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Transonic aeroelasticity remains a significant challenge in aerospace. The coupling
mechanism of aeroelastic problems involving the coexistence of fluid modes and
multiple structural modes still needs further investigation. For this purpose, we analysed
the dynamic characteristic of a two-degree-of-freedom (2DOF) NACA0012 airfoil in
pre-buffet flow. First, we constructed an aeroelastic reduced-order model, which can
represent near-unstable transonic flow using the dominant fluid mode. Then, the flutter
mechanism was investigated by studying the main eigenvalues of the model that vary
with the natural pitching frequency. The results revealed that the existence of the fluid
mode transitions the transonic flutter type from coupled-mode flutter to single-DOF
(SDOF) flutter, which leads to a reduction in the flutter boundary. Under the effect of the
fluid mode, the system produces six aeroelastic phenomena at different structural natural
frequencies, including SDOF heaving/pitching flutter, heaving/pitching instability within
coupled-mode flutter, forced vibration and stable state. Moreover, we identified two types
of SDOF flutter in the 2DOF system. The first type corresponds to the traditional SDOF
flutter, where the coupling of other modes has a small impact on the system’s stability
in most cases. However, within specific ranges of natural frequencies, this type of SDOF
flutter may disappear due to coupling with other modes. The second type of SDOF flutter
is characterized by strong coupling dominated by the unstable mode. It arises from the
interaction among the flow, heaving and pitching modes, and does not manifest in the
absence of any of these modes.

Key words: flow-structure interactions

1. Introduction

Transonic aeroelasticity has always been one of the most challenging issues in the
field of aerospace, due to the nonlinearity and instability caused by shock wave motion

† Email address for correspondence: gaocq@nwpu.edu.cn
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and flow separation. Over the years, researchers have extensively investigated transonic
aeroelastic problems, covering a range of issues such as transonic flutter (Schewe, Mai &
Dietz 2003; Yang et al. 2020), transonic buzz (He, Yang & Gu 2016; Halder, Damodaran
& Khoo 2020a) and transonic buffet (Raveh & Dowell 2011, 2014; Hartmann, Klaas &
Schröder 2013). (1) Transonic flutter is mainly caused by coupled-mode flutter, which
bears similarities to classical bending–torsion flutter in potential flow (Gao, Liu & Zhang
2021). (2) Transonic buzz (Gao, Zhang & Ye 2016a) refers to the self-excited vibration
phenomenon of the control surface (rudder or aileron), often resulting in limit-cycle
oscillations (LCOs) in a single degree of freedom (SDOF) during flight in transonic or
low supersonic flow. (3) Transonic buffet (Bai & Wu 2017) manifests as an aerodynamic
phenomenon of self-sustained shock oscillations occurring at a certain combination of
Mach number (Ma) and initial angle of attack (AOA). This buffeting flow typically induces
forced vibrations in the elastic airfoil, with the oscillation frequency depending on the
buffeting frequency. However, the buffet frequency is typically close to the frequency
of the first-order structural mode. At this time, by the interaction of buffeting flow and
elastic structure, it is found that the oscillation frequency no longer follows the buffet
frequency but turns to lock onto the natural frequency of the elastic structure. This
special phenomenon is known as frequency lock-in. These classic aeroelastic phenomena
collectively demonstrate the intricacies associated with transonic flow (Dowell 2010;
Badcock et al. 2011; Bendiksen 2011).

In classical flutter, the flow is commonly perceived as an adhesive and dynamic pressure
is considered a pivotal parameter for its occurrence. However, the instability characteristics
of transonic buzz and frequency lock-in in transonic buffeting differ significantly from
those of classical flutter. In these cases, Ma and AOA emerge as primary factors in
determining the flutter boundary. In the past, most research focused on the mechanism
of transonic buzz arising from negative aerodynamic damping. However, these studies did
not explain the reasons for transonic buzz frequently occurring at certain flow states and
natural frequencies of the structure. Regarding the phenomenon of frequency lock-in in
transonic buffeting, many researchers posit it as a form of nonlinear resonance triggered
by shock oscillations. However, the frequency lock-in range extends to twice the buffeting
frequency, surpassing the typical range of resonance. This suggests that this explanation
does not seem to be reasonable.

In recent studies by Gao et al. (2016a, 2017b), the dominant fluid mode (eigenvalue)
is first derived from the linear reduced-order model (ROM) to investigate non-classical
aeroelastic phenomena in transonic flow. The coupling mechanisms of transonic buzz and
buffet are then explored from the perspective of the fluid mode. Similar to the structural
dynamics system, the fluid dynamics system can also be decomposed into several inherent
patterns through modal analysis. These inherent patterns encompass modal frequency,
damping ratio and modal shape, collectively reflecting the nature of the flow, known as
fluid modes (Dowell 2014) (or wake mode; Zhang et al. 2015b). Generally, the first- to
second-order fluid mode can represent the primary characteristics of the flow.

The methods for extracting the essential information about fluid modes can be classified
into three main categories: the system identification-based methods (Griffiths et al. 2018;
Poplingher & Raveh 2023a) (including Volterra series, eigensystem realization algorithms
and autoregressive with exogenous input (ARX)), the modal decomposition methods
(Poplingher, Raveh & Dowell 2019; Halder, Damodaran & Khoo 2020b; Shu et al. 2023)
(such as proper orthogonal decomposition and dynamic mode decomposition (DMD))
and the global stability analysis methods (Sartor, Mettor & Sipp 2015; Paladini et al.
2019a; Plante et al. 2021). Despite the different approaches, the derived dominant fluid
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Figure 1. The first four modal shapes of the DMD mode in the buffet case of Ma = 0.7, α = 5.5◦ (Gao et al.
2017a).

mode essentially remains the same. For instance, the dominant fluid mode is a pair of
eigenvalues of the aerodynamic state matrix in the system identification method. The real
part of the complex eigenvalue indicates the growth rate (or the damping) of the fluid
mode, while the imaginary part indicates the reduced frequency of the dominant fluid
mode. For the NACA0012 airfoil in transonic buffeting flow, at Ma = 0.7 and α = 5.5◦,
the dimensionless reduced frequency (k) of the fluid mode obtained through the system
identification method is 0.2 (Gao & Zhang 2020). This value aligns with the buffet
frequency calculated by the computational fluid dynamics (CFD) method and equals the
dimensionless frequency of the second mode obtained by the DMD method, as depicted in
figure 1. Consequently, this pair of eigenvalues corresponds to the global dominant mode
of the transonic buffet flow, dictating the dynamics of the buffet flow system. By the global
stability analysis methods, Sartor et al. (2015) showed the complete eigenvalue spectrum
of the OAT15A airfoil for a wide range of AOA in transonic flow, and found that the buffet
phenomenon is driven by an unstable global mode. Paladini et al. (2019b) used the direct
and adjoint unstable global modes to compute the local contribution of the flow to the
growth rate and angular frequency of the unstable global mode, and discovered the shock
foot is identified as the core of the instability of the transonic buffeting flow field. This
purely aerodynamic analysis method is also used to study the link between subsonic stall
and transonic buffet on airfoils (Moise, Zauner & Sandham 2024) and wings (Plante et al.
2021), and the differences between two-dimensional airfoils and three-dimensional swept
wings (Paladini et al. 2019a).

The fluid mode not only provides an effective means to elucidate the evolution of
complex unstable flows but also opens a gateway to understanding the coupling process
of the aeroelastic system. The frequency of the fluid mode generally lies in the vicinity
of the natural frequencies of the first and second structural modes. This proximity
facilitates the coupling between the fluid mode and the structural modes, resulting
in a variety of complex aeroelastic phenomena. In the context of blunt body flow,
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Kou et al. (2017) explained why the lowest Reynolds number (Re) for vortex-induced
vibration (VIV) to occur is 18 through a ROM-based aeroelastic analysis. A clear and
dominant fluid mode emerges from Re = 18, becoming unstable at Re = 47. When Re
is lower than 18, it fails to capture a definite fluid mode; thus it is nearly impossible
for the fluid system to interact with the elastic structure, and VIV does not happen.
Zhang et al. (2015b) studied the phenomena of the VIV of a circular cylinder, revealing
that the frequency lock-in phenomenon at low Re can be divided into two patterns
according to different induced mechanisms. The two patterns are ‘resonance-induced
lock-in’ and ‘flutter-induced lock-in’ induced by the fluid mode. Li et al. (2019) found
that transverse galloping of a square cylinder at low Re can be understood as a kind
of SDOF flutter induced by the unstable structural mode, superimposed by a forced
vibration induced by the unstable fluid mode. Yao & Jaiman (2017) explained the VIV
mechanism of square cylinders with different chamfering from the perspective of the
fluid mode. From the perspective of coupling and competition between the fluid mode
and structural mode, Cheng et al. (2023) discovered that very small changes in the
windward interior angle of an isosceles-trapezoidal structure can induce or suppress
galloping vibrations. For the aeroelastic problems of the airfoil, Moulin & Marquet (2021)
studied a two-degree-of-freedom (2DOF) plate in low-Reynolds-number incompressible
flows, and revealed four types of unstable modes related to different physical instabilities
and classically investigated with separate fluid models: coupled-mode flutter, single-mode
flutter, static divergence and vortex-induced vibrations. Gao et al. (2016a) studied the
phenomena of transonic buzz and demonstrated that the instability of the SDOF system is
also caused by the coupling of modes: one structural mode and one fluid mode. Gao et al.
(2017b) also indicated that the boundaries and physical mechanism underlying frequency
lock-in are caused by linear coupled-mode flutter: the coupling between one structural
mode and one fluid mode in unstable buffet flow. Houtman & Timme (2023) conducted
research on stability analysis of an elastic wing in transonic flow, and observed that there
is no instability in the structural DOF below shock-buffet onset, whereas there are globally
unstable fluid modes and additional marginally unstable structural modes that emerge in
shock-buffet flow. Korthäuer et al. (2023) recently identified the region of the boundaries
(Gao et al. 2017b) of frequency lock-in using experiments, being characterized by the
smooth transition from fluid-mode-dominated to structural-mode-dominated coupling.
Therefore, the fluid mode offers a new perspective to investigate the physical mechanism
of complex aeroelastic problems.

The existing research on the fluid mode has primarily focused on an SDOF aeroelastic
system, neglecting the influence of other structural modes. It is critical to fully consider
the interaction of the fluid mode with various structural modes, which will enhance the
profound comprehension of aeroelastic phenomena in transonic flow. Indeed, there is
a well-known classical problem that falls under the category of multi-mode coupling,
which is the reduction of the transonic flutter boundary (Isogai 1981; Mallik, Schetz &
Kapania 2018; Opgenoord, Drela & Willcox 2018; Gao et al. 2021). As early as the 1980s
to 1990s, NASA conducted transonic flutter experiments for various standard models,
including benchmark active control technology (BACT) (Rivera et al. 1992), benchmark
supercritical wing (BSCW) (Dansberry et al. 1993) and AGARD standard aeroelastic
configurations I-wing 445.6 (AGARD445.6) (Yates 1987). It was found that the critical
wind speed of transonic flutter decreases, and the flutter frequency gradually synchronizes
with the natural frequency of the unstable structural mode as Ma or AOA increases. Dowell
(2024) and Kholodar et al. (2004) conducted a study on transonic flutter of a 2DOF airfoil
based on numerical simulation methods, examining the effects of Ma, various structural
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parameters, etc. This study observed the same phenomenon as in the above experiment
and posited that this is an SDOF flutter due to negative aerodynamic damping. This
critical aeroelastic mode is still a mass-coupled natural mode, albeit one that is dominated
by the unstable structural mode. Over the past decade, the NASA Langley Research
Center has spearheaded the organization of three conferences titled the AIAA Aeroelastic
Prediction Workshop (AWP) (Schuster et al. 2012; Heeg et al. 2015; Chwalowski et al.
2022). Poplingher & Raveh (2023b) presented flutter analysis of the BSCW, at moderate
AOA, performed as part of the Third AWP. It was discovered in their studies that, as AOA
increases, shock buffet occurs and the flutter mechanism changes from 2DOF to SDOF
pitch oscillations. The aforementioned research has established an interaction between
transonic flutter and buffet. However, it remains a summary of phenomena, and there has
yet to be research conducted from the perspective of the fluid mode. Further research is
needed to investigate the impact of the fluid mode on transonic flutter as the AOA/Mach
number approaches the buffet boundary. Additionally, the effect of adding other structural
modes in the classical transonic buzz problem on the original SDOF flutter needs to be
examined.

