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Abstract 

Machine vision-based herbicide applications relying on object detection or image 

classification deep convolutional neural network (DCNN) demand high memory and 

computational resources, resulting in lengthy inference times. To tackle these challenges, this 

study assessed the effectiveness of three teacher models, each trained on datasets of varying 

sizes, including D-20k (comprising 10,000 true positive and true negative images) and D-10k 

(comprising 5,000 true positive and true negative images). Additionally, knowledge distillation 

was performed on their corresponding student models across a range of temperature settings. 

After the process of student-teacher learning, the parameters of all student models were reduced. 

ResNet18 not only achieved higher accuracy (ACC≥0.989) but also maintained higher frames 

per second (FPS≥742.9) under its optimal temperature condition (T=1). Overall, the results 

suggest that employing knowledge distillation on the machine vision models enabled accurate 

and reliable weed detection in turf while reducing the need for extensive computational resources, 

thereby facilitating real-time weed detection and contributing to the development of smart, 

machine vision-based sprayers. 

Keywords: Knowledge distillation; student-teacher learning; weed detection; precision herbicide 

application
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Introduction 

Turfgrass is widely grown in urban landscapes, including athletic, commercial, and 

residential lawns, golf courses, roadsides, and parks (Pincetl et al. 2019). Turf provides various 

advantages, including evaporative cooling in urban areas, soil remediation, atmospheric pollutant 

absorption, and beautifying residential and non-residential landscapes (El-Haggar et al. 2019; 

Stier et al. 2013). Nevertheless, weed competition is a severe constraint for turf management. 

Weeds compete with turfgrasses for environmental resources such as sunlight, moisture, and soil 

nutrients (Liu and Bruch 2020; Hamuda et al. 2016), reducing turf aesthetics and functionality 

(Pincetl et al. 2019; Monteiro 2017). Weed management in turfgrass landscapes traditionally 

relied heavily on broadcast herbicide application (McCullough et al. 2015; McElroy and Martins 

2013), although weeds almost always present in nonuniform and patchy distributions (Dai et al. 

2019; Yu et al. 2019a), leading to herbicide application on area where weeds do not occur. The 

excessive use of synthetic herbicides poses a potential risk to human health and may result in 

environmental pollution (Alengebawy et al, 2021; Hasanuzzaman et al. 2020; Mennan et al. 2020; 

Yu et al. 2019b). For example, atrazine, a photosystem II inhibitor, is commonly used in warm-

season turfgrasses yet frequently detected in groundwater (Yu and McCullough 2016). 

Consequently, it has been classified as a restricted-use pesticide in the United States (USEPA, 

2023). Manual spot spraying of herbicide can reduce herbicide input but is time-consuming and 

labor-intensive, and thus is impractical for large landscape area (Kakarla et al. 2022). 

Machine vision-based precision herbicide application technologies offer a viable solution to 

minimize herbicide use and weed control costs (Upadhyay et al. 2024a; Upadhyay et al. 2024b; 

Shuping et al. 2023; Jin et al. 2022b; Partel et al. 2019). Traditional machine learning methods 

analyze plant imagery, considering factors such as color (Tang et al. 2016), morphology (Perez et 

al. 2000), textural traits (Bakhshipour et al. 2017), and hyper- or multi-spectral features (Jiang et 

al. 2020; Pantazi et al. 2016), for the purpose of identifying target weeds or distinguishing 

between crops and weeds. Nevertheless, detecting and differentiating weeds within crops is 

inherently difficult due to their resemblances in color and morphology (Al-Badri et al. 2022; 
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Hasan et al. 2021). 

In recent years, improvements in Graphics Processing Unit (GPU) computing capabilities 

have greatly advanced the development of deep convolutional neural networks (DCNNs) 

(Krichen 2023; Tulbure et al. 2022). Many innovative concepts, such as activation functions, 

parameter optimization, model size, and inference architecture, have been explored to further 

enhance the performance of DCNNs (Khanam et al. 2024). DCNNs have shown impressive 

capabilities in weed detection within turf environments, as demonstrated in recent research (Jin 

et al. 2024; Xie et al. 2021; Yu et al. 2019b). For instance, research elucidated the efficacy of 

employing object detection (DetectNet) and image classification neural networks (including 

AlexNet, GoogLeNet, and VGGNet) to detect weeds in bermudagrass (Cynodon dactylon (L.) 

Pers.) and perennial ryegrass (Lolium perenne L.) turfgrasses. The findings highlighted that 

image classification neural networks excelled in detecting images containing broadleaf and 

grassy weeds within turfgrass (Jin et al. 2022a; Yu et al. 2020, 2019a, 2019c). Nevertheless, deep 

learning-based methods for weed detection in turf enhance accuracy at the expense of increasing 

computational load and decreasing detection speed, which limits their practical application. 

