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CONTINUOUS, SLOPE-PRESERVING
MAPS OF SIMPLE CLOSED CURVES

TIBOR BISZTRICZKY AND IVAN RIVAL

How many of the continuous maps of a simple closed curve to itself
are slope-preserving? For the unit circle S' with centre (0,0), a con-
tinuous map ¢ of S* to S! is slope-preserving if and only if ¢ is the identity
map [o(x,v) = (x,y)] or ¢ is the antipodal map [s¢(x, v) = (—x, —y)].
Besides the identity map, more general simple closed curves can also
possess an ‘‘antipodal’” map (cf. Figure 1).

Examples of plane curves with continuous,
slope-preserving (antipodal) maps.

FIGURE 1
It is perhaps somewhat unexpected that an arbitrary simple, smooth,

closed curve behaves, in this respect, very much like S'. It is the purpose
of this paper to establish:

THEOREM. There are at most two continuous, slope-preserving maps of a
sumple, smooth, closed curve, to itself. Each such map o is a homeomorphism
satisfying o o ¢ = id.
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Preliminaries. In this section we consider some of the elementary
properties of simple plane curves.

For distinct points p and p’ in the Euclidean plane R? let (p, p’)
denote the line through p and p’. Let I denote the unit interval [0, 1] in
Rland set I— = [0, 1).

A simple parameter curve f is a continuous map of I to R? such that
f I~ is one-to-one. We call f(0) the initial point and f(1) the terminal
point of f(I). If f(0) = f(1), we identify 0 and 1 in [ and call f(I) a
simple closed curve.

For an element x of I, a line 7, is the tangent to f at x if

]11 = limx’—)x<f(x/):f(x)>'

We say that f is a stmple differentiable parameter curve of finite type or,
more briefly, a simple differentiable parameter curve, if T, exists for each
x € I and there is a positive integer # such that |L M f(I)| £ = for each
line L in R2.

Let f be a simple differentiable parameter curve, let L be a line in R?,
and let x € I satisfy f(x) € L. As L M f(I) is finite, there is a deleted
neighbourhood N, of x in [ such that L M f(N,) = . Now, L separates
R? into two regions. We say that L supports f at x if f(INV,) is entirely
contained in one of these regions; otherwise, L cuts f at x.

Lemma 1. ([3]). Let f be a simple differentiable parameter curve, let x € [
and let L, denote the set of all lines in R? containing f(x) and distinct from
T.. Then every L € L, supports f at x or, every L € L, cuts f at x.

From this standpoint there are precisely four types of points in
f(I) € R2 We define the characteristic (ap(x), a1(x)) of a point f(x) by
taking ao(x) = 1 [2] if some L € L, cuts [supports] f at x and by taking
ai(x) € {1, 2} such that ay(x) + a1(x) is odd [even] if T, cuts [supports]
f at x. There are then four types of points: ordinary, characteristic
(1, 1); tnflection, characteristic (1, 2); cusp, characteristic (2, 1); beak,
characteristic (2, 2) (cf. Figure 2).

Lo w ) @ /@)

ordinary (1, 1) inflection (1, 2) cusp (2, 1) beak (2, 2)
FIGURE 2

In this connection we note:

Lemma 2. ([2]). A simple differentiable parameter curve contains only
finitely many points that are not ordinary.
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For what follows we assume that f is a simple differentiable parameter
curve. We put C = f(I) and refer directly to C as a simple differentiadle
curve. If p = f(0) # f(1) = ¢, we also call C a simple differentiadle «rc
and denote it also by A (p, ¢) or 4. From this viewpoint a simple closed
differentiable curve C (f(0) = f(1)) consists of simple differentiable arcs.
Indeed, if p and ¢ are distinct points of C then there are simple differen-
tiable arcs 4 (p, ¢) and A (q, p) satisfying

A, ) \J A(qg,p) = Cand A(p,q) N A(q, p) = {p,q}.

