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Abstract
We introduce hierarchically regularized entropy balancing as an extension to entropy balancing, a reweight-

ing method that adjusts weights for control group units to achieve covariate balance in observational

studies with binary treatments. Our proposed extension expands the feature space by including higher-

order terms (such as squared and cubic terms and interactions) of covariates and then achieves approximate

balance on the expanded features using ridge penaltieswith a hierarchical structure. Comparedwith entropy

balancing, this extension relaxes model dependency and improves the robustness of causal estimates while

avoidingoptimization failureorhighly concentratedweights. It prevents specificationsearchesbyminimizing

user discretion in selecting features to balance on and is also computationally more efficient than kernel

balancing, a kernel-basedcovariatebalancingmethod.Wedemonstrate its performance through simulations

and an empirical example. We develop an open-source R package, hbal, to facilitate implementation.

Keywords: causal inference, statistical learning, covariate balance, weighting, entropy balancing

1 Introduction

Entropy balancing (ebal) is a popular reweighting method that aims at estimating the average
treatment on the treated (ATT) using nonexperimental data with binary treatments (Hainmueller

2012). It adjusts the weights for the control units to achieve exact covariate balance by solving the

following constrainedmaximization problem:

max
w

H (w ) = −
∑
i ∈C

wi l og (wi /qi ),

s .t .
∑
i ∈C

wiGi j =mj for j ∈ 1, . . . , J ,

∑
i ∈C

wi = 1 andw ≥ 0 for all i ∈ C,

in whichw = {wi }i ∈C is set of solutionweights for units in the control group (denoted as C); qi > 0
is the base weight for unit i (and

∑
i ∈C qi = 1);H (·) is the Kullback–Leibler divergence between the

distributions of the solution weights and base weights; and
∑

i ∈CwiGi j = mj specifies a set of J
balance constraints, whereG ∈ �J includes J pretreatment covariates andmj is the mean of the

jth covariate of the treatment group.
Despite its appealing properties, such as exact balance, computational efficiency, and double

robustness, ebal has two main drawbacks. First, it requires researchers to specify the moments
of the covariates to be balanced on, which leaves room for specification searching and selective

reporting. Second, when the number of control units is small relative to the number of available

covariates, the algorithm either does not converge or generates highly concentratedweights. As a

result, researchers face a dilemma that balancing on too few terms leads to biaseswhile balancing

on toomany termsmay be infeasible or induce high variance due to extreme weights. To address

these problems, we propose hierarchically regularized entropy balancing (hbal) as an extension
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to ebal. hbal achieves approximate balance on reasonably flexible functions of the covariates
through a ridge-regularized entropy balancing framework.

2 Approximate Balancing with Hierarchical Regularization

Hainmueller (2012) proves that the global solution for each unit i’s weight exists and is given by
webal
i

=
qi exp(−G ′

i
Z )∑

Di =0
qi exp(−G ′

i
Z )
, where Z = {λ1,λ2 . . . ,λJ }′ is a set of Lagrangemultipliers for the balance

andnormalizing constraints andDi = {0,1} is thebinary treatment indicator.Using theLagrangian
multipliers and the solutionweightswebal

i
, the constrainedoptimizationproblemcanbe rewritten

as the following dual problem:

min
Z

Ld = log
���
∑
i ∈C

qi exp
���−

J∑
j=1

λjGi j
��	��	+

J∑
j=1

λj mj . (1)

After obtainingwebal
i

, one can use a difference in means (DIM) approach to estimate the ATT:

τ̂ebal =
1

n1

∑
Di=1

Yi −
∑
Di=0

webal
i Yi ,

in which n1 is the number of treated units. Zhao and Percival (2017) show that Problem (1)

is an M-estimator for the propensity score with a logistic link using G as predictors, and the
solutionweightswebal

i
belong to a class of inverse probability weights. They also show that under

strong ignorability and positivity, τ̂ebal is a doubly robust estimator for the ATT: when either the

untreated potential outcomeYi (0) or treatment assignment is linear in G, τ̂ebal is consistent (see
the Supplementary Material (SM) for details).