Many studies have demonstrated that models developed on high-performance computers often 

have excessive parameters, which complicates efficient inference on terminal devices (Yang et al. 

2022; Shakarami et al. 2021; El-Rashidy et al. 2020; Chen and Ran 2019). Consequently, it is 

fairly challenging to develop alternative approaches for identifying weeds in turf while balancing 

the model’s accuracy and real-time. 

Knowledge distillation is a contemporary neural network technique aimed at diminishing 

neural network size while maintaining or enhancing performance (Hinton et al. 2015). In 

knowledge distillation, a small student model is typically supervised by a large teacher model 

(Urban et al. 2016; Hinton et al. 2015; Ba and Caruana 2014; Buciluǎ et al. 2006). Basically, a 

knowledge distillation system consists of three fundamental components: knowledge, distillation 

algorithm, and teacher-student architecture. The main idea involves the student model emulating 

the teacher model to achieve competitive or even superior performance. Existing distillation 
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algorithms typically use a fixed temperature as a hyperparameter in the softmax layer to control 

the smoothness of the distribution and accurately determine the difficulty level of the loss 

minimization process (Li et al. 2023). In recent years, there has been growing research in the 

utilization of knowledge distillation in the domain of agriculture, such as crop segmentation 

(Angarano et al. 2023), fruit defect detection (Cai et al. 2024; Zhou et al. 2023; Nithya et al. 

2022), and plant leaf segmentation (Jung et al. 2022). 

The knowledge distillation offers a method for converting complex weed detection models 

into lightweight versions, facilitating deployment on resource-constrained mobile or embedded 

devices without sacrificing performance. This research hypothesized that applying knowledge 

distillation to turf weed detection could enhance weed detection performance while optimizing 

the use of limited time and computational resources, thereby improving the efficiency of 

developing effective neural network models. This approach shows significant promise for smart 

weeding robots, boosting their capability for real-time and precise herbicide application. A key 

factor in knowledge distillation is the hyperparameter temperature (T), which plays a crucial role 

in balancing the knowledge transfer between the teacher and student models. Therefore, the 

objectives of this research were to (1) assess the performance of three teacher models in 

detecting weeds in turf across datasets of different scales, (2) compare the results of three student 

models at different temperatures after knowledge distillation to determine their respective 

optimal temperatures, and (3) evaluate three student models individually at their respective 

optimal temperatures to identify the most suitable model for practical application. 

Models and Methods 

Dataset 

The experimental images in this research were captured at different times from various turf 

landscapes containing diverse weed species. Some images were captured in spring 2021 using a 

Panasonic® digital camera (model DMC-ZS110) at two distinct locations in China: sod farms in 

Jiangning District, Nanjing City, Jiangsu Province, China (31.95°N, 118.85°E) and sod farms in 

Shuyang, Jiangsu Province, China (34.12°N, 118.79°E), while others were obtained in autumn 
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2018 using a SONY® Cyber-Shot Digital Still Camera (model DSC-HX1) from two separate 

locations in the United States: the University of Georgia Griffin Campus in Graffin, Georgia, 

USA (33.26°N, 84.28°W), and multiple golf courses in Peachtree City, Georgia, USA (33.39°N, 

84.59°W). The turf species in these locations was bermudagrass, and the most commonly 

observed weed species were dallisgrass (Paspalum dilatatum Poir.), dandelion (Taraxacum 

officinale F.H. Wigg. Ssp. officinale), doveweed [Murdannia nudiflora (L.) Brenan], Florida 

pusley (Richardia scabra L.), lawn pennywort (Hydrocotyle sibthorpioides Lam.), old world 

diamond flower (Oldenlandia corymbosa L.), purple nutsedge (Cyperus rotundus L.), smooth 

crabgrass (Digitaria ischaemum (Schreb.) Schreb. ex Muhl.), and white clover (Trifolium repens 

L.). The camera was configured in automatic mode for parameters such as exposure, focus, and 

white balance. Images were captured at a height that resulted in a ground-sampling distance of 

0.05 cm pixel
-1

, under varying lighting conditions, including clear, cloudy, and partially cloudy 

weather. All the images were taken in a 16:9 ratio, with a resolution of 1920 × 1080 pixels. 

The raw images were initially cropped to dimensions of 240×240 pixels using Irfanview 

(v5.50, Irfan Ski jan, Jajce, Bosnia). As demonstrated in Figure 1, each resulting image block 

was then categorized into one of two classes: “weed,” representing sub-images containing weeds, 

and “turf,” representing sub-images without weeds. As shown in Table 1, 5,000 images per class 

were selected to create the small training dataset D-10k and each class was expanded to include 

10,000 images for the large training dataset D-20k. Additionally, an additional 500 images per 

class were set aside for the validation dataset, while another 500 images per class were allocated 

for the testing dataset. 

