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On the (𝑘 + 2, 𝑘)-problem of Brown, Erdős
and Sós for 𝑘 = 5, 6, 7

Stefan Glock*, Jaehoon Kim†, Lyuben Lichev, Oleg Pikhurko‡
and Shumin Sun§

Abstract. Let 𝑓 (𝑟 ) (𝑛; 𝑠, 𝑘) denote the maximum number of edges in an 𝑛-vertex 𝑟-uniform hyper-
graph containing no subgraph with 𝑘 edges and at most 𝑠 vertices. Brown, Erdős and Sós [New
directions in the theory of graphs (Proc. Third Ann Arbor Conf., Univ. Michigan 1971), pp. 53–63, Academic
Press 1973] conjectured that the limit lim𝑛→∞ 𝑛−2 𝑓 (3) (𝑛; 𝑘 + 2, 𝑘) exists for all 𝑘 . The value of the
limit was previously determined for 𝑘 = 2 in the original paper of Brown, Erdős and Sós, for 𝑘 = 3 by
Glock [Bull. Lond. Math. Soc., 51 (2019) 230–236] and for 𝑘 = 4 by Glock, Joos, Kim, Kühn, Lichev and
Pikhurko [Proc. Amer. Math. Soc., Series B, 11 (2024) 173–186] while Delcourt and Postle [Proc. Amer.
Math. Soc., 152 (2024), 1881–1891] proved the conjecture (without determining the limiting value).
In this paper, we determine the value of the limit in the Brown–Erdős–Sós Problem for 𝑘 ∈ {5, 6, 7}.
More generally, we obtain the value of lim𝑛→∞ 𝑛−2 𝑓 (𝑟 ) (𝑛; 𝑟 𝑘 − 2𝑘 + 2, 𝑘) for all 𝑟 > 3 and
𝑘 ∈ {5, 6, 7}. In addition, by combining these new values with recent results of Bennett, Cushman
and Dudek [arxiv:2309.00182, 2023] we obtain new asymptotic values for several generalised Ramsey
numbers.

1 Introduction

Given a family F of 𝑟-uniform hypergraphs (in short, 𝑟-graphs), denote by ex(𝑛;F ) the
Turán number ofF , i.e. themaximumnumber of edges in an 𝑛-vertex 𝑟-graph containing
no element ofF as a subgraph. Turán problems for hypergraphs are notoriously difficult
and we still lack an understanding of even seemingly simple instances such as when F
forbids the complete 3-graph on 4 vertices. We refer the reader to the surveys [19, 28]
for more background. In this paper, we focus on the family F (𝑟 ) (𝑠, 𝑘) of all 𝑟-graphs
with 𝑘 edges and at most 𝑠 vertices.

Brown, Erdős and Sós [4] launched the systematic study of the function

𝑓 (𝑟 ) (𝑛; 𝑠, 𝑘) := ex(𝑛;F (𝑟 ) (𝑠, 𝑘)).

The case 𝑟 = 2 (resp. 𝑟 = 3) of the problem was previously studied by Erdős [9] (resp.
Brown, Erdős and Sós [5]). Since then, the asymptotics of 𝑓 (𝑟 ) (𝑛; 𝑠, 𝑘) as 𝑛 → ∞ have
been intensively investigated for various natural choices of parameters 𝑟, 𝑠, 𝑘 (see e.g. [1,
6, 11, 13, 15, 18, 23, 25, 27, 29]). For instance, it includes the celebrated (6, 3)-theorem of
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Ruzsa and Szemerédi [25] (namely, when (𝑟, 𝑠, 𝑘) = (3, 6, 3)), as well as the notoriously
difficult (7, 4)-problem (namely, when (𝑟, 𝑠, 𝑘) = (3, 7, 4)). Beyond its significance of
being a fundamental Turán problem, the Brown–Erdős–Sós function is closely related
to problems fromother areas such as additive combinatorics (see e.g. [25]), coding theory
(e.g. the case 𝑘 = 2), hypergraph packing and designs (see below).

Brown, Erdős and Sós [4] proved that

Ω(𝑛(𝑟 𝑘−𝑠)/(𝑘−1) ) = 𝑓 (𝑟 ) (𝑛; 𝑠, 𝑘) = 𝑂 (𝑛 d(𝑟 𝑘−𝑠)/(𝑘−1) e).

In this paper, we are interested in the case when the exponent in both the lower and
the upper bound is equal to 2, i.e. 𝑠 = 𝑟𝑘 − 2𝑘 + 2. In this setting, the natural question
is whether 𝑛−2 𝑓 (𝑟 ) (𝑛; 𝑟𝑘 − 2𝑘 + 2, 𝑘) converges to a limit as 𝑛 → ∞; in fact, already
Brown, Erdős and Sós [4] considered this question and conjectured that the limit exists
for 𝑟 = 3. They verified their conjecture for 𝑘 = 2 by showing that the limit is 1/6.
Glock [13] proved that, when 𝑘 = 3, the limit exists and is equal to 1/5. Recently, Glock,
Joos, Kim, Kühn, Lichev and Pikhurko [15] solved the case 𝑘 = 4 by showing that the
limit equals to 7/36.

Already the original work of Brown, Erdős and Sós [4, 5] pointed connections
to (approximate) designs: in particular, it was observed by them that Steiner triple
systems (when they exist) give extremal examples for 𝑘 = 2. More generally, the cel-
ebrated theorem of Rödl [24] which solved the Erdős–Hanani problem from 1965 on
asymptotically optimal clique coverings of complete hypergraphs can be phrased as

lim
𝑛→∞

𝑛−𝑡 𝑓 (𝑟 ) (𝑛; 2𝑟 − 𝑡, 2) = (𝑟 − 𝑡)!
𝑟 !

. (1.1)

Furthermore, the more recent results in [13, 15] linked the Brown–Erdős–Sós Problem
to almost optimal graph packings. Namely, in [13], 𝐹-packings of complete graphs with
some special graph 𝐹 are used, and in [15], a significant strengthening was needed to
find “high-girth” packings. These structures are related to another famous problem of
Erdős in design theory, namely the existence of high-girth Steiner triple systems, which
was recently resolved by Kwan, Sah, Sawhney and Simkin [20].

In a recent breakthrough, Delcourt and Postle [8] proved the Brown–Erdős–Sós con-
jecture, namely, that for 𝑟 = 3 and any 𝑘 > 2 the limit exists, without determining its
value. Moreover, as observed by Shangguan [26], their approach generalises to every
uniformity 𝑟 > 4. Thus the limit lim𝑛→∞ 𝑛−2 𝑓 (𝑟 ) (𝑛; 𝑟𝑘 − 2𝑘 + 2, 𝑘) exists for all 𝑟 > 3
and 𝑘 > 2.

While the existence of the limits is an important step forward, it would be very inter-
esting to actually determine the limiting values, in particular in view of the fact that only
few asymptotic results on degenerate hypergraph Turán problems of quadratic growth
are currently known.

In this paper, we determine the limit for 𝑘 = 5, 6, 7 and arbitrary uniformity 𝑟 > 3,
as given by the following four theorems. (Recall that the limit for 𝑘 = 2 is given in (1.1)
while the cases 𝑘 = 3, 4 were settled in [13, 15, 27].)

The following two results show that, for 𝑘 = 5, 7, the limiting value is the same as for
𝑘 = 3.

Theorem 1.1 For every 𝑟 > 3, we have lim𝑛→∞ 𝑛−2 𝑓 (𝑟 ) (𝑛; 5𝑟 − 8, 5) = 1
𝑟2−𝑟−1 .
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Theorem 1.2 For every 𝑟 > 3, we have lim𝑛→∞ 𝑛−2 𝑓 (𝑟 ) (𝑛; 7𝑟 − 12, 7) = 1
𝑟2−𝑟−1 .

However, the case 𝑘 = 6 exhibits different behaviour when 𝑟 = 3 and 𝑟 > 4 (which
parallels the situation for 𝑘 = 4), as established by the following two theorems.

Theorem 1.3 lim𝑛→∞ 𝑛−2 𝑓 (3) (𝑛; 8, 6) = 61
330 .

Theorem 1.4 For every 𝑟 > 4, we have lim𝑛→∞ 𝑛−2 𝑓 (𝑟 ) (𝑛; 6𝑟 − 10, 6) = 1
𝑟2−𝑟 .

Very recently, Letzter and Sgueglia [21] proved various results on the existence and
the value of the limit lim𝑛→∞ 𝑛−𝑡 𝑓 (𝑟 ) (𝑛, 𝑘 (𝑟 − 𝑡) + 𝑡, 𝑘). In particular, for 𝑡 = 2, they
independently re-proved our upper bounds in Theorems 1.1 and 1.2 when 𝑟 is suffi-
ciently large, and showed that 𝑓 (𝑟 ) (𝑛; 𝑘𝑟 −2𝑘 +2, 𝑘) = ( 1

𝑟2−𝑟 + 𝑜(1))𝑛
2 when 𝑘 is even

and 𝑟 > 𝑟0 (𝑘) is large enough.
An application to generalised Ramsey numbers. The following generalisation of
Ramsey numbers was introduced by Erdős and Shelah [10], and its systematic study was
initiated by Erdős and Gyárfás [12]. Fix integers 𝑝, 𝑞 such that 𝑝 > 3 and 2 6 𝑞 6

(𝑝
2
)
.

