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The analysis of Scott (J. Fluid Mech., vol. 741, 2014, pp. 316–349) is implemented
numerically. Decaying turbulence is confined to a channel between two infinite, parallel,
rotating walls. The Rossby and Ekman numbers are supposed small, the former condition
making nonlinearity small, while the latter allows the turbulence to persist for the many
rotational periods needed for the small nonlinearity to be effective. The flow is expressed
as a combination of inertial waveguide modes, indexed by a two-dimensional wave vector
k and an integer n. The n = 0 modes form a two-dimensional component of the flow,
whereas the remainder is the wave component, on which attention is focused in this article.
Assuming statistical axisymmetry and homogeneity in directions parallel to the walls, the
second-order moments of the mode amplitudes yield a spectral matrix Anm(k, t) (where
k = |k|), of which the diagonal elements describe the distribution of energy over different
modes. Wave-turbulence analysis provides an equation governing the time evolution of
Ann, n /= 0, the wave spectra, which forms the basis for the present work. The initial
distribution of energy is Gaussian and depends on a parameter Ξ , the initial spectral
width. The problem has two other parameters, βw and βv , which correspond to two distinct
viscous dissipative mechanisms: wall damping due to boundary layers and volumetric
damping by viscous effects throughout the flow. Results obtained by numerical solution
include the time evolution of the total wave energy, E, and the detailed description of its
distribution over k and n provided by Ann(k).

Key words: rotating turbulence, wave-turbulence interactions, homogeneous turbulence

1. Introduction

The spectral theory of homogeneous turbulence without boundaries dates back a long way
(see e.g. the book by Batchelor 1953), while more recent studies have allowed for effects
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such as rotation and stratification which tend to produce anisotropy. The understanding
of turbulence in the presence of rotation is a basic problem of fluid mechanics,
whose applications include geophysical flows, turbomachinery and astrophysics. In the
geophysical context, we refer the reader to the reviews by Moum (2021), Fritts & Alexander
(2003), Kim, Eckermann & Chun (2003) and Thomas (2023). We also refer the reader
to the book by Sagaut & Cambon (2018) for a wide-ranging discussion of work on
homogeneous turbulence, in particular chapter 7, which concerns turbulence with rotation.

Among the many approaches which have previously been used to attack the problem
of rotating turbulence, spectral closures bear a close relationship to the present work. In
particular, the EDQNM (eddy damped quasi-Markovian) model has been the subject of
articles by Cambon & Jacquin (1989), Waleffe (1993) and Cambon, Mansour & Godeferd
(1997). Direct numerical simulation (DNS) has also played an increasingly important role
in recent years (see e.g. Teitelbaum & Mininni 2012 and references therein). However,
we should note that estimates of the computational cost of credible DNS for the present
problem suggest it is well out of reach of current computational resources for the parameter
regimes considered here. On the other hand, the approach used here requires a significant,
but not excessive, computational effort.

There have been numerous experimental studies of rotating turbulence, of which only
a few are cited here. Hopfinger, Browand & Gagne (1982) used a rotating tank to
quantify turbulence forced by an oscillating grid, while more recent studies of decaying
turbulence (so more closely related to the problem considered here) by Morize, Moisy
& Rabaud (2005) and Staplehurst, Davidson & Dalziel (2008) measured spectra and
higher-order moments. Morize & Moisy (2006) is notable in the present context because
they specifically discuss the effects of confinement (free surface at the top and solid at the
bottom). Monsalve et al. (2020) is also relevant because, although they consider the forced
case, their study is set within and analysed in the context of wave-turbulence theory.

Wave-turbulence theory (see Zakharov, L’vov & Falkovich 1992; Nazarenko 2011;
Newell & Rumpf 2011) is a natural choice for weak turbulence, i.e. when nonlinearity
is small, meaning a small Rossby number in the case of rotating turbulence. It requires
dispersive waves, such as the inertial ones which result from rotation. When the turbulence
is weak, linear theory provides an approximation which is valid for time spans comparable
to the wave period. However, nonlinearity can have significant effects over longer time
scales and wave-turbulence theory aims to describe the long-term evolution of the
turbulent energy spectra which results. An important consequence of that theory is
that nonlinear interactions between different spatial Fourier components of the flow are
dominated by near resonances, where resonance means that the sum of frequencies of
the interacting waves is zero. The weaker the turbulence the more closely the resonance
condition must be met to achieve effective interaction.

Wave-turbulence theory has been used by Galtier (2003) and Bellet et al. (2006) to study
the evolution of unconfined, homogeneous rotating turbulence at small Rossby number.
Bellet et al. also showed that the EDQNM model becomes wave-turbulence theory in
the limit of small Rossby number and presented results of numerical integration of the
wave-turbulence equations, thus extracting detailed information from the theory.

The above studies of wave turbulence suppose it unbounded and statistically
homogeneous. However, turbulence is never truly without bounds and it is of interest to
consider the effects of confinement. There is a considerable literature (see Kartashova
1994; Pushkarev 1999; Zakharov et al. 2005; Lvov, Nazarenko & Pokorni 2006; Bourouiba
2008; Nazarenko 2011, chapter 10 and references therein) on wave turbulence confined in
three dimensions with comparable length scales of confinement in all directions. Such
confinement implies wave modes having discrete frequencies. This makes it harder to
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satisfy the condition of near resonance, increasingly so as the turbulence is weakened. As
a result, nonlinear interactions are suppressed and are unimportant for sufficiently weak
turbulence.

However, there is an interesting case, to which this article belongs, in which the
turbulence is confined in just one or two dimensions. In that case, modal frequencies,
rather than being discrete, form a continuum, so resonances can always be fully effective,
although confinement may still have an effect. For instance, the turbulence may no longer
be homogeneous in the direction(s) of confinement, while it remains so in the unconfined
direction(s). Of course, no real system is infinite, so we have in mind one for which the
confinement lengths are much longer in certain directions than in others.

In this article, as in Scott (2014) (henceforth referred to as [I]), we consider decaying,
weak turbulence in an infinite, rotating channel with rotation vector perpendicular to the
two infinite parallel walls which bound the channel. The aim is to construct and exploit
a numerical implementation of the analysis given in [I], the work described here forming
the main part of the PhD thesis of Eremin (2019). A related study is that of Godeferd &
Lollini (1999), who, motivated by the experimental work of Hopfinger et al. (1982), give
results of forced DNS for a rotating channel.

The paper is organised as follows. Section 2 describes the relevant parts of the analysis
of [I]. Modes, which are solutions of the linearised, inviscid governing equations, are
defined. They are distinguished by a two-dimensional (2-D) wave vector k and an
integer n, the modal order. The flow is expressed as a combination of modes, the modal
amplitudes, an(k), providing a description of the flow at any given time. The turbulence
is assumed statistically axisymmetric and homogeneous in directions parallel to the walls.
The second-order moments of an(k) provide a spectral matrix, Anm(k) (where k = |k|),
whose diagonal elements are referred to as spectra and express the energy distribution
over k and n.

Modes are divided into two families: n = 0 and n /= 0. The former are independent of
x3 and are thus referred to as 2-D, while the latter are called wave modes. Combining
the contributions of all n = 0 modes gives the 2-D component of the flow, whereas the
remainder is the wave component, which is the focus of this article. Assuming weak
turbulence and small viscosity, wave-turbulence theory leads to an integro-differential
equation which describes the time evolution of the wave spectra, Ann(k) (n /= 0).
Extracting results using numerical solution of this equation is the objective of this article.

Finally, § 3 describes the numerical implementation of the wave-turbulence equation,
while § 4 gives results.

2. Analytical basis

As noted in the introduction, the work described here is based on the analytical results
of [I] concerning rotating turbulence in an infinite channel bounded by solid walls at
which a no-slip condition applies. A rotating system of Cartesian coordinates, x1, x2, x3,
is used, where 0 < x3 < h and the walls lie at x3 = 0 and x3 = h. The rotation vector,
Ω = (0, 0, Ω), is perpendicular to the walls. The geometry is illustrated in figure 1. Spatial
coordinates are non-dimensionalised using h and time by (2Ω)−1. The fluid velocity is
correspondingly non-dimensionalised using 2Ωh. There is no mean flow in the rotating
frame of reference used here and the turbulence is assumed statistically axisymmetric
and homogeneous in directions parallel to the walls, as well as weak, meaning a small
Rossby number, ε = u′/(2Ωh), where u′ measures the turbulent velocity. Note that, at this
stage, u′, and hence ε, are order-of-magnitude quantities. They will later be made precise
using the initial conditions.
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Ω

x3

x3 = 0

x3 = h

h

Figure 1. The problem geometry.