For this purpose, the present work analysed an aeroelastic system of the 2DOF
NACA0012 airfoil in pre-buffet flow (subcritical instability states). While numerical
simulations provide acceptable accuracy, they fall short in efficiently analysing the
mechanism of aeroelastic problems. Therefore, there is a need for an aeroelastic model
that combines high accuracy and efficiency to study the mechanism and dynamic
characteristics of transonic aeroelastic problems. In our recent research, the ROM based
on ARX was performed in transonic flutter (Gao et al. 2021), transonic buzz (Gao et al.
2016a) and transonic buffet (Gao et al. 2017b). The efficiency can be improved through
the ROM-based method. Firstly, we constructed the ROM-based aeroelastic model by
coupling the ARX aerodynamic ROM with the structural motion equations in state space
(see § 3). Then, various aeroelastic phenomena under the influence of the transonic fluid
mode were identified and analysed for different structural natural frequencies (see § 4).
Finally, the results of the ROM-based aeroelastic model were analysed and validated with
the CFD and computational structural dynamics (CSD) method (see § 5). The models and
the numerical methods are introduced in § 2. Section 6 presents the conclusions.

2. Models and numerical methods

This section presents the methods, models and their correlation employed in the present
study. The introduction of the parameters is in § 2.1. The main analysis method is divided
into two steps in figure 2.

Step 1. Constructed the ROM-based aeroelastic model. To begin with, we employed a
combination of CFD and CSD methods to obtain training data under forced motion. The
acquired data were then utilized to construct an unsteady aerodynamic model using system
identification techniques. Based on that, we were able to identify and present the dominant
fluid mode. Finally, we built the aeroelastic model by coupling the structural model with
the unsteady aerodynamic model in the state-space form. The detailed case of unsteady
aerodynamic modelling is demonstrated in § 3.1.

Step 2. Analysed the dynamic characteristic of aeroelastic problems affected by the
fluid mode. First, the flutter characteristics of the aeroelastic system were analysed using
the root loci method under typical frequency ratios, in = kh/kα . Then, we analysed the
flutter characteristics and types within the two-dimensional parameter space composed of
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Figure 2. The methods/models used in the present work and their relationship.

kh and kα . Finally, mechanism analysis and validation of the typical states were carried out
based on numerical simulation methods.

2.1. The CFD–CSD method
Through the CFD–CSD method, the data sources and the validation of the aeroelastic
model were obtained. The flow analysis was performed by an in-house hybrid-unstructured
flow solver using a cell-centred finite volume method to solve unsteady Reynolds-averaged
Navier–Stokes (URANS) equations. The integral form of two-dimensional compressible
URANS equations with the S-A turbulence model can be written for a cell of volume V
limited by a surface S. The equation can be expressed as

∂

∂t

∫
V

W dV +
∮

S
Ei(W , V grid) · n dS −

∮
S

Ev(W ) · n dS =
∫

V
H dV, (2.1)
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where n represents the outer unit normal vector to the boundary S; W is a five-component
vector of conservative variables, W = [ρρu ρv ρE ρν̃]T, ρ being the density; u, v are
x-wise and y-wise components of the velocity vector of the flow; E denotes the specific
total energy; ν̃ denotes the working variable of the S-A turbulence model; Ei(W , V grid)

and Ev(W ) are the inviscid flux and the viscous flux, respectively; and H is the source
term.

The spatial discretization and time integration of the turbulence model equation and
mean flow equations are carried out in a loosely coupled way. The second-order AUSM+
scheme is conducted to evaluate the inviscid flux, with a reconstruction technique based on
the least-squares approach. For high-order reconstruction schemes, the reader is referred
to Liu et al. (2016). The grid velocity V grid is modified according to the geometric
conservation law (Ahn & Kallinderis 2006) when CFD–CSD simulations are performed.
The viscous flux term is discretized by the standard central scheme. In the turbulence
model, the transport equation for the working variable ν̃ is given by the standard form
proposed by Spalart & Allmaras (1992). The convective and source terms are discretized
by the first-order AUSM+ scheme, and the destruction and diffusion terms by the
second-order central scheme in the present study. For unsteady computations, the dual time
stepping method, proposed by Jameson (1991), is used to solve the governing equations.
At the sub-iteration, the fourth-stage Runge–Kutta scheme is used with local time stepping
and residual smoothing to accelerate the convergence.

A no-slip wall boundary condition is applied to the airfoil surface. The location and
velocity of the airfoil are updated at each real time step due to the pitching motion of
the airfoil. Moreover, the far-field boundary is assigned with a non-reflective boundary
condition based on Riemann invariants to ensure that the disturbance generated by the
object does not return to the flow field. For more validation of the URANS method,
one can refer to our earlier studies (Zhang et al. 2015a; Gao, Zhang & Ye 2016b). The
aforementioned partial results are presented in a condensed form in Appendix B.1.

The structural motion equation was used to characterize and solve the elastic
deformation of the airfoil. The generalized structural motion equation in matrix form is
as follows:

M ξ̈ + Gξ̇ + Kξ = Q, (2.2)

where ξ is the structural generalized displacement; M , G and K are the generalized mass,
damping (G = 0 in this paper) and stiffness matrix, respectively; and Q is the generalized
aerodynamic force provided by the CFD method.

Equation (2.2) can be solved by the fourth-order-accuracy hybrid linear multi-step
scheme (Zhang, Jiang & Ye 2007) with a predictor–corrector method. This approach helps
to build an efficient, stable and loosely coupled algorithm to perform the CFD-based
aeroelastic simulation in the time domain. A previous study (Zhang et al. 2007) also
investigated the influence of time steps in aeroelastic simulations, indicating that the
numerical solution is stable/convergent as long as there are no fewer than 30 time steps
in a period. A moving boundary was involved in the simulation of aeroelasticity. Thus, a
scheme of computational grid deformation based on the radial basis function interpolation
(Wang et al. 2015) was employed to match the grid with the new wall boundary
condition.

The CFD–CSD method has been applied to the study of transonic flutter (Zhang et al.
2015a), transonic buzz (Gao et al. 2016a) and transonic buffeting (Gao et al. 2017b).
Lacking a standard case for the 2DOF buffet, the coupled CFD–CSD simulation method
is validated by classical flutter cases with two degrees of freedom. In our previous work,
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Figure 3. Sketch diagram of a 2DOF airfoil system.
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Figure 4. Comparison of CFD-calculated buffet boundaries with experimental results at Ma = 0.7–0.8 and
Re = 3 × 106.

flutter boundaries of the BACT model (Zhang et al. 2015a), the Isogai wing (Zhang
et al. 2007) and the LCO with NACA64010 airfoil (Zhang et al. 2012) agreed well with
experimental data and reference results. The aforementioned partial results are presented
in a condensed form in Appendix B.3.

2.2. Aeroelastic case and validation
The research aeroelastic case is a 2DOF NACA0012 airfoil in subcritical transonic
buffeting (pre-buffet) flow, as depicted in figure 3. The free-stream state of the modelling
case is Ma = 0.7, Re = 3 × 106, α = 4.5◦. The computational hybrid-unstructured mesh
has 25 361 nodes, and 40 layers of structured viscous grids around the airfoil, as depicted
in figure 48 in Appendix B.2. The time step for the CFD is 3 × 10−4 s (physical), and
the non-dimensional time step is 0.1. The convergence of the grid and the time step are
presented in Appendix B.2. Figure 4 compares the transonic buffet onset boundary for the
NACA0012 airfoil (Ma = 0.7–0.8, Re = 3 × 106). The circles are from the experiment of
Doerffer et al. (2010), and the thick solid line is from the URANS method. It also shows
the results from Soda & Voss (2005), in which boundaries are larger than those of the
experimental data. The experiment and URANS calculations are in satisfactory agreement.
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Figure 6. Pressure contours and streamlines in one period at α = 5.5◦, Ma = 0.7 and Re = 3 × 106. Here
T is the period of the shock oscillation; XSW is the shock position; and p is the non-dimensional pressure:
(a) t1 = 0T , (b) t2 = 1/4T , (c) t3 = 1/2T , (d) t4 = 3/4T .

Angle α is the equilibrium AOA, which is an important parameter affecting the stability
of transonic flow, and the stability of the fluid mode is very important for the SDOF flutter.
The buffet onset is 4.8◦ for stationary NACA0012 airfoil at Ma = 0.7, Re = 3 × 106. Time
histories of the lift coefficient at α = 4.5◦ and α = 5.5◦ are shown in figure 5. It can be
seen that dramatic unsteady loads appear at α = 5.5◦. At α = 4.5◦, flow oscillates slowly
and converges to a stable state after the initial excitation. This indicates that although the
flow field is in a subcritical buffeting state, its flow stability margin is not high. Further, the
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Figure 7. Pressure contours and streamlines in one period at α = 4.5◦, Ma = 0.7 and Re = 3 × 106. Here LSF
is the length of the flow separation region on the wing surface: (a) t1 = 0T , (b) t2 = 1/4T , (c) t3 = 1/2T ,
(d) t4 = 3/4T .
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Figure 8. Pressure contours and streamlines of the steady flow field at α = 4.5◦.

dimensionless pressure (p) contour plots at typical moments are presented in figures 6 and
7, for the unsteady flow field at α = 5.5◦ and the convergence process at α = 4.5◦ flow.
Vertical dashed lines indicate the position of shock feet. It is evident that in the supersonic
buffeting flow, there are significant changes in the oscillation amplitude of shock waves,
as well as in the size and position of the flow separation region. During the convergence
process in subcritical buffeting flow, shock wave oscillation amplitudes are small, and the
left-hand side of the flow separation region remains close to the shock foot, with minor
variations on the right-hand side corresponding to shock oscillations. Figure 8 presents
the pressure contour plot of the steady flow field at α = 4.5◦, while figure 9 provides
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Figure 9. Pressure coefficient curve of supercritical/subcritical buffet flow field.

the surface pressure coefficient (Cp = 2( p − p∞)/(ρV2)) curve of the steady flow field at
α = 4.5◦, compared with the dynamic pressure coefficient curve of the unsteady flow field
at α = 5.5◦. It can be observed that the shock wave position in the subcritical flutter flow
field is further aft, while the oscillation range of the shock wave in the supercritical flutter
is entirely ahead of the shock wave position in the subcritical state. Because the impact of
the fluid mode on the structural mode is too strong in the supercritical transonic buffeting
flow, α is selected as 4.5◦ in the present work.