A (𝑝, 𝑞)-colouring of 𝐾𝑛 is a colouring of the edges of 𝐾𝑛 such that every 𝑝-clique has
at least 𝑞 distinct colours among its edges. The generalised Ramsey number GR(𝑛, 𝑝, 𝑞)
is the minimum number of colours such that 𝐾𝑛 has a (𝑝, 𝑞)-colouring. One relation to
the classical Ramsey numbers is thatGR(𝑛, 𝑝, 2) > 𝑡 if and only if every 𝑡-colouring of
the edges of 𝐾𝑛 yields a monochromatic clique of order 𝑝.

In their work, Erdős and Gyárfás [12] showed that, for every 𝑝 > 3 and 𝑞lin :=
(𝑝
2
)
−

𝑝 + 3,
GR(𝑛, 𝑝, 𝑞lin) = Ω(𝑛) and GR(𝑛, 𝑝, 𝑞lin − 1) = 𝑜(𝑛),

while for every 𝑝 > 3 and 𝑞quad :=
(𝑝
2
)
− b𝑝/2c + 2,

GR(𝑛, 𝑝, 𝑞quad) = Ω(𝑛2) and GR(𝑛, 𝑝, 𝑞quad − 1) = 𝑜(𝑛2).

Thus, 𝑞lin and 𝑞quad are the thresholds (that is, the smallest values of 𝑞) for GR(𝑛, 𝑝, 𝑞)
to be respectively linear and quadratic in 𝑛.

Very recently, Bennett, Cushman and Dudek [2] found the following connection
between generalised Ramsey numbers and the Brown–Erdős–Sós function.

Theorem 1.5 ([2, Theorem 3]) For all even 𝑝 > 6, we have

lim
𝑛→∞

GR(𝑛, 𝑝, 𝑞quad)
𝑛2

=
1
2
− lim

𝑛→∞
𝑓 (4) (𝑛; 𝑝, 𝑝/2 − 1)

𝑛2
.

In particular, the limit on the left exists by [26].

By combining this with our results, we obtain the following new asymptotic values
for the generalised Ramsey numbers at the quadratic threshold.

Theorem 1.6 The following equalities hold:

lim
𝑛→∞

GR(𝑛, 12, 62)
𝑛2

=
9
22
, lim
𝑛→∞

GR(𝑛, 14, 86)
𝑛2

=
5
12
, lim
𝑛→∞

GR(𝑛, 16, 114)
𝑛2

=
9
22
. �
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Bennett, Cushman and Dudek [2, Theorem 4] also proved that, for all 𝑝 > 3, it holds
that

lim inf
𝑛→∞

GR(𝑛, 𝑝, 𝑞lin)
𝑛

> 1 − lim
𝑛→∞

𝑓 (3) (𝑛; 𝑝, 𝑝 − 2)
𝑛2

. (1.2)

Using our above results in the cases when 𝑟 = 3 and 𝑘 = 𝑝 − 2 is in {5, 6, 7}, we get the
following lower bounds at the linear threshold:

lim inf
𝑛→∞

GR(𝑛, 7, 17)
𝑛

>
4
5
, lim inf

𝑛→∞
GR(𝑛, 8, 23)

𝑛
>

269
330

, lim inf
𝑛→∞

GR(𝑛, 9, 30)
𝑛

>
4
5
.

(1.3)
Note that (1.2) gives only a one-sided inequality. It happens to be tight for 𝑝 = 3 (trivially)
and for 𝑝 = 4 by the result of Bennett, Cushman,Dudek andPrałat [3] thatGR(𝑛, 4, 5) =
( 56+𝑜(1))𝑛. However, (1.2) is not tight for 𝑝 = 5: Gomez-Leos,Heath, Parker, Schwieder
and Zerbib [16] showed thatGR(𝑛, 5, 8) > 6

7 (𝑛−1) while 𝑓 (3) (𝑛; 5, 3) = ( 15 +𝑜(1))𝑛
2,

as proved in [13]. We do not know if the bounds in (1.3) are sharp.

Organisation of the paper. The remainder of this paper is organised as follows.
Section2 introduces somenotation. Anoverviewof our proofs canbe found inSection3.
The lower bounds are proved in Section 4, and the upper bounds are proved in Section 5.
The proof of the upper bound of Theorem 1.3, while using the same general proof strat-
egy, is rather different from the other proofs in detail, so it is postponed until the end.
The final section is dedicated to some concluding remarks.

2 Notation

Throughout the paper, we use the following notation and definitions. LetN denote the
set of positive integers. For𝑚, 𝑛 ∈ N, we denote by [𝑛] the set {1, . . . , 𝑛} and by [𝑚, 𝑛]
the set [𝑛] \ [𝑚 − 1] = {𝑚, . . . , 𝑛}. For a set 𝑋 , we let

(𝑋
𝑠

)
:= {𝑌 ⊆ 𝑋 : |𝑌 | = 𝑠} be

the family of all 𝑠-subsets of 𝑋 . We will often write an unordered pair {𝑥, 𝑦} (resp. triple
{𝑥, 𝑦, 𝑧}) as 𝑥𝑦 (resp. as 𝑥𝑦𝑧). Moreover, for three real numbers 𝑎, 𝑏 and 𝑐 > 0, we write
𝑎 = 𝑏 ± 𝑐 to say that 𝑎 ∈ [𝑏 − 𝑐, 𝑏 + 𝑐]. Also, we write 𝑎 � 𝑏 > 0 to mean that 𝑏 is a
sufficiently small positive real depending on 𝑎.

Given an 𝑟-graph 𝐺 , we denote by 𝑉 (𝐺) the vertex set of 𝐺 and by 𝐸 (𝐺) its edge
set. Moreover, we define |𝐺 | as the number of edges of 𝐺 and 𝑣(𝐺) as the number of
vertices of𝐺 . When it is notationally convenient, wemay identify an 𝑟-graphwith its set
of edges. If we specify only the edge set 𝐸 (𝐺), then the vertex set is assumed to be the
union of these edges, that is, 𝑉 (𝐺) := ⋃

𝑋 ∈𝐸 (𝐺) 𝑋 . For 𝑟-graphs 𝐹 and 𝐻, their union
𝐹 ∪𝐻 and difference 𝐹 \𝐻 have edge sets respectively 𝐸 (𝐹) ∪ 𝐸 (𝐻) and 𝐸 (𝐹) \ 𝐸 (𝐻)
(with their vertex sets being the unions of these edges). We reserve the lowercase letter
𝑟 to denote the uniformity of our hypergraphs.

For positive integers 𝑠 and 𝑘 , an (𝑠, 𝑘)-configuration is an 𝑟-graph with 𝑘 edges and
at most 𝑠 vertices, that is, an element of F (𝑟 ) (𝑠, 𝑘). An 𝑟-graph is called (𝑠, 𝑘)-free if it
contains no (𝑠, 𝑘)-configuration. Let us define another 𝑟-graph family

G (𝑟 )
𝑘

:= F (𝑟 ) (𝑟𝑘 − 2𝑘 + 2, 𝑘) ∪
(
𝑘−1⋃
ℓ=2

F (𝑟 ) (𝑟ℓ − 2ℓ + 1, ℓ)
)
. (2.1)
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Thus, G (𝑟 )
𝑘

includes the family F (𝑟 ) (𝑟𝑘 − 2𝑘 + 2, 𝑘), whose Turán function is the
main object of study of this paper, as well as all analogous 𝑟-graphs for smaller sizes that
are “denser” (that is, are subject to a stronger restriction on the number of vertices). Note
that the family F (𝑟 ) (𝑟ℓ − 2ℓ + 1, ℓ) that appears in the right-hand side of (2.1) for ℓ = 2
happens to be empty when 𝑟 = 3 (however, we include it to have a single formula that
works for all pairs (𝑟, 𝑘)). The family G (𝑟 )

𝑘
is of relevance for both the lower and the

upper bounds (see Theorem 4.1 and Lemma 3.1).
For an 𝑟-graph 𝐺 , a pair 𝑥𝑦 of distinct vertices (not necessarily in

(𝑉 (𝐺)
2

)
) and 𝐴 ⊆

N∪ {0}, we say that𝐺 𝐴-claims the pair 𝑥𝑦 if, for every 𝑖 ∈ 𝐴, there are 𝑖 distinct edges
𝑋1, . . . , 𝑋𝑖 ∈ 𝐸 (𝐺) such that |{𝑥, 𝑦} ∪ (⋃𝑖

𝑗=1 𝑋 𝑗 ) | 6 𝑟𝑖 − 2𝑖 + 2. If 𝑥𝑦 ∈
(𝑉 (𝐺)

2
)
, this is

the same as the existence of an (𝑟𝑖 − 2𝑖 + 2, 𝑖)-configuration 𝐽 ⊆ 𝐺 with {𝑥, 𝑦} ⊆ 𝑉 (𝐽)
for every 𝑖 ∈ 𝐴. When 𝐴 = {𝑖} is a singleton, we just say 𝑖-claims instead of {𝑖}-claims.
By definition, any 𝑟-graph 0-claims any pair (which will be notationally convenient, see
e.g. Lemma 5.1). For 𝑖 > 1, let 𝑃𝑖 (𝐺) be the set of all pairs in

(𝑉 (𝐺)
2

)
that are 𝑖-claimed

by 𝐺 . For example, if 𝑖 = 1, then 𝑃1 (𝐺) is the usual 2-shadow of 𝐺 consisting of all
pairs of vertices 𝑢𝑣 such that there exists some edge 𝑋 ∈ 𝐸 (𝐺) with 𝑢, 𝑣 ∈ 𝑋 . Also, let
𝐶𝐺 (𝑥𝑦) be the set of those 𝑖 > 0 such that the pair 𝑥𝑦 is 𝑖-claimed by𝐺 , that is,

𝐶𝐺 (𝑥𝑦) :=
{
𝑖 > 0 : ∃ distinct 𝑋1, . . . , 𝑋𝑖 ∈ 𝐸 (𝐺)

��{𝑥, 𝑦} ∪ (⋃𝑖
𝑗=1 𝑋 𝑗 )

�� 6 𝑟𝑖 − 2𝑖 + 2
}
.