Assuming weak turbulence, linear theory applies over time spans of O(1) (i.e.
comparable to the rotational period). Unless the Ekman number, Ek = ν/(2Ωh2) (where
ν is viscosity) is small, decay due to viscous dissipation occurs before nonlinearity can
act. It is therefore supposed that the Ekman number is small, allowing the possibility of
significant cumulative effects of weak nonlinearity at large t. Given weak turbulence and
small dissipation, it is natural to consider the linear problem without viscosity, whose
solutions are the inertial-wave modes defined in [I], § 2.1. Modes are complex solutions of
the linearised, inviscid governing equations whose velocity fields have the form

ui = W(n)
i (x3; k) exp{ik1x1 + ik2x2 − iωn(k)t}, (2.1)

where the mode is indexed by the (2-D) wave vector k = (k1, k2) and the mode order n,
which is an integer defining the axial structure of the mode via

W(n)
1 (x3; k) = k1ωn(k) + ik2

k
cos(nπx3), (2.2)

W(n)
2 (x3; k) = k2ωn(k) − ik1

k
cos(nπx3), (2.3)

W(n)
3 (x3; k) = − ik

(k2 + n2π2)
1/2 sin(nπx3). (2.4)

In the above equations, k = |k| is the wavenumber and

ωn(k) = nπ

(k2 + n2π2)
1/2 , (2.5)

is the dispersion relation, which lies in the range |ωn| ≤ 1. Note that, writing cos(nπx3)
and sin(nπx3) in terms of exp(±inπx3), the right-hand side of (2.1) can interpreted as a
combination of two plane waves, exp(iK± · x − iωt), where K± = (k1, k2, ±nπ) are 3-D
wave vectors and ω = ±K3/|K | is the usual dispersion relation of plane inertial waves.
Taking one of these waves, its wall reflection gives the other. Thus, the mode can be
thought of as expressing multiple reflections of plane waves by the walls.

Modes with n = 0 are 2-D, having u3 = 0 and no dependency on x3. They are of
zero frequency, representing steady flows in the absence of nonlinearity and viscosity.
For readers acquainted with the case of combined stratification and rotation, such
modes should not be confused with the ‘vortical’ (more precisely, ‘potential vorticity’
(see e.g. Müller 1995)) modes, which are often used to describe turbulence when
stratification is present (see e.g. Bartello 1995; Scott & Cambon 2024 for more details).
‘Vortical’ modes need not be 2-D, but, like the 2-D ones of the present work, have
zero frequency, hence a possible confusion. In the case of pure rotation considered here,
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Wave turbulence in a rotating channel

‘vortical’ modes reduce to a passive scalar, not considered here, and their contribution
to the velocity field is zero. Thus, because we only consider the velocity field, ‘vortical’
modes do not appear in the present study. They are only needed when stratification is
present.

The modes defined above form a complete set for solenoidal velocity fields, so, at any
instant of time, the flow can be expressed as a linear combination of modes, even in the
presence of nonlinearity and viscosity. Thus

ui(x, t) =
∞∑

n=−∞

∫
an(k, t)W(n)

i (x3; k) exp{ik1x1 + ik2x2 − iωn(k)t} d2k, (2.6)

where an(k, t) are the modal amplitudes, whose evolution equations are derived in §§ 2.2
and 2.3 of [I]. In the absence of nonlinearity and viscosity, the amplitudes are time
independent, but evolve slowly when small nonlinearity and viscosity are allowed for.
The interpretation of modes in terms of plane waves provides a length scale |K |−1 =
(k2 + n2π2)−1/2 associated with each mode. Going towards smaller scales corresponds to
increasing |K | by increasing k or |n|π, or both.

Given statistical axisymmetry and homogeneity parallel to the walls, the second-order
moments of an take the form

a∗
n(k, t)am(k′, t) = Anm(k, t)δ(k − k′), (2.7)

where Anm is the spectral matrix, which is Hermitian and positive semi-definite. Its
diagonal elements represent the energy distributions in k-space of the different modal
orders, while the off-diagonal ones express correlations between orders. The former,
referred to as spectra, are more important than the latter and we focus on the spectra in this
article. The non-dimensional energy of the flow is given by (I.3.8) (here and henceforth,
(I.x.y) refers to equation (x.y) of [I]) as

1
2

∞∑
n=−∞

∫
Ann(k) d2k. (2.8)

This is the statistically and x3-averaged, non-dimensional kinetic energy per unit area
of the x1–x2 plane. It consists of a sum of contributions from all modes. Note that
A−n,−n(k) = Ann(k), so n and −n give equal contributions to the energy. Note also that,
because ε is a non-dimensional measure of velocity and Anm expresses second-order
velocity moments, Ann = O(ε2).

The flow can be expressed as the sum of two components. The first is the combination
of all n = 0 modes and is referred to as the 2-D component because it is independent of
x3. The second, the wave component, results from the n /= 0 modes. When nonlinearity
and viscosity are neglected, the former is steady because ω0(k) = 0, whereas the latter is
oscillatory, each n /= 0 having frequency given by (2.5).

Assuming weak turbulence and small viscous effects, [I] discusses the 2-D component.
It is found that evolution occurs on the time scale ε−1 and is decoupled from the wave
component at leading order. The result is a 2-D flow in which rotation only intervenes via
a modification of the pressure variable and a frictional term due to the boundary (Ekman)
layers at the walls. Thus, the 2-D part of the flow is as described by the well-established
literature (see e.g. the reviews by Kraichnan & Montgomery 1980; Boffetta & Ecke 2012
and the much briefer description by Frisch 1995, § 9.7) on such flows, independently of
the wave component. It should be noted that the treatment of the 2-D component in [I]
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does not rule out the possibility of significant cumulative effects of waves on the 2-D
part over time spans longer than O(ε−1), such as the O(ε−2) we consider. An idea of
the analytical complexity involved in investigating this question can be had from Thomas
(2016) (in particular his (2.23)), who studied the different, but related, problem of rotating,
shallow-water waves. However, in this paper, we focus entirely on the evolution of wave
spectra and this question is not addressed.

The wave component involves dispersive waves and is thus open to analysis using
wave-turbulence theory. The details of such analysis are given in [I] and it is concluded
that, rather surprisingly, the contributions of the 2-D component cancel. This is what
allows us to leave the 2-D part to one side and focus on the wave component alone. The
end result of the analysis is the evolution equation

∂Ann(k)
∂t

+ 2�(Δn(k))Ann(k)

=
∑

np,nq /=0

∫
Cnnpnq (k)

Anpnp( p)(ηnnpnq(k, p)Ann(k) + λnnpnq(k, p)Anqnq(|k + p|))
�npnq(k, p)

|dp|,

(2.9)

for the wave spectra, Ann(k), n /= 0. Here, the second term on the left-hand side represents
viscous energy dissipation and Δn(k) is the complex dissipation coefficient given in [I]. On
the other hand, the right-hand of (2.9) expresses nonlinear interactions between different
modes and requires further explanation, given below. Because, as noted earlier, Ann =
O(ε2), the nonlinear time scale for evolution is O(ε−2), a scale which is typical of wave
turbulence with quadratic nonlinearity.

The mode, indexed by k and n, whose spectral evolution is described by (2.9),
interacts with two others, ( p, np) and (q, nq). As usual in spectral theory, for problems,
such as the present one, in which nonlinearity is quadratic, such interactions respect
the triadic constraint k + p + q = 0, hence q = −k − p, explaining the appearance of
Anqnq(|k + p|). Allowing for all triads yields the sum over np and nq, as well as the
integral over p, but, as noted above, the net contribution of the 2-D mode is zero, hence the
exclusion of the np = 0 and nq = 0 terms in the sum of (2.9). The quantities ηnnpnq(k, p),
λnnpnq(k, p) and Γnpnq(k, p) are geometrical coefficients whose detailed expressions are
given in [I]; ηnnpnq(k, p) = λnnpnq(k, p) = 0 unless one of the conditions n ± np ± nq = 0
is met. Thus, terms in the sum in (2.9) (and subsequent equations) which do not satisfy
this condition are dropped.