Below is the structural set-up for the aeroelastic case. For a 2DOF elastic system, with
the dimensionless time τ = ωα × t, the above matrices and vectors are evaluated as:

M =
[

1 xα

xα r2
α

]
, K =

[
(ωh/ωα)2 0

0 r2
α

]

Q = 1
π

V∗2

{ −(Cl − Cl0)

2(Cm − Cm0)

}
, ξ =

{
h/b
θ

}
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.3)

In the definition of dimensionless parameters, traditional conventions are followed:
aerodynamic parameters such as the Reynolds number and force coefficients are
non-dimensionalized using the chord length c (or 2b), while structural parameters such
as the reduced frequency, mass static margin, mass ratio and elastic axis position are
non-dimensionalized using the half-chord length b. As shown in (2.3) and figure 3, Ma
and Re = ρU∞c/μf represent the Mach and Reynolds number of the free stream, where ρ,
U∞ and μf respectively represent the density, the velocity and the viscosity coefficient of
the free stream. Parameters Cl and Cm are the coefficients of the lift and pitching moment
non-dimensionalized by Cf = 2F/(ρU2∞), where F represents aerodynamic concentrated
force. Parameters Cl0 and Cm0 are the mean value of the lift and pitching moment
coefficients.

The term h/b represents the airfoil heaving displacement and θ represents the airfoil
pitching angle. Frequency k = ωb/U∞ is the reduced frequency non-dimensionalized by
b, natural frequency ω and U∞. Therefore, kh represents the dimensionless natural heaving
(plunging) frequency and kα represents the dimensionless natural pitching frequency.
Ratio μ = m/(πρb2) is the non-dimensional mass ratio, where m represents the mass
of the wing. Radius ra is the gyration radius of the airfoil around the elastic axis. Velocity
V∗ = U∞/(ωαbμ1/2) = 1/(kαμ1/2) is the non-dimensional velocity. Parameter xa is the
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airfoil static unbalance, which represents the dimensionless distance between the centre of
gravity and the elastic axis. The position of the elastic axis and xa are non-dimensionalized
by b. Distance a is the dimensionless distance of the elastic axis after the midpoint of
the airfoil, which will comprehensively affect the mutual coupling of each fluid/structure
mode. The elastic axis is set at 0.224c from the leading-edge point, which is the common
position in the research of transonic buzz.

2.3. Unsteady aerodynamic models
The process of modelling is introduced in Step 1 of figure 2. An identification technique
is used to construct the ROM. The time cost of the ROM-based flutter analysis mainly lies
in training the model. Because the unsteady loads are computed in a discrete domain, the
model is chosen for the two-input–two-output system, as shown in (2.4a,b):

u =
[

h/b
θ

]
, yf =

[
Cl − Cl0

Cm − Cm0

]
. (2.4a,b)

The ARX model (Zhang et al. 2007) is used to build the aerodynamic ROM. The ARX
model is based on difference equations, and it can be expressed as follows:

yf (k) =
na∑

i=1

Aiyf (k − i) +
nb−1∑
i=0

Biu(k − i), (2.5)

where y is the system output and u is the input. Orders of the model chosen by the
user are na and nb. The output of the current step is always determined by the linear
combination of the previous na steps’ output and the previous nb − 1 steps’ input. The
delay parameters (na, nb) determine the prediction accuracy of the model in unsteady
flow. Coefficients Ai and Bi are constant coefficients to be estimated. The least-squares
method is used to estimate unknown model parameters. To achieve a zero mean, the
constant levels need to be removed from the data before they are estimated. This is mainly
for two reasons. One is to eliminate the influence of static aeroelastic deformation on the
system as much as possible in numerical studies. The second is to improve the accuracy of
the autoregressive architecture model, where the sample data need to meet the zero-input
zero-output characteristic.

In order to obtain the state-space aeroelastic model, we define a state vector xf (k)
consisting of (na + nb − 1) vector states as follows:

xf (k) = [yf (k − 1), . . . yf (k − na), u(k − 1), . . . , u(k − nb + 1)]T. (2.6)

The state-space form of the discrete-time aerodynamic model is as follows:

xf (k + 1) = Aaxf (k) + Bau(k)

yf (k) = Caxf (k) + Dau(k),

}
(2.7)
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where

Aa =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 A2 · · · Ana−1 Ana B1 B2 · · · Bnb−2 Bnb−1
I 0 · · · 0 0 0 0 · · · 0 0
... I · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · I 0 0 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 I 0 · · · 0 0
0 0 · · · 0 0 0 I · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 0 0 0 0 · · · I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ba = [B0 0 0 · · · 0 I 0 0 · · · 0]T ,

Ca = [
A1 A2 · · · Ana−1 Ana B1 B2 · · · Bnb−2 Bnb−1

]
,

Da = [B0] .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)

To couple the structural equations, the discrete-time form equation is turned into the
continuous-time form, and the model in the state-space form is constructed as follows:

ẋf (t) = Aaxf (t) + Bau(t)

yf (t) = Caxf (t) + Dau(t).

}
(2.9)

2.4. Aeroelastic models
The structural state vector is defined as xs = [θ, h/b, θ̇, ḣ/b]T for the 2DOF case, and the
structural motion equation (2.2) in state-space form can be rewritten as

ẋs(t) = Asxs(t) + kα · Bsyf (t)

u(t) = Csxs(t) + kα · Dsyf (t),

}
(2.10)

where

As =
[

0 I

M−1 · K M−1 · G

]
, Bs =

[
0

M−1

]
, Cs = [I 0] , Ds = [0].

(2.11a–d)

Coupling the structural state equation (2.10) with the aerodynamic state equation (2.9), we
can get the state equation and output equation of the aeroelastic system as follows:{

ẋs(t)

ẋf (t)

}
=

[
As + kα · BsDa kα · BsCa

BaCa Aa

] {
xs(t)

xf (t)

}
. (2.12)

The analysis of the flutter characteristics is then used to solve the complex eigenvalues
in (2.12). The process of the transonic 2DOF flutter analysis is as follows.

(1) Use URANS methodology flow solver to compute the mode aerodynamic
coefficients based on the designed input signals.
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(2) Use the identification technique to construct the input–output difference model (2.7)
in the discrete-time domain, and then turn it into the continuous-time state-space
form (2.9).

(3) Couple the aerodynamic state-space equations (2.9) with the structural state-space
equations (2.10), to obtain the aeroelastic state-space equation (2.12).

(4) Solve the eigenvalues of the state matrix in (2.12) at different mass ratios and
ratios of structural natural frequencies (in = kh/kα); the stability of the aeroelastic
system can be analysed by the root loci method. The real and imaginary parts of
the eigenvalues are the growth rate and frequency of the aeroelastic system. The
damping is usually defined as the opposite of the growth rate. When the growth rate
is greater than zero, the system is unstable. On the contrary, the system is stable.

It is noteworthy that the aeroelastic model constructed in this paper is based on a linear
model under small disturbances, possessing both time-domain and frequency-domain
solving capabilities. The aeroelastic model can accurately and rapidly predict the
instability boundary and type of the aeroelastic system, but it cannot precisely predict
the nonlinear response of the aeroelastic system.

3. The aerodynamic model and the fluid mode in pre-buffet flow

3.1. Construction and validation of the aerodynamic model
Training signal design is the key to dynamics modelling. The training signal should cover
the frequencies of the structural modes that need to be excited. The training amplitude
should not be too large; otherwise, the aerodynamic responses will be nonlinear, and the
linear modelling method cannot be used. Based on similar considerations, random signals
that more easily excite flow nonlinearity are not suitable for linear modelling; generally,
sweep signals are used. At that pre-buffet state, the flow field still has some potential
unsteady features, which may be excited by some very small disturbances. Therefore, we
take the steady-state flow field as the initial solution in the training process. The time step
of the training signal needs to be moderate: too small a time step can lead to excessively
high model dimensions, while too large a step can cause the model to lose high-frequency
flow features, potentially resulting in modelling failure. Based on past research experience,
it is generally recommended that the entire cycle corresponding to the highest frequency
in the training signal should ideally contain 25–30 time steps. In this paper, a chirp
signal and its power spectrum density (PSD) are designed as depicted in figure 10. The
reduced frequency of the signal is in a broad band of [0.04, 0.80]. Use of CFD yields the
aerodynamic response as the output.

The relative errors (3.1) of model training are shown in figure 11:

Relative error =
tn∑

t=0

∣∣yt − yt,pre
∣∣∣∣yt − yt

∣∣ . (3.1)

The error is up to 10 % when na = nb = 10, while for na = nb = 30 the error can be
reduced to 2.05 %, which satisfies the requirement of accuracy in the subsequent analysis.
Therefore, in the present study, the orders of the ROM are na = nb = 30, which are larger
than those in subsonic or supersonic potential flow. The training results of the ROM are
depicted in figure 12.

The model is then validated by comparing the time history of the lift and moment
coefficient response between the ROM and CFD. The test signal is depicted in figure 13.
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Figure 10. (a) The training signal with (b) its PSD.
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Figure 12. The training results of the ROM.
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Figure 13. The validation signals. (a) Signal A at k = 0.1. (b) Signal B at k = 0.3.
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Figure 14. Comparison of the time history of the aerodynamics responses. (a,c) The response caused by the
excitation of signal A. (b,d) The response caused by the excitation of signal B.

The major non-dimensional frequency of signal A is 0.1 and that of signal B is 0.3.
Figure 14 presents the time history of the lift and moment coefficient predicted by the
ROM, which is in good agreement with that computed by CFD, further verifying the ROM
in the present study.

999 A24-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

76
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.764


Dynamic characteristic of transonic aeroelasticity

6 0.20

0.15

0.10

0.05

0

5

4

3k

g g

2

1

0
–2.0 –1.5

Gao et al. (2016)
The dominant fluid modena = NB = 10

na = NB = 20
na = NB = 30
na = NB = 40

–1.0 –0.5 0 –0.05 –0.02

(b)(a)

Figure 15. Eigenvalues of the aerodynamic models for the 2DOF airfoil at various orders;
Ma = 0.7, Re = 3 × 106, α = 4.5◦ (Gao et al. 2016a).

3.2. Identification of the fluid mode
The fluid eigenmode represents the stability of the fluid itself. It significantly affects the
coupled-mode flutter and plays a vital role in the SDOF flutter of a spring-mounted airfoil.
Therefore, it is necessary to identify and characterize the fluid eigenmode.

The free-stream state is Ma = 0.7, Re = 3 × 106, α = 4.5◦, a = 0.224c, which is
identical to the case presented in § 3.1. Figure 15 shows the distribution of the eigenvalues
of the Aa matrix of the model built before. The real part of the complex eigenvalue
indicates the growth rate (g) of the fluid eigenmode, while the imaginary part indicates
the reduced frequency (k). Matrix Aa is a redundant matrix, and the larger the orders are,
the greater is the redundancy of the matrix. Some of the eigenvalues may not represent
the real fluid mode. Therefore, the higher damped eigenvalues have a larger scatter with
changing orders. However, it can be seen that an eigenvalue almost stays at the point of
(−0.026, 0.155) with order increasing. This is closely similar to the fluid mode observed
in the previous transonic aerodynamic modelling of an SDOF airfoil, as indicated by the
black filled circles in figure 15 (Gao et al. 2016a). It is also noted that this eigenvalue is
the one closest to the imaginary axis, indicating the least stable eigenmode, which implies
that its stability margin is the lowest. In the present study, we define this corresponding
mode as ‘dominant fluid mode’ (Gao et al. 2016a), also called ‘least stable mode’ (Sartor
et al. 2015) or ‘unstable global mode’ (Crouch et al. 2009), which is associated with the
flow damping and frequency. The fluid mode mentioned later refers to the dominant fluid
mode identified here.