Neural Network Models 

In the context of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)-2015, 

the champion ResNet (He et al. 2016) introduced “residual blocks” to address issues of gradient 

vanishing and declining training set accuracy in deep neural networks. Instead of attempting to 

directly learn the complete underlying mapping from inputs to outputs, these blocks enable the 

network to focus on learning the difference (residual) between the input and the desired output. 
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This architectural innovation shifts the network’s task from fitting the entire low-level mapping 

to modeling the residual in relation to the original network, thereby significantly reducing 

training complexity. 

DenseNet (Huang et al. 2017) shares a similar goal of overcoming the challenge of training 

deep neural networks by incorporating “skip connections” or “shortcut connections.” It strongly 

emphasizes “dense connectivity,” where every layer is densely connected to every other layer, 

creating a tightly interconnected network structure. This architectural approach promotes 

extensive feature reuse across the network, thereby facilitating feature propagation and gradient 

flow throughout the entire model, ultimately contributing to more effective training of deep 

networks. 

EfficientNet (Tan and Le 2019) is a set of eight CNN models ranging from B0 to B7. 

EfficientNet achieves more efficient results through uniform scaling of depth, width, and 

resolution while shrinking the model size. The initial phase of compound scaling involves a grid 

search to determine the relationships among different scaling dimensions of the baseline network 

under fixed resource constraints. Subsequently, appropriate scaling factors are determined and 

applied to scale the baseline network to the target network. The primary building block of 

EfficientNet is the MBConv module, consisting of a layer that first expands and then compresses 

channels, utilizing depthwise separable convolutions to reduce the number of parameters 

competently. 

Knowledge Distillation 

Complex models often possess an extended parameter space, enhancing performance and 

generalization capabilities. Knowledge distillation (Hinton et al. 2012) leverages the knowledge 

acquired by complex models to guide the training of smaller models, thereby compensating for 

the limited expressive capacity imposed by the smaller scale of the latter. This leads to an 

improvement in the performance of smaller models. 

Assuming a reliable teacher model is accessible, the student model can calculate the 

probability of each category output from the teacher model, denoted as the “soft label.” In 
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contrast, the actual image labels are considered to be the “hard label.” Classification models 

typically utilize a softmax layer to compute the probability of each output category. The formula 

for this calculation is as follows, where    represents the output probability of class i, and    

represents the output logit of class i. 

      
       

         
 (1) 

Using the softmax output of the teacher model directly as the soft label is not a practical 

approach. This is because when the entropy for the probability distribution of the softmax output 

is low, the probability of the negative category label tends to be close to 0, and as a result, its 

contribution to the loss function becomes negligible. Therefore, a new variable called 

“temperature” can be introduced, and the softmax function can be calculated using the following 

formula, where T represents the “temperature.” 

 
     

         

           
 (2) 

After introducing the temperature factor T, the soft targets produced by the softmax classifier 

largely preserve the probability relationships between different sample classifications. 

The application of knowledge distillation requires both a teacher model and a student model, 

and the final loss is composed of the cross-entropy functions of both models, calculated through 

linear weighting. The training process is depicted in Figure 2. The soft loss can mitigate the 

overfitting of hard labels by student models (Cho and Hariharan 2019), and the final loss 

function is represented as formula (3), where    represents the output of the teacher model;    

represents the output of the student model; y denotes the true label; CE stands for the cross-

entropy function; and λ is the hyperparameter that adjusts the weighting of the loss function. 

                      

             
(3) 

Experimental Environment and Procedure 

This study examined three teacher models: ResNet101, DenseNet201, and EfficientNetB5, 

and three student models: ResNet18, DenseNet121, and EfficientNetB0. Compared to the teacher 
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models, student models had shallower and less complex architectures. Using ResNet as an 

example, the subsequent numerical values indicate the diverse depths of various models. 

ResNet101 has a greater depth, consisting of 101 convolutional layers, while ResNet18 is 

relatively shallower, with only 18 convolutional layers (He et al. 2016). 

In this study, a total of 48 image classification neural networks were trained and tested, 

comprising 8 teacher models and 40 student models with varying temperatures and structures. 

Initially, the weights of the teacher models, which were pre-trained on the ImageNet dataset 

(Deng et al. 2009), were delivered to their corresponding model architectures using transfer 

learning. Three teacher models were subjected to fine-tuning to adjust their fully connected layer 

outputs for binary classification. To assess their performance, each teacher model was 

independently trained on two datasets of varying sizes: the larger dataset, designated as D-20k, 

and the smaller dataset, referred to as D-10k. This separate training approach allowed for a 

comparative analysis of the model’s performance across datasets of different scales. 