Finally, it is important to understand the meaning of the integral in (2.9). In the
wave-turbulence limit, nonlinear interactions between mode triads are dominated by p
for which

ωn(k) + ωnp( p) + ωnq(|k + p|) = 0, (2.10)

is satisfied to O(ε2). Equation (2.10) is known as the resonance condition and the combined
effects of near resonances are expressed by (2.9), in which the integral is taken along the
curve, Cnnpnq(k), in the p-plane defined by (2.10). The smaller ε, the less non-resonant
interactions contribute and the ε → 0 limit gives the integral over Cnnpnq(k) of (2.9).
The expression resonant manifold is often used in the wave-turbulence literature, but in
what follows we prefer the description ‘resonance curve’ for Cnnpnq(k) to emphasise its
one-dimensional nature in the present problem. Cnnpnq(k) may or may not exist depending
on the values of n, np, nq and k. When it does not exist, the integral in (2.9) should be
interpreted as zero. As we shall see, the appearance/disappearance of resonance curves as
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k is varied can have significant consequences for spectral evolution, namely the appearance
of discontinuities in the spectra predicted by wave-turbulence theory.

Introducing O(1) scaled spectra using Bn = ε−2Ann and the scaled time T = ε2t, (2.9)
becomes

∂Bn(k)
∂T

+ 2ε−2�(Δn(k))Bn(k)

=
∑

np,nq /=0

∫
Cnnpnq (k)

Bnp( p)(ηnnpnq(k, p)Bn(k) + λnnpnq(k, p)Bnq(|k + p|))
Γnpnq(k, p)

|dp|,

(2.11)

which is the system of equations whose numerical solution provides the results of this
article. Using equations (I.2.19) and (I.2.22)

2ε−2�(Δn(k)) = βw
(1 − ω2

n(k))
1/2

√
2

{(1 + ωn(k))3/2 + (1 − ωn(k))3/2}
︸ ︷︷ ︸

Wall damping

+ βv(k2 + n2π2)︸ ︷︷ ︸
Volumetric damping

, (2.12)

where βw = 2ε−2 Ek1/2 and βv = 2ε−2 Ek. Equation (2.12) shows that viscous dissipation
is the sum of two components, both of which are positive. The first is due to the boundary
layers at the walls and is characterised by the parameter βw, while the second represents
dissipation throughout the flow and introduces the parameter βv . The factor multiplying
βw is an increasing function of k/|n| from 0 when k/|n| = 0 to

√
2 at infinite k/|n|. Thus,

while volumetric damping increases with k, owing to the factor k2 + n2π2, wall damping
remains bounded. Since Ek = (βv/βw)2, the small Ekman number used in the derivation
of (2.11) requires βv 	 βw.

Before going further, a brief overview of the main steps leading to (2.11) is perhaps
appropriate. The modal decomposition is used because we want to investigate the
weak-turbulence limit. Given this limit, the effects of the 2-D component on the wave one
is negligible and we focus attention on the wave modes. Nonlinear interactions between
wave modes are dominated by near resonances because the turbulence is weak. More
precisely, significant interactions require that the resonance condition, (2.10), is satisfied to
O(ε2). The weak-turbulence assumption of a small Rossby number, ε = u′/(2Ωh), implies
that only near resonances are important, hence the reduction to a line integral in (2.11).

The initial (T = 0) spectra used in the numerical calculation are chosen to be

Bn(k) = C exp
(

−k2 + n2π2

Ξ2

)
, (2.13)

where Ξ > 0 is a parameter defining the spectral width. The idea behind this choice is to
start with just the large scales of turbulence and study how smaller scales develop from
there, an idea which has a long history and was originally motivated by attempts to model
grid turbulence using the Taylor’ hypothesis. In this view, the precise form of the initial
spectrum is unimportant, just that it concentrates energy in the large scales. The form used
here has become traditional in the turbulence community. It seems to have its origin in the
seminal work of Orszag on DNS.
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Up to now the Rossby number, ε, has only been used in an order-of-magnitude sense.
From here on, we choose to define it precisely such that the wave energy, given by (2.8)
without the n = 0 term, is initially equal to ε2. Since A−n,−n(k) = Ann(k), this means that

∞∑
n=1

∫
Bn(k) d2k = 1. (2.14)

Evaluating the integrals in (2.14) using (2.13)

C = 1
πΞ2

∑∞
n=1 exp(−n2π2/Ξ2)

. (2.15)

The problem to be solved consists of (2.11) with (2.12) and the initial spectra (2.13) with
(2.15). It has three parameters, namely Ξ , βw and βv . Here, Ξ−1 describes the size of
the large scales of the initial turbulence relative to the channel width. When Ξ = O(1),
as we have in mind, the two are comparable, while increasing Ξ makes the large scales
smaller and decreasing Ξ increases their size. As noted above, small Ek implies βv 	
βw. Furthermore, to stop the dissipative term in (2.11) from killing the turbulence before
nonlinearity intervenes, βw should be O(1) or smaller. Hence, the dissipation parameters
are constrained by βv 	 βw ≤ O(1). This is the case for all the results given later. Once
βw and βv have been chosen, the Ekman number follows from Ek = (βv/βw)2. Note that,
although βv is small, the volumetric term in (2.12) increases with k, leading to a dissipative
range at large enough k, as in classical turbulence theory. However, as noted earlier, wall
damping remains bounded and saps energy at all scales.

3. Numerical implementation

Since B−n(k) = Bn(k), we restrict attention to n > 0. Equation (2.11) implies

∂Bn

∂T
= αnBn + τn n > 0, (3.1)

where, using (2.12),

αn = Jn − βw
(1 − ω2

n(k))
1/2

√
2

{(1 + ωn(k))3/2 + (1 − ωn(k))3/2} − βv(k2 + n2π2),

(3.2)

Jn(k) =
∑

np,nq /=0

∮
Cnnpnq (k)

ηnnpnq(k, p)B|np|( p)

Γnpnq(k, p)
|dp|, (3.3)

τn(k) =
∑

np,nq /=0

∮
Cnnpnq (k)

λnnpnq(k, p)B|np|( p)B|nq|(|k + p|)
Γnpnq(k, p)

|dp|, (3.4)

and, as discussed earlier, the sums are restricted to n ± np ± nq = 0.

3.1. Calculation of the integrals along the resonance curves
The main numerical effort in solving (3.1) is the evaluation of the integrals along the
resonance curves Cnnpnq(k) in (3.3) and (3.4). Given (2.5) and n > 0, there is no solution
of (2.10), and hence no resonance curve, if np and nq are positive. When np and nq
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are both negative, it can be shown that Cnnpnq(k) exists for all k. Finally, when np
and nq are of opposite signs, there is a critical value, kc(n, np, nq) > 0, for which the
curve exists if k > kc, but not when k < kc. Appendix A describes the method used for
the numerical determination of kc. As k ↘ kc the curve shrinks down to a point and
disappears when k = kc is crossed. The result is discontinuities in Jn and τn as functions
of k at k = kc(n, np, nq) for all np and nq of opposite signs such that n ± np ± nq = 0,
discontinuities which are inherited by Bn following evolution according to (3.1). These
discontinuities are a consequence of the wave-turbulence asymptotic limit ε → 0. When ε

is small, but non-zero, we would expect thin regions near k = kc in which the spectra
vary rapidly, rather than being discontinuous (this is analogous to a shock wave in a
compressible fluid as the dissipation goes to zero). The present theory does not describe
these regions.

Let

Inpnq =
∮

Cnnpnq (k)

ηnnpnq(k, p)B|np|)(k, p)

Γnpnq(k, p)
|dp|, (3.5)

denote one of the terms in (3.3). Changing the integration variable to q = −k − p and
using Γnqnp(k, p) = Γnpnq(k, q) and the fact that Cnnqnp(k) becomes Cnnpnq(k) in q-space

Inqnp =
∮

Cnnpnq (k)

ηnnqnp(k, −k − q)B|nq|(|k + q|)
Γnpnq(k, q)

|dq|. (3.6)

Combining the contributions to the sum of (3.3) from nq > np and nq < np using (3.5) and
(3.6), as well as allowing for the special case nq = np, (3.3) becomes

Jn(k) =
∑
np,nq

ζnpnq

∮
Cnnpnq (k)

(ηnnpnq(k, p)B|np|( p) + ηnnqnp(k, −k − p)B|nq|(|k + p|))
Γnpnq(k, p)

|dp|.

