ̄ be the composite

λ̄ : ΣΩΣX
ev
−→ ΣX

Σ j
−→ ΣΩΣX.

Suppose X1, . . . ,Xk are spaces. Let
∧k

i=1 Xi = X1 ∧ · · · ∧ Xk. For 1 ≤ i ≤ k, define

λk,i : Σ

k
∧

i=1

(ΩΣXi)→ Σ
k
∧

i=1

(ΩΣXi)

as follows. Move the suspension coordinate so it is paired with the i-th smash factor.

Do the identity map on the first i − 1 and last k − i smash factors, and do λ̄ on the
i-th smash factor. Define

λk : Σ

k
∧

i=1

(ΩΣXi)→ Σ
k
∧

i=1

(ΩΣXi)

by λk = λk,k ◦ λk,k−1 ◦ · · · ◦ λk,1.

Lemma 4.1 λk is an idempotent (in fact, a strict idempotent: (λk)2 equals λk on the

nose, no homotopy is involved). The telescope of λk is homotopy equivalent toΣ
∧k

i=1 Xi .

λk is natural for co-H maps εi : ΣXi → ΣYi .

Proof First consider λ̄. It’s image is ΣX included—via Σ j—into ΣΩΣX. But λ̄ is
the identity when restricted to ΣX, and so λ̄ is a strict idempotent whose telescope is

homotopy equivalent to ΣX. In the same way λk has image Σ
∧k

i=1 Xi included—via

Σ
∧k

i=1 ji—into Σ
∧k

i=1(ΩΣXi) and λk is the identity when restricted to Σ
∧k

i=1 Xi .

So λk is a strict idempotent whose telescope is homotopy equivalent to Σ
∧k

i=1 Xi .

The naturality of the evaluation map together with Lemma 2.4 applied to a co-H

map ΣX → ΣY implies that λ̄ is natural. Thus each λk,i is natural and so λk is as
well.

We now construct the analogues of λ̄, λk,i , and λk in which the suspended spaces
have been replaced by coassociative co-H spaces. Let A be a coassociative co-H space.
To simplify notation, let X = ΩA. By Theorem 2.3 the coassociative co-H structure
on A corresponds to a co-H map s : A → ΣX which is a right homotopy inverse of

the evaluation map ΣX = ΣΩA
ev
→ A. Let γ̄ be the composite

γ̄ : ΣΩA
ev
−→ A

s
−→ ΣΩA.
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Consider the following diagram,

ΣΩA
ev

−−−−→ A
s

−−−−→ ΣΩA




y
ΣΩs





y

s





y
ΣΩs

ΣΩΣX
ev

−−−−→ ΣX
Σ j

−−−−→ ΣΩΣX.

The left square homotopy commutes by the naturality of the evaluation map. The
right square homotopy commutes by Lemma 2.4 since s is a co-H map. Note that the
top row is the definition of γ̄ and the bottom row is the definition of λ̄.

Suppose A1, . . . ,Ak are coassociative co-H spaces. Let Xi = ΩAi . By Theorem 2.3

the coassociative co-H structure on Ai corresponds to a co-H map si : Ai → ΣXi

which is a right homotopy inverse of the evaluation map ev i : ΣXi = ΣΩAi
ev
→ Ai .

The diagram above linking γ̄ and λ̄ then implies there is a homotopy commutative
diagram

Σ
∧k

i=1(ΩAi)
γk−−−−→ Σ

∧k
i=1(ΩAi)





y

Σ f





y

Σ f

Σ
∧k

i=1(ΩΣXi)
λk−−−−→ Σ

∧k
i=1(ΩΣXi),

where f =
∧k

i=1(Ωsi).

Lemma 4.2 γk is an idempotent. It is natural for co-H maps εi : Ai → Bi between
coassociative co-H spaces.

Proof The previous diagram implies Σ f ◦ γk ' λk ◦ Σ f and also Σ f ◦ (γk)2 '

(λk)2 ◦ Σ f . But (λk)2 ' λk and so Σ f ◦ γk ' Σ f ◦ (γk)2. Since f =
∧k

i=1(Ωsi) has

left homotopy inverse
∧k

i=1(Ω evi), we obtain (γk)2 ' γk.
The naturality argument is exactly as it is in Lemma 4.1 with λ’s replaced by γ’s.

Let Lk = T(γk) be the telescope of γk. Since γk is an idempotent, Lemma 3.1 gives

a map lk : Lk → Σ
∧k

i=1(ΩAi) which has a left homotopy inverse. This fact and more
are recorded in the following Lemma.

Lemma 4.3 For k ≥ 1, the map Lk
lk→ Σ
∧k

i=1(ΩAi) has a left homotopy inverse and

is co-H. Further, if there are co-H maps Ai → Bi between coassociative co-H spaces
then lk is natural and the map of telescopes Lk(A)→ Lk(B) is co-H.

Proof The naturality of γk in Lemma 4.2 implies that lk is natural, and Lemma 3.3(b)
implies the induced map between telescopes is co-H.

It remains to prove that lk is co-H. Essentially this comes from applying naturality

to {Ai}
k
i=1 and {Bi = ΣΩAi}

k
i=1, noting that by Lemma 4.1 Lk(B) = Σ

∧k
i=1 ΩAi .
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However, we need to check that the co-H telescope map is homotopic to the original
map lk.