Subsequently, a knowledge distillation approach was employed to transfer the acquired 

knowledge to lightweight student models. The validation set accuracy and model stability were 

compared under different temperature settings to determine the optimal teacher and student 

models. The hyperparameters used for training in different experimental setups are presented in 

Table 2. All models were trained and tested on the open-source PyTorch deep learning 

framework (version 1.8.1, Facebook, San Jose, California, United States), which was installed on 

a workstation equipped with a GeForce RTX 3080 Ti GPU and 64 GB of memory. 

Evaluation 

For both teacher and student image classification neural networks, the assessment results 

were organized in a binary classification confusion matrix encompassing four outcomes: a true 

positive (TP), a true negative (TN), a false positive (FP), and a false negative (FN). TP indicates 

the count of correctly predicted weed-free samples, whereas TN represents the count of correctly 

predicted samples with weeds. TP and TN are indicators reflecting the true condition of weeds. 

Conversely, in cases where samples are actually infested with weeds, FP signifies the incorrect 
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prediction of samples as weed-free, and FN signifies the incorrect prediction of samples as 

infested with weeds. TP and TN expose instances of prediction errors in recognizing the weed 

condition. The performances of the neural networks were evaluated using Accuracy (ACC), 

Precision, Recall, F1 score, and Matthews Correlation Coefficient (MCC) via confusion matrices 

(Sokolova and Lapalme 2009). 

Accuracy (ACC) measures the percentage of accurately classified samples within a specified 

dataset and was calculated using the following formula: 

 
     

     

           
 (4) 

Precision measures the ability of the model to accurately detect the target and was computed 

using the following formula: 

 

            
  

     
 (5) 

Recall measures the effectiveness of the neural network to correctly identify the target and 

was defined using the following formula: 

 
         

  

     
 (6) 

F1 score measures the overall performance of the neural network and represents the 

harmonic mean of precision and recall, which was determined using the following formula: 

 

           
                  

                
 (7) 

MCC is a metric to quantify a predictive model’s performance quality. It provides a more 

balanced assessment, yielding values between -1 and 1. A score of 1 indicates a perfect 

prediction, 0 represents random predictions, and -1 signals total disagreement between the model 

and actual outcomes. It was calculated using the following formula: 

 

      
           

                             
 (8) 

Furthermore, Frames Per Second (FPS) is a critical metric in the realm of computer graphics 
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technology. It measures the number of individual images processed and predicted by a neural 

network model in a single second (Stewart et al. 2021). Higher FPS values result in faster image 

classification speeds, indicating more robust real-time processing performance. 

Finally, model size was utilized as an important metric for comparing the parameter scale 

and complexity level of the teacher and student models. 

Results and Discussion 

Teacher Model Performance 

In the present study, the three teacher models were trained on the D-20k and D-10k datasets, 

and the performance of weed detection was evaluated using the same validation and testing 

dataset, as shown in Tables 3 and 4. Additionally, Figure 3 illustrates the confusion matrices of 

teacher models on the testing dataset, providing a more detailed presentation of the model’s 

classification outcomes. In general, the performances of weed detection neural networks 

exhibited a minor improvement on the testing dataset relative to the validation dataset. 

Specifically, following training on the dataset D-20k, the accuracy for ResNet101, 

EfficientNetB5, and DenseNet201 showed increases of 0.8%, 0.4%, and 0.8%, respectively, 

when evaluated on the testing dataset. Similarly, when trained on the dataset D-10k, the accuracy 

improvement for the models was 1.3%, 0.6%, and 0.7%, respectively. The three distinct teacher 

models maintained consistently exceptional performance, achieving ACC values of 0.974 or 

higher in distinguishing between turf and weeds. This outcome could be attributed to the 

characteristics of the dataset. Empirical observations suggested that dataset D-10k contained a 

sufficiently diverse array of images, thereby facilitating the effective adaptation of the models to 

the data. 

For the teacher model ResNet101, training on both datasets resulted in no significant 

differences in performance metrics. The ACC, precision, recall, F1 score, and MCC values of 

ResNet101 were consistent across the D-20k and D-10k datasets. Notably, the F1 score of 

ResNet101 on the testing dataset reached 0.987, marginally lower by 0.6% compared to that of 

EfficientNetB5 evaluated on the same testing dataset. These findings suggested that ResNet101 
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is less sensitive to dataset size and remains robust even with limited training data. Furthermore, 

ResNet101 exhibited a pronounced advantage in processing speed, operating at 554.5 FPS, 

compared to EfficientNetB5’s 375.2 FPS, in identifying and distinguishing sub-images with 

weeds, demonstrating an approximate 1.48-fold increase in processing speed. In summary, while 

EfficientNetB5 achieved the highest accuracy and F1 score, ResNet101 exhibited a significantly 

higher FPS, demonstrating superior processing speed. This trade-off between accuracy and speed 

is critical for real-time applications such as precision herbicide spraying, where timely detection 

is essential. 