(3.7)

Here, ζnpnq takes the value 1/2 if np = nq and 1 otherwise, while the sum is over
np, nq /= 0, nq ≥ np, n ± np ± nq = 0. As discussed above, there is no resonance curve
when both np and nq are both positive, hence np < 0, otherwise the integral is zero. Thus,
the sum in (3.7) is restricted to np and nq such that np < 0, nq ≥ np, nq /= 0 and one of
the conditions n ± np ± nq = 0 is met. Terms with nq > 0 and k < kc are zero because the
resonance curve does not exist, hence the sum is further restricted to exclude such terms.

Similar reasoning applies to (3.4), but here we have the identities λnnqnp(k, p) =
λnnpnq(k, q) and B|nq|( p)B|np|(|k + p|) = B|np|(q)B|nq|(|k + q|), leading to

τn(k) = 2
∑
np,nq

ζnpnq

∮
Cnnpnq (k)

λnnpnq(k, p)B|np|( p)B|nq|(|k + p|)
Γnpnq(k, p)

|dp|, (3.8)

with the same restrictions as on the sum in (3.7). Note that, since the spectra are
non-negative, as are λnnpnq(k, p) and Γnpnq(k, p) according to (I.5.12) and (I.5.14), so is
τn(k).

In what follows we choose coordinates such that k1 = k and k2 = 0. It can be shown
that, when it exists, Cnnpnq(k) consists of a single loop which is symmetric under reflexion
in the p1-axis. The curve intersects that axis at two points, namely p1 = P− and p1 = P+,
where P− < P+ correspond to the solutions of (2.10) with p2 = 0. Appendix A describes
the numerical determination of P±. Figure 3 of [I] shows the resonance curves in the p1–p2
plane for different np and nq for the particular case n = 2, k = 3.
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The resonance curves can be described by a differential equation as follows. Let
σ( p) = ωn(k) + ωnp( p) + ωnq(|k + p|), so the resonance curve is σ( p) = 0. Since σ( p)

is constant along the curve

Z = −∇pσ = npπp

( p2 + n2
pπ

2)
3/2 + nqπ(k + p)

(|k + p|2 + n2
qπ

2)
3/2 , (3.9)

is a normal vector. Thus, the curve can be described by the differential equation

dp
ds

= (−Z2, Z1), (3.10)

where s is a parameter. As p → ∞, σ approaches the positive value ωn(k). As a result,
it is positive outside and negative inside the resonance curve, hence ∇pσ yields an
outward normal vector on the curve. It follows from (3.10) and the first equality in (3.9)
that increasing s corresponds to traversing the curve in a clockwise sense. Starting at
p = (P−, 0), clockwise motion implies p2 > 0 until p = (P+, 0) is reached. Continuing
the integration, p2 becomes negative and the remainder of the curve (which is the mirror
image of the part in p2 > 0) is traversed until p returns to (P−, 0). Since the integrands
in (3.7) and (3.8) are reflexion symmetric, we focus on the contribution from p2 > 0. The
result is multiplied by 2 to obtain the total integral.

On the upper part ( p2 > 0) of the resonance curve, let p = (P−, 0) correspond to s = 0
and s = smax > 0 to p = (P+, 0). It follows from (I.5.14), (3.9) and (3.10) that∣∣∣∣dp

ds

∣∣∣∣ = πΓnpnq(k, p), (3.11)

hence (3.7) and (3.8) can be expressed as

Jn(k) = 2π
∑
np,nq

ζnpnq

∫ smax

0
(ηnnpnq(k, p)B|np|( p) + ηnnqnp(k, −k − p)B|nq|(|k + p|)) ds,

(3.12)

τn(k) = 4π
∑
np,nq

ζnpnq

∫ smax

0
λnnpnq(k, p)B|np|( p)B|nq|(|k + p|) ds, (3.13)

where the sums are restricted as described above.
Turning attention to the numerical implementation, Bn(k) is truncated to 0 < n ≤ nmax

and discretised in k. Truncation means that (3.1) is only applied for 0 < n ≤ nmax and the
sums in (3.12) and (3.13) are further restricted to −nmax ≤ np, nq ≤ nmax. Discretisation is
carried out as follows. For each 0 < n ≤ nmax, k takes the values 0 = k0,n < k1,n < · · · <

kNn,n = kmax. These values are the amalgamation of two sets. The first, 0 = k0 < k1 <

· · · < kN = kmax, does not depend on n and consists of

ki = χ

(
exp

[
i
N

ln(1 + kmax/χ)

]
− 1

)
0 ≤ i ≤ N, (3.14)

where χ > 0 is a numerical parameter, comparable to the initial spectral width, Ξ . The
second varies with n and consists of all kc(n, np, nq) with the given n and such that
the conditions kc < kmax, −nmax ≤ np < 0, 0 < nq ≤ nmax and n ± np ± nq = 0 are met.
Given that we use IEEE double precision, it is highly unlikely that there is coincidence of
a critical value with one of (3.14) or with one of the other critical values. To simplify the
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program logic, we assume this is the case: each ki,n is either a critical value or one of (3.14),
but not both. The spectra are represented by the values of Bn(k) at the discrete k: B<

n (ki,n)
and B>

n (ki,n). Apart from the critical ki,n, Bn(k) is continuous and B<
n = B>

n , while, for
critical ki,n, B<

n (ki,n) denotes the limit as k ↗ ki.n and B>
n (ki,n) represents k ↘ ki,n.

Because of the discontinuities in Jn, τn and Bn, care is needed when (3.1) is applied for
a critical ki,n = kc. As k ↗ kc, Jn(k) → J<

n , τn(k) → τ<
n , while Jn(k) → J>

n , τn(k) → τ>
n

as k ↘ kc. Here, J<
n and τ<

n can be calculated using (3.12) and (3.13) at k = kc without the
critical term. It is shown in Appendix B that

J>
n = J<

n + 2π2

(μ1μ2)
1/2 (ηnnpnq(kc, pc)B|np|( pc) + ηnnqnp(kc, −kc − pc)B|nq|(|kc + pc|)),

(3.15)

τ>
n = τ<

n + 4π2

(μ1μ2)
1/2λnnpnq(kc, pc)B|np|( pc)B|nq|(|kc + pc|), (3.16)

where kc = (kc, 0) and pc = ( p1c, 0) is the point to which the critical resonance curve
shrinks as k ↘ kc. The determination of p1c is described in Appendix A, while the
quantities μ1 and μ2 are given by (B4) and (B5).

The integrals in (3.12) and (3.13) are evaluated as follows. Equation (3.10) is integrated
numerically using fourth-order Runge–Kutta starting from s = 0 and p = (P−, 0). The
step in s is �s = δ|Z |−1(P+ − P−), where δ is a small numerical parameter. The presence
of the factor |Z |−1 means that �s varies along the resonance curve and is intended to keep
the step in p of approximately constant length, δ(P+ − P−). The factor P+ − P− is used to
allow for resonance curves which are either large or small in extent. Integration is carried
out until p2 ≤ 0 and the final step length is then refined to make p2 = 0 correct to fourth
order in δ. This leads to numerical approximations of smax and P+, of which the latter can
be compared with the value obtained using the method of Appendix A, thus providing a
check on accuracy.

At each step in s, the contributions to the integrals in (3.12) and (3.13) are determined
and added into running totals which yield numerical approximations to the integrals after
the final step. Using (3.9), (3.10) and np < 0, it can be shown that, as s increases, q =
|k + p| increases, while p = |p| is increasing if nq > 0 and decreasing if nq < 0. Thus,
given p and q at the start and end of the step, it can be determined if p or q cross one of
the discrete values ki,n during the step. If so, the step is divided into subintervals of s, the
boundaries between which are the points at which a discrete value is crossed by either p
or q. These boundaries are numerically determined by linear interpolation. On the other
hand, if there are no crossings, there is just one subinterval, consisting of the entire step.
Subintervals with p > kmax or q > kmax do not contribute to the integrals in (3.12) and
(3.13). For all other subintervals, the integrand is evaluated at its midpoint using linear
interpolation. Interpolation across the entire step is used for the coefficients λnnpnq(k, p),
ηnnpnq(k, p), ηnnqnp(k, −k − p), while the spectra are determined by interpolation between
the two consecutive discrete values of k which straddle the midpoint of the subinterval. The
integrand is multiplied by the extent of the subinterval in s to obtain the contribution to
the integral.