If A is a co-H space then Lemma 2.3 implies that ΩA
Ωs
→ ΩΣΩA

Ω ev
→ ΩA is homo-

topic to the identity map. On the other hand, the composite ΩA
j
→ ΩΣΩA

Ω ev
→ ΩA

is also homotopic to the identity map.
Consider the diagram

Lk

lk
//

T(Σ f )

��

Σ
∧k

i=1(ΩAi)

Σ f

�� N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

Σ
∧k

i=1 Xi

Σ J
// Σ
∧k

i=1(ΩΣXi)
Σp

// Σ
∧k

i=1(ΩAi).

The square commutes from an application of Lemma 3.2 to the idempotents γk and

λk. Here, T(Σ f ) is the induced map of telescopes and J is the inclusion
∧k

i=1 ji .

The triangle commutes because we define p as
∧k

i=1(Ω evi), which is a left homotopy

inverse of f =
∧k

i=1(Ωsi). But p is also a left homotopy inverse of J. Thus lk '
T(Σ f ). On the other hand, by Lemma 3.3(b), T(Σ f ) is a co-H map.

The next few lemmas describe some properties of Lk.

Lemma 4.4 For k ≥ 1,Σk−1Lk '
∧k

i=1 Ai . As well, there is a homotopy commutative

diagram

Σ
k−1Lk

Σ
k−1lk

//

'

��

Σ
k−1
(

Σ
∧k

i=1(ΩAi)
)

'

��
∧k

i=1 Ai

∧k
i=1 si

//
∧k

i=1(ΣΩAi).

Proof To make the exposition as clear as possible, we do the k = 2 case, the others
being similar.

Recall that λ2 = λ2,2 ◦ λ2,1 where λ2,1 is the composite ΣΩΣX1 ∧ ΩΣX2
ev ∧1
→

ΣX1 ∧ ΩΣX2
Σ j∧1
→ ΣΩΣX1 ∧ ΩΣX2 and λ2,2 is the composite ΣΩΣX1 ∧ ΩΣX2

1∧ev
→

ΩΣX1 ∧ ΣX2
1∧Σ j
→ ΣΩΣX1 ∧ ΩΣX2. The suspension coordinate in the middle term

of both composites means we can rearrange the order of evaluations and inclusions
so that λ2 is homotopic to the composite

ΣΩΣX1 ∧ ΩΣX2
ξ
−→ ΣX1 ∧ X2

Σ j∧ j
−→ ΣΩΣX1 ∧ ΩΣX2,

where ξ first evaluates on the left and then evaluates on the right.
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This suspension coordinate is not present in the middle term A1∧ΩA2 of γ2,1 and
γ2,2 so there is no analogous homotopy. There is, however, after suspending. Now we

have Σγ2 = Σ(γ2,2 ◦ γ2,1) homotopic to the composite

δ : ΣΩA1 ∧ ΣΩA2
ev ∧ ev
−→ A1 ∧ A2

s1∧s2−→ ΣΩA1 ∧ ΣΩA2.

Thus the telescope ΣL2 of Σγ2 is homotopic to the telescope A1 ∧ A2 of δ. Applying
Lemma 3.2 with Y = Z = ΣΩA1 ∧ ΩA2, eY = Σγ2, and eZ = δ, we obtain the k = 2

case of the homotopy commutative diagram asserted by the lemma.

Since each Ai is co-H, Lemma 2.1 implies that H̃∗(
∧k

i=1 ΩAi) ∼=
⊗k

i=1 T
(

Σ
−1H̃∗(Ai)

)

. Lemma 4.4 therefore has the following corollary.

Corollary 4.5 H̃∗(Lk) ∼= Σ
(
⊗k

i=1 Σ
−1H̃∗(Ai)

)

and the inclusion Lk
lk→ Σ
∧k

i=1 ΩAi

in homology is the tensor algebra inclusion

Σ

(

k
⊗

i=1

Σ
−1H̃∗(Ai)

)

→ Σ
(

k
⊗

i=1

T(Σ−1H̃∗(Ai))
)

.

The next lemma makes sure that if the coassociative co-H spaces Ai are already
suspensions then the construction of Lk gives what would be expected from

Lemma 4.1. Recall that two co-H spaces A and B are co-H equivalent if there is a

homotopy equivalence A
'
→ B which is also a co-H map.

Lemma 4.6 Suppose each coassociative co-H space Ai is co-H equivalent toΣY i . Then

Lk is co-H equivalent to Σ
∧k

i=1 Yi .

Proof Let e : A → ΣY be a co-H equivalence. Applying Lemma 2.4 implies the
commutativity of the right square in the diagram

ΣΩA
ev

−−−−→ A
s

−−−−→ ΣΩA




y
ΣΩe





y

e





y
ΣΩe

ΣΩΣY
ev

−−−−→ ΣY
Σ j

−−−−→ ΣΩΣY.

The left square homotopy commutes by the naturality of the evaluation map. The

top row is the definition of γ̄; the bottom row is the definition of λ̄ for ΣY . These
two maps were the essential ingredients that went into defining the idempotents γk

on Σ
∧k

i=1(ΩAi) and λk on Σ
∧k

i=1(ΩΣYi) respectively. So if ei : Ai → ΣYi is a co-
H equivalence for 1 ≤ i ≤ k, then the diagram above implies there is a homotopy
commutative diagram

Σ
∧k

i=1(ΩAi)
γk−−−−→ Σ

∧k
i=1(ΩAi)





y
E





y
E

Σ
∧k

i=1(ΩΣYi)
λk−−−−→ Σ

∧k
i=1(ΩΣYi),
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where E = Σ
∧k

i=1(Ωei) is a co-H equivalence. Hence by Lemma 3.3(b) there is a

co-H equivalence of telescopes Lk = T(γk) ' T(λk) ' Σ
∧k

i=1 Yi .