For convenience we often identify x € [ with p = f(x) € C and also
write 77, for the tangent 7', of C at p. As a connected subset of C with only
ordinary points has continuous tangents it follows from Lemma 2 that
1", depends continuously on p €

Fordistinctp = f(x)andq = f(y), we say that p precedes q [q follows p|
in Cif x <yin I and we write p < ¢. If f(0) = f(1) then, evidently,
either p < ¢ or ¢ < p for any distinct p, ¢ € C. If f(0) = f(1) then
p = f(0) both precedes and follows each ¢ € C\{p} and f(0) < ¢ < f(1).
In either case, we say that C is oriented in the direction of increasing
x € I. This orientation of C induces, in turn, an orientation of every arc
of C. In fact, if p and ¢ are distinct points of C then A (p, q) [4 (g, p)] is
oriented from p to ¢ [q to p] and, as above, C = 4 (p, ¢) \J A(q, p).

For distinct points ¢, 7 in C, let g7 denote the vector in R? with initial
point ¢ and terminal point 7. Let ||g7]| denote the usual length of ¢7 in R2,
Now, let p € C and let (pr) be a sequence of points in C such that
P < pfor each N and lim py = p. We put

li pb_
P = Tobl|

and call p the tangent vector of C at p. For completeness we set

Po = limy_,, p

if Cis an arc with initial point p,.

Evidently, p exists for each p € C and p is parallel to 73,. Moreover,
the tangent vectors p of C depend continuously on p ¢ C provided that
C contains neither cusps nor breaks. We shall for brevity call a simple
differentiable curve with only ordinary points and inflection points a
simple smooth curve.

From Lemma 2 it now readily follows that

LeEmMA 3. Let C be a simple differentiable curve, let L be a line in R?, und
let ¢ € C. Then both

P (L) = {p € C|T,1s parallel to L}
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and

Pq) =1{pecClp=qorp=—qj
are finite sets.
If py is the initial point of C, then we may so enumerate the elements

po, P1, - - o, pr of P (po) that po < p1 < p2 < ... < pi. Let pyy denote
the terminal point of C (pyr1 = poif Cisclosed). Then

k+1

C= ylA(Pi—l» pt)
and, foreachz =1,2,...,k + 1,

int A(pi1, po) NP(py) = 0
where int 4 denotes the interior of 4.

The measure of a point and a curve. Let C be a simple differentiable

curve with initial point po and terminal point p.,1, where

P(po) = 1po < pr < p2 <. < puf.

Let the unit circle S' in R? with centre (0, 0) be assigned the counter-
clockwise orientation. For p € int A (p;—1, p:), the vectors p and p,_,
positioned with initial point (0, 0) meet S at, say, {and {,_;, respectively.
Let Z (pi1, p) denote the arclength of the smaller of the two arcs of .S!
determined by t,_, and {. Denote the smaller arc by A4 (¢,_,, ) and set

ﬁpi~—l(p) =/ (pi—ly p)

if the orientation from ¢,_; to ¢ in A (¢;_1, t) is counter-clockwise; other-

wise, set
Oy (p) = — £ (Pi-1, P)-
Note that, for each p € int A(p,_, p;) and foreachs = 1,2, ...,k + 1

0< 1[1111'—1(?)! <.
Finally, let

tpo(Po) = 0,

for p € int A(pi—, ps) and foreach ¢ =1,2,...,k 4+ 1, let
tpo () = tpo (Pi—1) + Bpii(P)

and

Mpg (PZ) = limpapi'p,_l<p<pi#p0 (P)
Evidently &,,(p) is defined only for p € int 4 (po, p1) while p,, (p) is
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defined for all p € C. Moreover, for any ¢ € C, ¢ is the initial point of
some oriented arc 4 of Cand if p € A then u,(p) is defined.

Recall that po[pii1] is the initial [terminal] point of C. We call
[po (Pry1)| the measure of C and denote it by u(C).

ProrositionN 4. ([4], [1]). Let C be « simple smooth closed curve. 1hen
w(C) = 27 for any choice of initial point for C.

We conclude this section with several elementary observations intended
as a rationale for arguments to follow.