This mode and its eigenvalue in the subcritical state can be explicitly displayed by the
linear ROM. However, it is difficult to extract this mode in numerical simulations and wind
tunnel experiments, because this is a steady state. Here, modal decomposition has been
performed by the DMD method for a subcritical buffet flow in the converging process,
corresponding to the red dashed line in figure 5. The first four dominant global modes
characterized by the pressure contours are shown in figure 16, and the growth rates and
reduced frequencies are summarized in table 1. All modes are conjugate modes except the
first one; thus a total of seven modes are selected. It can be noticed that both the growth
rate and the frequency are zero for the first mode. It is a static mode, close to the mean
flow field. All the other modes reflect the oscillating features resulting from shock waves.
From table 1, the growth rates of these modes are negative because the snapshots are
recorded from the converging process. We also note that the reduced frequency of Mode
2 is 0.162, which is equal to the buffet frequency from the CFD simulation, as shown
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Figure 16. First four dominant global modes from the DMD method of a subcritical buffet flow in the
converging process: (a) Mode 1, (b) Mode 2, (c) Mode 3 and (d) Mode 4.

Mode Growth rate Reduced frequency

1 0 0
2 −0.045 0.162
3 −0.318 0.102
4 −0.503 0.496

Table 1. Growth rates and reduced frequencies of first four dominant DMD modes.

in figure 5. And both of these are close to the frequency of the dominant fluid mode
obtained from the unsteady aerodynamic ROM. The growth rate of Mode 2 is −0.045,
which differs from the −0.025 obtained using the unsteady aerodynamic ROM. The root
of the discrepancy lies in the different flow conditions: the DMD modes are based on
a stationary airfoil in the converging process, whereas the unsteady aerodynamic ROM
uses aerodynamic responses under structural perturbations. The presence of structural
perturbations reduces the stability margin of the pre-buffet flow, consistent with the current
findings. The absolute values of the growth rates of Mode 3 and Mode 4 are higher than
that of Mode 2. Therefore, Mode 2 is the most important coherent global mode for the
present pre-buffet flow, which should be focused on to address the most relevant changes
in the flow field and physical mechanisms.

Further validation of the linear model and fluid modes in this paper is presented in
Appendix C.
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Figure 17. Eigenvalue loci of the aeroelastic system at kh/kα = 0.85. (a) The root loci. (b) Real parts and
(c) imaginary parts of the root loci change with the natural pitching frequency.

4. Dynamic characteristic of aeroelastic problems affected by fluid mode

4.1. Dynamic characteristics under typical frequency ratio
This section is dedicated to studying the stability of the aeroelastic system of 2DOF
airfoil in the transonic pre-buffet flow and the influences of the related structural
parameters, under typical frequency ratios. The aeroelastic model has been established
in the state-space form. Solving the eigenvalues of the state matrix in (2.12) at different
structural parameters, the stability of the aeroelastic system can be analysed by the root
loci method.

The free-stream state and the aerodynamic model have been introduced in § 3.2. For
the structural parameters μ = 200, r2

a = 1.036, xa = 0.2, kh/kα = 0.85, the eigenvalue
loci as the structural natural pitching frequency kα decreases are depicted in figure 17(a).
The horizontal (vertical) axes represent the real (imaginary) parts of the eigenvalue. The
real parts mean the growth rate of the coupled aeroelastic system and the imaginary parts
represent the frequency. In our aeroelastic model, negative growth rate (positive damping)
represents that the system is stable, while positive growth rate (negative damping) indicates
that the system is unstable. It can be found that there are a total of three branches, which
we label herein as Branch 1 (the black circle line), Branch 2 (the blue triangle line) and
Branch 3 (the red square line). The purple point represents the least stable fluid mode
and the arrow points in the direction of decreasing natural frequency. The eigenvalues of
Branch 1 march towards the imaginary axis and further cross into the right half-plane,
resulting in instability (flutter) of the coupled system. The flutter boundary predicted by
the aeroelastic model is at kα = 0.37.

Figure 18 shows a comparison of the time history of the heaving displacement and the
pitching angle between the coupled CFD and CSD methods and the aeroelastic model
simulation in the vicinity of the flutter boundaries at kh/kα = 0.85. The results computed
by the aeroelastic model agree well with those obtained by the coupled CFD and CSD
methods, further verifying the aeroelastic model in the present study. The flutter boundary
at various frequency ratios has also been confirmed through the CFD–CSD method, as
denoted in figure 27 of § 5 with red open squares.
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Figure 18. Comparison of the time history of the heaving displacement and the pitching angle between
the coupled CFD–CSD method and the aeroelastic model, Ma = 0.7, Re = 3 × 106, α = 4.5◦, kh/kα = 0.85,

μ = 200, for (a,c) kα = 0.36 and (b,d) kα = 0.38.

The aeroelastic system consists of three main modes: fluid mode, heaving mode and
pitching mode. However, the relationship between branches of the eigenvalue loci and
coupled modes of the aeroelastic system cannot be directly reflected in figure 17(a). It is
necessary to determine which modes these three branches represent at each value of the
natural frequency. Indeed, the hidden coupled pitching mode can be represented by Branch
1 at one value of the natural frequency and switch to Branch 2 or Branch 3 at another value
of the natural frequency (or vice versa). This process is described as mode veering by Gao
et al. (2017b).

For further analysis, the real and imaginary parts of the eigenvalue varying with the
natural pitching frequency are displayed in figures 17(b) and 17(c), respectively. The grey
and blue colour blocks respectively represent the region of heaving instability and that of
pitching instability. Since the coupled modes switch between branches with the change
of the natural frequency, the left and right sides of branches in figure 17(c) are marked
with the coupled mode types: coupled fluid mode (FM), coupled heaving mode (HM),
coupled pitching mode (PM). The grey, blue and orange dashed lines are used to mark the
uncoupled heaving, pitching and fluid modes.

The type of the coupled mode represented by a branch can be determined by the
imaginary parts of the branch. The frequency of the fluid mode is almost constant, and
the heaving and pitching modes have a fixed frequency ratio. Based on this, the types of
coupled modes are distinguished. Certainly, in fluid–structure coupled aeroelastic systems,
the modes reflected by the system’s eigenvalue are all coupled. The purpose of resolving
these modes through the aforementioned method is to better understand the coupled system
through a linear aeroelastic model.

The coupled modes represented by the three branches undergo complex mode veering
processes. As the natural pitching frequency kα decreases (the non-dimensional velocity
V∗ increases), Branch 1 veers from HM to PM; Branch 2 veers from PM to FM; and
Branch 3 veers from FM to HM. The mode veering occurs within the instability region
(0.02, 0.37) of Branch 1, so there are two kinds of flutter before and after the mode veering.
As shown in figure 12, the mode veering phenomenon is actually a continuous process
with kα = (0.14, 0.22), rather than a sharp transition. Within this transition range, it is

999 A24-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

76
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.764


Dynamic characteristic of transonic aeroelasticity

0.45

0.40

0.35k

t

0.30

0.25
0 50 100 150 200

kα

kh

Figure 19. Wavelet transform diagrams for the responses of pitching mode calculated by CFD–CSD at
kh/kα = 0.85 and kα = 0.36.

difficult to determine the correspondence between the branches and the coupled modes.
For simplification, we define the boundary at kα = 0.22, where the response frequency of
Branch 1 is in the middle of the natural frequencies of the structural heaving and pitching
modes. Consequently, the instability range of Branch 1 is qualitatively divided into the PM
and HM ranges.

The grey block represents the SDOF heaving flutter region at kα = (0.22, 0.37). In
the initial stage of the region (right-hand side), the coupled frequencies of the heaving
and pitching modes do not shift relative to their natural frequencies. So it should be
defined as the SDOF heaving flutter. This region is far from the instability boundary
of the SDOF heaving airfoil (kh < 0.14). On the contrary, it is within the instability
boundary of the SDOF pitching airfoil (0.13 < kα < 0.42). This special phenomenon is
caused by the coupling of the fluid mode, heaving mode and pitching mode. Therefore,
if the pitching mode is decoupled from the 2DOF aeroelastic system, the SDOF heaving
flutter phenomenon will no longer exist in this region, although the pitching mode does
not obviously participate in the coupling.

Figure 18 also corroborates our judgment on SDOF heaving flutter. We present the
wavelet transform diagrams of the time-domain responses calculated by CFD–CSD in
figure 18(c), as shown in figure 19. It can be seen that, due to the initial disturbances
applied to both the heaving and pitching modes, their responses initially vibrate in their
natural modes. Over time, the natural modes transition to the coupled modes. It can be
observed that the natural pitching mode gradually disappears and transitions to the coupled
mode, which is almost identical to the natural heaving mode.

The blue block at kα = (0.02, 0.22) represents the coupled-mode flutter, in which the
pitching mode is unstable. This is based on the fact that Branch 1 represents the coupled
pitching mode after the mode veering. At the beginning of this region, the frequency of
the coupled pitching mode is between the uncoupled natural pitching frequency and the
natural heaving frequency. The structural natural frequency is low, which is different from
the instability boundary of the SDOF pitching airfoil.

4.2. The effect of structural parameters
Regarding the previous paragraph on the determination of two distinct vibration types,
further analysis and explanation are required. We analyse the influences of two structural
parameters (xa, μ) on the aeroelastic system. Firstly, the effect of xa changes on
the aeroelastic system is investigated. Parameter xa is the airfoil static unbalance
(dimensionless distance between the centre of gravity and the elastic axis), which is an
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Figure 20. (a) The unstable branch of the eigenvalue loci at kh/kα = 0.85 with different xa. (b) Real parts
and (c) imaginary parts of the root loci change with the natural pitching frequency at kh/kα = 0.85 and
xa = 0.0035.

important parameter that affects the coupling of heaving and pitching modes. When xa is
close to zero or negative, the critical dimensionless wind speed of the coupled-mode flutter
is large. Conversely, when xa increases, the critical wind speed of the flutter will decrease.
The value of xa is set as 0.0035 in the BACT model. In our simulations, the airfoil is
fixed at 0.224c from the leading edge (a = −0.554b) in both the CFD–CSD simulation
and the aeroelastic model. The change in xa actually reflects a change in the centre of
gravity position, meaning that it only requires modifying the structural model rather than
the unsteady aerodynamic model. Therefore, this study can conveniently investigate the
impact of changes in xa on the aeroelastic system.

A typical frequency ratio of 0.85 is selected, with xa = (0.0035, 0.075, 0.1, 0.2). For
convenience of understanding, only the unstable branches of the eigenvalue are presented
in figure 20(a). It can be observed that as xa increases, the upper boundary of the
instability region decreases, while the lower boundary rapidly increases. Around xa = 0.1,
the coupling form of the aeroelastic system changes, and the instability region at low
frequency increases from scratch. To further investigate this phenomenon, the root locus
of the aeroelastic system at xa = 0.0035 and kh/kα = 0.85 has been added, as shown
in figure 20(b,c). Branch 1 always represents the structural heaving mode. There is a
transition between Branch 2 and Branch 3, where the fluid mode veers to the pitching
mode. Only Branch 2 has an unstable region. At the right-hand boundary of the instability
region, the response frequency is locked to the natural pitching frequency. At the left-hand
boundary, the response frequency is equal to the flow frequency. Therefore, it should
be defined as an SDOF pitching flutter induced by the fluid mode. This is a completely
different coupling form from that of the aeroelastic system at xa = 0.2, as shown in
figure 17(b,c). The coupled-mode flutter and SDOF heaving flutter that occurred at
xa = 0.2 no longer manifest at xa = 0.0035. In summary, changes in xa can alter the region
of instability, the mode of instability and the form of coupling. Increasing xa will enhance
the coupling between structural modes and suppress the SDOF flutter.