(2.2)
More generally, for disjoint subsets 𝐴, 𝐵 ⊆ N, we say that 𝐺 𝐴𝐵-claims a pair 𝑥𝑦 if

𝐴 ∩ 𝐶𝐺 (𝑥𝑦) = ∅ and 𝐵 ⊆ 𝐶𝐺 (𝑥𝑦). In the special case when 𝐴 = {1} and 𝐵 = {𝑖}
we just say 1𝑖-claims; also, we let 𝑃 1𝑖 (𝐺) := 𝑃𝑖 (𝐺) \ 𝑃1 (𝐺) denote the set of pairs in(𝑉 (𝐺)

2
)
that are 1𝑖-claimed by𝐺 .

A diamond is an 𝑟-graph consisting of two edges that share exactly 2 vertices. Thus, a
(2𝑟 − 3, 2)-free 𝑟-graph𝐺 12-claims a pair of vertices 𝑥𝑦 if and only if 𝑥𝑦 ∉ 𝑃1 (𝐺) and
there is a diamond {𝑋1, 𝑋2} ⊆ 𝐺 such that 𝑥, 𝑦 ∈ 𝑋1 ∪ 𝑋2.

3 Overview of the proofs

For the lower bounds, we combine a result from [15] that allows us to build relatively
dense F (𝑟 ) (𝑟𝑘 − 2𝑘 + 2, 𝑘)-free 𝑟-graphs𝐺 from a fixed G (𝑟 )

𝑘
-free 𝑟-graph 𝐹 . Namely,

𝐺 will be the union of many edge-disjoint copies of 𝐹 and, of course, the main issue
is to avoid forbidden subgraphs coming from different copies of 𝐹 . In order to attain
the desired lower bound on |𝐺 |, the packed copies of 𝐹 will be allowed to share pairs
(but not triples) of vertices. Pairs inside 𝑉 (𝐹) that will be allowed to be shared will be
limited to those 𝑢𝑣 for which 𝐶𝐹 (𝑢𝑣) does not contain any 𝑖 with 1 6 𝑖 6 𝑘/2. This
will automatically exclude forbidden subgraphs in𝐺 coming from atmost 2 copies of 𝐹 .
Then, a result from [15] will be used to eliminate any forbidden configurations whose
edges come from at least 3 different copies of 𝐹 .

If 𝑟 = 3 and 𝑘 ∈ {5, 7}, then we take for 𝐹 the union of many diamonds
{𝑥𝑖𝑦𝑖𝑎, 𝑥𝑖𝑦𝑖𝑏} sharing only the pair 𝑎𝑏 of vertices. This is a straightforward general-
isation of the construction for 𝑘 = 3 by Glock [13]. However, if 𝑟 > 4 and 𝑘 ∈ {5, 7},
then finding a suitable 𝐹 is a new difficult challenge, not present in [15]. The initial idea
that eventually led to its resolution was to take two sufficiently sparse (𝑟 − 2)-graphs
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with edge sets {𝐾1
1 , . . . , 𝐾

𝑡
1} and {𝐾1

2 , . . . , 𝐾
𝑡
2}, and let 𝐹 be the union of diamonds

{{𝑥𝑖 , 𝑦𝑖} ∪ 𝐾 𝑖
1, {𝑥𝑖 , 𝑦𝑖} ∪ 𝐾 𝑖

2}, 1 6 𝑖 6 𝑡, for new vertices 𝑥𝑖 , 𝑦𝑖 . Some further ideas are
needed to fix the two big issues of this construction: namely, avoiding any subgraph in
G (𝑟 )
𝑘

and having “overhead" (like the pair {𝑎, 𝑏} in the construction for 𝑟 = 3) of size
neglibile compared to |𝐹 |. We refer the reader to Section 4.1 for details.

For the case (𝑟, 𝑘) = (3, 6), we provide an explicit construction of a 3-graph 𝐹63 on
63 vertices and 61 edges, while for 𝑟 > 4, 𝑘 = 6, the lower bound comes from the trivial
construction when 𝐹 is a single edge.

Concerning the upper bounds, we will need the following result (proved for 𝑟 = 3
in [8, Theorem 1.7] and then extended to any 𝑟 in [26, Lemma 5]) which allows us to get
rid of smaller “denser" structures.

Lemma 3.1 ([26, Lemma 5]) For all fixed 𝑟 > 3 and 𝑘 > 3,

lim sup
𝑛→∞

𝑓 (𝑟 ) (𝑛; 𝑟𝑘 − 2𝑘 + 2, 𝑘)
𝑛2

6 lim sup
𝑛→∞

ex(𝑛,G (𝑟 )
𝑘

)
𝑛2

. (3.1)

Since F (𝑟 ) (𝑟𝑘 − 2𝑘 + 2, 𝑘) ⊆ G (𝑟 )
𝑘

, the opposite inequality in (3.1) trivially holds.
Also, the main results of [8, 26] show that both ratios in (3.1) tend to a limit (which is
the same for both) as 𝑛 → ∞. By Lemma 3.1, in order to obtain an upper bound on
𝑓 (𝑟 ) (𝑛; 𝑟𝑘 − 2𝑘 + 2, 𝑘), it is enough to consider only those 𝑟-graphs 𝐺 on [𝑛] which
are G (𝑟 )

𝑘
-free. For any such 𝑟-graph 𝐺 , we define a partition of the edge set 𝐸 (𝐺) by

starting with the trivial partition into single edges and iteratively merging parts as long
as possible using some merging rules (that depend on 𝑘 and 𝑟). Then, we specify a set
of weights that each final part (which is a subgraph 𝐹 ⊆ 𝐺) attributes to some of the
pairs in

(𝑉 (𝐹 )
2

)
and use combinatorial arguments to show that every vertex pair receives

total weight at most 1. Thus, the total weight assigned by the parts is at most
(𝑛
2
)
which

translates into an upper bound on |𝐺 |. The main difficulty lies in designing the merging
and weighting rules, which have to be fine enough to detect even the extremal cases
(which are quite intricate constructions) but coarse enough to be still analysable.

The most challenging case here is (𝑟, 𝑘) = (3, 6), where our solution uses a rather
complicated weighting rule with values in {0, 6

61 ,
11
61 ,

25
61 ,

1
2 ,

36
61 ,

55
61 , 1}. Note that any

weighting rule that gives the correct limit value of 61
330 has to be tight on optimal pack-

ings of the 63-vertex configuration 𝐹63 from the lower bound. Unfortunately, this seems
to force any such rule to be rather complicated.

4 Lower Bounds

To prove our lower bounds, we use the following result, which is derived from [15].

Theorem 4.1 ([15, Theorem 3.1]) Let 𝑘 > 2, 𝑟 > 3 and let 𝐹 be aG (𝑟 )
𝑘

-free 𝑟-graph. Then,

lim inf
𝑛→∞

𝑛−2 𝑓 (𝑟 ) (𝑛; 𝑟𝑘 − 2𝑘 + 2, 𝑘) > |𝐹 |
2 |𝑃6 b𝑘/2c (𝐹) |

,
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where we define 𝑃6𝑡 (𝐹) := {𝑥𝑦 ∈
(𝑉 (𝐹 )

2
)
: 𝐶𝐹 (𝑥𝑦) ∩ [𝑡] ≠ ∅} to consist of all pairs 𝑥𝑦 of

vertices of 𝐹 such that 𝐶𝐹 (𝑥𝑦) contains some 𝑖 with 1 6 𝑖 6 𝑡.

We remark that the G (𝑟 )
𝑘

-freeness captures the two conditions needed for 𝐹 in [15,
Theorem 3.1] and that the choice of 𝐽 := 𝑃6 b𝑘/2c (𝐹) there guarantees that 𝐽 contains
the 2-shadow of 𝐹 and that, using the notation from [15], the pair (𝐹, 𝐽) has non-edge
girth greater than 𝑘/2.

To give the reader a little bit of motivation for this theorem, we briefly sketch where
the ratio |𝐹 |

2 |𝐽 | comes from, where 𝐽 = 𝑃6 b𝑘/2c (𝐹). The proof goes via packing many
edge-disjoint copies of the graph 𝐽 and then putting a copy of 𝐹 “on top” of each 𝐽 .
Note that the total number of edge-disjoint copies of 𝐽 that we can find in𝐾𝑛 is roughly(𝑛
2
)
/|𝐽 |, and each copy of 𝐹 adds new |𝐹 | edges to our 𝑟-graph. Hence, in total, we

will have roughly |𝐹 |
2 |𝐽 | 𝑛

2 edges, as desired. To ensure that the resulting 𝑟-graph remains
(𝑟𝑘 − 2𝑘 + 2, 𝑘)-free, the recently developed theory of conflict-free hypergraphmatch-
ings [7,14] is used, and theG (𝑟 )

𝑘
-freeness condition of Theorem 4.1 is necessary to apply

this method. We also remark that Theorem 4.1 was used in [15] to settle the case 𝑘 = 4,
and byDelcourt and Postle [8] and by Shangguan [26] to prove the existence of the limits.