Let C be a simple differentiable curve with initial point p,, terminal
point per, and P (po) = {pe < p1 < pa < ... < pi}. Let0 £ i <k + 1
and let p € int A (pi_y, po).

(a) If p is an ordinary point or an inflection point then there is a
neighbourhood N(p) of p in int 4 (p;_1, p:) such that either u,,(g) > 0
for all ¢ € N(p) or ppy,(g) < 0 forall ¢ € N(p).

(b) If p is either a cusp point or a beak point and |uo(p)| < 7/2, then
in any neighbourhood N (p) of p in C there exist points ¢ and 7 such that

Kp (Q) * Mpg (r) <O0.

() If A(piy, ps) 1s a smooth arc then either p,,(¢) = 0 for all
g E A (pi-—ly pl) or .“po(g) é 0 fOr a“ q E A (pi——ly pi)'

Simple closed curves with beaks and cusps. Our main result is
concerned with simple, closed, smooth curves C and continuous, slope-
preserving maps o of C to C (that is, continuous maps ¢ for which 7%, is
parallel to 75, for each p € C). It is perhaps instructive at this point to
indicate just how ‘‘smoothness’ of a simple closed curve must enter into
our consideration.

Example 1. A simple, closed curve with beaks. Let C be the curve
consisting of the arcs 41, 4, described by

Ay = {(x, 1 — 2|0 = x < 1}
and

As = {(x, (1 — x*)'79)]0

IIA

x < 1}.

IIA

This curve is illustrated in Figure 3. Evidently, Chas abeak at (1,0) and
at (0, 1).
We define a map p of int 4, to 4. by
p((l + m—Z)—l /2’ (1 + mz)—1/2) — ((1 _|__ 111—4/3)—1/4y (1 + m4/3)—1/4)

for all m > 0. (Note that the slope at ((1 + m=2)~'/2, (1 4+ m?)~1/?) of
int 4; is —m and equals the slope at ((1 4+ m=4/3)=1/4 (1 + m*/3)—1/4)
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©,1)

\J

0,0 (1,0)

FIGURE 3

of 4,.) Evidently, p is continuous. We now define the map ¢ of C to C by
_Jo(p) iip € intd,
o (p) _{ p ifp € A

Then o is continuous and slope-preserving. It is, however, neither one-to-
one nor onto.

Example 2. A simple close curve with cusps. Let C be the curve con-
sisting of the arcs

{(®, =1 —cosx)|—7 = x < 7}
and
{(x,1 +cosx)|] = = x £ n}.

This curve isillustrated in Figure 4. It hasa cusp at (—m, 0) and at (m, 0).

\

FiGure 4
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Let 4 denote the arc consisting of the points of {(x,1 + cosx)|
—7/2 £ x £ 7/2} and define a map ¢ of C onto 4 by

(x—m1+cos(x—7)) fr/2=x=nr
o((x, —1 —cosx)) = {(—x,1 -+ cos (—x)) if —7/2 <x < w/2
x+7m14+cos(x+m) f —rEx= —7/2

and

(m —x,1 + cos (# — x)) fr/2=<x=nx
a((x,1 4+ cosx)) = (x,1 + cosx) f—r/2 2x=<7n/2
(=7 —x,14+cos(—m —x)) f—r=x= —7/2.

Again, ¢ is a continuous, slope-preserving map of C to C. Of course, o is
neither one-to-one nor onto C.

The curve C illustrated in Figure 3 has no tangent vector with inclina-
tion /4, for instance, while the curve of Figure 4 has no tangent vector
with inclination 7/2. The curve C illustrated schematically in Figure 5
has tangent vectors with inclination 0 £ 6 < 27, yet it is a straight-
forward matter to construct a continuous, slope-preserving map of C onto
the arc 4.

Each of the curves described above is simple differentiable. Indeed, for
our purposes only simple differentiable curves need apply. A simple,

FIGURE 5
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closed curve C containing a proper line segment will evidently give rise
to infinitely many continuous, slope-preserving maps of C to itself.