Figure 4 depicts the progression of ACC for each teacher model trained on datasets of 

varying sizes. Initially, all models demonstrated high ACC levels as a result of their pre-training 

on the ImageNet database (Deng et al. 2009), which endowed them with substantial 

generalization capabilities. Upon initiating the learning process and adjusting their weights, a 

rapid increase in the ACC curve was observed during the initial stage. Subsequently, after 30 

epochs, the models exhibited marginal fluctuations before stabilizing at a level exceeding 95% 

accuracy. Notably, across both datasets, D-20k and D-10k, the ACC values of the teacher models 

consistently surpassed 80%, with certain models even exceeding 98%. 

Comparing Figures 4(a) and 4(b), it is evident that the teacher model ResNet101 exhibited a 

consistently rising trajectory in its ACC curve when trained on both D-20k and D-10k datasets. 

Additionally, after 100 training epochs, the EfficientNetB5 model showed a 0.7% and 1% 

increase in ACC over the DenseNet121 and ResNet101 models, respectively, on the dataset D-

20k. When training on the D-10k dataset, the EfficientNet model showed an increase in ACC by 

1.1% and 1.3% compared to the DenseNet121 and ResNet101, respectively. During the stable 

period, the ACC curve of EfficientNetB5 consistently outperformed those of the DenseNet and 

ResNet models, potentially owing to its utilization of compound scaling. This method can 

effectively balance the model’s width, depth, and resolution, thereby maximizing the utilization 

of computational resources. 

Student Model Performance 
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After knowledge distillation under different T settings, the outcomes of student models on 

the validation dataset are illustrated in Table 5. Significantly, applying temperature was intended 

to balance soft and hard target losses (Cho and Hariharan 2019). The optimal temperature for 

knowledge distillation was found to be 1 for the ResNet, DenseNet, and EfficientNet models, 

both on the datasets D-20k and D-10k. These findings suggested that these models possess 

inherent complexity alongside robust generalization abilities, thereby enabling them to 

successfully perform classification tasks on turf-weed datasets. Therefore, there is no need for 

additional temperature factor adjustments in the student models to balance the capability and 

complexity. In certain instances, elevated temperature settings may even have a negative impact 

on model performance (Wei et al. 2022). 

The optimal temperature of 1 indicated that during the process of knowledge distillation, 

knowledge transfer between the teacher and student models occurred with a high degree of 

confidence. The student models endeavored to precisely replicate the prediction probability 

distribution of the teacher models, rigorously adhering to the decisions made by the teacher 

models. Overall, the optimal temperature of 1 observed across all three models signified that the 

student models effectively inherited and leveraged the knowledge from the teacher models, 

facilitating model deployment and application. 

The fluctuations in ACC values during the training process of student models are depicted in 

Figure 5. At the same time, the teacher models (represented by the red lines) are also compared 

with relevant student models at different T settings. Considering Figure 5 from the perspective of 

varying T settings for the same model, it can be observed that under conditions T=4 and T=5, 

each student model exhibited notable fluctuations during the initial stages of training. Upon 

entering the stabilization phase, the ACC metrics were observed to be lower compared to those 

under alternative temperature settings. Additionally, the ResNet model displayed the highest 

initial ACC values exceeding 0.85 with minimal curve fluctuation, indicating its superior 

efficacy in knowledge distillation. 

The evaluation metrics of the student models at their corresponding optimal temperature on 
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the testing dataset are documented in Table 6. Additionally, the confusion matrices for these 

models on the testing dataset are presented in Figure 6. It can be observed that the primary cause 

for model errors was the incorrect classification of sub-images belonging to the “weed” category 

as those devoid of weeds, with only minimal instances of cases where the sub-images containing 

turf only were erroneously identified as containing weeds. The result shows that the student 

models could reliably detect weeds growing on turf. 

A comparative analysis between the data presented in Tables 4 and 6 reveals that the teacher 

model, ResNet101, had a model size of 340.8MB. Conversely, following knowledge distillation, 

the student model ResNet18 had a reduced size of 260.2MB. Additionally, after knowledge 

distillation, the EfficientNet model’s size reduced from 227.9 MB to 146.9 MB, and the 

DenseNet model’s size decreased from 146.3 MB to 130.1 MB. In all three cases, the model size 

was reduced, indicating a reduction in model parameters and a decrease in model complexity, 

which demonstrated the effectiveness of knowledge distillation. 

Relative to the teacher models, ResNet18, EfficientNetB0, and DenseNet121 exhibited a 

substantial increase in FPS on D-10k, with enhancements of 207.9, 315.5, and 55.9, respectively. 