4.1 Lower bounds in Theorems 1.1 and 1.2

We apply Theorem 4.1 to derive first the lower bounds in Theorems 1.1 and 1.2 (that is,
when 𝑘 ∈ {5, 7}). Note that if 𝐹 is a diamond then

|𝐹 |
2 |𝑃1 (𝐹) |

=
2

2(2
(𝑟
2
)
− 1)

=
1

𝑟2 − 𝑟 − 1

is exactly the bound we are aiming for. The problem is that if 𝑘 > 4 and we apply
Theorem 4.1 for this 𝐹 then 𝑃6 b𝑘/2c (𝐹) includes all pairs inside𝑉 (𝐹) and the theorem
gives a weaker bound. Thus, we essentially want 𝐹 to consist of many edge-disjoint dia-
monds in such away that the 12-claimed pairs are “reused” bymany different diamonds.
To illustrate our approach, we start with the simpler 3-uniform case.

Proof of the lower bounds in Theorems 1.1 and 1.2 with 𝑟 = 3 Recall that we forbid
F (3) (𝑘 + 2, 𝑘) for 𝑘 = 5, 7 here. Fix a positive integer 𝑡 and consider the 3-graph 𝐹
consisting of 𝑡 diamonds {𝑥𝑖𝑦𝑖𝑎, 𝑥𝑖𝑦𝑖𝑏} where the 2𝑡 vertices 𝑥1, ... , 𝑥𝑡 , 𝑦1, ... , 𝑦𝑡 are
all distinct.

Let us show that 𝐹 is G (3)
5 -free and G (3)

7 -free. Take any set 𝑋 ⊆ 𝑉 (𝐹) of size ℓ. If
{𝑎, 𝑏} ⊆ 𝑋 then 𝑋 can contain at most b(ℓ − 2)/2c of the pairs 𝑥𝑖𝑦𝑖 and thus spans at
most twice as many edges in 𝐹 . If 𝑋 is disjoint from {𝑎, 𝑏} then 𝑋 spans no edges. In
the remaining case |𝑋 ∩ {𝑎, 𝑏}| = 1, the set 𝑋 contains at most b(ℓ − 1)/2c of the pairs
𝑥𝑖𝑦𝑖 and thus spans at most this many edges in 𝐹 . Thus, for ℓ = 4, 5, 6, 7, 9, we see that
𝑋 spans at most 2, 2, 4, 4, 6 edges, respectively. Thus, 𝐹 is G (3)

5 -free and G (3)
7 -free, as

claimed.
The above argument gives that 𝐹 is (5, 3)-free and that every (4, 2)-configuration in

𝐹 is {𝑥𝑖𝑦𝑖𝑎, 𝑥𝑖𝑦𝑖𝑏} for some 𝑖 ∈ [𝑡]. Thus, 𝑃63 (𝐹) \𝑃1 (𝐹) consists only of the pair 𝑎𝑏.
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As a result, Theorem 4.1 implies that, for 𝑘 = 5, 7,

lim inf
𝑛→∞

𝑛−2 𝑓 (3) (𝑛; 𝑘 + 2, 𝑘) > |𝐹 |
2 |𝑃63 (𝐹) |

=
2𝑡

2(5𝑡 + 1) .

By taking 𝑡 → ∞, we conclude that the lim-inf is at least 1/5, as desired. �

Let us now informally describe how one can generalise the above construction to
higher uniformity 𝑟 > 4. We will often use the following definition. Given an 𝑟-graph
𝐺 , the girth of 𝐺 is the smallest integer ℓ > 2 such that there exist edges 𝑋1, ... , 𝑋ℓ
spanning at most (𝑟 − 2)ℓ + 2 vertices. For example, the girth is strictly larger than 2
if and only if 𝐺 is linear (that is, every two edges intersect in at most one vertex). In
informal discussions, we use the phrase “high girth” to assume that the girth is at least
an appropriate constant.

Similar to the above 𝑟 = 3 case,wewould like to find a suitable 𝑟-graph𝐹 as the union
of diamonds such that the set of 2- or 3-claimed pairs not in 𝑃1 (𝐹) is much smaller
than |𝐹 |. The difficulty here is that, for example, if a pair is 12-claimed by two diamonds,
then, by the (4𝑟−7, 4)-freeness requirement ofTheorem4.1, these twodiamonds cannot
share any other vertices. In particular, we cannot simply replace 𝑎 and 𝑏 by two (𝑟 − 2)-
sets in the above construction for 𝑟 = 3. One approach would be to consider two linear
(𝑟 − 2)-graphs K1 and K2 on disjoint vertex sets 𝐴1 and 𝐴2 with |K1 | = |K2 | and
𝑚 := |𝐴1 | = |𝐴2 |. Let us pick a matching 𝑀 between some edges of K1 and K2, say
consisting of the pairs {𝐾 𝑗

1 , 𝐾
𝑗

2 } for 𝑗 = 1, . . . , |𝑀 |. We add new vertices 𝑥 𝑗 and 𝑦 𝑗 for
each 𝑗 = 1, . . . , |𝑀 | and define 𝐹 = 𝐹 (𝑀) as the 𝑟-graph with edge set

𝐸 (𝐹) :=
{
𝐾

𝑗

1 ∪ {𝑥 𝑗 , 𝑦 𝑗 } : 𝑗 = 1, . . . , |𝑀 |
} ⋃ {

𝐾
𝑗

2 ∪ {𝑥 𝑗 , 𝑦 𝑗 } : 𝑗 = 1, . . . , |𝑀 |
}
.

(4.1)
Thus,𝐹 is a unionof |𝑀 | diamonds. It is easy to show that𝐹 is necessarily (4𝑟−7, 4)-free
(see Claim 4.7) and that 𝑃 12 (𝐹) is the union of {𝑎𝑏 : 𝑎 ∈ 𝐾 𝑗

1 , 𝑏 ∈ 𝐾 𝑗

2 } for 1 6 𝑗 6 |𝑀 |.
Moreover, we can additionally ensure that K1 and K2 have large girth, which follows
from the recent results on conflict-free hypergraph matchings [7, 14]. As a direct con-
sequence of this high-girth assumption, we can see that we do not get any forbidden
configurations in 𝐹 whenwe use edges only from one “side” of the construction, sayK𝑖 .
Indeed, for any ℓ > 2 such edges, by the high-girth assumption, the union of the corre-
sponding (𝑟 − 2)-sets inK𝑖 has more than (𝑟 − 2 − 2)ℓ + 2 vertices, and when adding
the 2ℓ new vertices 𝑥 𝑗 and 𝑦 𝑗 as above, we get more than 𝑟ℓ − 2ℓ + 2 vertices, that is,
there is no (𝑟ℓ − 2ℓ + 2, ℓ)-configuration.

There are still two serious issues even for 𝑘 = 5. First, we have not guaranteed that the
number of 12-claimed pairs ismuch smaller than the number of edges in 𝐹 . Indeed, even
if |𝑀 | = Θ(𝑚2) (which is the largest possible order of magnitude by |𝑀 | 6

(𝑚
2
)
/
(𝑟−2

2
)
),

the set 𝑃 12 (𝐹) may have size comparable to |𝐹 | = 2 |𝑀 | since potentially a positive
fraction of pairs between 𝐴1 and 𝐴2 could be 12-claimed. To ensure that |𝑃 12 (𝐹) | is
much smaller than |𝐹 |, we form a random bipartite graph 𝐺3 with parts 𝐴1 and 𝐴2
where every edge is included with small probability 𝛼. Then, we allow 𝐾

𝑗

1 ∈ K1 to be
matched to 𝐾 𝑗

2 ∈ K2 only if all pairs in 𝐾1
𝑗
× 𝐾2

𝑗
are edges of 𝐺3. This ensures that

𝑃 12 (𝐹) is a subgraph of𝐺3 and hence |𝑃 12 (𝐹) | 6 |𝐺3 | ≈ 𝛼𝑚2.
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The second (much more complicated) problem is that we have to avoid dense con-
figurations when using edges from both sides of the construction, which could overlap
significantly in the “middle layer” formed by the vertices 𝑥 𝑗 , 𝑦 𝑗 . Hence, roughly speak-
ing, whenwe have two collections of (𝑟−2)-sets inK1 andK2 that contain few vertices,
wewant to avoidmatchingmany of these (𝑟−2)-sets with each other to formdiamonds.
Formally, we construct an auxiliary bipartite graph 𝐻 where 𝐾1 ∈ K1 and 𝐾2 ∈ K2 are
adjacent if {{𝑎, 𝑏} : 𝑎 ∈ 𝐾1, 𝑏 ∈ 𝐾2} is a subset of 𝐸 (𝐺3) (so a diamond could be
attached to 𝐾1, 𝐾2), and we define a family C of sets of disjoint edges of 𝐻 such that
if the matching 𝑀 avoids C, then 𝐹 (𝑀) avoids all forbidden configurations. Then, the
goal is to find a largematching in𝐻 which avoids each of the problematic configurations
in C. However, this would still not be possible with the current construction. Roughly
speaking, the problem is that, for every 𝑢1 ∈ 𝐾 𝑖