Remark The proof of Lemma 4.6 actually works if we only demand that k− 1 of the

Ai ’s are co-H equivalent to a suspension. Assuming without loss of generality that

the exception is A1, then Lk ' A1 ∧ (
∧k

i=2 Yi).

Lemma 4.7 Lk is a coassociative co-H space.

Proof By Lemma 4.3, there is a co-H map Lk
lk→ Σ
∧k

i=1(ΩAi) which has a left homo-

topy inverse r : Σ
∧k

i=1(ΩAi)→ Lk. Thus there is a homotopy commutative diagram

Lk

lk
// Σ
∧k

i=1(ΩAi)
Σ J

//

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

ΣΩ

(

Σ
∧k

i=1(ΩAi)
)

ΣΩr
//

ev

��

ΣΩLk

ev

��

Σ
∧k

i=1(ΩAi)
r

// Lk,

where J =
∧k

i=1 ji . The top row is a composite of co-H maps and so is co-H. The
lower direction is homotopic to the identity on Lk. So by Theorem 2.3, Lk is homo-

topy coassociative.

We next show that the inclusion Lk
lk→ Σ
∧k

i=1 ΩAi factors through the telescopes

of all the possible sub-idempotents on Σ
∧k

i=1 ΩAi formed by sequences of evalua-
tions and inclusions.

Suppose we are given a sequence b : Σ
∧k

i=1 ΩAi → Σ
∧k

i=1 ΩAi of evaluations

ΣΩAi
ev
→ Ai and inclusions Ai → ΣΩAi . We may assume that any individual factor

is evaluated and included only once, since an inclusion followed by an evaluation

is homotopic to the identity. Let a : Σ
∧k

i=1 ΩAi → Σ
∧k

i=1 ΩAi be the sequence of
evaluations and inclusions which do not appear in b. So in particular, b ◦ a = γk ◦ σ

where σ is some permutation of the smash factors of
∧k

i=1 ΩAi . As with γk, the map
b is an idempotent. Let L be its telescope. By Lemma 3.1 there is a factorization

Σ

k
∧

i=1

ΩAi
g
−→ L

h
−→ Σ

k
∧

i=1

ΩAi ,

for maps g and h where b ' h ◦ g and g ◦ h is homotopic to the identity on L. Since
L is a retract of a co-H space it too is a co-H space. Also, as in Lemma 4.3, the map

h is co-H.

Lemma 4.8 The co-H inclusion Lk
lk→ Σ
∧k

i=1 ΩAi factors as a composition of co-H

maps Lk → L
h
→ Σ

∧k
i=1 ΩAi .
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Proof The idea is to construct an idempotent on L which is compatible with the

idempotent γk on Σ
∧k

i=1 ΩAi , and show their telescopes are homotopy equivalent.

Let m = g◦a and θ = m◦h. Then h◦θ = h◦m◦h = h◦g◦a◦h ' b◦a◦h = γk◦σ◦h.
Also, θ ◦ g = m ◦ h ◦ g ' m ◦ b = g ◦ a ◦ b ' g ◦ γk ◦ σ. These two homotopies say
there is a homotopy commutative diagram

Σ
∧k

i=1 ΩAi
γk◦σ−−−−→ Σ

∧k
i=1 ΩAi





y

g





y

g

L
θ

−−−−→ L




y
h





y
h

Σ
∧k

i=1 ΩAi
γk◦σ−−−−→ Σ

∧k
i=1 ΩAi .

The diagram tells us several things. (1) Since σ is just a permutation of the smash

factors of Σ
∧k

i=1 ΩAi , the map γk ◦ σ is a sequence of evaluations and inclusions

just like γk, but in a different order. In particular, like γk, γk ◦ σ is an idempotent
with telescope Lk. Since g is a left homotopy inverse of h, the lower square implies
θ ' g ◦ γk ◦ σ ◦ h. Juxtaposing the lower square with itself also shows that θ2 '
g ◦ (γk ◦σ)2 ◦h. Since γk ◦σ is an idempotent, θ must also be an idempotent. (2) Let

T(L) be the telescope of θ. Note that the horizontal composite is h ◦ g ' b. Recall
that γk ◦ σ = b ◦ a. Thus when we take telescopes horizontally we obtain a sequence
Lk → T(L) → Lk. which is homotopic to the identity map on Lk. (3) On the
other hand, g ◦ h is homotopic to the identity on L, so we also obtain a sequence of

telescopes T(L) → Lk → T(L) which is homotopic to the identity on T(L). Hence
T(L) ' Lk.

Using Lemma 3.2 we therefore have a homotopy commutative diagram

T(L) //

'

��

L

h

��

Lk

lk
// Σ
∧k

i=1 ΩAi ,

When h was defined prior to the Lemma, we saw that it was co-H. The telescope map
in the top row of the diagram is co-H just as lk was shown to be co-H in Lemma 4.3.

The factorization in the diagram now proves the Lemma.

One particular case of Lemma 4.8 is used to give a condition under which Lk is
cocommutative as well as coassociative.