This suggests improvements in model light-weighting, enhanced image processing speed, and 

improved computational efficacy. ResNet18 still had the highest FPS at 762.4, signifying faster 

inference rates and surpassing the other neural networks in real-time classification. Moreover, 

among the three student models evaluated at their respective optimal temperatures, ResNet18 

exhibited superior performance. On the large dataset D-20k, the ACC, F1 score, and MCC values 

for ResNet18 were recorded at 0.991, 0.991, and 0.982, respectively. These values exceeded 

those of EfficientNetB0 by 0.9%, 0.9%, and 1.8% and surpassed the values for DenseNet121 by 

0.6%, 1.1%, and 2.2%, respectively. On the small dataset D-10k, the ACC, F1 score, and MCC 

values for ResNet18 were 0.989, 0.989, and 0.978, respectively. These values surpassed those of 

EfficientNetB0 by 0.2%, 0.2%, and 0.4% and exceeded those of DenseNet121 by 0.9%, 0.9%, 

and 1.8%, respectively. Overall, the distilled student model, ResNet18, achieved a balance 

between ACC and efficiency, which was more appropriate for the binary classification task of 
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turf-weed images. 

Compared to other studies, Ghofrani and Toroghi (2022) leveraged the knowledge 

distillation technique to improve the accuracy of a small client-side model in plant disease 

recognition, achieving a 97.58% ACC. Similarly, Wei et al. (2022) applied knowledge 

distillation to the neural network training process, resulting in a 98.7% ACC on the Oxford102 

flower dataset. On the other hand, Zhou et al. (2023) developed a surface defect detection system 

for carrot (Daucus carota L.) combine harvesting based on multi-stage knowledge distillation, 

achieving an accuracy of only 90.7%. In contrast, the distilled student model used in this 

research, ResNet18, demonstrated competitive capabilities with an ACC of 98.9%. This model 

effectively balanced ACC and efficiency, making it particularly well-suited for the binary 

classification task of turf-weed images. 

Various herbicides, such as synthetic auxins (e.g., 2,4-D, dicamba, and MCPP) (McElroy 

and Martins 2013; Reed et al. 2013), Acetyl-CoA carboxylase inhibitors (e.g., clethodim, 

sethoxydim, and fenoxaprop-P-ethyl) (Tate et al. 2021; McCullough et al. 2016), as well as 

protoporphyrinogen oxidase inhibitors (e.g., sulfentrazone) (Brosnan et al. 2020; Yu et al. 2018) 

are used for weed control in turf. The precise application of herbicides can significantly reduce 

herbicide usage, saving costs and mitigating adverse environmental impacts. In a recent study, 

Jin et al. (2023) evaluated a smart sprayer prototype designed for precision herbicide application 

in turf. Significantly, their study employed DCNN models, which incorporated a vast array of 

parameters, and succeeded in achieving an F1 score exceeding 0.989 in identifying weeds in turf. 

However, the research did not extend to the real-time implementation of precision spraying 

primarily due to the slow inference speed. 

To the best of our knowledge, no previous research has explored the impact of knowledge 

distillation on the development of lightweight and efficient weed detection models. In the present 

study, our results suggest that the knowledge distillation approach from teacher models to student 

models offers three key advantages: (1) feasibility with a relatively small training dataset 

containing 5,000 images per class, (2) a substantial reduction in model size, and (3) the 
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capability for real-time weed detection. Further research is needed to evaluate the performance of 

employing knowledge-distilled models in the machine vision subsystem of smart sprayers for 

real-time weed detection and precision herbicide spraying in turfgrass landscapes. 

In summary, knowledge distillation can achieve superior weed detection performance in turf 

while balancing accuracy and efficiency. All three teacher models displayed no significant 

difference on different scales of datasets, including both the D-20k and the D-10k. Each of the 

three student models achieved the best performance when T=1, indicating their reliable 

identification capabilities for weed detection in turf. Moreover, ResNet18 achieved higher ACC 

of ≥0.989 and MCC values of ≥0.978 and maintained higher FPS rates of ≥742.9. Both ACC and 

FPS metrics are essential in real-world scenarios for achieving accurate and efficient weed 

detection. Therefore, we conclude that the ResNet18 model delivered superior results and was 

better suited for succeeding deployment on resource-constrained devices, although 

EfficientNetB0 and DenseNet121 models had smaller sizes. Compared to DCNN models with 

substantial computational workload, knowledge distillation can reduce model size and delay 

through teacher-student learning, thereby facilitating real-time weed detection and precision 

spraying. Additional research is ongoing to optimize the distillation algorithm and match 

different model structures for teacher-student models. 
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Table 1. Training, validation, and testing dataset specifications.
1
 

Training  Validation  Testing 

Dataset 
Class  Class  Class 

Turf Weed  Turf Weed  Turf Weed 

 ------------------------image quantity------------------------ 

D-20k 10000 10000  500 500  500 500 

D-10k 5000 5000  500 500  500 500 

1
Images at a resolution of 240×240 pixels were used for training, validation, and testing. 

Abbreviations: D-20k indicates the training dataset with 10,000 “Turf” class images and 10,000 “Weed” class images. D-10k indicates the 

training dataset with 5,000 “Turf” class images and 5,000 “Weed” class images.
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Table 2. Hyperparameter values used for training the teacher models.  