1 ∈ K1 and 𝑢2 ∈ 𝐾 𝑖
2 ∈ K2, being able

to attach a diamond to 𝐾 𝑖
1, 𝐾

𝑖
2 implies that 𝑢1𝑢2 ∈ 𝐸 (𝐺3). However, the presence of

𝑢1𝑢2 in 𝐺3 increases significantly the probability that, for any fixed pair 𝐾
𝑗

1 ∈ K1 and
𝐾

𝑗

2 ∈ K2 such that 𝐾 𝑖
1 ∩ 𝐾

𝑗

1 = {𝑢1} and 𝐾 𝑖
2 ∩ 𝐾

𝑗

2 = {𝑢2}, a diamond can be attached
to the pair 𝐾 𝑖

1, 𝐾
𝑖
2. As it turns out, the number of such pairs (𝐾 𝑗

1 , 𝐾
𝑗

2 ) happens to be too
large. To fix this, we first randomly sparsify the complete graphs on 𝐴1 and 𝐴2 with a
well-chosen probability, and then restrict our attention to (𝑟 − 2)-sets in 𝐴1, 𝐴2 which
form cliques in the underlying random graphs. This allows better control on the number
of edges 𝐾 𝑗

1 ∈ K1 and 𝐾
𝑗

2 ∈ K2 containing a pair 𝑢1𝑢2 ∈ 𝐸 (𝐺3).
We will use the following concentration inequality for functions of independent

coordinates satisfying a Lipschitz condition, which is known as the Bounded Difference
Inequality or McDiarmid’s inequality; it can be also derived from the Azuma-Hoeffding
Inequality.

Lemma 4.2 ([22, Lemma 1.2]) Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be independent random variables with
𝑋𝑖 taking values in Λ𝑖 , and let 𝑓 : Λ1 × · · · × Λ𝑛 → R be a function that satisfies the
following Lipschitz condition for some numbers (𝑐𝑖)𝑛𝑖=1: for every 𝑖 ∈ [𝑛] and every two vectors
𝑥, 𝑥 ∈ Λ1 × · · · ×Λ𝑛 that differ only in the 𝑖-th coordinate, it holds that | 𝑓 (𝑥) − 𝑓 (𝑥) | 6 𝑐𝑖 .

Then, the random variable 𝑍 := 𝑓 (𝑋1, . . . , 𝑋𝑛) satisfies

P [ |𝑍 − E [ 𝑍 ] | > 𝑠 ] 6 2 exp

(
− 2𝑠2∑𝑛

𝑖=1 𝑐
2
𝑖

)
.

Let us also recall the classical Chernoff bound stating that, for every binomial random
variable 𝑋 and every 𝑡 > 0,

P [ |𝑋 − E[𝑋] | > 𝑡 ] 6 2 exp
(
− 𝑡2

2(E[𝑋 ]+𝑡/3)

)
,

see e.g. [17, Theorem 2.1].
Furthermore, we will need a simplified version of a result from [14] on the existence

of approximate clique packings of high girth.

Theorem 4.3 ([14, Theorem 1.4]) For all 𝑐0 > 0, ℓ > 2 and 𝑟 > 3, there exists 𝜀0 > 0 such
that, for all 𝜀 ∈ (0, 𝜀0), there exists𝑚0 such that the following holds for all𝑚 > 𝑚0 and 𝑐 >
𝑐0. Let𝐺 be a graph on𝑚 vertices such that every edge of𝐺 is contained in (1±𝑚−𝜀)𝑐𝑚𝑟−2
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cliques of order 𝑟 . Then, there exists a 𝐾𝑟 -packingK in𝐺 of size |K | > (1−𝑚−𝜀3 ) |𝐺 |/
(𝑟
2
)

such that, for every 𝑗 ∈ [2, ℓ] , any set of 𝑗 elements inK spans more than (𝑟−2) 𝑗+2 vertices.

Note that if we consider the packingK returned by Theorem 4.3 as an 𝑟-graph, then
the last requirement is precisely that the girth ofK is larger than ℓ.

Nowwe are ready to provide the construction which establishes the lower bounds in
Theorems 1.1 and 1.2 for 𝑟 > 4.

Lemma 4.4 Fix any integer 𝑟 > 4. Then, for a sufficiently small real𝛼 > 0 and a sufficiently
large integer𝑚, that is, for 1/𝑟 � 𝛼 � 1/𝑚, there exists an 𝑟-graph 𝐹 satisfying each of the
following properties:

(a) 𝐹 is (5𝑟 − 8, 5)-free and (7𝑟 − 12, 7)-free,
(b) 𝐹 is (2𝑟 − 3, 2)-free, (3𝑟 − 5, 3)-free, (4𝑟 − 7, 4)-free and (6𝑟 − 11, 6)-free,
(c) |𝐹 | = Ω(𝛼3/4𝑚2),
(d) |𝑃63 (𝐹) | 6 𝑟2−𝑟−1

2 |𝐹 | + 2𝛼𝑚2.

Proof Let 𝐴1 be a set of size𝑚. Sample every edge of the complete graph on 𝐴1 inde-
pendently with probability 𝛽 := 𝛼3/4 to get a random graph 𝐺1 on 𝐴1. In the sequel,
implicit constants in the𝑂,Ω,Θ-notation may depend on 𝑟 but not on 𝛼 and 𝑚 unless
the dependence is explicitly indicated in a lower index such as𝑂𝛼. We say that an event
holds with high probability if its probability tends to 1 as 𝑚 → ∞.

Claim 4.5 With high probability, 𝐺1 satisfies the following properties.

(i) For every vertex 𝑣 ∈ 𝑉 (𝐺1), we have 𝑑 (𝑣) = Θ(𝛽𝑚).
(ii) For any pair of vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺1), we have |𝑁 (𝑢) ∩ 𝑁 (𝑣) | = Θ(𝛽2𝑚).
(iii) If 𝑟 > 5, then every edge in𝐺1 is contained in (1 ±𝑚−1/3)𝑐𝑚𝑟−4 cliques of size 𝑟 − 2,

where 𝑐 := 𝛽(𝑟−22 )−1/(𝑟 − 4)!.
(iv) There is an (𝑟 − 2)-graph K1 of girth at least 8, with vertex set 𝐴1 and edge set being

a collection of edge-disjoint (𝑟 − 2)-cliques in 𝐺1 such that all but 𝑜(𝑚2) edges of 𝐺1
belong to a clique inK1.

Proof of Claim 4.5 The first two properties follow easily by noting that for a vertex
𝑣 (resp. a pair 𝑢, 𝑣) the probability of failure is e−Ω𝛼 (𝑚) by Chernoff’s bound and then
taking the union bound over all (polynomially many in 𝑚) choices.

Let us turn to the third claim. Fix an edge 𝑢𝑣 ∈ 𝐺1 (that is, we condition on 𝑢𝑣
being sampled). Let 𝑋 be the number of (𝑟 − 2)-cliques in𝐺1 containing 𝑢𝑣. Since each
potential clique containing 𝑢𝑣 has

(𝑟−2
2

)
− 1 edges other than 𝑢𝑣, each of which appears

independently with probability 𝛽, we have

E [ 𝑋 ] =
(𝑚−2
𝑟−4

)
𝛽(

𝑟−2
2 )−1 = 𝑐𝑚𝑟−4 +𝑂𝛼 (𝑚𝑟−5).

Let us show that 𝑋 is concentrated. We use the Bounded Difference Inequality
(Lemma 4.2). Altering the state of a pair with one endvertex among 𝑢, 𝑣 may change the
value of 𝑋 by at most𝑚𝑟−5, and every other edge may change the value of 𝑋 by at most

2024/12/30 08:04

https://doi.org/10.4153/S0008414X25000021 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000021


On the (𝑘 + 2, 𝑘)-problem of Brown, Erdős and Sós for 𝑘 = 5, 6, 7 11

𝑚𝑟−6. Thus, by Lemma 4.2, we have

P
[
𝑋 ≠ (1 ± 𝑚−1/3)𝑐𝑚𝑟−4

]
6 P

[
|𝑋 − E [ 𝑋 ] | > 𝑐𝑚𝑟−4−1/3/2

]
6 2 exp

(
− 𝑐2𝑚2(𝑟−4−1/3)/2
2𝑚 · 𝑚2(𝑟−5) + 𝑚2 · 𝑚2(𝑚−6)

)
= 𝑜(𝑚−2).

(If 𝑟 = 5, then 𝑋 is the number of triangles, which is binomially distributed, and Cher-
noff’s bound can be applied instead of Lemma 4.2.) The union bound over all

(𝑚
2
)
choices

of 𝑢𝑣 finishes the proof.
Let us turn to the existence ofK1. Note first that the case 𝑟 = 4 is trivial since we can

take each edge of𝐺1 as a clique of order2 (and any2-graphhas infinite girth according to
our definition of girth), sowe assume that 𝑟 > 5. Theorem4.3 for 𝑐0 := 𝑐, ℓ := 8 and 𝑟−2
returns some 𝜀0. Let 𝑚0 be the value returned by the theorem for 𝜀 := min(1/3, 𝜀0/2).
Since 𝑚0 depends only on 𝑟 and 𝛼, we can assume that 𝑚 > 𝑚0. Thus, Theorem 4.3
applies to any graph 𝐺1 satisfying Property (iii) and produces K1 with all the stated
properties. �

We now fix a graph 𝐺1 on the set 𝐴1 and an (𝑟 − 2)-graphK1 satisfying Claim 4.5.
Let 𝐴2, 𝐺2,K2 be disjoint copies of 𝐴1, 𝐺1,K1. We identifyK1 andK2 with their edge
sets. Let𝐺3 be a randombipartite graphwith parts 𝐴1 and 𝐴2where every edge between
𝐴1 and 𝐴2 is sampled independently with probability 𝛼.