The following explores the influences of mass ratio on the aeroelastic system. Similarly,
a frequency ratio of 0.85 and a kind of mass ratio (50, 100, 200, 400, 800) are selected, as
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Figure 21. (a) The unstable branch of the eigenvalue loci at kh/kα = 0.85 with different μ. (b) Real parts and
(c) imaginary parts of the root loci change with the natural pitching frequency at kh/kα = 0.85 and μ = 800.

depicted in figure 21(a). It can be observed that as the mass ratio increases, the upper
boundary of the instability interval decreases and the lower boundary also decreases.
Around a mass ratio of 400, the system undergoes some changes. When the response
frequency is around 0.2, the system returns to a stable state. To further investigate this
phenomenon, the root locus of the aeroelastic system at μ = 800 and kh/kα = 0.85 has
been added, as shown in figure 21(b,c). Branch 2 only represents the pitching mode and
the fluid mode veers to the heaving mode. It can be clearly seen here that the instabilities
of coupled pitching and heaving modes are separate, supporting the aforementioned
judgment. Thus, the conclusion is that increasing the mass ratio can eliminate the mode
veering phenomenon as much as possible without changing the vibration properties of the
system.

4.3. Various aeroelastic phenomena under different natural frequencies
In § 4.1, we analysed the flutter characteristics and types of the aeroelastic systems for
frequency ratios of 0.85, as kα varies. However, one frequency ratio is merely demonstrated
in one line within the two-dimensional parameter space composed of kh and kα . In order
to establish a more comprehensive understanding of the flutter mechanism, this section
analyses the flutter characteristics within the two-dimensional parameter space (kh, kα) at
μ = 200 and xa = 0.2. Based on the analysis method in § 4.2, multiple distinct frequency
ratios were analysed within in = kh/kα = (0.2, 5). Then, the flutter characteristics were
obtained by connecting the boundaries of various aeroelastic phenomena under different
frequency ratios, as depicted in figure 22.

There are six distinct aeroelastic phenomena: SDOF heaving flutter, SDOF pitching
flutter, heaving instability within coupled-mode flutter, pitching instability within
coupled-mode flutter, forced vibration and stable state. The horizontal (vertical) axes
represent the natural dimensionless frequencies of airfoil pitching (heaving) mode. The
colour blocks and numbers in the two-dimensional graphs represent the type of vibration.
Multiple vibration types are converted near the 45◦ symmetry dashed line. The wide
variety of distinct aeroelastic phenomena is the result of the joint coupling of the fluid
mode, structural heaving mode and structural pitching mode.
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Figure 22. Various aeroelastic phenomena within the two-dimensional parameter space (kh, kα).

The following provides a detailed introduction to each of the six types. It is noteworthy
that the stability boundaries predicted by the aeroelastic model are quite accurate, as
demonstrated in figure 18 and the open red squares in figure 27. However, the boundaries
between different aeroelastic phenomena are determined empirically. In fact, the transition
is continuous rather than discrete. Therefore, these internal boundaries are merely
schematic representations.

I – SDOF pitching flutter. Two grey areas. For the upper area, due to the high
frequency of the heaving mode, the instability boundary is highly similar to that of the
SDOF pitching airfoil. For the lower area, there are many complex phenomena due to
the participation of the heaving mode. Coupled-mode flutter on the left-hand side (region
III/IV) and SDOF heaving flutter on the right-hand side (region II) have encroached upon
the region of SDOF pitching flutter.

II – SDOF heaving flutter. The lower areas of region II fall within the instability
boundary of the SDOF heaving airfoil and are separated by region I. This occurs because
the positive growth rate of SDOF pitching flutter is much greater than that of SDOF
heaving flutter. Additionally, the remaining area lies below the 45◦ line, where the natural
heaving frequency exceeds the instability boundary of the SDOF heaving airfoil.

III/IV – coupled-mode flutter. The distribution is symmetrical around the 45◦ line
within the range of low natural frequencies, with the upper part representing the instability
of the heaving mode and the lower part representing the instability of the pitching mode.
Upon comparing the black solid line with the open/filled circles, minimal differences
can be observed in the boundaries of coupled-mode flutter. Additionally, numerous other
complex phenomena depicted in figure 22 primarily originate from the fluid mode.

V – forced vibration. The areas with grey stripes. Existing research has found
that elastic structures can cause a reduction in the transonic buffeting boundary
(Ma = 0.7, α = 3.9◦) (Gao, Zhang & Ye 2018). This phenomenon is also observed in this
study. In the area where the structural modes are stable and the natural frequency is low,
forced vibration caused by buffeting flow occurs. Detailed analysis of this phenomenon is
presented in § 5.3.

VI – stable state. In the top right corner, all fluid/structure modes of the aeroelastic
system remain stable due to the high structural frequency. In the lower left corner, all
modes are stabilized as a result of the complex coupling and interference between these
modes.
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Figure 23. The stability boundaries and the LCO amplitudes of SDOF aeroelastic system of NACA0012
airfoil. (a) The SDOF pitching aeroelastic system and (b) the SDOF heaving aeroelastic system.

These complex aeroelastic phenomena can be analysed from two perspectives using
auxiliary lines. The first perspective is the effect of the fluid mode on a 2DOF aeroelastic
system, which is discussed in detail in § 4.4. The second perspective is the effect of
the coupling with another structural mode on the SDOF flutter (transonic buzz). In
figure 22, the vertical dash-dot lines represent the flutter boundaries (kα = (0.13, 0.42))
of the SDOF pitching airfoil case depicted in figure 23(a), while the horizontal dash-dot
line represents the flutter boundaries (kh = (0, 0.138)) of the SDOF heaving airfoil case
depicted in figure 23(b). The black dashed lines represent the LCO amplitudes computed
using the CFD–CSD method at different natural frequencies. By comparing the results
of figure 22 with the two cases mentioned above, the influence of the coupling of other
structural modes on SDOF flutter can be observed. There are two distinct phenomena. The
first is that the SDOF heaving flutter occurs at a high natural frequency (in = (0.8, 1),

kh = (0.2, 0.4)), which is discussed in §§ 4.1 and 4.2. The second is that the SDOF flutter
disappears by coupling with another structural mode, at in = (0.3, 0.8), kα = (0.3, 0.42)

and in = (0.3, 0.5), kα = (0, 0.12). A detailed study and mechanistic analysis of this
phenomenon are presented in § 5.2.

4.4. The effect of the fluid mode on the flutter boundary
In figure 22, the black line with open circles represents the coupled-mode flutter boundary
of the airfoil under the same parameters at α = 0◦. While the black line with filled
circles represents the flutter boundary of the airfoil under Euler solution at α = 4.5◦. Our
goal is to eliminate the dominant fluid mode in the above two ways. The first approach
involves staying away from the buffeting boundary as much as possible, and the second
approach is to eliminate the fluid viscosity. The basis for these two approaches is the paper
of Karnick & Venkatraman (2017), which found that the viscous effects manipulate the
flow by influencing the strength and location of the shock such that the flutter boundary
changes significantly. The eigenvalues of the Aa matrix for both cases are depicted in
figure 24. The most dominant eigenvalue becomes the zero-frequency mode near the point
of (−0.12, 0). Notably, the dominant fluid mode at the point of (−0.026, 0.155) in the case
under NS solution at α = 4.5◦ has been successfully eliminated using both approaches.
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Figure 24. Eigenvalues of the aerodynamic models under different conditions.

A more detailed discussion on the variation of fluid modes with the AOA is presented in
Appendix C.

By comparing the three cases mentioned above, we can qualitatively analyse the
influence of the fluid mode on the aeroelastic system. The flutter boundaries of these
cases are shown in figure 25. Case A corresponds to α = 4.5◦ under NS solution, Case
B represents α = 0◦ under NS solution and Case C is at α = 4.5◦ under Euler solution.
The lower horizontal axis displays the arctangent of kh/kα , while the upper horizontal
axis represents kh/kα = in directly. The vertical axis indicates the non-dimensional flutter
velocity (Vf

∗ = 1/(kαf μ
1/2)). The flutter boundaries of Case B and Case C are similar

and exhibit an approximately axisymmetric distribution. Their flutter velocities decrease
as kh/kα approaches one and increase as it deviates from one. When kh/kα < 1, Case B has
lower flutter velocities compared to Case C, while the opposite holds true when kh/kα > 1.
Notably, the flutter velocity of Case A is significantly smaller than that of Case B and Case
C. Figure 26 shows the root loci for these three cases at kh/kα = 0.85, corresponding to
the blue dashed line in figure 25. Case A has been thoroughly discussed in §§ 4.1 and
4.2. The flutter boundary is located at Vf

∗ = 0.19, and the flutter type is SDOF flutter.
For Case B and Case C, there is no mode veering between branches after the dominant
fluid mode disappears. Branch 1 represents the coupled heaving mode, while Branch 2
represents the coupled pitching mode, as shown in figures 26(c)–26( f ). Unlike Case A,
under the critical state of flutter, the frequencies of the coupled modes of Case B and
Case C approach each other, representing a coupled-mode flutter. The non-dimensional
flutter velocities of Case B and Case C are 0.35 and 0.38, respectively, which are higher
than that of Case A. The presence of the fluid mode transforms the type of flutter from
coupled-mode flutter to SDOF flutter at the boundary, significantly reducing the flutter
boundary. This finding is consistent with the experimental observations conducted by
NASA (Rivera et al. 1992; Dansberry et al. 1993), where an increase in Ma/AOA leads to a
decrease in transonic flutter velocity, with the response frequency locked to the uncoupled
structural frequency (vacuo natural frequency). These experimental results align with the
findings and perspectives presented in this study, mutually reinforcing their validity.

5. Mechanism analysis and validation

As mentioned in § 2.4, the aeroelastic model presented in this paper is a linear model and
cannot predict the nonlinear aeroelastic responses of coupled systems with high accuracy.
However, we believe that the types of aeroelastic problems in this case are dominated by
linear characteristics. To further validate the six aeroelastic phenomena predicted by the
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Figure 25. The flutter boundaries varying with kh/kα under different conditions.
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kh/kα = 0.85: (a,b) Ma = 0.7, α = 4.5◦ under NS solution; (c,d) Ma = 0.7, α = 0◦ under NS solution;
(e, f ) Ma = 0.7, α = 4.5◦ under Euler solution.
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Figure 28. Pitching instability of coupled-mode flutter at P1: kh = 0.136, kα = 0.16. (a) Force coefficients,
(c) displacements, (b,d) PSD, kae = 0.15 = 0.94kα .

aeroelastic model, the CFD–CSD method was conducted to verify for the states denoted
as the red circles with labels P1 to P7 in figure 27. The red open squares indicate the
flutter boundary calculated by the CFD–CSD method. The blue dashed line represents the
root loci of the frequency ratio of 0.5. In figures 28 to 43, kae represents the dominant
frequency of the response and kb represents the buffeting frequency. The red solid (dotted)
line represents the lift (moment) coefficient and the blue solid (dotted) line represents the
heaving (pitching) displacement.