In practice, the linearity assumptionmay be unrealistic. Tomake this assumptionmore plausi-

ble, we can conduct a series expansion of G, for example, by including higher-order terms and
various kinds of interactions, obtaining X ∈ �T , (T � J ). However, exact balancing on high-

dimensional X is often infeasible; even when it is, the large number of balancing constraints
may cause the solution weights to be heavily concentrated on a few control units, resulting

in high variance of the ATT estimates. hbal addresses this problem by modifying the objective

function in (1), that is, adding an �2 penalty with a hierarchical structure to the Lagrangian

multipliers Z:

min
Z +

Ld = log

(∑
Di=0

qi exp

(
−

T∑
t=1

λtXi t

))
+

T∑
t=1

λtmt +
K∑
k=1

αk rk , (2)

where Z + = {λ1 . . .λT }′ is a vector of Lagrangian multipliers corresponding to T moment condi-
tions.

∑K
k=1αk rk is the newly added penalty term, in which αk is a scalar tuning parameter that

adjusts the strength of penalty for the kth group, for k = 1,2, . . . ,K ; rk =
∑

t ∈Pk λ
2
t is the squared

�2 norm of the Lagrangian multipliers (λt ) for moment conditions in the kth group, in which Pk

is the set of their indices. We choose �2 penalty over �1 penalty mainly because the former is

twice differentiable, making computation much more efficient. This grouped structure allows

differential strengths of regularization to be applied to different groups of balance constraints

and prioritizes feature groups that have heavy influence on the overall covariate balance between

the treatment and control groups. For example, it is possible that two-way interactions are more

important to the overall balance in an application than the squared terms of the covariates (see

the SM for a performance comparison of hierarchical and nonhierarchical regularization). This
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optimization problem giveswhbal
i

= qi exp(−X ′Z +)∑
Di =0

qi exp(−X ′Z +)
(i ∈ C) and

τ̂hbal =
1

n1

∑
Di=1

Yi −
∑
Di=0

whbal
i Yi .

2.1 Implementation Details
Implementinghbal involves several technicaldetails, suchasgroupingmomentconditions, select-
ing tuning parameters, and prescreening covariates. Due to space limitations, we only provide a

sketch here and offer more details in the SM.

In terms of grouping, we put all the level terms of G in the first group (k = 1); two-way

interactions (k = 2), squared terms (k = 3), three-way interactions (k = 4), interactions between

square and level terms (k = 5), and cubic terms (k = 6) each represent a separate group. Because

the Lagrangian multipliers can be interpreted as covariate coefficients in a logistic regression

for propensity scores, shrinking the Lagrangian multipliers differentially enables us to prioritize

groups of features in the expanded covariate space that are the more predictive of propensity

scores. By default, we impose a hierarchical structure by setting α1 = 0, that is, hbal seeks
exact balance on the level terms just like ebal, and only regularizing higher moment constraints.
When α2 = α3 = · · · = αK = 0, hbal is reduced to ebal applied to the full series expansion of
the covariates. To select the tuning parameters, we combine a trust-region optimization method

(Powell 1994) with a V-fold cross-validation procedure that minimizes mean absolute error of
expanded covariate balance between the held-out subsample of control units and the treated

units. This procedure encapsulates the intuition that the optimal Lagrangian multipliers, based

on which the solution weights are constructed, should generalize to randomly selected held-out

data and result in approximate covariate balance. While the proposed approach is data-driven,

we also allow researcher to incorporate their prior knowledge when applying hbal, for example,
by imposing custom covariate groupings and by specifying the parameter space of the tuning

parameters.

2.2 Combining hbalwith an Outcome Model
When the number of control units is small relative to the number of moment conditions, hbal
only achieves approximate balance. To remove bias caused by the remaining imbalance, we

suggest combining hbal with an outcome model that includes the same set of covariates in the
moment conditions,whichwe label as hbal+. Because hbal gives higherweights to units that have
similar propensity scores to those of the treated units, this strategy leads to efficiency gain for a

regression-based double selection approach. When combined with an outcome model, an ATT

estimator is given by

τ̂hbal+ =
1

n1

∑
Di=1

(Yi − ĝ0(Gi ))−
∑
Di=0

whbal (Yi − ĝ0(Gi )),

where ĝ0(Gi ) = X ′
i β̂ is based on a linear regression on the expanded features. Zhao and Percival

(2017) show that τ̂hbal+ is consistent for the ATT when either g0 is linear in Xi orw
hbal converges

to the logit of the true propensity scores. With nonzero tuning parameters, hbal achieves exact
balancing on G and only approximate balance on X \G . Hence, if the true propensity scores
depend onX \G ,whbal does not converge to the logit of the true propensity scores, in which case

a correctly specified outcomemodel g0 ensures the consistency of τ̂hbal+.
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2.3 Related Work
hbal builds on a class of preprocessing methods that explicitly seek to achieve approximate
covariatebalance for causal inferencepurposes (e.g., Athey, Imbens, andWager2018;Hazlett 2020;

Imai and Ratkovic 2014; Ning, Sida, and Imai 2020; Zubizarreta 2015). These methods are shown

to estimate propensity scores with loss functions targeting good covariate balance (Ben-Michael,

Feller, and Rothstein 2021; Wang and Zubizarreta 2019; Zhao and Percival 2017). hbal extends
this line of research in that it aims at achieving approximate balance in a large covariate space.