Slope-preserving maps of smooth curves. In this section we intend
to prove the result announced in the introduction.

We call a simple differentiable curve ordinary if it contains only
ordinary points.

LeEmmMA 5. Let p be a continuous, slope-preserving map of a simple,
smooth, closed curve C onto a simple, ordinary curve A* = A*(aq, a1).

1) Ifgo < ¢1 < ... < gqpareall inflection points of C then p|A4 (qi—1, g1)
is one-to-one, for each 1 = 1,2, ..., k.

ii) For each 1 = 1,2, ..., k, there is an open neighbourhood N(q;) of
q; such that p(N(q:)) ts a one-sided neighbourhood of p(g:).

(iii) If ao #£ ay then every p € p~(ao) \J p~'(a1) s an inflection point
of C.

Proof. It is enough to observe that a point p of C is ordinary if there is
an open neighbourhood N (p) of p such that, forr, s € N(p),r < p <'s,
T, is not parallel to 7.

LEMMA 6. Let p be a continuous, slope-preserving map of a simple,
smooth, closed curve C onto a simple ordinary curve A* = A*(a,, a,). Let
po € p~Hay). Then

too (P) = koo (p(P))
for all p € C, or

poo (P) = —hiay (p(P))
forall p € C.

Proof. Let 2 (py) = {po < p1 < p2 < ... < poa} with p, = po. We
shall show first that
ppo (P3) = Moy (p(ps)) foreach ¢ =0,1,2, ... n.

To this end, let I denote the set of all inflection points of C and let
¢, ¢’ be distinct, successive, members of I, that is,

intd(g, ¢)MNI=49.
Then, for any p € C, u, is either strictly increasing or strictly decreasing
on A(q, ¢"). Now, ppe (pim1) = mp, (Ps) (thatis, up,_,(p;) = 0) if and only
if there is an odd number of inflection points in int 4 (p -1, p1)-

Let wp,_,(p;) = 0. Then there are elements q1, g», . . ., ¢z of I, k odd,
satisfying

Pia << @e<...<@G<p:= G
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By Lemma 6 (ii),
p(A(q1, g2)) € A*(p(pi-1), p(q1)),

and, in fact,

p(A(q1, q111)) © A*(p(pi-1, q1))
for 1 =1 =< k and ! odd. Therefore, p(p:) € A*(p(pi-1), p(qx)). As p is
slope-preserving,

A*(p(pi-1), p(q)) N P (@) = {p(pi-1)}
and so p(p:) = p(p+-1) and

Me(pi-1) (P(Pi)) = 0.

Similar considerations show that
'F‘p(m—x)(P(Pi))l =m
if
|l‘m—1(1>1)| = w.

Now, 4* is ordinary, so us(a) = 0 for all @ € A4*, or else pg(a) =0
for all @ € A*. But p is a map of C onto A* so either p,,(p) = 0 for all
p € C,orelse uy,(p) = 0forall p € C. As

P"lio(pO) =0= .“ao(GO) = ﬂa0<p<p0))
our claim is established.

This together with Lemma 5(i) completes the proof.

COROLLARY 7. Let p be a continuous, slope-preserving map of « simple,
smooth, closed curve onto a simple, ordinary curve A*. Then A* s closed.

Proof. This follows at once from the fact that

ta, (p(p0)) = 0,
pao(p(pn)) = 27 and
ay = p(po) = p(pn).

LEMMA 8. Let A be a simple, smooth arc. Then there exists a continuous,
slope-preserving map of A onto an ordinary arc.

Proof. Let A" be a spiral (logarithmic or hyperbolic, see Figure 6)
such that for any p € 4, there is at least one ¢ € A’ with T, parallel
to T,. An appropriate segment of 4’ will provide the required ordinary
arc.

THEOREM 9. Let o be a continuous, slope-preserving map of a simple,
smooth, closed curve C to itself. Then o is a homeomorphism and either
a(p) = pforallp € C,ora(p) = —p for all p € C (where o(p) denotes
the tangent vector of C at a(p)).
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“~
'
Logarithmic spiral Hyperbolic spiral
log r = a#b, ¢ constant. r = «, a constant.