Deep learning 

architecture 
Optimizer Base learning rate Weight decay Batch size 

Learning 

rate policy 
Momentum Epochs 

ResNet101 SGD 0.1 0.0001 32 step 0.9 100 

EfficientNetB5 SGD 0.1 0.0001 16 step 0.9 100 

DenseNet201 SGD 0.1 0.0001 32 step 0.9 100 

Abbreviation: SGD, stochastic gradient descent.
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Table 3. Validation results of teacher models for weed detection in bermudagrass (Cynodon dactylon (L.) Pers.) turf.  

Neural network Training Dataset ACC Precision Recall F1-score MCC 

Resnet101 
D-20k 0.979 0.984 0.974 0.979 0.958 

D-10k 0.974 0.984 0.964 0.974 0.948 

EfficientNetB5 
D-20k 0.989 0.986 0.992 0.989 0.978 

D-10k 0.987 0.986 0.988 0.987 0.974 

DenseNet201 
D-20k 0.982 0.988 0.976 0.982 0.964 

D-10k 0.976 0.978 0.974 0.976 0.952 

Abbreviations: ACC, accuracy; MCC, Matthews Correlation Coefficient. D-20k indicates the training dataset with 10,000 “Turf” class images 

and 10,000 “Weed” class images. D-10k indicates the training dataset with 5,000 “Turf” class images and 5,000 “Weed” class images.
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Table 4. Testing results of teacher models for weed detection in turf. 

Neural network Training Dataset ACC Precision Recall F1-score MCC Model size FPS 

Resnet101 
D-20k 0.987 0.994 0.98 0.987 0.974 340.8MB 564.2 

D-10k 0.987 0.994 0.98 0.987 0.974 340.8MB 554.5 

EfficientNetB5 
D-20k 0.993 0.998 0.988 0.993 0.986 227.9MB 380.1 

D-10k 0.993 0.998 0.988 0.993 0.986 227.9MB 375.2 

DenseNet201 
D-20k 0.99 1.0 0.98 0.99 0.98 146.3MB 505.6 

D-10k 0.983 0.996 0.97 0.983 0.966 146.3MB 511.4 

Abbreviations: ACC, accuracy; MCC, Matthews Correlation Coefficient; FPS, Frames Per Second. D-20k indicates the training dataset with 

10,000 “Turf” class images and 10,000 “Weed” class images. D-10k indicates the training dataset with 5,000 “Turf” class images and 5,000 

“Weed” class images.

https://doi.org/10.1017/wsc.2024.85 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2024.85


Table 5. Validation results of student models across different temperature settings. 

Neural network Training dataset Temperature ACC Precision Recall F1-score MCC 

ResNet18 D-20k 

1 0.986 0.99 0.982 0.986 0.972 

2 0.984 0.992 0.976 0.984 0.968 

3 0.982 0.988 0.976 0.982 0.964 

4 0.98 0.988 0.972 0.98 0.96 

5 0.974 0.988 0.96 0.974 0.948 

EfficientNetB0 D-20k 

1 0.983 0.988 0.978 0.983 0.966 

2 0.982 0.992 0.972 0.982 0.964 

3 0.972 0.978 0.966 0.972 0.944 

4 0.976 0.986 0.966 0.976 0.952 

5 0.98 0.986 0.974 0.98 0.96 

DenseNet121 D-20k 

1 0.983 0.988 0.978 0.983 0.966 

2 0.979 0.986 0.972 0.979 0.958 

3 0.975 0.982 0.968 0.975 0.95 

4 0.977 0.988 0.966 0.977 0.954 

5 0.981 0.992 0.97 0.981 0.962 

ResNet18 D-10k 
1 0.981 0.986 0.976 0.981 0.962 

2 0.974 0.988 0.96 0.974 0.948 
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3 0.97 0.978 0.962 0.97 0.94 