Lemma 4.9 If one of A1 through Ak is homotopy cocommutative as well as coassocia-
tive then Lk is also homotopy cocommutative as well as coassociative.
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Proof Assume without loss of generality that Ak is homotopy cocommutative. The

evaluation and inclusion b : Σ
∧k

i=1 ΩAi → Σ
∧k−1

i=1 ΩAi ∧ Ak → Σ
∧k

i=1 ΩAi is an
idempotent with telescope L. By Lemma 4.8 there is a factorization of the inclu-

sion Lk
lk→ Σ

∧k
i=1 ΩAi as a composite of co-H maps Lk

c
→ (
∧k−1

i=1 ΩAi) ∧ Ak
d
→

Σ
∧k

i=1 ΩAi . The coassociative co-H structure on Lk comes from a left homotopy in-

verse r of lk. This co-H structure is equivalent to the one obtained by retracting Lk

off (
∧k−1

i=1 ΩAi) ∧ Ak by c and r ◦ d because d is co-H. But the latter co-H structure is
cocommutative because Ak is.

Proof of Proposition 1.4 The assertions of the Proposition follow from Lemmas 4.3,

4.4, 4.6, 4.7, and 4.9.

5 The Generalized James Decomposition

To make sure the decomposition in Theorem 1.1 can be chosen naturally, a momen-
tary digression is necessary. Recall that the join of two spaces X and Y is defined by
X ∗ Y = (X × I × Y )/ ∼ where (x, 1, ∗) ∼ ∗ ∼ (∗, 0, y). The suspension of X × Y
is defined by Σ(X × Y ) = X × Y × I/ ∼ ′ where (x, y, 1) ∼ ′ ∗ ∼ ′ (x, y, 0). The def-

initions yield a quotient map X ∗ Y → Σ(X × Y ) which is natural in both variables.
The homotopy equivalence X ∗ Y ' ΣX ∧ Y is also natural in both variables, and
so we have a map ΣX ∧ Y → Σ(X × Y ) which is natural in both variables. Further,
this map is a right homotopy inverse for the suspension of the usual quotient map

X × Y → X ∧ Y . The following lemma says that this sort of thing happens for more
than two variables.

Lemma 5.1 For n ≥ 2, there is a map

ΣX1 ∧ · · · ∧ Xn −→ Σ(X1 × · · · × Xn)

which is natural in each of the n variables and which is a right homotopy inverse to the
suspension of the usual quotient map X1 × · · · × Xn → X1 ∧ · · · ∧ Xn.

Proof The proof is by induction. Let Y = X1 × · · · × Xn−1. The n = 2 case gives a
map θ : ΣY ∧ Xn → Σ(Y × Xn) which is natural in both variables. The n − 1 case,

smashed with Xn, gives a mapψ : (ΣX1∧· · ·∧Xn−1)∧Xn →
(

Σ(X1×· · ·×Xn−1)
)

∧Xn

which is natural in each of the variables X1, . . .Xn−1. The composite θ ◦ψ then gives
the asserted map.

Remark The naturality in Lemma 5.1 is not free of choice. The induction used
an ordering of the n variables, in much the same way as an order is chosen when
multiplying in an H-space which is not associative. One wonders whether there is a
choice of the natural map in Lemma 5.1 which does not depend on a preset ordering.

We now set ourselves up for proving Theorem 1.1. Suppose A is a homotopy
coassociative co-H space. In Proposition 1.4 let A1 through Ak all equal A. Let Mk be
the space Lk in this case. Then Mk is coassociative, it is cocommutative if A is, it is a
retract of Σ(ΩA)(k), and Σk−1Mk ' A(k).
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Suspend the multiplication
∏k

i=1 ΩA→ ΩA and use Lemma 5.1 to obtain a map

µ∗ : Σ(ΩA)(k) −→ Σ
(

k
∏

i=1

ΩA
)

−→ ΣΩA.

Let ψk be the composite

ψk : Mk −→ Σ(ΩA)(k) µ∗

−→ ΣΩA.

By Lemma 2.1, H∗(ΣΩA) is isomorphic as an algebra to the suspension of the tensor
algebra generated by Σ−1H̃∗(A). Corollary 4.5 then implies the following.

Lemma 5.2 The inclusion Mk → ΣΩA maps H∗(Mk) isomorphically onto the sus-
pension of the submodule of tensor algebra elements in H∗(ΩA) ∼= T

(

Σ
−1H̃∗(A)

)

of
length k.

Proof of Theorem 1.1 Let

ψ :

∞
∨

k=1

Mk → ΣΩA

be the universal map defined by piecing together the ψk’s. By Lemma 5.2, ψ∗ is an
isomorphism and so ψ is a homotopy equivalence.

For naturality, if A → B is a co-H map between coassociative co-H spaces, then
µ∗ is natural by Lemma 5.1, the idempotent γk on Σ(ΩA)(k) is natural by Lemma 4.2
and so the map Mk → Σ(ΩA)(k) is natural by Lemma 3.2. Thus ψk and hence ψ are
natural.

Also note that if A = ΣA ′ then Lemma 4.6 implies that the decomposition of
ΣΩA above is equivalent to the usual one of ΣΩΣA ′.