FIGURE 6

Proof. If ¢(C) # C then ¢(C) is a simple, smooth arc. There is, then,
by Lemma 8, a continuous, slope-preserving map p of ¢(C) onto an
ordinary arc 4’. Then p o ¢ is a continuous, slope-preserving map of C
onto A’, which is impossible (cf. Corollary 7). Therefore, ¢ is onto.

As |2 (p)| is finite for every p € C, and T, is parallel to 7, it follows
that ¢ must also be one-to-one, whence ¢ is a homeomorphism.

Finally, each of the sets {p € Clo(p) = p} and {p € Cle(p) = —p}
is closed in C. As C is connected one of these must be empty.

LeEmMmA 10. Let ¢ be « continuous, slope-preserving map of a simple,
smooth, closed curve C to itself. Then o(a(p)) = p for each p € C.

Proof. Let us suppose that there is p € C such that
Ho')i=0,1,...,n— 1} =n=3
while ¢"(p) = p.

We shall show that ¢i(p) < ¢t (p) foreachs =0,1,2,...,n — 2o0r
ci(p) > o't (p)foreachs = 0,1, 2,...,n — 2. Tosee this we need only
verify that o(p) < o2(p) if p < o(p).

Let

A, ) NPp) =p=ps<pr < p2< ... < pp=a(p)}.
If o(p1) < pr = o(p) then o(p1) = pr—1. Therefore,
a(pe) = pr > a(p1) = pr1 > a(p2) = pra2> ... > a(pr) = po=p

SO

o*(p) = o(o(po)) = o(ps) = p,
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contrary to our supposition. Thus, ¢(po) < o(p1). From the fact that o
is one-to-one we deduce that

o(p) < olp) <...<a(pr) = ().
Let us then assume that
p=0"(p) <alp) <...< "' (p)
and ¢"(p) = p. Then

C= EJOA(H(p), " p)),

and from

27 = w(C) = ooy (0" (P)) = :Zonai@(a”‘(p)).

Moreover, o(p) = pforall p € Core(p) = —pforall p € C. In either

case from
a(A (a7 (p), a'(p))) = A(a'(p), a**(p))
we conclude that
Be 1) (01(P)) = maign (0" (P))
fori =1,2,...,n — 1. Therefore,
21 = nugoy (0 (p)) = nup(a(p))
and
(o (p)) = 27/n.

But ¢(p) = =£p so u,(s(p)) is an integral multiple of = which is impos-
sible unless # = 1 or n = 2.

Finally, we are ready to complete the proof of our main result. (Note
that while Theorem 9 discloses an important feature of the collection of
all continuous slope-preserving maps of simple smooth closed curves it
does not yet enumerate them.)

THEOREM 11. Let o be a continuous, slope-preserving map of a simple,
smooth, closed curve C to itself. Then either o 1s the identity map of C
(a(p) = p for each p € C) or o is the unique antipodal map of C (o (p) =
—p for each p € C).

Proof. Suppose there are points p,, p1 of C satisfying a(po) # po yet
a(p1) = p1. Then o(p,) = p: implies that o(p) = p forall p € C. Now
from o (o (po)) = po it follows that

koo (0 (po)) = k-2
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and, as in the proof of Lemma 10 above,

As this is impossible we conclude that either ¢ is the identity map, or
else, s(p) = —pforall p € C.

Suppose that o(p) = —p forall p € C. Let py € C and suppose that
a(po) = pi, where P (po) = {po < p1 < p2 < ... < pya} and p, = po.
Evidently, |2 (p,)| must be even, that is, n is even, and since ¢ is a
homeomorphism 7 = n/2. It follows that ¢ is unique.

While implicit in the proof of Theorem 11 it is perhaps appropriate to
record

COROLLARY 12. Let o be a continuous map of a simple, smooth, closed
curve C to itself. If a(p) = p for each p € Cthen a(p) = p for each p € C.
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