We set 𝑡 := |K1 | = |K2 | and note that 𝑡 = Θ(𝛽𝑚2). We also define an auxiliary
bipartite graph 𝐻 with parts K1 and K2 where 𝐾1 ∈ K1 and 𝐾2 ∈ K2 are adjacent in
𝐻 if each of the (𝑟 − 2)2 pairs between 𝐾1 ⊆ 𝐴1 and 𝐾2 ⊆ 𝐴2 is an edge of 𝐺3. In
particular, a pair inK1 × K2 is an edge of 𝐻 with probability 𝛼 (𝑟−2)2 . Define

𝑑 := 𝛼 (𝑟−2)2 𝑡 = Θ(𝛽𝛼 (𝑟−2)2𝑚2).

Claim 4.6 With high probability, all vertices in the graph 𝐻 have degree (1 ± 𝑚−1/3)𝑑.

Proof of Claim 4.6 Take any vertex 𝐾 of 𝐻, that is, an edge ofK𝑖 for 𝑖 = 1 or 2. Since
K1 and K2 are fixed, the degree of 𝐾 in 𝐻 is a function of the (𝑟 − 2)𝑚 independent
Bernoulli variables that encode the edges of 𝐺3 between 𝐾 ⊆ 𝐴𝑖 and the opposite side
𝐴3−𝑖 . Furthermore, one edge in 𝐺3 can influence the appearance of at most 𝑚−1

𝑟−3 6 𝑚
edges in 𝐻 containing 𝐾 , since every pair of vertices in 𝐴3−𝑖 is contained in at most one
clique.

Thus, denoting the degree of 𝐾 in 𝐻 by deg𝐻 (𝐾) and using that its expectation is 𝑑,
the Bounded Difference Inequality (Lemma 4.2) implies that

P

[
|deg𝐻 (𝐾) − 𝑑 | > 𝑑

𝑚1/3

]
6 2 exp

(
−2𝛼2(𝑟−2)2 𝑡2/𝑚2/3

(𝑟 − 2)𝑚 · 𝑚2

)
= exp(−Ω𝛼 (𝑚1/3)).

A union bound over all𝑂 (𝑚2) edges inK1 ∪ K2 proves the claim. �

Our goal will be to find a matching 𝑀 in 𝐻 with size Ω(𝑡) = Ω(𝛽𝑚2) and certain
additional properties. Given𝑀 , we define the 𝑟-graph 𝐹 = 𝐹 (𝑀) as in (4.1). Namely, we
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start with the edgeless hypergraph on 𝐴1∪𝐴2 and, for every edge𝐾 𝑗

1𝐾
𝑗

2 in thematching
𝑀 , add to 𝐹 new vertices 𝑥 𝑗 , 𝑦 𝑗 and new edges𝐾 𝑗

1 ∪{𝑥 𝑗 , 𝑦 𝑗 } and𝐾
𝑗

2 ∪{𝑥 𝑗 , 𝑦 𝑗 } (forming
a diamond).

We remark that, at this point of the proof, we do not fix the choice of𝐺3 yet but view
𝐺3 (and hence 𝐻) as a random graph since we still want to bound the number of certain
problematic subconfigurations.

We can rule out some small configurations in 𝐹 without any additional assumptions
on 𝑀 .

Claim 4.7 The 𝑟-graph 𝐹 = 𝐹 (𝑀) is (4𝑟−7, 4)-free, (3𝑟−4, 3)-free and (2𝑟−3, 2)-free.

Proof ofClaim4.7 Every triple of edges 𝑋1, 𝑋2, 𝑋3 ∈ 𝐹 satisfies that each of |𝑋1∩𝑋2 |,
|𝑋2∩𝑋3 | and |𝑋3∩𝑋1 | is at most 1, or contains a diamond (𝑋𝑖 , 𝑋 𝑗 ) for some 𝑖 ≠ 𝑗 with
the third edge intersecting 𝑋𝑖∪𝑋 𝑗 in at most one vertex; in either case, |𝑋1∪𝑋2∪𝑋2 | >
3𝑟 − 3. In particular, this gives that 𝐹 is (2𝑟 − 3, 2)-free and (3𝑟 − 4, 3)-free.

Now, suppose on the contrary that 𝐹 has a (4𝑟 − 7, 4)-configuration, say coming
from some (𝑟 − 2)-graphs 𝐹1 ⊆ K1 and 𝐹2 ⊆ K2. For 𝑖 = 1, 2, let 𝑒𝑖 := |𝐹𝑖 | and let

𝑑𝑖 := (𝑟 − 2) |𝐹𝑖 | − | ∪𝑋 ∈𝐹𝑖
𝑋 |,

calling it the defect of 𝐹𝑖 . Thus, 𝑒1 + 𝑒2 = 4. By symmetry, assume that 𝑒1 > 𝑒2. By
𝑒1 ∈ [2, 4] and the high-girth assumption, we obtain that

𝑑1 6 𝑒1 (𝑟 − 2) − (𝑒1 (𝑟 − 2 − 2) + 3) = 2𝑒1 − 3. (4.2)

Let 𝑑 ′ 6 𝑒2 be the number of pairs in 𝑀 between 𝐹1 and 𝐹2 (which is exactly the
number of diamonds in the hypothetical (4𝑟 − 7, 4)-configuration in 𝐹 that we started
with). Thus we have

4𝑟 − 7 >
(
𝑒1 (𝑟 − 2) − 𝑑1

)
+

(
𝑒2 (𝑟 − 2) − 𝑑2

)
+ 2(4 − 𝑑 ′) = 4𝑟 − 𝑑1 − 𝑑2 − 2𝑑 ′, (4.3)

that is, 𝑑1 + 𝑑2 > 7 − 2𝑑 ′.
Now, it is routine to derive a contradiction. Although some of the following cases can

be combined together, we prefer (here and later) to treat each possible value of 𝑒1 as a
separate case for clarity. If 𝑒1 = 4, then 𝑒2 = 0, 𝑑2 = 0, 𝑑 ′ = 0, and thus 𝑑1 > 7. If 𝑒1 = 3,
then 𝑒2 = 1, 𝑑2 = 0, 𝑑 ′ 6 1 and thus 𝑑1 > 5. If 𝑒1 = 2, then 𝑒2 = 2, 𝑑2 6 1 and 𝑑 ′ 6 2
giving 𝑑1 > 2. However, the obtained lower bound on 𝑑1 contradicts (4.2) in each of the
three possible cases. Thus, 𝐹 contains no (4𝑟 − 7, 4)-configuration, as desired. �

To ensure that 𝐹 is (5𝑟 − 8, 5)-free, (6𝑟 − 11, 6)-free and (7𝑟 − 12, 7)-free, we have
to construct the matching 𝑀 a bit more carefully. In the following, we will define some
problematic configurations and show that there are only few of them with high proba-
bility. We will then be able to use a probabilistic argument to construct a matching 𝑀
that avoids all problematic configurations.

Let us introduce some further terminology. For an (𝑟 − 2)-graph K and integers
𝑒′, 𝑑 ′, let S𝑒′,𝑑′ (K) be the family of all subgraphs of K with 𝑒′ edges and defect 𝑑 ′.
(Recall that this means that the union of these 𝑒′ edges has exactly 𝑒′(𝑟 − 2) − 𝑑 ′ ver-
tices.) We refer the reader to Figure 1 for some special cases of this definition that will
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play important role in our proof. For integers 𝑒1, 𝑒2, 𝑑1, 𝑑2 with 𝑒1 > 𝑒2, let the set
C𝑒1 ,𝑑1 ;𝑒2 ,𝑑2 consist of all matchings{

{𝐾 𝑗

𝑖
, 𝐾

𝑗

3−𝑖} : 𝑗 ∈ [𝑒2]
}

(4.4)

in𝐻 for some 𝑖 = 1 or 2 such that the (𝑟−2)-graph {𝐾1
3−𝑖 , . . . , 𝐾

𝑒2
3−𝑖} is inS𝑒2 ,𝑑2 (K3−𝑖)

while {𝐾1
𝑖
, . . . , 𝐾

𝑒2
𝑖
} extends to an element ofS𝑒1 ,𝑑1 (K𝑖). (Recall that the set in (4.4) is a

matching in 𝐻 if, for 𝑖 = 1, 2, the (𝑟 − 2)-sets 𝐾1
𝑖
, . . . , 𝐾

𝑒2
𝑖
are pairwise distinct and, for

every 𝑗 ∈ [𝑒2] , all pairs in 𝐾 𝑗

1 × 𝐾
𝑗

2 are edges of𝐺3.) In other words, the set C𝑒1 ,𝑑1 ;𝑒2 ,𝑑2
can be constructed as follows. Pick a subgraph of size 𝑒1 and defect 𝑑1 in one ofK1 and
K2, then a subgraph of size 𝑒2 and defect 𝑑2 in the other one; viewing these as two sets of
vertices in the bipartite graph 𝐻, add to C𝑒1 ,𝑑1 ;𝑒2 ,𝑑2 all matchings in 𝐻 of size 𝑒2 (that is,
fully pairing the smaller subgraph). Note that the definition of C𝑒1 ,𝑑1 ;𝑒2 ,𝑑2 is symmetric
inK1 andK2.