5.1. Coupled-mode flutter versus SDOF flutter
In § 4.3, we analysed the flutter characteristics within the two-dimensional parameter
space (kh, kα), and discovered six different aeroelastic phenomena. Among them, there are
four types of flutter, including pitching instability within coupled-mode flutter, heaving
instability within coupled-mode flutter, SDOF pitching flutter and SDOF heaving flutter.
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Figure 29. Heaving instability of coupled-mode flutter at P2: kh = 0.18, kα = 0.15. (a) Force coefficients,
(c) displacements, (b,d) PSD, kae = 0.167 = 0.93kh.
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Figure 30. The SDOF pitching flutter at P3: kh = 0.1, kα = 0.2. (a) Force coefficients, (c) displacements,
(b,d) PSD, kae = 0.2 = kα .

They can be classified into two categories: coupled-mode flutter and SDOF flutter. The
observed phenomena and their categorization are based on the frequency characteristics
of unstable coupled modes predicted by the aeroelastic model. When the frequency of
the unstable coupled mode is locked to its natural frequency, it is classified as an SDOF
flutter. On the other hand, when the frequencies of the two coupled modes deviate from
their natural frequencies and approach each other, it is considered a coupled-mode flutter.
In order to verify the results of the aeroelastic model and to clarify the behaviour and
characteristics of various flutters in the time-domain nonlinear response, we selected one
state from each of the four types of flutter to demonstrate and analyse their time-domain
responses obtained from CFD–CSD, as shown in figures 28–31, corresponding to points
P1 to P4 in figure 27. The vertical axis range of figures 28–31 was set to the same value.
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Figure 31. The SDOF heaving flutter at P4: kh = 0.26, kα = 0.31. (a) Force coefficients, (c) displacement,
(b,d) PSD, kae = 0.26 = kh.

Figure 28 shows the time-domain response of the pitching instability with coupled-mode
flutter at P1. Figure 29 depicts the time-domain response of the heaving instability
within coupled-mode flutter at P2. For coupled-mode flutter, the amplitudes of force
coefficients and displacements rapidly increase. This linear growth persists until the limit
of the CFD–CSD method employed in this study, with the final obtained amplitudes
before computational failure being Ah/b > 1 and Aθ > 0.6. Figures 30 and 31 depict
the time-domain response of the SDOF pitching (heaving) flutter in LCOs at P3 (P4),
respectively. For SDOF flutter, the response of the aerodynamic forces and displacement
eventually reach a LCO.

To more intuitively display these four types of flutter, we present the pressure and
streamline diagrams at four typical moments for P1 to P4, as shown in figures 32–35.
The horizontal dashed lines indicate the y = 0 position, assisting in illustrating the elastic
deformation of the airfoil. The typical moments are divided into four equal parts of a
full cycle of structural modal displacement, with P1 and P3 based on the pitching mode
displacement, and P2 and P4 based on the heaving mode displacement.

For P1 and P2 states, both the pitching and heaving mode amplitudes are large, but
their phase angles differ. When the pitching mode displacement of P1 is at its maximum
(figure 32a), the heaving mode displacement is close to zero; conversely, when the heaving
mode displacement is at its maximum (figure 32b), the pitching mode displacement is
close to zero. The pattern for the P2 state is different: when the heaving mode displacement
is at its maximum (figure 33a), the pitching mode displacement is also significant. For
the P3 and P4 states, there is a significant difference in the displacement amplitudes of
the pitching and heaving modes. The P3 state is dominated by pitching mode vibrations
(figure 34), while the P4 state is dominated by heaving mode vibrations (figure 35). This
pattern is more clearly illustrated in Lissajous figure 36, where there are evident differences
in the vibration forms among the four states.

The time-domain responses of coupled-mode flutter and SDOF flutter exhibit many
different characteristics, with the displacement response curve being more concise and
exhibiting better regularity. Below, we extract various features of the displacement
response curve for comparison. These features primarily include ηae, amplitude ratio RA
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Figure 32. Pressure contours and streamlines in one period of pitching mode at P1: (a) t1, (b) t2, (c) t3, (d) t4.
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Figure 33. Pressure contours and streamlines in one period of heaving mode at P2: (a) t1, (b) t2, (c) t3, (d) t4.
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Figure 34. Pressure contours and streamlines in one period of pitching mode at P3: (a) t1, (b) t2, (c) t3, (d) t4.
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Figure 35. Pressure contours and streamlines in one period of heaving mode at P4: (a) t1, (b) t2, (c) t3, (d) t4.
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Figure 36. Lissajous figure of the pitching and heaving mode response and airfoil vibration range diagram:
(a) P1, (b) P2, (c) P3, (d) P4.

and phase angle ϕθ−h, as illustrated in (5.1):

ηae = |kae − kα|/|kh − kα|,
RA = Ah/b/Aθ ,

ϕh/b−θ = ∣∣tmax(h/b) − tmax(θ)

∣∣/(Tae).

⎫⎪⎬
⎪⎭ (5.1)

The meanings of the parameters in (5.1) are shown in figure 37, where ηae donates
the deviating degree of the response frequency compared with the natural frequency of
the unstable mode. When ηae = 1, kae = kα . When ηae = 0, kae = kh. The amplitude
of the non-dimensional heaving displacement is denoted by Ah/b, and the amplitude
of the pitching angle (in radians) is represented by Aθ . The period of the response
curve is denoted by Tae, while tmax(θ) and tmax(h/b) represent the non-dimensional time
corresponding to the maximum pitching displacement and heaving displacement within
the same period.

The features of the above four types of flutter are shown in table 2, where P1, P2,
P3 and P4 represent pitching instability within coupled-mode flutter, heaving instability
within coupled-mode flutter, SDOF pitching flutter and SDOF heaving flutter, respectively.
For coupled-mode flutter, since the amplitude of the response curve keeps increasing,
the features are extracted for each period within the range shown in figures 28 and 29,
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Figure 37. A schematic diagram illustrating the meanings of the parameters in (5.1). (a) Displacements and
(b) PSD.

Point (kh, kα) ηae RA ϕθ−h Flutter types

P1 (0.136, 0.16) 0.42 (<0.5) 0.74 (<1) 0.16

(�0)

Pitching instability of
coupled-mode flutter

Coupled-mode flutterP2 (0.18, 0.15) 0.57 (>0.5) 1.13 (>1) 0.38 Heaving instability of
coupled-mode flutter

P3 (0.1, 0.2) 0.00 0.15 (�1) 0.04
(≈0)

SDOF pitching flutter
SDOF flutter

P4 (0.26, 0.31) 1.00 2.09 (�1) 0.01 SDOF heaving flutter
P7 (0.24, 0.06) (kae = kb) 3.12 — — Forced vibration
P6 (0.05, 0.1) — — — — Stable state

Table 2. Various features of the displacement response of six aeroelastic phenomena.

and then averaged. For SDOF flutter, these features are directly extracted from the LCOs
shown in figures 30 and 31.

For ηae in table 2, it can be observed that at P1 and P2, their response frequencies
lie between the natural frequencies of the structural modes, and they are closer to the
unstable mode. On the other hand, the response frequencies at P3 and P4 are equal to the
unstable structural mode natural frequencies. For RA, both structural modes at P1 and P2
exhibit significant vibrations, with the ratio between them being close to one. Meanwhile,
the values of RA at P3 and P4 are significantly far from 1. Regarding ϕθ−h, there is a
noticeable phase lag between the heaving displacement and pitching displacement under
P1 and P2 states, which is approximately 15 % to 40 % of the vibration period. In contrast,
there is almost no phase difference between the two modes under P3 and P4 states, with the
difference being less than 5 %. These differences and characteristics fully demonstrate that
the aeroelastic phenomenon under P1 and P2 states corresponds to coupled-mode flutter,
while the aeroelastic phenomenon under P3 and P4 states belongs to SDOF flutter. It
should be noted that P4 indicates a specific SDOF heaving flutter. Here, kh = 0.26, which
is significantly higher than the flutter boundary for SDOF heaving airfoil (0, 0.138), as
shown in figure 23. This special phenomenon has been analysed in § 4.1 by the aeroelastic
model. The results of the CFD–CSD method confirm the accuracy of the aeroelastic model
presented in this paper. The last two rows in table 2 also provide the eigenvalues at P7 and
P6. State P7 represents a forced vibration state characterized by the dominant response
frequency being equal to the frequency of the fluid mode. State P6 is a stable state where
there is no periodic oscillation in the force coefficient and displacement response. The
dynamical characteristics at P7 and P6 are discussed in detail in § 5.2.
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The phenomenon of SDOF flutter that arises in the aeroelastic system of a 2DOF
airfoil is worthy of further discussion. This phenomenon has been commonly observed
in previous transonic aeroelastic problems. It can be categorized into two types. The first
one is just like the SDOF flutter that occurs on transonic buzz and the frequency lock-in
in transonic buffeting flow. The fluid mode is coupled with a structural mode, leading
to the instability of that structural mode. The addition or removal of another structural
mode has minimal impact on this SDOF flutter system. The second type occurs in a
transonic flutter. As Ma/AOA increases, the critical velocity of transonic flutter rapidly
decreases. The system’s basic vibration frequency shifts from being between the natural
frequencies of mode A and mode B to almost aligning with the natural frequency of mode
A. Mode A and mode B mentioned here are just used as examples. Significantly different
from the first type, when mode B is eliminated, the second type of SDOF flutter will no
longer occur. Dowell conducted a study on the transonic flutter of 2DOF airfoils based
on numerical simulation methods (Kholodar et al. 2004). This study discovered and noted
that: ‘The flutter frequency at that point is essentially the same as the coupled in vacuo
natural frequency corresponding to a dominant plunge motion. Correspondingly, the flutter
eigenvector is dominated by the plunge motion. This is an example of single-DOF flutter,
but note that the critical aeroelastic mode is a mass coupled natural mode, albeit one that
is plunge dominated’. In the present results shown in figure 22, region I and the lower right
corner of region II belong to the first type of SDOF flutter. The upper section of region II
is the second type. We found that the second type of SDOF flutter, which involves flow,
heaving and pitching modes deeply coupled, is a typical result. This type of flutter will not
occur in the absence of any mode.