3.2. Time-stepping scheme
Equations (3.1) and (3.2) describe the time evolution of the spectra and are applied to
all discrete k. For ki,n stemming from (3.14), Jn and τn are given by (3.12) and (3.13)
as is. However, for critical ki,n, (3.1) and (3.2) are applied twice: for (a) k ↗ kc and (b)
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k ↘ kc. The former describes the time evolution of B<
n (ki,n) and uses J<

n and τ<
n , which

are obtained from (3.12) and (3.13) by omitting the critical term, while the latter uses J>
n

and τ>
n , given by (3.15) and (3.16). In what follows, we will treat (3.1) as written. However,

for critical ki,n it should be borne in mind that, in application a of (3.1), Bn, αn and τn
should be interpreted as B<

n , α<
n and τ<

n , where α<
n is given by (3.2) with Jn replaced by

J<
n . A similar remark holds for application b.
Time is discretised with step Δ. At each step, there are two stages. In the first, αn and τn

are approximated as having the time-independent values α∗
n and τ ∗

n , which are calculated
using the Bn from the end of the previous time step. This leads to the first approximation

B∗
n = eα∗

nΔBn(T) + eα∗
nΔ − 1
α∗

n
τ ∗

n , (3.17)

of the spectra at the end of the present step, where T is the start of the step. A second
approximation is used to improve the order of the scheme. Here, αn and τn take the values
α∗∗

n and τ ∗∗
n , which are calculated using the spectra (Bn(T) + B∗

n)/2. Thus

Bn(T + Δ) = eα∗∗
n ΔBn(T) + eα∗∗

n Δ − 1
α∗∗

n
τ ∗∗

n , (3.18)

completes the time step.
The overall numerical scheme consists of all the approximations described in this and

the previous subsection. Discussion of the accuracy of the different elements of the scheme
and the scheme as a whole can be found in § 4.8 of Eremin (2019).

4. Results

4.1. Evolution of the wave energy
As discussed earlier, the wave energy is represented by the left-hand side of (2.14), i.e.

E =
∞∑

n=1

∫
Bn(k) d2k, (4.1)

which, allowing for the scaling Bn = ε−2Ann, gives the non-dimensional, statistically and
x3-averaged wave energy per unit area of the x1–x2 plane as ε2E. Equation (2.14) implies
E = 1 at the initial time, T = 0. An evolution equation for E can be obtained using (2.11).
As shown in § 5.5 of [I], the right-hand side of (2.11), representing nonlinear effects, is
energy conserving and so does not contribute. This leaves the viscous contribution, hence

dE
dT

= −Dw − Dv, (4.2)

where, using (2.12),

Dw = βw

∞∑
n=1

∫
(1 − ω2

n(k))
1/2

√
2

{(1 + ωn(k))3/2 + (1 − ωn(k))3/2}Bn(k) d2k, (4.3)

Dv = βw

∞∑
n=1

∫
(k2 + n2π2)Bn(k) d2k. (4.4)

Here, Dw and Dv are both positive and represent wall and volumetric energy dissipation.
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Figure 2. Evolution of the wave energy for Ξ = 5, βw = 2 and βv = 0.002.
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Figure 3. Evolution of Dw and Dv for Ξ = 5, βw = 2 and βv = 0.002.

Figures 2 and 3 show the time evolution of E, Dw and Dv for a particular choice of the
parameters Ξ , βw and βv . As will be seen from figure 2, there are two phases of evolution.
In the first, E decreases, following an approximately linear time dependency. There is then
an abrupt transition to more rapid decay. The reason for this behaviour can be seen from
figure 3. During the initial phase, wall damping is dominant and Dw is close to constant.
However, volumetric damping increases rapidly as a certain time, Td (≈0.06 in the present
case), referred to henceforth as the development time, is approached and it takes over from
wall damping as the main dissipative mechanism. As might be expected, and as we shall
see later, nonlinearity transfers energy to small scales, leading to the rapid increase in
volumetric damping and the formation of a dissipative range of k when Td is approached.
On the other hand, wall damping acts on all scales and so is significant prior to time Td.
Note that the term dissipative range refers to the effects of volumetric damping, not wall
damping.

The above results are for the case βv = 0.002, a relatively small volumetric damping
coefficient. Figure 4 shows the effects of increasing βv on the evolution of E. The transition
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Figure 4. Evolution of the wave energy for Ξ = 5, βw = 1 and different values of βv .
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Figure 5. Evolution of Dv for Ξ = 5, βw = 1 and different values of βv .

between the two phases of evolution is less and less rapid as βv increases and takes place
at longer times. The latter conclusion may, at first sight, be surprising because one expects
the dissipative range to shift to lower k, so less time is needed for its attainment. However,
the energy at a given time is reduced by the increased dissipation, which decreases the
turbulence intensity. Thus, the nonlinear transfer terms are reduced, leading to slower
transfer. And it appears to be this effect which wins.

Figure 5 shows the evolution of Dv for the same parameters as figure 4. The decreasing
sharpness of the peak with increasing βv corresponds to the less rapid transition between
the two phases of evolution which was already apparent in figure 4. Given the difficulty of
visually identifying Td for larger values of βv , we choose to define it using the maximum
of Dv .

Table 1 shows values of Td and TdE(Td) for different βv . The value of TdE(Td) is
very nearly constant, despite significant variations of Td. E(Td) measures the turbulence
intensity at time Td and constancy of TdE(Td) supports the suggestion, made above, that
the increase in Td with βv is due to decreasing turbulence intensity.
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βv Td TdE(Td)

0.005 0.061 0.0541
0.01 0.065 0.0546
0.02 0.075 0.0551
0.04 0.096 0.0558

Table 1. Td and TdE(Td) for different values of βv and Ξ = 5, βw = 1.
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Figure 6. Evolution of the wave energy for Ξ = 5, βv = 0.005 and different values of βw.

Figure 6 shows the effects of varying βw with Ξ = 5, βv = 0.005, including the case
βw = 0 in which wall damping is absent. In that case, the energy is not far from constant
before T = Td, but nonetheless decreases due to volumetric dissipation. Unsurprisingly, as
βw increases, the energy decays more rapidly in the initial phase, while, following T = Td,
it is not greatly affected by βw.

The value of Td is shown as a function of βw for two values of βv in figure 7. Apparently,
it does not depend strongly on either βw or βv provided βv is small enough. It is found to
be an increasing function of either of the dissipation coefficients.

Figure 8 shows the evolution of E, Dw and Dv as log–log plots. The straight lines
following T = Td suggest power laws. The slopes of the lines imply exponents −1 for
E, −1.02 for Dw and −2.37 for Dv . Note that the exponents of E and Dw are very nearly
the same, whereas Dv decays more rapidly. The factor multiplying Bn(k) in the integral
of (4.3) is O(1) for all modes and does not weight small scales more than large ones.
Thus, like the energy, Dw is dominated by the large scales and it is perhaps not surprising
that E and Dw evolve in a similar way. On the other hand, the factor k2 + n2π2 in (4.4)
weights the small scales more than the large ones, so Dv is dominated by the former. It is
thus to be expected to have different behaviour. It may be interesting to note that Morize
& Moisy (2006) experimentally obtained a temporal exponent of −1 for the energy of
confined turbulence at high enough rotation rates. It may also be interesting to observe that
−1 is not too far from the value −0.8 obtained by Bellet et al. (2006) for the unconfined,
homogeneous problem using wave-turbulence theory.
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Figure 7. Value of Td as a function of βw for Ξ = 5 and βv = 0.005, 0.01.
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Figure 8. Log–log plots of E, Dw and Dv as a function of T for Ξ = 5, βw = 2 and βv = 0.002.