6 The Generalized Hilton-Milnor Theorem

Theorem 1.2 generalizes the Hilton-Milnor theorem. Recall the usual setup. Let
i1 : ΣX → ΣX ∨ ΣY and i2 : ΣY → ΣX ∨ ΣY be the inclusions of the left and
right wedge summands respectively. Let L〈i1, i2〉 be the free Lie algebra on the two

indicated generators. Let I be an indexing set running over a vector space basis of
L〈i1, i2〉. Forα ∈ I, let α1, α2 respectively be the number of occurrences of i1, i2 in α.
The basis element in L〈i1, i2〉 represented by α corresponds to an iterated Whitehead
productΣX(α1) ∧Y (α2) → ΣX ∨ΣY which will also be denoted by α. Looping so we

can multiply gives the Hilton-Milnor decomposition

Ω(ΣX ∨ ΣY ) '
∏

α∈I

ΩΣ(X(α1) ∧ Y (α2)).

To make the move from Whitehead product on suspensions to Whitehead prod-
ucts on coassociative co-H spaces, we need to factor α. The identity map on ΣX
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factors as the composite ΣX
Σ j
→ ΣΩΣX

ev
→ ΣX, and similarly for ΣY . The iterated

Whitehead productΣX(α1) ∧Y (α2) α
→ ΣX ∨ΣY is built from the inclusions i1 and i2

of ΣX and ΣY respectively into ΣX ∨ ΣY . Let α ′ be the iterated Whitehead product
α ′ : Σ(ΩΣX)(α1) ∧ (ΩΣY )(α2) → ΣX ∨ ΣY , where each occurrence of i1 and i2 in
α has been replaced by i1 ◦ ev and i2 ◦ ev respectively. Naturality of the Whitehead
product then implies that α factors as the composite

fα : ΣX(α1) ∧Y (α2) −→ Σ(ΩΣX)(α1) ∧ (ΩΣY )(α2) α ′
−→ ΣX ∨ ΣY,

where the left map is the suspensionΣ j(α1) ∧ j(α2).

Proof of Theorem 1.2 Suppose A and B are homotopy coassociative co-H spaces.
Fix α ∈ I. Let Nα be the space Lα1+α2

obtained by applying Proposition 1.4 to
Σ(ΩA)(α1) ∧ (ΩB)(α2). Then Nα is homotopy coassociative, is homotopy cocom-

mutative as well if at least one of A or B is, and Σα1+α2−1Nα ' A(α1) ∧ B(α2). As well,
there is a “Whitehead product”

gα : Nα −→ Σ(ΩA)(α1) ∧ (ΩB)(α2) α ′
−→ A ∨ B.

This is the analogue of fα in the suspension case and Lemma 2.1 combined with
Lemma 4.4 show thatΩgα has the analogous image in homology asΩ fα. Multiplying
the Ωgα’s then implies the map

∏

α∈I

ΩNα → Ω(A ∨ B)

is a homology isomorphism and hence a homotopy equivalence.
The naturality in Proposition 1.4 and the naturality of the Whitehead product

imply that both maps in the composite defining gα are natural with respect to co-H
maps A→ C and B→ D between coassociative co-H spaces. Thus gα is natural and
hence so is the product decomposition of Ω(A ∨ B).

One should also note that Theorem 1.2 is nothing new if A = ΣA ′ and B =

ΣB ′. For then the definition of gα shows it is really fα for A ′ and B ′, and the de-
composition in Theorem 1.2 becomes the standard Hilton-Milnor decomposition of
Ω(ΣA ′ ∨ ΣB ′).

7 Idempotents on Mk

This section constructs p-local wedge decompositions of the spaces Mk in Theo-
rem 1.1. We show the symmetric group Σk on k letters acts on Mk and use this to

construct idempotents which give the splittings.
Let σ be an element inΣk. If X is a space then we can define a map σ : X(k) → X(k)

by permuting the factors in the smash product. An analogous self-map M(σ) can be
defined on Mk by the composite

M(σ) : Mk −→ Σ(ΩA)(k) Σσ
−→ Σ(ΩA)(k) −→ Mk.
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We wish to show that M(σ) is a co-H map and satisfies the composition property
M(σ1 ◦ σ2) ' M(σ1) ◦M(σ2). We again use X = ΩA. Let σ ∈ Σk. We first line up

the definition of M(σ) with a similar one for ΣX(k). Let X(σ) be the composite

X(σ) : ΣX(k) ΣE(k)

−→ Σ(ΩΣX)(k) Σσ
−→ Σ(ΩΣX)(k) −→ ΣX(k).

Note that the naturality of σ implies that σ◦E(k) ' E(k)◦σ, and so X(σ) is homotopic

to ΣX(k) Σσ→ ΣX(k). Thus if σ1, σ2 ∈ Σk then X(σ1) ◦ X(σ2) ' X(σ1 ◦ σ2).
Let σ ∈ Σk. Consider the diagram

Mk −−−−→ Σ(ΩA)(k) Σσ
−−−−→ Σ(ΩA)(k) −−−−→ Mk





y

s





y





y





y

s

ΣX(k) ΣE(k)

−−−−→ Σ(ΩΣX)(k) Σσ
−−−−→ Σ(ΩΣX)(k) −−−−→ ΣX(k).

The middle square homotopy commutes by the naturality of σ. The left and right

squares homotopy commute by the diagram of telescopes in Lemma 3.2 applied,
as we have seen before, to the idempotents γk and λk. Also, the map Σ(ΩA)(k) →
Σ(ΩΣX)(k) is a suspension and has a left homotopy inverse, so by Lemma 3.3, the
induced map s of telescopes is a co-H map and has a left homotopy inverse. Finally,

note that the top row of this diagram is the definition of M(σ) while the bottom row
is the definition of X(σ).