The final family of conflicts that our matching 𝑀 will have to avoid will consists of
four families of the type C𝑒1 ,𝑑1 ;𝑒2 ,𝑑2 plus a related family. In order to illustrate the gen-
eral proof, we will show first that forbidding C3,3;2,1 alone takes care of all undesired
configurations in 𝐹 = 𝐹 (𝑀) with at most 6 edges. Note that, by the high-girth assump-
tion, every pair in C3,3;2,1 is a matching of a “loose 2-path" in one of K1 and K2 into a
“loose 3-cycle" in the other.

Claim 4.8 If 𝑀 is a matching in 𝐻 that avoids C3,3;2,1, then the 𝑟-graph 𝐹 = 𝐹 (𝑀), as
defined in (4.1), is (5𝑟 − 8, 5)-free and (6𝑟 − 11, 6)-free.

Proof of Claim 4.8 Suppose on the contrary that we have a (5𝑟 − 8, 5)-configuration
in 𝐹 . For 𝑖 = 1, 2, let 𝐹𝑖 be the (𝑟 − 2)-graph consisting of the edges ofK𝑖 involved in
the configuration; also, let 𝑒𝑖 := |𝐹𝑖 | be the size and 𝑑𝑖 := 𝑒𝑖 (𝑟 −2) − 𝑣(𝐹𝑖) be the defect
of 𝐹𝑖 . Thus, 𝑒1 + 𝑒2 = 5.

Let 𝑑 ′ be the number of edges in 𝑀 between 𝐹1 and 𝐹2. By a calculation analogous
to (4.3), we have that

𝑑1 + 𝑑2 > 8 − 2𝑑 ′. (4.5)
Without loss of generality, assume that 𝑒1 > 𝑒2. Of course, 𝑑 ′ 6 𝑒2. Since 3 6 𝑒1 6

5, we have by the large girth assumption that (4.2) holds, that is, 𝑑1 6 2𝑒1 − 3.
If, 𝑒1 = 5 then 𝑒2 = 0 and so 𝑑2 = 𝑑 ′ = 0, but then (4.2) and (4.5) give a contradiction

8 6 𝑑1 6 7. If, 𝑒1 = 4 then 𝑒2 = 1 and so 𝑑2 = 0 and 𝑑 ′ 6 1; however, then (4.2) and
(4.5) give 6 6 𝑑1 6 5, a contradiction again. Finally, suppose that 𝑒1 = 3. We have that
𝑒2 = 2 and thus, 𝑑2 6 1 and 𝑑 ′ 6 2. Now, (4.2) and (4.5) give that 3 6 𝑑1 6 3. Thus, we
have equalities everywhere; in particular, 𝑑1 = 3, 𝑑2 = 1 and 𝑑 ′ = 2. We see that the pair
of edges of 𝑀 coming from the two diamonds in 𝐹 belongs to C3,3;2,1, a contradiction.

Now, suppose on the contrary that 𝐹 contains a (6𝑟 − 11, 6) configuration. For 𝑖 =
1, 2, let 𝐹𝑖 be the (𝑟 − 2)-subgraph ofK𝑖 involved in it, with 𝑒𝑖 and 𝑑𝑖 denoting its size
and defect. Without loss of generality, assume that 𝑒1 > 𝑒2. Let 𝑑 ′ be the number of
𝑀-edges between 𝐹1 and 𝐹2. By a version of (4.3), we get that

𝑑1 + 𝑑2 > 11 − 2𝑑 ′, (4.6)

while the inequality in (4.2) remains unchanged.
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S2,1(K𝑖) S3,1(K𝑖) S3,2(K𝑖)

S3,2(K𝑖) S3,3(K𝑖) S4,3(K𝑖)

S4,3(K𝑖) S4,3(K𝑖) S4,4(K𝑖)

S4,4(K𝑖) S4,5(K𝑖) S4,5(K𝑖)

Figure 1: Examples ofS𝑒′,𝑑′-subgraphs (that is, having size 𝑒′ and defect 𝑑′) in the high-girth (𝑟−
2)-graph K𝑖 for some pairs (𝑒′, 𝑑′). Since the hypergraph K𝑖 is linear, each drawn intersection
has size 1. For (𝑒′, 𝑑′) in {(2, 1), (3, 1), (3, 3)}, the familyS𝑒′,𝑑′ (K𝑖) consists of a unique (𝑟−2)-
graph up to isomorphism. For (𝑒′, 𝑑′) in {(3, 2), (4, 5)}, there are exactly two non-isomorphic
examples. For the remaining pairs (𝑒′, 𝑑′), we provide a non-exhaustive list. .
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If 𝑒1 = 6, then 𝑒2 = 𝑑2 = 𝑑 ′ = 0, so (4.2) and (4.6) give that 11 6 𝑑1 6 9, a
contradiction. If 𝑒1 = 5, then 𝑒2 = 1, 𝑑2 = 0, 𝑑 ′ 6 1, and we get that 9 6 𝑑1 6 7, a
contradiction. If 𝑒1 = 4, then 𝑒2 = 2, 𝑑2 6 1, 𝑑 ′ 6 2, and we get that 6 6 𝑑1 6 5, a
contradiction.

Finally, it remains to check the (slightly less straightforward) case when 𝑒1 = 3. Here,
we have 𝑒2 = 3, 𝑑2 6 3 and 𝑑 ′ 6 3. Thus, (4.2) and (4.6) give that 11−2𝑑 ′ 6 𝑑1+𝑑2 6 6.
We conclude that 𝑑 ′ = 3 and thus, 𝑀 fully matches 𝐹1 and 𝐹2. By symmetry, suppose
that 𝑑1 > 𝑑2. Thus, 𝑑1 = 3. Since 𝑑2 > 5 − 𝑑1 > 2 is positive, we can find 𝐾1

2 , 𝐾
2
2 ∈ 𝐹2

that intersect. The (𝑟 − 2)-graphs 𝐹1 ∈ S3,3 (K1) and {𝐾1
2 , 𝐾

2
2 } ∈ S2,1 (K2) show that

the edges of 𝑀 containing 𝐾1
2 and 𝐾

2
2 form a pair in C3,3;2,1, a contradiction. �

Next, we define the “exceptional” family. First, for 𝑖 = 1, 2, let S′
4,3 (K𝑖) consist of

those (𝑟 − 2)-graphs inS4,3 (K𝑖) that do not contain an isolated edge (equivalently, not
containing an S3,3-subgraph). It is easy to show (see Claim 4.10) that S′

4,3 (K𝑖) consists
precisely of subgraphs of K𝑖 whose edge set can be ordered as {𝑋1, . . . , 𝑋4} such that
|𝑋𝑖 ∩ (⋃𝑖−1

𝑗=1 𝑋 𝑗 ) | = 1 for each 𝑖 ∈ [2, 4] , that is, it consists of “loose subtrees" with
4 edges. Also, let the conflict family C′

4,3;3,3 be obtained by taking full 𝐻-matchings of
some element of S3,3 (K𝑖) into S′

4,3 (K3−𝑖) for 𝑖 = 1, 2. Clearly, C′
4,3;3,3 ⊆ C4,3;3,3.

The final family C of the conflicts that we are going to use is

C := C3,3;2,1 ∪ C4,4;3,2 ∪ C4,5;2,1 ∪ C5,7;2,1 ∪ C′
4,3;3,3. (4.7)

Basically, our definition of the conflict familyC ismotivated by the proof ofClaim4.9
below: for each still possible way of having a (7𝑟 − 12, 7)-configuration in 𝐹 (𝑀), we
add further conflicts that rule it out. We do not try to take minimal possible conflict
families, but rather the ones that are easy to describe. Note that we cannot take the full
family C4,3;3,3 as the upper bound of Claim 4.11 on the expected number of conflicts
fails for it; fortunately, its smaller subfamily C′

4,3;3,3 suffices.

Claim 4.9 If a matching 𝑀 in 𝐻 does not contain any element of C as a subset, then the
𝑟-graph 𝐹 = 𝐹 (𝑀) defined by (4.1) contains no (7𝑟 − 12, 7)-configuration.

Proof of Claim 4.9 Suppose on the contrary that 𝐹 contains a (7𝑟 − 12, 7)-
configuration. For 𝑖 = 1, 2, let 𝐹𝑖 be the (𝑟 − 2)-subgraph ofK𝑖 involved in it, with 𝑒𝑖
and 𝑑𝑖 denoting its size and defect. Thus, 𝑒1 + 𝑒2 = 7. Without loss of generality, assume
that 𝑒1 > 𝑒2. Let 𝑑 ′ be the number of the diamonds involved. By a calculation analogous
to (4.3), we have

𝑑1 + 𝑑2 > 12 − 2𝑑 ′. (4.8)

First, we rule out the easy cases when 𝑒1 > 6. If 𝑒1 = 7, then 𝑒2 = 𝑑2 = 𝑑 ′ = 0
but (4.2) and (4.8) give that 12 6 𝑑1 6 11, a contradiction. If 𝑒1 = 6, then 𝑒2 = 1, 𝑑2 = 0
and 𝑑 ′1 6 1, so we get 10 6 𝑑1 6 9, a contradiction again.