Having studied the effects of varying βv and βw for a single value, Ξ = 5, of the spectral
width, one can ask the question: How do the results depend on Ξ? Figure 9 shows Td
using a log–log plot as a function of Ξ . It will be seen that Td is significantly affected by
variation of Ξ , decreasing with increasing Ξ . A rough power law of exponent near −2.4
is found at larger Ξ , and perhaps another, of exponent about −0.4, at lower values of Ξ .

4.2. Spectral evolution
Initialised using (2.13), the spectra, Bn(k), evolve according to the governing equations,
(2.11). This evolution is the subject of this section. As for the overall energy, two phases
of evolution are found. Firstly a spectral front propagates towards large k, forming an
inertial range behind it. This reflects a transfer of energy to smaller scales. Then, near
the development time Td identified earlier, the spectral advance ceases and a dissipative
range is established. In the second phase, the inertial range persists, the spectra decay
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Figure 9. Log–log plot of Td as a function of Ξ for βw = 1 and βv = 0.01.

and the dissipative range retreats to smaller k. As expected, spectral discontinuities are
encountered.

Figures 10 and 11 show log–log plots of Bn(k) at different times and a particular choice
of the parameters Ξ , βw and βv . Figure 10 gives results for n = 1, n = 2 and n = 6 at four
different times, including T = 0 and T = Td = 0.0633, while figure 11 focusses on n = 1
and gives results for more values of T. As noted above, there are two evolutionary phases:
first a spectral front moves towards larger k. This reflects nonlinear transfer towards smaller
scales and forms an inertial range behind the front. This phase lasts until volumetric
dissipation becomes important and a dissipative range is established. In the second phase,
which begins at the development time, Td = 0.0633 in the present case, the front, now
representing the dissipative range, retreats and the spectra decay. There is also nonlinear
transfer between different n. This is apparent in the results for n = 6 in figure 10, which
show increasing B6 prior to T = Td, followed by decay thereafter. This transfer is found
to go from smaller to larger n, i.e. large to small scales (recall that the modal length
scale, (k2 + n2π2)−1/2, decreases as either k or |n| increases). As apparent in plots (c)
and (d) of figures 10 and 11, the spectra in the inertial range roughly follow straight lines,
indicating approximate power-law dependency on k. As also apparent in figure 11, the
front in k accelerates during the first phase of evolution, its rate of advance becoming
very large as the development time is approached. This rapid advance of the front near
T = Td is the reason for the sharp onset of volumetric dissipation at small βv found
in the previous section. One might speculate that the front goes to infinite k in a finite
time in the absence of volumetric damping. This would explain the insensitivity of Td to
variation of βv at small enough values. Without volumetric damping, there is nothing to
stop energy transfer to infinitely small scales, perhaps generating a singularity at finite
time, as found in mathematical studies of the (non-rotating) Euler equations (see e.g.
Elgindi & Jeong 2019 and references therein). It may also be of interest to note that, for the
unconfined, homogeneous case, Galtier & David (2020, § 5) found a spectral front which
goes to infinity at a finite time and a power law corresponding to the k−3.67 of figures 10
and 11 prior to the time at which the front reaches infinite k.

Figure 12 shows contour plots of Bn(k) in the k–nπ plane at different times, the
contoured values being the same at all times. These plots illustrate the evolution of the
distribution of energy over modes. The first figure reflects the isotropy of the initial
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Figure 10. Log–log plots of B1(k), B2(k) and B6(k) for Ξ = 5, βw = 2 and βv = 0.005 at times (a) T = 0,
(b) T = 0.031, (c) T = 0.0633 and (d) T = 0.2. The spectral front advances in (a), (b), (c) and retreats in (c),
(d). The straight lines in (c) and (d) represent the power law k−3.67.
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Figure 11. Log–log plots of B1(k) for Ξ = 5, βw = 2 and βv = 0.005 at different times: (a) up to
T = Td = 0.0633; (b) starting from T = Td . The straight lines represent the power law k−3.67.

spectrum, (2.13), and serves as a reference for the other figures. The transfer of energy
to smaller scales is reflected by the increased spectral extent at later times. The greater
extent in k than in nπ indicates more efficient transfer in the directions parallel to the
walls. It is also apparent that, at and following the development time, for given k, Bn(k) is
larger for smaller nπ, having a maximum at n = 1. This is not generally true prior to the
development time, as shown by the second of figure 12.

Figure 13 illustrates the existence of discontinuities in the spectra. The initial spectra are
smooth, but time evolution according to the wave-turbulence closure causes discontinuities
to appear, as discussed earlier.

The energy, given by (4.1), can be decomposed in different ways. For instance

E =
∫ ∞

0
e(k) dk, (4.5)
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Figure 12. Contour plots of Bn(k) in the k–nπ plane for Ξ = 5, βw = 1, βv = 0.01 and different values of T,
the first of which is at the initial time, the second just prior to T = Td , the third at T = Td and the fourth at a
significantly greater time. The contour values are given on the right-hand side. Of course, the plots only show
data for integers n ≥ 1. Thus, they only extend down to π on the vertical axis.

where

e(k) = 2πk
∞∑

n=1

Bn(k), (4.6)

gives the energy distribution over k, and

E =
∞∑

n=1

en, (4.7)
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Figure 13. Log–log plots of Bn(k) as a function of k for Ξ = 5, βw = 1, βv = 0.01, different values of n and
T = Td = 0.0648.

where

en =
∫

Bn(k) d2k, (4.8)

gives the distribution over n. Both distributions are shown in figure 14 for Ξ = 5, βw = 1
and βv = 0.01 and three values of time, including 0 and Td. These results illustrate the
advance, then retreat, of a spectral front in both k and n. They also indicate inertial ranges
in k and n to which approximate power laws apply, but with somewhat different exponents
for k and n. Figure 15 shows the effects on e(k) at T = Td of varying βw and βv . As
might be expected, the main effect is the change in the location of the dissipative range
when βv is varied. The log–log slopes in the inertial range appear to be insensitive to both
parameters.

Another measure of turbulence is the spectral flux parallel to the walls. Summing (2.11)
over n, multiplying by 2πk, using (4.6) and integrating over k gives

∂

∂T

∫ k

0
e(k′) dk′ = −Φ(k) − D(k), (4.9)

in which the integral is the energy in wavenumbers below k, while the final term expresses
dissipation (both volumetric and boundary layer) in the same range. The remaining term,
Φ(k), is the spectral flux across k, which represents nonlinear energy transfer from below
to above k. Figure 16 shows Φ(k) as a function of k for Ξ = 5, βw = 1 and βv = 0.01 at
different times, including 0 and Td. The horizontal axis is logarithmic, while the vertical
one is linear. The first thing to note is that the flux is always positive, confirming transfer
from small to large scales. The second is that Φ(k) goes to zero at large k, which reflects
the wave-energy conservation by nonlinearity demonstrated in [I]. It can be seen that,
consistent with earlier results, there is a significant change in behaviour at the development
time. Prior to T = Td, the maximum transfer increases with time and occurs at increasing
values of k, while afterwards the converse holds.
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Figure 14. Log–log plots of (a) en as a function of n and (b) e(k) as a function of k for Ξ = 5, βw = 1 and
βv = 0.01 at different times.

5. Conclusion

In this paper, we have taken the analytical work of [I] on weak (small Rossby number,
ε) turbulence in a rotating channel bounded by infinite parallel walls as a starting point
and developed it via numerical implementation to obtain the results given in the previous
section. As in [I], spatial coordinates are non-dimensionalised by the channel width and
time by (2Ω)−1, where Ω is the rotation rate. In order to stop viscous dissipation from
killing the weak turbulence before nonlinearity can intervene, the Ekman number based
on the channel width is assumed small.

The analysis is based on the expression of the flow as a combination of modes. Modes
are solutions of the linearised, inviscid problem and are indexed by a 2-D wave vector, k,
and an integer, n, the modal order. The modal amplitudes, an(k, t), represent the flow at
any given instant of time, t. Modes with n = 0 are 2-D, being independent of position
across the channel, whereas those with n /= 0 represent inertial waves. Combining all
modes with n = 0 yields the 2-D component, while the remainder is the wave component.
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Figure 15. Log–log plots of e(k) for Ξ = 5 and T = Td: (a) βv = 0.005 and different values of βw;
(b) βw = 1 and different values of βv .

For small ε, these components are asymptotically decoupled and we have focussed on the
wave component.