5.2. Disappearance of SDOF flutter
In figure 22, we observed that the SDOF flutter disappears due to coupling with another
structural mode. This phenomenon can be categorized into two regions. The first one
is the reduction in SDOF-pitching-flutter boundaries due to coupling with the heaving
mode, occurring at (in = kh/kα = (0.3, 0.8), kα = (0.3, 0.42)). The second is that the
SDOF heaving flutter disappears by the coupling with the pitching mode, happening at
(in = (0.3, 0.5), kα = (0, 0.12)). It is evident that the line with kh/kα = 0.5 intersects
these two regions, as depicted in figure 27. The subsequent analysis focuses on the root
locus at kh/kα = 0.5 to elucidate the underlying mechanism of this phenomenon, as
illustrated in figure 38. The mode veering occurs between Branch 1 and Branch 3. Branch
2 consistently represents the pitching mode, and only Branch 2 exhibits an unstable region.
At the instability region, the frequency of the coupled pitching mode locks onto the natural
pitching frequency. Thus, it is defined as SDOF pitching flutter. The right flutter boundary
of the 2DOF aeroelastic system is located at kα = 0.35. This is significantly lower than
that (kα = 0.42) for an SDOF pitching airfoil, as shown in figure 39(a,b). In other
words, at kh/kα = 0.5, there is a reduction in the SDOF-pitching-flutter boundaries in the
2DOF aeroelastic system compared with an SDOF pitching airfoil. The left boundary of
the 2DOF aeroelastic system is located at kα = 0.12, kh = 0.06. For an SDOF heaving
airfoil, the region of SDOF flutter is kh = (0, 0.138), as shown in figure 39(c,d). In
other words, at kh/kα = 0.5, compared with an SDOF heaving airfoil, the SDOF heaving
flutter disappears in the 2DOF aeroelastic system. Since the frequency ratio of the 2DOF
aeroelastic system is 0.5, the range of the horizontal axis in figure 39(a,b) has been
set to kα = (0, 0.5). The range of the horizontal axis in figure 39(c,d) has been set to
kα = (0, 0.25). This allows for a direct comparison between figures 39 and 38(b,c).
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For the SDOF airfoils shown in figure 39, (2.2) and (2.3) degenerate into the following
forms:

SDOF heaving case:
ḧ
b

+ k2
h

h
b

= 1
πμ

(−Cl)

SDOF pitching case: θ̈ + k2
θ θ = 1

πμr2
θ

(2Cm),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.2)

where μ = 200, r2
a = 1.036. The free-stream conditions are Ma = 0.7, Re = 3 × 106,

α = 4.5◦.
The instability of aeroelastic systems can be attributed to the coupling between different

modes. Specifically, in SDOF airfoils, the fluid mode is only coupled with a structural
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mode, leading to instability. On the contrary, 2DOF aeroelastic systems exhibit coupling
among multiple modes including fluid, pitching and heaving modes. Due to the presence
of an additional structural mode, the energy of the fluid mode is distributed across two
structural modes, delaying the onset of instability and reducing its unstable region. For
instance, in figure 39(a,b), the coupling between pitching and fluid modes results in
instability of the coupled pitching mode at kα = 0.42. Meanwhile, in figure 39(c,d), near
kh = 0.21, corresponding to kα = 0.42, the natural frequencies of heaving mode and fluid
mode become close, and mode veering occurs. In the 2DOF system, the mode veering
between fluid mode and heaving mode weakens the ability of the fluid mode to induce
instability of the pitching mode, thereby delaying the occurrence of SDOF pitching flutter.
In figure 38(b,c), an ongoing SDOF pitching flutter inhibits the occurrence of SDOF
heaving flutter in the range of kα = (0.12, 0.35) and kh = (0.06, 0.175). In the range
of kα = (0, 0.12) and kh = (0, 0.06), the coupled pitching mode regains a stable state.
However, the natural frequency of the pitching mode is closer to that of the fluid mode,
which still suppresses the instability of the heaving mode, preventing SDOF heaving
flutter. Therefore, under specific conditions, the release of other degrees of freedom can
enhance aeroelastic stability. In conclusion, we have demonstrated that the coupling of
different modes plays a crucial role in determining the stability of aeroelastic systems.

To further illustrate this point, we have performed CFD–CSD simulations for typical
states denoted by the red vertical line (P5, P6) in figures 38 and 39, corresponding to
figures 40 and 41. Compared with the flutter, the aerodynamic and displacement are
stable at P5, as shown in figure 40. For the SDOF pitching airfoil, the pitching mode
is unstable at kα = 0.4, and the vibration amplitude is large due to the SDOF pitching
flutter, as depicted by the grey dotted line in figure 40. However, for the 2DOF aeroelastic
system, the structural pitching mode remains stable due to the release of the heaving mode.
Figure 41 shows the time-domain response at P6. The response amplitude is mainly due
to the residual energy of the initial disturbance. For the SDOF heaving airfoil, the heaving
mode is unstable at kh = 0.05, and the vibration amplitude is large due to the SDOF
heaving flutter, as depicted by the grey dotted line in figure 41. However, for the 2DOF
aeroelastic system, the structural heaving mode remains stable due to the release of the
pitching mode.

5.3. Fluid mode instability induced by the elastic structure
This section analyses the mechanism of phenomenon V – forced vibration – shown in
figure 22. Existing research has found that elastic structures can cause a reduction in the
transonic buffeting boundary (Ma = 0.7, α = 3.9◦) (Gao et al. 2018). A stability analysis
based on a linear ROM was conducted on an SDOF pitching airfoil at μ = 60, Ma = 0.7,
α = 4.5◦, resulting in the root loci of the aeroelastic system as a function of the natural
pitching frequency, as shown in figure 42(a,b). Only Branch 1 becomes unstable. Based on
the relationship between the coupled frequency of Branch 1 and the natural frequencies of
the structural/fluid modes, the dynamic modes are distinguished. At low pitching natural
frequencies, it is forced vibration due to the instability of the dominant fluid mode; at high
pitching natural frequencies, it is flutter due to the instability of the structural mode. This
unique phenomenon is summarized as a reduction in the buffet boundary caused by the
elastic structure.

A similar phenomenon was observed in the study of a 2DOF airfoil, as shown in
figure 42(c,d). In the root locus at μ = 200, kh/kα = 3, only Branch 2 becomes unstable.
Based on the relationship between the coupled frequency of Branch 2 and the natural
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frequencies of the structural/fluid modes, three different types of dynamic modes were
identified for this frequency ratio. The blue region at kα = (0.15, 0.42) represents pitching
mode instability, the red region at kα = (0.05, 0.15) represents dominant fluid mode
instability and the grey region at kα = (0, 0.05) represents heaving mode instability.
Consequently, it can be concluded that in the red region, the instability of the dominant
fluid mode occurs. To further illustrate this point, we have performed CFD–CSD
simulations for typical states denoted by the red vertical line (P7) in figure 42(c,d), as
shown in figure 43. It can be observed that under this condition, the coupled frequency kae
of the system is dominated by the buffeting frequency kb, with the natural frequency of the
structural mode completely dissipating, which verifies the aforementioned conclusion.

999 A24-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

76
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.764


Dynamic characteristic of transonic aeroelasticity

0.04

–0.04

–0.08

0.4

0.3

0.2

Im
ag

in
ar

y
R

ea
l

0.1

0 0.1 0.2 0.3 0.4 0.5

0.4

–0.04

–0.02

0.02

0

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

0

FM PM FM

HM

HM Uncoupled HM

Branch 1
Branch 2Branch 1

Branch 2 Branch 3

Uncoupled PM
Uncoupled FM

Uncoupled PM
Uncoupled FM

PMPM

FM FM

PM

FM

P7

FM

PM

HM

PM

kα = 0.43

ka kα

(a)

(b)

(c)

(d)
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kh/kα = 3.

6. Conclusions

In the present work, a ROM for transonic pre-buffet flow was constructed based on
the identification technology. Coupling with the 2DOF structural equations, an efficient
ROM-based flutter analysis method was formulated. Based on the aeroelastic model and
the CFD–CSD coupling algorithm, flutter characteristics and types under representative
frequency ratios were studied, accompanied by an analysis of the influence exerted by
structural parameters. Within the two-dimensional parameter space defined by kh and kα ,
six distinct aeroelastic phenomena were identified and investigated. The main conclusions
can be summarized as follows:

(1) The dominant fluid mode was identified for the 2DOF (heaving and pitching) airfoil
at Ma = 0.7, Re = 3 × 106, α = 4.5◦, with a dimensionless frequency of 0.155 and
a negative growth rate of −0.026 (stable). The study revealed that the dominant
fluid mode is directly related to the flutter types. The existence of the fluid mode
transitions the transonic flutter type from coupled-mode flutter to SDOF flutter,
which leads to a reduction in the flutter boundary.

(2) The six identified aeroelastic phenomena are SDOF heaving flutter, SDOF pitching
flutter, heaving instability within coupled-mode flutter, pitching instability within
coupled-mode flutter, forced vibration and stable state. There are three noteworthy
points that merit discussion. First, SDOF heaving flutter occurs at high natural
heaving frequencies (in = kh/kα = (0.8, 1), kh = (0.2, 0.4)). Second, there is a
reduction in SDOF-pitching-flutter boundaries due to the coupling of the heaving
mode (in = (0.3, 0.8), kα = (0.3, 0.42)). Third, at very low natural frequencies,
SDOF heaving flutter disappears due to the coupling with the pitching mode, while
all three major modes of the system remain stable (in = (0.3, 0.5), kα = (0, 0.12)).

(3) The SDOF flutter that occurs in the aeroelastic system of a 2DOF airfoil can be
classified into two types. The first type is similar to the SDOF flutter observed
in transonic buzz and the frequency lock-in of transonic buffet. The addition or
removal of another structural mode has minimal impact on this SDOF flutter system.
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Figure 43. Forced vibration at P7: kh = 0.24, kα = 0.08. (a) Force coefficients, (c) displacements, (b,d) PSD,
kae = 0.16 = kb.

The second type occurs in coupled-mode flutter. As Ma/AOA increases, the
oscillation frequency of the system shifts from lying between the natural frequencies
of two structural modes to almost aligning with the natural frequency of the unstable
mode. Unlike the first type, the second type of SDOF flutter is characterized by
strong coupling dominated by the unstable mode. It results from the interaction
among the flow, heaving and pitching modes, and does not occur in the absence
of any mode.

Future research can explore the following aspects. The qualitative analysis provided
in this study outlines how the dominant fluid mode influences transonic flutter and how
coupling with other structural modes affects transonic buzz (SDOF flutter). However,
further investigation is needed to achieve a quantitative analysis of the impact of these
modes. As outlined in § 4.2, the boundaries between different aeroelastic phenomena
are currently determined empirically, despite the transition being continuous rather than
discrete. To enable a quantitative and gradual analysis of various aeroelastic phenomena,
additional analytical methods may be of help.
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Appendix A. Nomenclature

CFD Computational fluid dynamics
CSD Computational structural dynamics
ARX Autoregressive with exogenous input
ROM Reduced-order model
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PSD Power spectrum density
SDOF Single degree of freedom
2DOF Two degrees of freedom
HM Structural heaving mode
PM Structural pitching mode
FM Fluid mode
Ma Mach number [1]
Re Reynolds number [1]
c Chord length [m]
b Half-chord length [m]
t Non-dimensional time [1]
α Equilibrium angle of attack [deg.]
h/b Non-dimensional heaving displacement [1]
θ Pitching angle [rad]
Cl Lift coefficient [1]
Cm Pitching moment coefficient [1]
p Non-dimensional pressure [1]
Cp Pressure coefficient [1]
ρ Density of free stream [kg m−3]
U∞ Velocity of free stream [m s−1]
μ Mass ratio [1]
a Position of the elastic axis [1]
xa Static unbalance of the airfoil [1]
ra Gyration radius of the airfoil [1]
V∗ Non-dimensional velocity [1]
ω Natural frequency [rad s−1]
k Reduced frequency [1]
kh Non-dimensional natural heaving frequency [1]
kα Non-dimensional natural pitching frequency [1]
in Ratio of the natural frequencies of heaving and pitching modes [1]
kb Non-dimensional buffeting frequency [1]
kae Dominant frequency of the response of the coupled system [1]
na, nb Delay orders of the ARX model [1]
g Growth rate [1]
Aθ Amplitude of the pitching angle [rad]
Ah/b Amplitude of the heaving displacement [1]
RA Ratio of the response amplitude of heaving and pitching modes [1]
ηae Deviating degree of the response frequencies [1]
ϕθ−h Phase angle of the response of heaving and pitching modes [1]

Appendix B. Validation of numerical methods and convergence of aeroelastic case

As the data source and validation method for the aeroelastic model in this paper, the
accuracy and convergence of the CFD–CSD numerical method are crucial to ensuring
the validity of the paper’s results. Therefore, this appendix will briefly introduce the
verification of the numerical method from three aspects: B.1, verification of CFD
simulation accuracy for transonic buffet; B.2, convergence of the grid and the time step;
B.3, verification of transonic flutter boundaries.
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Figure 44. (a) Overall mesh diagram, (b) local detail map and (c) trailing-edge close-up.