Lemma 7.1 Let σ1, σ2 ∈ Σk. Then as self-maps of Mk we have M(σ1◦σ2) ' M(σ1)◦
M(σ2).

Proof The diagram preceding the Lemma shows that for any σ ∈ Σk we have X(σ) ◦
s ' s ◦M(σ). Further, if σ1, σ2 ∈ Σk then preceding the three squares in the diagram
for σ1 with the three squares for σ2 shows that s◦M(σ1)◦M(σ2) ' X(σ1)◦X(σ2)◦ s.
When defining X(σ) we noted that X(σ1◦σ2) ' X(σ1◦σ2). Thus s◦M(σ1)◦M(σ2) '
X(σ1 ◦σ2) ' s◦M(σ1 ◦σ2). Composing this homotopy with a left homotopy inverse
for s then proves the lemma.

Remark If A = ΣA ′ then by Lemma 4.6 Mk → Σ(ΩA ′)(k) is equivalent to the inclu-

sion Σ(A ′)(k) → Σ(ΩΣA ′)(k). So in this case M(σ) is homotopic to the permutation
Σσ on Σ(A ′)(k).

Lemma 7.2 Let σ ∈ Σk. Then the map Mk
M(σ)
→ Mk is a co-H map.

Proof Recalling that X(σ) is homotopic to the map ΣX(k) Σσ→ ΣX(k), the diagram
preceding Lemma 7.1 (and the comments following it) shows there is a homotopy
commutative diagram

Mk
M(σ)
−−−−→ Mk





y

s





y

s

ΣX(k) Σσ
−−−−→ ΣX(k),
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where s is a co-H map.
Let ∆M : Mk → Mk ∨ Mk and ∆X : ΣX(k) → ΣX(k) ∨ ΣX(k) be the respective

comultiplications. Let t : ΣX(k) → Mk be a left homotopy inverse of s. Recall that by
definition, M(σ) = t ◦Σσ ◦ s. Now consider what happens when the square above is
followed by the composite

ΣX(k) ∆X−→ ΣX(k) ∨ ΣX(k) t∨t
−→ Mk ∨Mk.

On the one hand, since both s andΣσ are co-H maps we have (t∨t)◦∆X ◦(Σσ◦s) '
(t ∨ t)◦ (Σσ∨Σσ)◦ (s∨ s)◦∆M '

(

M(σ)∨M(σ)
)

◦∆M . On the other hand, since
s is co-H we have (t ∨ t)◦∆X ◦ (s◦∆M) ' (t ∨ t)◦ (s∨ s)◦∆M ◦M(σ) ' ∆M ◦M(σ).

As the diagram impliesΣσ◦s ' s◦M(σ), we therefore have
(

M(σ)∨M(σ)
)

◦∆M '
∆M ◦M(σ), which proves that M(σ) is a co-H map.

We next use elements in the symmetric group to construct idempotents on Mk.

Let p be a prime and let Z(p) be the p-local integers. Let Rk = Z(p)[Σk] be the group
ring of Σk. The k-th Dynkin-Specht-Wever element βk in Rk is defined inductively
by β2 = 1 − (1, 2) and βk =

(

1 − (k, k − 1, . . . , 2, 1)
)

(1 ⊗ βk−1). By [J] we have
βkβk ' kβk. So if (p, k) = 1 and we let ek =

1
k
βk then ek is an idempotent.

Let X be a space. The symmetric group acts on X(k). Suspending so we can add,

the Dynkin-Specht-Wever element βk determines a map β̄k : ΣX(k) → ΣX(k). As well,

βk acts on
⊗k

i=1 H̃∗(X; Z/pZ) by βk(x1 ⊗ · · · ⊗ xk) =
[

x1,
[

x2, [· · · [xk−1, xk] · · ·
]

]

.

The map β̄k induces the suspension of this action in homology.

Just as we defined a self-map M(σ) of Mk from an element ofΣk by usingΣ(ΩA)(k)

as an intermediary, so can we define a map M(βk). Precisely, M(βk) is the composite

Mk −→ Σ(ΩA)(k) β̄k−→ Σ(ΩA)(k) −→ Mk.

Lemma 7.1 tells us this is homotopic to inductively defining M(βk) by M(β2) =

1−M
(

(1, 2)
)

and M(βk) =
(

1−M
(

(k, k− 1, . . . , 2, 1)
)

)

◦M
(

(1)(βk−1)
)

. Since

Σ(ΩA)(k) is coassociative but not cocommutative one cannot perform the arithmetic
(distributivity in particular) to show that β̄k ◦ β̄k ' k · β̄k. On the other hand, if A
is homotopy coassociative and cocommutative then so is Mk and Mk → Σ(ΩA)(k)

is a co-H map. Now it is possible to perform the arithmetic in the abelian group
[Mk,Mk] which shows that M(βk) ◦M(βk) ' k ·M(βk).

Suppose spaces and maps have been localized at a prime p. If (p, k) = 1 then we
can define a map M(ek) : Mk → Mk by M(ek) = 1

k
M(βk). We have M(ek) ◦M(ek) '

M(ek) and so M(ek) is an idempotent. Let Uk and Vk be the telescopes of M(ek) and
1−M(ek) respectively. Then Mk ' Uk ∨Vk.