The flow is assumed statistically axisymmetric and homogeneous in directions parallel
to the walls of the channel. The second-order moments of an(k), yield the spectral matrix
Anm(k), where k = |k|. The diagonal elements, Ann(k), are referred to as spectra and
express the distribution of energy over the different modes. For the weak turbulence
studied here, wave-turbulence analysis yields an integro-differential equation which
governs the time evolution of Ann(k). Given Ann(k) = O(ε2), that equation implies an
evolution time of O(ε−2), hence the scaled variables Bn(k) = ε−2Ann(k) and T = ε2t. The
wave-turbulence equation, (2.11), is numerically implemented as described in § 3. The
initial conditions (2.13) are used and the solution of (2.11) yields the results given in § 4.

The problem has three positive parameters: Ξ , βw and βv . Ξ arises from (2.13) and
determines the initial spectral width in k–nπ space, hence the large scales of turbulence
are of size O(Ξ−1). We have in mind that Ξ = O(1), making the large scales comparable
in size to the channel width; βw and βv arise from (2.12), which expresses the viscous
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Figure 16. The spectral flux, Φ(k), as a function of k for Ξ = 5, βw = 1 and βv = 0.01 at different times.
The horizontal axis is logarithmic, while the vertical one is linear.

term in (2.11) as the sum of two contributions. One of these represents dissipation due
to the wall boundary layers and is characterised by βw, while the other expresses viscous
dissipation throughout the flow (volumetric dissipation) and is characterised by βv . These
parameters are such that βv 	 βw ≤ O(1). A mode, (k, n), has an associated length scale
(k2 + n2π2)−1/2. Thus, the volumetric contribution to (2.12), βv(k2 + n2π2), increases in
importance at small scales. On the other hand, wall dissipation is equally important at all
scales. Since βv 	 βw, we expect wall dissipation to be dominant for the large scales of
turbulence and volumetric dissipation to take over at sufficiently small scales.

There are two main components of the numerical implementation. The first is the
calculation of the integrals in (2.11) and is described in § 3.1, while the second is time
discretisation, which is the subject of § 3.2. Let us briefly consider the former component.
The right-hand side of (2.11) represents nonlinear interactions between modes. Such
interactions couple three modes, (k, n), ( p, np) and (q, nq) such that k + p + q = 0. Thus,
given k and varying p, q = −k − p determines the third wave vector. Allowing for all
modes which interact with (k, n) yields a sum over np and nq and an integral over p, as
apparent in (2.11). Each mode has an oscillation frequency, denoted ωn(k) for mode (k, n).
In the wave-turbulence limit, ε → 0, nonlinear interactions are dominated by mode triads
for which the sum of frequencies is zero, a condition expressed by equation (2.10). This
equation defines a curve in the p-plane denoted Cnnpnq(k) and referred to as the resonance
curve. The result is that the integral in (2.11) runs along this curve. The integral is evaluated
by taking small steps along the resonance curve and using a numerical approximation for
the contribution of each step.

Turning attention to the results, § 4.1 concerns the total wave energy, E, and § 4.2 its
distribution over different modes. Most of the results are for the spectral width Ξ = 5:
only figure 9 concerns other values. Given the scalings used, E = 1 at the initial time,
T = 0. At sufficiently small βv , the time evolution of E has two distinct phases. In the
first, wall dissipation dominates and E has an approximately linear decrease as a function
of T. There is then a sharp transition to more rapid decay at a time, Td, referred to as the
development time. As this time is approached, volumetric damping increases rapidly and
takes over as the main dissipative mechanism. This is due to transfer of energy to smaller
scales, which favours volumetric dissipation.
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As βv increases, the transition between the two phases of evolution becomes less abrupt
and takes place at larger T. Given the difficulty of visually identifying the precise temporal
location of the transition between evolutionary phases at larger βv , we chose to define Td
using the maximum of Dv(T), the volumetric dissipation rate.

Varying βv and βw, Td was found to be an increasing function of both parameters. For
small enough βv , it is close to 0.06 for Ξ = 5 and insensitive to the choice of βw. Given
that wall damping dominates in the first phase of evolution, increasing βw leads to faster
decay of E during that phase, but has little effect on the second phase.

Log–log plots of E, Dv and Dw as functions of T, where Dv and Dw are the volumetric
and wall dissipation rates, suggest approximate power laws for the second phase of
evolution. The exponents for E and Dw are near −1 for the parameter values of figure 8,
whereas Dv decreases significantly more rapidly. This can be explained as follows. Both
E and Dw are dominated by the large scales, whereas Dv arises from small scales, the
dissipative range. Thus, it is not surprising that E and Dw behave in a similar way, but
that Dv is different. As noted when discussing these results, Morize & Moisy (2006) give
an experimentally determined temporal exponent of −1 for confined turbulence at high
enough rotation rates, in agreement with our results. We also note that −1 is not too far
from the value −0.8 obtained by Bellet et al. (2006) for the unconfined, homogeneous
problem using wave-turbulence theory.

The value of Td was found to be significantly affected by variation of Ξ , decreasing
as Ξ increases. Two rough power laws appeared for Td as a function of Ξ , one for lower
values of Ξ , the other at larger Ξ .

Section 4.2 gives results for the distribution of energy over different modes. The two
phases of evolution described above are again apparent. In the first phase, for given n, a
spectral front in Bn(k) as a function of k advances in k. This front represents nonlinear
transfer of energy towards smaller scales and leaves behind an inertial range in which
the spectra follow approximate power laws. This phase lasts until volumetric dissipation
becomes important and a dissipative range is established. In the second phase, which
follows the development time, Td, the front, now representing the dissipative range, retreats
and the spectra decay. The front accelerates in the first phase of evolution. The rapid
advance of the front as T = Td is approached is the reason for the sharp onset of volumetric
dissipation at small enough βv . One might speculate that the front goes to infinite k in a
finite time in the absence of volumetric damping. This would explain the insensitivity of
Td to variation of βv at small enough values.

There is also nonlinear transfer towards larger n, i.e. smaller scales. Contour plots of
Bn(k) in the k–nπ plane show energy transfer to small scales in both k and n. They
indicate a larger extent in k than in nπ, which means that transfer is more effective parallel
to the walls than in the wall-normal direction. They also show that, at or following the
development time and for given k, Bn(k) is larger for smaller nπ, having a maximum at
n = 1.

Although the initial spectra are smooth, discontinuities appear in Bn(k) as a function of
k following time evolution. These discontinuities are due to the appearance/disappearance
of Cnnpnq(k) as k is varied when np and nq have opposite signs. This causes a jump in
the corresponding terms on the right-hand side of (2.11), a jump which is inherited by
Bn(k) following evolution. The discontinuities are a consequence of the wave-turbulence
asymptotic limit ε → 0. When ε is small, but non-zero, we would expect thin regions in
which the spectra vary rapidly, rather than discontinuities (this is analogous to a shock
wave in a compressible fluid as the dissipation goes to zero). The present theory does not
describe these regions.
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Summing 2πkBn(k) over n gives e(k), the distribution of energy over k allowing for all
modal orders. Likewise, the distribution, en, over n follows from integrating Bn(k) over k.
Log–log plots of e(k) as a function of k and en as a function of n show inertial ranges with
approximate power laws.

Finally, the spectral energy flux parallel to the walls was calculated and an example
given in figure 16. The results confirm wave-energy conservation, that energy transfer
goes from large to small scales and the significant change in behaviour at the development
time, T = Td.

Before bringing this article to a close, we should perhaps mention the usual approach
(Zakharov et al. 1992) for determining the wave-turbulence spectral k-exponent in
the inertial range and why it has not been used here. Firstly, rotating turbulence is
intrinsically anisotropic, whereas isotropy is a significant ingredient of the Zakharov
approach. Secondly, the turbulence is both confined and decaying. Note that, following
the development time, the spectral flux in figure 16 is not approximately independent of
k in the inertial range, as would be expected in the time-stationary case, and this despite
the power law apparent in figure 14(b). We see no obvious means of obtaining analytical
predictions for the spectral exponents observed in the present case.
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Appendix A. Determination of kc, p1c and P±

We suppose n > 0 and np and nq of opposite signs for the determination of kc(n, np, nq).
Since (2.10) is invariant under the transformation np ↔ nq, p ↔ −k − p, for given n, kc is
unchanged by permutation of np and nq. Thus, we restrict attention to |np| ≥ |nq|.