Turbulence models Numerical schemes α �Cl kb

CFD S-A ROE 3.5◦ 0.9–1.08 0.215
AUSM 3.5◦ 0.88–1.1 0.21
AUSM 3.7◦ 0.86–1.12 0.22

SST ROE 3.5◦ 0.9–1.14 0.265
AUSM 3.5◦ 0.93–1.14 0.287
AUSM 3.7◦ 0.91–1.16 0.286

Exp. — 3.5◦ — 0.21

Table 3. The amplitude and frequency of lift coefficient in buffeting flow under different combinations of
turbulence models and numerical schemes, compared with experiment (Exp.).

B.1. Verification of CFD simulation accuracy for transonic buffet
An OAT15A supercritical airfoil was adopted as an experimental model in the state
of Ma = 0.73, Re = 3 × 106, α = 3.5◦ by Jacquin et al. (2009), providing plenty of
experimental data, particularly buffet loads. Therefore, a simulation is conducted based
on this airfoil to verify the efficiency of the CFD solver in predicting buffet loads.

We first conducted a sensitivity study of the turbulence model and numerical schemes.
The grid uses structured meshing and is stored in unstructured data format. The far-field
boundary is 30 chord lengths away, and the first cell height of the boundary layer is
5 × 10−6c, with a non-dimensional wall distance of y ≈ 1, as shown in figure 44. The
grid consists of 37 145 cells, and the physical time step for the unsteady calculations is
2 × 10−4 s. Table 3 compares the amplitude and frequency of the flutter lift coefficient
response under different combinations of turbulence models and numerical schemes, with
the calculation conditions set to Ma = 0.73, Re = 3 × 106, α = 3.5◦. The comparison
reveals that the turbulence model has a significant impact on the calculation results,
whereas the influence of the numerical schemes is relatively small. The SST model
predicts larger flutter loads and frequencies, which aligns with the conclusions from the
literature. Compared with experimental results, the flutter frequency calculated using the
S-A turbulence model aligns better with the experimental data. Therefore, for this airfoil
flutter case, the S-A turbulence model and AUSM spatial discretization scheme are used
in subsequent calculations.

Figure 45 shows the root-mean-square values of the pressure fluctuation on the upper
profile surface, where Q0 is the free-stream dynamic pressure. Wall pressure fluctuations
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Figure 45. Influence of the incidence on the chordwise distribution of the root-mean-square surface pressure.
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Figure 46. Schematic map of phases in one period of the shock motion.

are induced by the separated flow unsteadiness. The peak is related to the shock motion.
In the present calculation, the predicted peak at α = 3.5◦ is slightly lower than the
experimental one, whereas the calculated peak at α = 3.7◦ indicates better agreement.
The result simulated by Deck (2005) using Zonal-DES at α = 3.5◦ shows a higher peak.
That is, loads predicted by the S-A turbulence model are slightly smaller than those of
the experiment. In the experiment of Jacquin et al. (2009), the model was a blunt trailing
edge, whereas it was sharp in Deck’s calculation (Deck 2005). In current simulations,
both models are adopted and they exhibit nearly consistent results. Results provided in this
paper are based on the sharp model.

Profiles of the velocity phase average measured at 60 % chord are provided in the study
of Jacquin et al. (2009). These profiles show that buffet leads to the periodic separation of
the boundary layer and the periodic shock motion. A schematic map of the phases is shown
in figure 46. Phase 1 is when the shock is in the upstream location. Figure 47 displays the
velocity contours and the velocity profiles at different phases in the upper surface location
of X/c = 0.6, where ys is the coordinate of the upper surface. In those computations, the
boundary layer is attached at phase 5 (figure 47b), and the separation occurs at phase 9
(figure 47c). In the given four phases, velocity profiles of experiments agree well with
those of calculations.
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Figure 47. Non-dimensional velocity profiles of four phases in one period at X/c = 0.6, Ma = 0.73, Re =
3 × 106, α = 3.7◦. (a) Phase 1, XSW/c = 0.39. (b) Phase 5, XSW/c = 0.45. (c) Phase 9, XSW/c = 0.54. (d)
Phase 13, XSW/c = 0.50.

G1 G2 G3 G4

Airfoil nodes 90 180 400 600
Surface nodes 4426 9624 25 361 43 004
Amplitude of Cl 0.080 0.100 0.110 0.110
Amplitude of Cm 0.016 0.024 0.024 0.024
Reduced frequency 0.183 0.181 0.180 0.180

Table 4. Dependence of the results on various grids differing in their spatial resolution.

B.2. Convergence of the grid and the time step
In order to assess convergence in numerical results, the transonic buffet flow at Ma = 0.7,
Re = 3 × 106, α = 5.0◦ has been computed for four grids G1 to G4 differing in their
spatial resolution. All results presented in the present study are from grid G3, which is
shown in figure 48. Results are detailed in table 4 for nodes of grids and the amplitude of
aerodynamic forces, which shows that nearly all constants are converged down to the third
digit. Results of grids G3 and G4 are almost equal, but the time cost of grid G3 is less.
Therefore, grid G3 is adopted in this research considering the balance between efficiency
and accuracy.

Generally, the time step of fluid dynamics is smaller than that of structural dynamics.
Therefore, the time step of the present study is decided by the simulation of the buffet flow.
For the time convergence of the buffet flow, simulations were run using non-dimensional
computational time steps dt ranging from 0.02 to 1, where the physical time step is
defined as dt = dtphysicsa∞/c. Table 5 shows the aerodynamic forces, along with the
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Figure 48. The NACA0012 airfoil computational grid. (a) Overview of the grid. (b) Close-up view of the
airfoil.

Non-dimensional dt 0.7 0.5 0.1 0.02

Physical dt (s) 2.06 × 10−3 1.47 × 10−3 2.94 × 10−4 5.89 × 10−5

Time-averaged Cl 0.540 0.574 0.576 0.577
Amplitude of Cl 0.09 0.108 0.110 0.110
Time-averaged Cm 0.146 0.154 0.156 0.156
Amplitude of Cm 0.012 0.024 0.024 0.024
Reduced frequency 0.16 0.178 0.180 0.180

Table 5. Comparison of results at different time steps.

reduced frequency using grid G3. When the time step increases to 1.0 or larger, the CFD
solver cannot calculate a buffet. The results converge with a decreasing time step, and a
non-dimensional time step no larger than 0.1 (physical time step of 0.00029 s) is adequate
for present simulations.

Finally, we further verify the accuracy and convergence of the selected grid G3 and
non-dimensional time step dt = 0.1 by comparing with experimental results in two
aspects: the aerodynamic response under forced oscillation and its surface pressure
distribution.

For the aerodynamic response under forced oscillation, the CT5 case with a large
oscillation amplitude and a strong shock wave in the AGARD report 702 (NACA0012
airfoil) (Landon 1982) are carried out. The sinusoidal pitching motion of the airfoil is
given in terms of the AOA as a function of time:

θ(t) = α + θF sin(2π·kpt), (B1)

where α is the mean AOA; θF is the maximum pitching amplitude with respect to the mean;
and kp is the reduced frequency of the forced motion. The pitching axis and the moment
integral point are both located at 0.25c. Important parameters are as follows: Ma = 0.755,
Re = 5.5 × 106, kp = 0.0814, α = 0.016◦, θF = 2.51◦.
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Figure 49. Comparison between numerical and experimental results from the AGARD CT5 case: (a) Cl and
(b) Cm.
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Figure 50. Comparison of surface pressure coefficient curves between CFD method and experimental results
at different AOA during forced pitching oscillations: (a) θ = 1.09◦ upward motion and (b) θ = 2.01◦ downward
motion.

Figure 49 shows both the numerical and experimental Cl and Cm results as a function of
the instantaneous AOA. Numerical results reasonably match experimental data. Figure 50
shows a comparison of surface pressure coefficient curves between the CFD method and
experimental results at different AOA during forced pitching oscillations. The high degree
of agreement between the simulation and experimental results indicates that the CFD
method used in this study can accurately describe unsteady flow effects and precisely
calculate the aerodynamic loads during transonic unsteady shock wave motion.

B.3. Verification of transonic flutter boundaries
Due to the limited availability of detailed aeroelastic response data and the higher
sensitivity of transonic aeroelastic responses to initial conditions and other parameters,
direct comparisons of specific time-domain responses are rare. This study focuses on
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Figure 51. Computed flutter boundary compared with the experimental data. (a) The BACT model. (b) The
BSCW model.

aeroelastic stability issues, with an emphasis on the stability boundary. By comparing
critical characteristics, we can partially verify the effectiveness of unsteady response
calculations. Therefore, we choose the BACT (Rivera et al. 1992) and BSCW (Dansberry
et al. 1993) cases to validate the CFD–CSD method. Relevant parameters of the BACT
case are μ = 1139−4162, r2

a = 1.036, α = 0◦ and ωh/ωα = 0.6539 based on NACA0012
airfoil; these of the BSCW case are μ = 253−815, r2

a = 1, α = 0◦ and ωh/ωα = 0.6324
based on SC20414 airfoil. Details of other parameters can be found in studies by Rivera
et al. (1992) and Dansberry et al. (1993). Figure 51 shows the computed flutter boundary
of the BACT model and the BSCW model compared with the experimental data. For the
two transonic flutter benchmark models mentioned above, the flutter boundaries obtained
using our simulation method show good agreement with experimental results, validating
the effectiveness of our CFD–CSD method.

Appendix C. Convergence of linear ROM and fluid modes

This appendix analyses the convergence of the modelling method and the characteristics
of fluid modes from two aspects: C.1, convergence of the linear aeroelastic ROM; C.2,
variation of fluid modes with AOA.

C.1. Convergence of the linear aeroelastic ROM
Based on four aeroelastic analysis models with delay orders ranging from 10 to 40, we
analysed the eigenvalue roots of the coupled system at a frequency ratio of 0.85. As shown
in figure 52, the main eigenvalue roots of the system exhibit a convergence trend as the
delay order increases. The position of the eigenvalue representing the dominant fluid mode
changes most significantly, showing convergence consistent with the pure aerodynamic
model results, as shown in figure 27. The eigenvalues representing the structural modes
show little overall change and also converge as the delay order increases. Therefore,
the aeroelastic linear ROM in this paper demonstrates convergence with respect to the
modelling delay order.
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Figure 52. Eigenvalue loci of the aeroelastic system with delay orders ranging from 10 to 40 at kh/kα = 0.85.
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Figure 53. The variation of eigenvalues of the aerodynamic models with the AOA.

C.2. Variation of fluid modes with AOA
This section analyses the variation of fluid modes with the AOA. As shown in figure 53,
using α = 4.5◦ as a reference, when α increases, the dominant fluid mode crosses the
imaginary axis, and its growth rate changes from negative to positive, explaining the
onset of buffet from a linear mode perspective. When α decreases, it can be observed that
the damping of the dominant fluid mode increases rapidly and becomes greater than the
zero-frequency mode at α = 3.4◦. Subsequently, the frequency of this mode also increases
rapidly, while the zero-frequency mode stabilizes at a growth rate of approximately −0.1.
This phenomenon shows that a decrease in the AOA increases the damping and frequency
of the dominant fluid mode, eventually transforming it into one of several non-convergent
numerical modes, meaning the dominant fluid mode disappears. Meanwhile, the damping
of the zero-frequency mode gradually decreases and eventually takes over the position of
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the dominant fluid mode. However, the physical significance of the zero-frequency mode
requires further investigation.
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