Since Mk is a co-H space, both Uk and Vk have co-H structures determined by
their retractions off Mk. However, much more is true in this case. Recall that two

co-H spaces are co-H equivalent if there is a co-H map between them which is also a
homotopy equivalence. We will show in Lemma 7.4 that there is a co-H equivalence
Mk → Uk∨Vk, and this lets us determine that Uk and Vk are homotopy coassociative
and cocommutative. First we need the following Lemma.
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Lemma 7.3 When (p, k) = 1 the maps M(βk), 1−M(βk) : Mk → Mk are both co-H
maps.

Proof Since Mk is both homotopy coassociative and cocommutative, sums and dif-
ferences of co-H maps with Mk as their domain are also co-H maps. Lemma 7.2 then

implies that the map Mk
β̄k→ Mk is a composition of co-H maps and so is co-H. If

(p, k) = 1, then the map k : Mk → Mk is a co-H map and a homotopy equivalence,
so an inverse 1

k
: Mk → Mk is also a co-H map. Thus M(βk) = 1

k
·M(β̄k) is a co-H

map.

Lemma 7.4 When (p, k) = 1 the telescope maps Mk → Uk and Mk → Vk are co-H
maps and add to give a co-H equivalence Mk → Uk ∨ Vk. Further, this equivalence
implies both Uk and Vk are homotopy coassociative and cocommutative.

Proof By Lemma 7.3, the idempotent M(βk) : Mk → Mk is a co-H map and so
by Lemma 3.1 the map to the telescope Mk → Uk is a co-H map. Similarly for
1 − M(βk) and Mk → Vk. Since Mk is homotopy coassociative and cocommuta-

tive the sum of two co-H maps is again a co-H map, so the homotopy equivalence
Mk → Uk∨Vk is also a co-H map. The assertions about the homotopy coassociativity
and cocommutativity of Uk and Vk follow from Lemma 2.6.

Summarizing the results of this section so far we have:

Proposition 7.5 Localize at a prime p. Suppose A is a homotopy coassociative, co-
commutative co-H space. By Theorem 1.1 ΣΩA '

∨∞

k=1 Mk where each Mk is a coas-
sociative, cocommutative co-H space. If (p, k) = 1 then there is a co-H equivalence

Mk ' Uk ∨ Vk, and each of Uk and Vk are coassociative, cocommutative co-H spaces.

We next explicitly state the homological consequences of Proposition 7.5. In what
follows we take homology with mod -p coefficients. If (p, k) = 1 the Dynkin-

Specht-Wever element 1
k
βk determines an idempotent on

⊗k
i=1 Σ

−1H̃∗(A) by per-
mutation. Let DA be the direct limit. This gives a sequence

k
⊗

i=1

Σ
−1H̃∗(A)

c
−→ DA

d
−→

k
⊗

i=1

Σ
−1H̃∗(A),

where d ◦ c equals 1
k
βk and c ◦ d equals the identity map. Note that c(a1⊗· · ·⊗ ak) =

[

a1,
[

a2, [· · · [ak−1, ak] · · ·
]

]

. By Corollary 4.5, H̃∗(Mk) ∼= Σ
(
⊗∞

i=1 H̃∗(A)
)

. By

construction, the action of 1
k
βk on the space Mk induces the suspension of the action

of 1
k
βk on

⊗k
i=1 Σ

−1H̃∗(A). Thus:

Lemma 7.6 If (p, k) = 1 then H∗(Uk) ∼= ΣDA and the map Mk → Uk inducesΣc in
homology.
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8 p-Local Homotopy Decompositions of ΩA

Throughout this section assume that all spaces and maps have been localized at a
prime p. All homology calculations will be with mod-p coefficients. Assume that A
is a homotopy coassociative, cocommutative co-H space so that each Mk is as well.

Finally, we will only consider those values of k such that (p, k) = 1.
The splitting of Mk in Proposition 7.5 will be used to construct homotopy decom-

positions ofΩA. We begin by defining some maps. For a space Y , let Wk : Σ(ΩY )(k) →

Y be the k-fold Whitehead product of the evaluation mapΣΩY
ev
→ Y with itself. Note

that if Y is a suspension, Y = ΣZ, then the composite wk : ΣZ(k) → Σ(ΩΣZ)(k) Wk→
ΣZ is homotopic to the k-fold Whitehead product of the identity map on ΣZ with
itself.

For the coassociative co-H space A, we again let X = ΩA and use the co-H map

A→ ΣX. As in Section 6 there is a “Whitehead product” w̄k : Mk → Σ(ΩA)(k) Wk→ A.
The naturality of w̄k implies there is a homotopy commutative diagram

Mk
w̄k−−−−→ A





y





y

ΣX(k) wk−−−−→ ΣX.

To build up to the proof of the decomposition in Theorem 8.4 we need to record
some homological properties resulting from this diagram. This is done in Lem-

mas 8.1 and 8.3.

Lemma 8.1 The image of (Ωw̄k)∗ is the subalgebra of H∗(ΩA) ∼= T
(

Σ
−1H̃∗(A)

)

generated by PkH∗(ΩA), the submodule of primitives of tensor length k.

Proof If the statement of the lemma replaced Mk
w̄k→ A by ΣX(k) wk→ ΣX then the

conclusion would be clear. The proof of the lemma is simply a modification to the

coassociative case of the usual one for suspensions.