Hence, hbal’s solution weights can be interpreted as penalized propensity scores with a special
loss function. Moreover, the balancing approach is closely connected to the survey literature on

calibrated weighting, or raking (e.g., Deming and Stephan 1940). The key component of hbal,
hierarchical ridge regularization, shares similarity with recent research in survey methods that

deal with high dimensionality of crosstabs of respondent characteristics (Ben-Michael et al. 2021;
Caughey and Hartman 2017; Tan 2020).

3 Monte Carlo Evidence

To evaluate the performance of hbal, we conduct Monte Carlo simulations to compare hbal and
hbal+ with five commonly used matching and weighting methods, including inverse propensity
score weighting (PSW; e.g., Hirano, Imbens, and Ridder 2003), covariate balancing propensity

score (CBPS; Imai and Ratkovic 2014), coarsened exact matching (CEM; Iacus, King, and Porro

2012), ebal (Hainmueller 2012), and kernel balancing (Hazlett 2020). To illustrate the advantage
of hierarchical regularization, we also report the results from using ebal to balance on the serially
expanded covariate set (ebal*). The naive DIM (Raw) estimator is also included as a benchmark.

3.1 Design
We use six covariates G = {G1,G2,G3,G4,G5,G6}, in which G1, . . . ,G4 are drawn independently

from a multivariate normal distribution with mean 0, variance 1, and covariances of 0.2; G5 and

G6 are independently drawn from Bernoulli distributions with probability of success 0.3 and 0.2,

respectively. To simulate a complex treatment assignment process, we use all level terms and a

random subset of higher-order terms to be relevant for treatment assignment and generate their

individual effect from a normal distribution. Specifically, the treatment assignment indicator is

given by D = 1{f (G )− 2 + ε > 0}, where f (G ) is a linear combination of the subset of the serial
expansion ofG and ε i .i .d .∼ N (0,

√
8).1 To capture the empirical variability in the outcome-generating

process, we consider three outcome designs with increasing degree of nonlinearity: (1) linear:

Y =G1 +G2 +G3 −G4 +G5 +G6 +u ; (2) nonlinearY =G1 +G2
1 −G4G6 +u ; and (3) trigonometric:

Y = 2× cos(G1)− sin(π ×G2)+u , with u
i .i .d .∼ N (0,1) and the true treatment effect fixed at 0 for all

units. For PSW, CBPS, CEM, ebal, and kbal, we include only the original variables G. Note that kbal
expands the covariate space through Gaussian kernels; for ebal*, hbal, and hbal+, we include all
69 covariates in the third-degree series expansion of G.

3.2 Results
Figure 1 presents the simulation result with sample size N = 900 and control to treatment ratio

5:1. We report additional results with varying outcome designs, sample sizes, and control to

treatment ratios in the SM. The comparative performance of hbal (or hbal+) is similar across
different simulation setups.

1 The selected covariates are G1, G2, G3, G4, G5,G6, G1G2, G1G5, G2G3, G2G4, G2G6, G3G6, G
2
1 , G

2
2 , G

2
3 , and G2

4 . The
selection of higher-order terms is a random draw from square and two-way interaction terms of the covariates. We
also include an intercept of −2 in f (G ) so that it is centered close to 0. Replication data and code are available at
https://doi.org/10.7910/DVN/QI2WP9 (Xu and Yang 2022).
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Figure 1. Monte Carlo evidence. The top-left, top-right, and bottom-left panels correspond to results from
outcomedesigns 1, 2, and3, respectively. All threedesigns share the same treatment assignmentmechanism,
that is,D = 1{f (G )−2+ε > 0}. The bottom-right panel compares the speed between kbal and hbal.