4 0.968 0.981 0.954 0.967 0.936 

5 0.964 0.979 0.948 0.963 0.928 

EfficientNetB0 D-10k 

1 0.979 0.988 0.97 0.979 0.958 

2 0.974 0.986 0.962 0.974 0.948 

3 0.971 0.98 0.962 0.971 0.942 

4 0.966 0.989 0.942 0.965 0.933 

5 0.968 0.988 0.948 0.968 0.937 

DenseNet D-10k 

1 0.972 0.974 0.97 0.972 0.944 

2 0.967 0.976 0.958 0.967 0.934 

3 0.971 0.984 0.958 0.971 0.942 

4 0.954 0.958 0.95 0.954 0.908 

5 0.957 0.977 0.936 0.956 0.915 

Abbreviations: ACC, accuracy; MCC, Matthews Correlation Coefficient. D-20k indicates the training dataset with 10,000 “Turf” class images 

and 10,000 “Weed” class images. D-10k indicates the training dataset with 5,000 “Turf” class images and 5,000 “Weed” class images.
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Table 6. Testing results of student models at their optimal temperature for weed detection in turf. 

Neural 

network 

Training 

Dataset 

Optimal 

temperature 
ACC Precision Recall F1-score MCC Model size FPS 

Resnet18 
D-20k 1 0.991 1.0 0.982 0.991 0.982 260.2MB 742.9 

D-10k 1 0.989 1.0 0.978 0.989 0.978 260.2MB 762.4 

EfficientNetB0 
D-20k 1 0.982 0.998 0.966 0.982 0.964 146.9MB 696.8 

D-10k 1 0.987 0.998 0.976 0.987 0.974 146.9MB 690.7 

DenseNet121 
D-20k 1 0.985 1.0 0.97 0.985 0.97 130.1MB 580.3 

D-10k 1 0.98 0.988 0.972 0.98 0.96 130.1MB 562.3 

Abbreviations: ACC, accuracy; MCC, Matthews Correlation Coefficient; FPS, Frames Per Second. D-20k indicates the training dataset with 

10,000 “Turf” class images and 10,000 “Weed” class images. D-10k indicates the training dataset with 5,000 “Turf” class images and 5,000 

“Weed” class images. 
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Figure 1. Representation of the two classes in the training, validation, and testing 

datasets. Turf refers to sub-images that exclusively contain bermudagrass Weed refers 

to sub-images that contain one of the following species: (Paspalum dilatatum, 

Taraxacum officinale, Murdannia nudiflora, Richardia scabra, Hydrocotyle, 

Oldenlandia corymbosa, Cyperus rotundus, Digitaria ischaemum, or Trifolium 

repens . Only sub-images containing a single weed species were used for training, 

validation, and testing. 

https://doi.org/10.1017/wsc.2024.85 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2024.85


 

Figure 2. Flowchart of the knowledge distillation training process. 
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(a) Training of teacher models on the D-20k dataset. 
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(b) Training of teacher models on the D-10k dataset. 

Figure 3. Confusion matrices of teacher models on the testing dataset. 

Abbreviations: D-20k indicates the training dataset with 10,000 “Turf” class images and 10,000 “Weed” class images. D-10k indicates the 

training dataset with 5,000 “Turf” class images and 5,000 “Weed” class images. 
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(a) Training of teacher models on the D-20k dataset. 

 

(b) Training of teacher models on the D-10k dataset. 
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Figure 4. Fluctuations in ACC values during the training of teacher models on 

datasets of different sizes. 

Abbreviations: D-20k indicates the training dataset with 10,000 “Turf” class images 

and 10,000 “Weed” class images. D-10k indicates the training dataset with 5,000 

“Turf” class images and 5,000 “Weed” class images.
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(a) Student-Teacher learning with the ResNet model on the D-20k dataset 

 

(b) Student-Teacher learning with the ResNet model on the D-10k dataset. 
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(c) Student-Teacher learning with the EfficientNet model on the D-20k dataset. 

 

(d) Student-Teacher learning with the EfficientNet model on the D-10k dataset. 
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(e) Student-Teacher learning with the DenseNet model on the D-20k
 
dataset. 

 

(f) Student-Teacher learning with the DenseNet model on the D-10k dataset. 
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Figure 5. Fluctuations in ACC values during the training of student models across 

different T settings and sizes of datasets. 

Abbreviations: D-20k indicates the training dataset with 10,000 “Turf” class images 

and 10,000 “Weed” class images. D-10k indicates the training dataset with 5,000 

“Turf” class images and 5,000 “Weed” class images. 
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(a) Training of student models on the D-20k dataset. 
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(b) Training of student models on the D-10k dataset. 

Figure 6. Confusion matrices of student models at their optimal temperature on the testing dataset. 

Abbreviations: D-20k indicates the training dataset with 10,000 “Turf” class images and 10,000 “Weed” class images. D-10k indicates the 

training dataset with 5,000 “Turf” class images and 5,000 “Weed” class images. 
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