We use the definition of w̄k as the composition Mk
mk→ Σ(ΩA)(k) Wk→ A. By Corol-

lary 4.5, (mk)∗ is the suspension of the tensor algebra inclusion

t : Σ
(

k
⊗

i=1

Σ
−1H̃∗(A)

)

→ Σ
(

k
⊗

i=1

T(Σ−1H̃∗(A))
)

.

Since mk is a co-H map, (Ωmk)∗ restricted to the generating set
⊗k

i=1 Σ
−1H̃∗(A) of

H∗(ΩMk) is the inclusion t .

If a1, . . . , ak ∈ H∗(ΩΣΩA) then the effect of the map ΩΣ
(

(ΩA)(k)
) ΩWk→ ΩA in

homology is (ΩWk)∗(a1⊗· · ·⊗ak) = k ·

[

a1,
[

a2,
[

· · · [ak−1, ak] · · ·
]

]

]

. (Note that

k is a unit since we have assumed (p, k) = 1.) In particular, if a1 ⊗ · · · ⊗ ak includes
into H∗(ΩΣΩA) through t then the image of (ΩWk)∗(a1 ⊗ · · · ⊗ ak) is a primitive of
tensor length k in H∗(ΩA).
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Putting the last two paragraphs together, (Ωw̄k)∗ =
(

Ω(mk ◦Wk)
)

∗
sends the

generating set
⊗k

i=1 Σ
−1H̃∗(A) of H̃∗(ΩMk) isomorphically onto PkH∗(ΩA). Since

(Ωw̄k)∗ is multiplicative, the Lemma follows.

Since the space Uk of Proposition 7.5 is a co-H space, by Lemma 7.6 we have

H∗(ΩUk) ∼= T(DA). Lemmas 7.6 and 8.1 combined then imply:

Lemma 8.2 The composite

DA −→ H∗(ΩUk) −→ H∗(ΩMk)
(Ωw̄k)∗−→ H∗(ΩA)

maps DA isomorphically onto PkH∗(ΩA).

For a space Y , let Hk : ΩΣY → ΩΣY (k) be the k-th James-Hopf invariant.

Lemma 8.3 The composite

ΩMk
Ωw̄k−→ ΩA −→ ΩΣX

Hk−→ ΩΣX(k)

is multiplicative in homology.

Proof Cohen and Tayor [CT, 5.1] examine the composite ΩΣY (k) Ωwk→ ΩΣY
Hk→

ΩΣY (k) for any space Y . They first consider (Hk)∗ and determine three properties

of the primitives of H∗(ΩΣY ). These properties allow them to immediately conclude
that if H∗(ΩΣY ) were isomorphic as a Hopf algebra to T

(

H̃∗(Y )
)

then Hk ◦ Ωwk

is multiplicative in homology. (Here, T
(

H̃∗(Y )
)

is given the standard Hopf algebra
structure by requiring H̃∗(Y ) to be primitive and then multiplicatively extending to

the whole tensor algebra.) Such a Hopf algebra isomorphism happens, for example,
if Y is a suspension.

In our case, X = ΩA is not a suspension, so H∗(ΩΣX) is not isomorphic to
T
(

H̃∗(X)
)

as a Hopf algebra, the isomorphism is only as an algebra. On the other
hand, A is a coassociative, cocommutative co-H space so by Lemma 2.2 H∗(ΩA) is

isomorphic as a Hopf algebra to T
(

Σ
−1H̃∗(A)

)

. The co-H inclusion A
s
→ ΣX lets

one restate Cohen and Taylor’s three properties about the primitives of H∗(ΩΣX) and
(Hk)∗ in terms of H∗(ΩA) and (Hk ◦ Ωs)∗. Now we can make the same conclusion,

that Hk ◦ Ωs ◦ Ωw̄k is multiplicative in homology.

Let φk be the composite

φk : Uk −→ Mk
w̄k−→ A.

We now prove the decomposition in Theorem 1.3, restated as follows.
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Theorem 8.4 Suppose A is a homotopy coassociative, cocommutative co-H space.
Then there is a homotopy decomposition

ΩA ' ΩUk × Fk,

where Fk is the homotopy fiber of φk. This is natural for co-H maps A → B between

coassociative, cocommutative co-H spaces.

Proof Consider the homotopy commutative diagram

ΩUk
// ΩMk

Ωwk

//

��

ΩA

��

ΩΣX(k)
Ωwk

// ΩΣX
Hk

//
ΩΣX(k) // ΩMk

// ΩUk.

Let q : ΩUk → ΩUk be the map from one end of the diagram to the other. By
Lemma 8.3, q is multiplicative in homology.

By Lemma 8.2, the restriction of (Ωw̄)∗ to the generating set DA of H∗(ΩUk) is
an isomorphism onto PkH∗(ΩA). This is a submodule of PkH∗(ΩΣX). The James-

Hopf invariant (Hk)∗ sends the submodule of tensor algebra elements of length k
isomorphically onto the set of homology generators of H∗(ΩΣX(k)). The map then
to H∗(ΩMk) picks off the homology generators which came from tensor algebra el-
ements of length k in H∗(ΩA). The further map to H∗(ΩUk) picks off the primitive

tensor elements of length k. Thus q∗ is an isomorphism when restricted to the gen-
erating set DA of H∗(ΩUk). Since q∗ is multiplicative, it is therefore an isomorphism.
Hence q is a a homotopy equivalence.

The naturality of the decomposition follows because all the maps in the above
diagram are natural.
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