For the linear outcome design 1, most methods substantially reduce bias as compared to

the naive DIM estimator. One exception is ebal*, whose poor performance is caused by noncon-
vergence of the ebal algorithm with many moment constraints. In comparison, hbal’s ability to
discriminate balance among covariate moments leads to superior performance in both bias and

variance reduction. As the outcome-generating process becomes more complex, methods that

rely only on G to estimate propensity scores or weights perform poorly. Compared to ebal, ebal*,
and kbal, hbal and hbal+ yield estimates with substantially less bias and smaller variance in

designs 2 and 3. These results demonstrate that, when the data-generating process is not too far

off from a polynomial expansion of the covariates, hbal’s hierarchical structure is able to tailor
the strengths of regularization to the importance of balance constraints, thus reducing bias while

maintaining a relatively small variance of the estimates. In the SM,we provide additional evidence

that hierarchical regularization leads to higher correlation between the solution weights and the

true propensity scores.

Moreover, hbal is also much more computationally efficient and scalable than kbal. The
bottom-right panel of Figure 1 shows the average running time across 500 samples for varying

Yiqing Xu and Eddie Yang � Political Analysis 461

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
2.

12
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2022.12


Figure 2. The effect of vacancy period on presidential ideological vote. The solid circle and triangle represent
the ATT estimates from ebal+ using the original seven covariates and hbal+ using covariates after series
expansion, respectively,with 95%confidence intervals. The gray bars represent the 95%confidence intervals
of 500 ebal+ estimates using various combination of the covariates and their higher-order terms.

sample sizes. Across sample sizes, hbal finds the solution weights using a fraction of kbal’s time
and hbal’s advantage of scalability becomes more evident as the sample size increases.

4 Promotion Prospect and Circuit Court Judge Behavior

To illustrate how hbalworks in empirical settings, we replicate a recent article by Black andOwens
(2016), who study the effect of promotion prospect to the SupremeCourt on the behavior of circuit

court judges. Using CEM, the authors show that judges who are on the president’s shortlist to

fill Supreme Court vacancies are more likely to vote in line with the president’s position during

the vacancy period as compared to the nonvacancy period; they find no such effect among

noncontending judgeswho stand little chance tobenominated to theSupremeCourt.We focuson

whether circuit court judges ruled in linewith the president as the outcome of interest. The binary

treatment variable is vacancy period (vs. nonvacancy period). To address potential confounding,

the authors use CEM to match cases on seven covariates that might influence a judge’s behavior

and the treatment, such as the judge’s Judicial Common Space score, the judge’s ideological

alignment with the president, and whether the case decision was reversed by the circuit court.

In Figure 2, we compare the results from mean balancing on the level terms of the covariates

using ebal+ (shown in solid circle) and from balancing on a set of serially expanded covariate

using hbal+ (shown in solid triangle). To assess whether the ebal+ estimate is sensitive to dif-
ferent model specifications, we also include an additional 500 models in which random higher

moments of the covariates are included (shown in gray). For both methods, we use the solution

weights to estimate a weighted linear regression and report 95% confidence intervals based on

standard errors clustered at the individual judge level. For contending judges, estimates fromboth

methods indicate judges are more likely to rule in line with the president during vacancy periods

than nonvacancy periods, although the estimate from ebal+ using the level terms only is not

statistically significant at the 5% level. Because hbal+’s specification includes higher-order terms
that can explain additional variation in the outcome and treatment assignment, we obtain amore

preciseand likelymore reliable estimate thanebal+’s. Fornoncontending judges,ebal+’s estimate
suggests that noncontending judges tend to bemore likely to rule in linewith the president during

a vacancy period,while hbal+’s estimate showsno significant difference between the vacancy and
nonvacancy periods. In short, hbal+’s results are broadly in line with Black and Owens’ (2016)
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original findings, whereas the estimates from ebal+ for both contending and non-contending

judges vary widely depending on specifications, ranging from negative to positive effects.

5 Conclusion

In this letter, we extend ebal to hbal by introducing hierarchical regularization on the Lagrangian
multiplier in the transformed objective function. It achieves approximate balance on a potentially

large covariate space. Through simulations and an empirical study, we demonstrate hbal’s desir-
able properties in comparison to ebal and other commonly used preprocessingmethods. We also
show that ebal is computationally more efficient than kbal, another popular covariate balancing
method. hbal thus can serve as a building block for methods that seek approximate covariate
balance. To facilitate implementation, we develop an open source routine, hbal, in R.
In theSM,weprovidemoredetails about the identifyingassumptionsand theoretical guarantee

of hbal, its algorithm, implementation procedure, and inferential method, as well as additional
informationon the simulation results and theempirical example.Wealsoapplyhbal to the famous
Lalonde data and find reassuring results, which are provided in the SM.
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