Let σ( p) = ωn(k) + ωnp( p) + ωnq(|k + p|), which approaches the positive limit ωn(k)
as p → ∞. The resonance curve, σ( p) = 0, exists provided the minimum value of σ( p)

is negative. At the minimum, ∇pσ = 0, hence

npπp

( p2 + n2
pπ

2)
3/2 + nqπ(k + p)

(|k + p|2 + n2
qπ

2)
3/2 = 0. (A1)

Choosing coordinates such that k1 = k and k2 = 0, (A1) implies p2 = 0 and

npπp1

( p2
1 + n2

pπ
2)

3/2 + nqπ(k + p1)

((k + p1)
2 + n2

qπ
2)

3/2 = 0. (A2)

As k ↘ kc, the minimum of σ( p) approaches zero. Thus, (A2) and

nπ

(k2 + n2π2)
1/2 + npπ

( p2
1 + n2

pπ
2)

1/2 + nqπ

((k + p1)
2 + n2

qπ
2)

1/2 = 0, (A3)

apply when k = kc. Equations (A2) and (A3) provide two equations for the unknowns kc
and p1. As noted in the main text, the resonance curve shrinks down to a point as k ↘ kc.
This point is given by p = ( p1, 0).
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Wave turbulence in a rotating channel

Equation (A2) implies

27Y3 − 27Y2 + 4γ = 0, (A4)
where

Y = n2
qπ

2

(k + p1)
2 + n2

qπ
2
, (A5)

γ = 27π4n2
pn2

qξ
2

4(ξ2 + n2
pπ

2)
3 , (A6)

and ξ = |p1|. According to (A2), p1 /= 0, hence ξ > 0. Given |np| ≥ |nq|, it can be shown
using (A6) that 0 < γ ≤ 1. Equation (A4) has one negative root, which is irrelevant given
positivity of (A5). The two others lie in 0 < Y < 1 and are ordered according to Y− ≤ Y+.
Equation (A4) makes the two terms on the left-hand side of (A2) have the same absolute
value, but they must also have opposite signs. This condition, and hence (A2), are satisfied
by taking

k = g±(ξ) sgn( p1), (A7)
where

g±(ξ) = −ξ − nqπ sgn(np)

(
1 − Y±

Y±

)1/2

. (A8)

Note that k > 0, ξ = |p1| and (A7) imply that
k = |g±(ξ)|, p1 = ξ sgn(g±(ξ)). (A9)

Using (A5), (A7) and (A8), (A3) gives

h±(ξ) = nπ

(g±(ξ)2 + n2π2)
1/2 + npπ

(ξ2 + n2
pπ

2)
1/2 + nqπ

((g±(ξ) + ξ)2 + n2
qπ

2)
1/2 = 0,

(A10)
whose solutions in ξ > 0 yield the critical values via (A9). As ξ → 0, h+(ξ) → sgn(np),
whereas h+(ξ) → sgn(nq) as ξ → ∞. Thus, since np and nq have opposite signs, there is
at least one solution of h+(ξ) = 0. Equation (A10) was numerically evaluated for np and
nq of opposite signs, 0 < n ≤ 20, |nq| ≤ |np| ≤ 20 and ξ taking 10 000 equally spaced
values from ξ = 0 to ξ = 200. For each choice of n, np and nq there was just one change
of sign of h+(ξ) as a function of ξ , while h−(ξ) never changed sign. These results imply a
single value of kc, obtained from the solution of h+(ξ) = 0 in ξ > 0.

In keeping with the above results, for any given n, np and nq such that np and nq have
opposite signs, n > 0 and |np| ≥ |nq|, h+(ξ) is evaluated, starting at ξ = 0 and stepping
upwards by 1 until it changes sign compared with its value, sgn(np), for ξ = 0. This bounds
the location of the zero of h+(ξ) and interval halving is then used to refine ξ . kc and p1c
follow from (A9).

The above procedure requires the solutions Y± of the cubic equation (A4). These are
given by

Y+ = 2
3 sin 1

3ϕ(sin 1
3ϕ +

√
3 cos 1

3ϕ), (A11)

Y− = 1 − 4
3 sin2 1

3ϕ, (A12)
where

sin ϕ = γ 1/2, (A13)
and 0 < ϕ ≤ π/2.
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The above procedure allows the calculation of kc(n, np, nq) and p1c(n, np, nq) for all
n > 0 and np and nq of opposite signs with |np| ≥ |nq|. kc(n, np, nq) = kc(n, nq, np) and
p1c(n, np, nq) = −kc(n, nq, np) − p1c(n, nq, np) give the critical values for |np| < |nq|.

Turning attention to the determination of P±, recall their definition as the points, p =
(P±, 0), where the resonance curve crosses the p1-axis. Thus, they are the solutions of
(A3). We suppose that n > 0 and np < 0. There are two cases as follows.

(a) When nq < 0, the left-hand side of (A3) is negative when p1 = 0 and positive as
|p1| → ∞. Stepping upwards in p1 from p1 = 0 in steps of 1 until the left-hand
side of (A3) becomes positive leads to an interval containing P+. The result is then
refined by interval halving. A similar procedure is used for P−.

(b) When nq > 0, there is a critical point characterised by k = kc and p1 = p1c > 0.
With this value of p1, the left-hand side of (A3) is a decreasing function of k from
its value of 0 when k = kc. Thus, the left-hand side of (A3) is negative for p1 = p1c
in the range, k > kc, in which the resonance curve exists. This allows determination
of P− < p1c and P+ > p1c by stepping in p1, followed by interval halving.

Appendix B. Derivation of (3.15) and (3.16)

Here, we suppose that n > 0 and np and nq have opposite signs, so there exists a critical kc
with associated p1c, and we consider the behaviour of the resulting contributions to Jn(k)
and τn(k) as k ↘ kc. Let

σ( p1, p2, k) = nπ

(k2 + n2π2)
1/2 + npπ

( p2
1 + p2

2 + n2
pπ

2)
1/2 + nqπ

((k + p1)
2 + p2

2 + n2
qπ

2)
1/2 ,

(B1)

then σ = ∂σ/∂p1 = ∂σ/∂p2 = 0 when k = kc, p1 = p1c, p2 = 0. Taylor’s expansion gives

σ( p1, p2, k) ∼ −κ(k − kc) + 1
2 (μ1( p1 − p1c)

2 + μ2p2
2), (B2)

where

κ = −∂σ

∂k
( p1c, 0, kc), (B3)

μ1 = ∂2σ

∂p2
1
( p1c, 0, kc) = npπ(2p2

c1 − n2
pπ

2)

( p2
c1 + n2

pπ
2)

5/2 + nqπ(2(kc + pc1)
2 − n2

qπ
2)

((kc + pc1)
2 + n2

qπ
2)

5/2 , (B4)

and

μ2 = ∂2σ

∂p2
2
( p1c, 0, kc) = − npπ

( p2
c1 + n2

pπ
2)

3/2 − nqπ

((kc + pc1)
2 + n2

qπ
2)

3/2 , (B5)

are found to be positive. Note that we have neglected second-order terms involving k − kc
in (B2). This is because they are small compared with the first term on the right-hand side.
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Equation (B2) implies that the resonance curve can be approximated by the small ellipse

μ1( p1 − p1c)
2 + μ2p2

2 = 2κ(k − kc). (B6)

It also means that (3.10) can be approximated as

dp1

ds
= μ2p2,

dp2

ds
= −μ1( p1 − p1c). (B7a,b)

Since p2 = 0 when s = 0, the solution of (B7) has the form

p1 = p1c − μ
1/2
2 C cos((μ1μ2)

1/2s), p2 = μ
1/2
1 C sin((μ1μ2)

1/2s). (B8a,b)

As s increases, p2 first returns to zero when s = smax, hence smax = π/(μ1μ2)
1/2.

As k ↘ kc, the resonance curve (B6) shrinks down to the point pc = ( p1c, 0). Thus,
the integrands in (3.12) and (3.13) approach their values for k = kc and p = pc and are
independent of s. Given smax = π/(μ1μ2)

1/2 and ζnpnq = 1 (because np and nq have
opposite signs, hence np /= nq), we obtain (3.15) and (3.16).
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