Thus, 𝑒1 6 5. Since 𝑒2 > 2, the large girth assumption gives similarly to (4.2) that

𝑑2 6 2𝑒2 − 3. (4.9)

Suppose that 𝑒1 = 5. Then 𝑒2 = 2 and 𝑑 ′ 6 2. Our bounds (4.2), (4.8) and (4.9) give
that 𝑑1 6 7, 𝑑1 + 𝑑2 > 8 and 𝑑2 6 1, respectively. Thus, we have equalities everywhere.
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In particular, 𝐹1 ∈ S5,7 (K1), 𝐹2 ∈ S2,1 (K2), 𝑑 ′ = 2 and the pair of the involved
𝑀-edges belongs to C5,7;2,1, a contradiction.

So, assume for the rest of the proof that 𝑒1 = 4. Then, 𝑑 ′ 6 𝑒2 = 3. By (4.2), (4.8) and
(4.9), we have that 𝑑1 6 5, 𝑑1 + 𝑑2 > 12 − 2𝑑 ′ > 6 and 𝑑2 6 3. It follows that 𝑑 ′ > 2.

First, suppose that 𝑑 ′ = 2. Thus, we must have that 𝑑1 = 5 and 𝑑2 = 3. Let 𝐾1
2 , 𝐾

2
2 ∈

𝐹2 be the two edges matched by 𝑀 . Since 𝐹2 ∈ S3,3 (K2), we have that {𝐾1
2 , 𝐾

2
2 } ∈

S2,1 (K2). Thus, we have a conflict from C4,5;2,1, a contradiction.
Thus, 𝑑 ′ = 3, that is, 𝐹2 is fully matched into 𝐹1 by 𝑀 .
Suppose first that 𝑑1 + 𝑑2 = 6. The case (𝑑1, 𝑑2) = (4, 2) is impossible as then we get

a conflict from C4,4;3,2. Next, suppose that (𝑑1, 𝑑2) = (3, 3). To avoid a conflict from
C′
4,3;3,3, itmust be the case that𝐹1 contains anS3,3-subgraph, saywith edges𝐾1

1 , 𝐾
2
1 , 𝐾

3
1 .

The matching 𝑀 matches at least two of these three edges, say to 𝐾1
2 , 𝐾

2
2 ∈ 𝐹2. Since

every two edges of 𝐹2 intersect, we have that {𝐾1
2 , 𝐾

2
2 } ∈ S2,1 (K2) and thus𝑀 contains

a conflict from C3,3;2,1, a contradiction. The only possible remaining case (𝑑1, 𝑑2) =

(5, 1) gives that 𝐹2 ∈ S3,1 (K2) is fully matched into 𝐹1 ∈ S4,5 (K1) by 𝑀 . But the two
intersecting edges𝐾1

2 , 𝐾
2
2 ∈ 𝐹2 form an element ofS2,1 (K1) fully matched into 𝐹1, that

is, 𝑀 contains a conflict from C4,5;2,1, a contradiction.
Thus we can assume that 𝑑1 + 𝑑2 > 7. If 𝑑1 = 4, then 𝑑2 = 3 and 𝐹2 ∈ S3,3 (K2).

Among the three 𝑀-matches of 𝐹2 in 𝐹1, some two, say 𝐾1
1 , 𝐾

2
1 ∈ 𝐹1, must inter-

sect. (Indeed, otherwise these three edges contribute 0 to the defect of 𝐹1 while the
remaining edge can contribute at most 3, a contradiction to 𝐹1 ∈ S4,4 (K1).) But then
{𝐾1

1 , 𝐾
2
1 } ∈ S2,1 (K1) and 𝐹2 ∈ S3,3 (K2) give a conflict from C3,3;2,1, a contradic-

tion. Thus it remains to consider the case when 𝑑1 = 5. Note that all pairs of edges in
𝐹1 ∈ S4,5 (K1) except at most one pair intersect, and that 𝑑2 > 7− 𝑑1 = 2. Thus, out of
the three𝑀-edges between 𝐹1 and 𝐹2, we can pick two such that their two endpoints on
each side intersect. Among the two remaining edges of 𝐹1, at least one intersects both of
these 𝐹1-endpoints in two distinct vertices. Thus, we get two edges in𝑀 between some
sets inS3,3 (K1) andS2,1 (K2), which is a conflict from C3,3;2,1. This final contradiction
proves that 𝐹 = 𝐹 (𝑀) is indeed (7𝑟 − 12, 7)-free. �

Next, we need to bound from above the number of choices of 𝐹𝑖 ∈ S𝑒′,𝑑′ (K𝑖) for
each involved pair (𝑒′, 𝑑 ′). For this, we would like to construct each such 𝐹𝑖 from the
empty (𝑟−2)-graphby iteratively adding edges or pairs of edges at each step. Let𝐹 ′ ⊆ 𝐹𝑖
be the currently constructed subgraph. A 𝑗-attachment for 𝑗 = 0, 1, 2 occurs when we
add one new edge that shares exactly 𝑗 vertices with𝑉 (𝐹 ′). To make a 3-attachment, we
add two new edges𝐾, 𝐾 ′ such that each of the three intersections𝐾∩𝐾 ′,𝐾∩𝑉 (𝐹 ′) and
𝐾 ′ ∩𝑉 (𝐹 ′) consists of exactly one vertex and these three vertices are pairwise distinct,
that is,

|𝐾 ∩ 𝐾 ′ | = |𝐾 ∩𝑉 (𝐹 ′) | = |𝐾 ′ ∩𝑉 (𝐹 ′) | = 1 and 𝐾 ∩ 𝐾 ′ ∩𝑉 (𝐹 ′) = ∅.

Ifwe construct𝐹𝑖 thisway, thenwe let 𝑎 𝑗 be the number of 𝑗-attachments for0 6 𝑗 6 3;
note that then 𝑎0 + 𝑎1 + 𝑎2 + 2𝑎3 = 𝑒′ and 𝑎1 + 2𝑎2 + 3𝑎3 = 𝑑 ′.

Claim 4.10 Let 𝑖 = 1 or 2. Then, the following holds for every family S listed in Table 1.
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S 𝑎0 𝑎1 𝑎2 𝑎3 |S|
S2,1 (K𝑖) 1 1 0 0 𝑂 (𝛽2𝑚3)
S3,1 (K𝑖) 2 1 0 0 𝑂 (𝛽3𝑚5)
S3,2 (K𝑖) 1 2 0 0 𝑂 (𝛽3𝑚4)
S3,3 (K𝑖) 1 0 0 1 𝑂 (𝛽3𝑚3)
S4,4 (K𝑖) 1 1 0 1 𝑂 (𝛽4𝑚4)
S4,5 (K𝑖) 1 0 1 1 𝑂 (𝛽3𝑚3)
S5,7 (K𝑖) 1 0 2 1 𝑂 (𝛽3𝑚3)
S′
4,3 (K𝑖) 1 3 0 0 𝑂 (𝛽4𝑚5)

Table 1: The values for Claim 4.10

(i) Every 𝐹𝑖 ∈ S can be constructed using the above attachment operations starting from
the empty graph such that the corresponding vector (𝑎0, 𝑎1, 𝑎2, 𝑎3) is exactly as stated
in Table 1.

(ii) The size of S is at most the expression given in the last column of the table.

Proof of Claim 4.10 Let us prove the first part for 𝐹𝑖 from a “regular” family S =

S𝑒′,𝑑′ (K𝑖). The cases 𝑒′ 6 3 are straightforward to check, so assume that 𝑒′ > 4.
Let 𝑒′ = 4. Take any 𝐹𝑖 = {𝐾1, . . . , 𝐾4} in S4,𝑑′ (K𝑖).
Let 𝑑 ′ = 4. Suppose first that some three edges have defect 3, say {𝐾1, 𝐾2, 𝐾3} ∈

S3,3 (K𝑖). We can build this subgraph using a 0-attachment and a 3-attachment. The
remaining edge 𝐾4 contributes exactly 1 to the defect, so its addition is a 1-attachment,
giving the desired. So suppose 𝐹𝑖 has no S3,3-subgraph. Add one by one some two
intersecting edges, say 𝐾1 and 𝐾2, doing a 0-attachment and a 1-attachment. By the
S3,3-freeness, each of the remaining edges 𝐾3 and 𝐾4 intersects 𝐾1 ∪ 𝐾2 in at most
one vertex. The above three intersections contribute at most 3 to the total defect while
|𝐾3 ∩ 𝐾4 | 6 1 contributes at most 1, so all these intersections are non-empty (and of
size exactly 1). Thus we can add {𝐾3, 𝐾4} as one 3-attachment.

Let 𝑑 ′ = 5. Start with an intersecting pair of edges, say 𝐾1 and 𝐾2. Observe that at
least one of the remaining edges, say 𝐾3, intersects 𝐾1 and 𝐾2 at two different vertices
(as otherwise the defect would be at most 4 by the linearity of 𝐹). We can construct
{𝐾1, 𝐾2, 𝐾3} ∈ S3,3 (K𝑖) using a 0-attachment and a 3-attachment. The addition of
the remaining edge adds 2 to the defect and thus is a 2-attachment. This gives the vector
(1, 0, 1, 1), as desired.

So suppose that (𝑒′, 𝑑 ′) = (5, 7). Take any 𝐹𝑖 = {𝐾1, . . . , 𝐾5} in S5,7 (K𝑖). By
the linearity of 𝐹 , there are at least 𝑑 ′ = 7 pairs of intersecting edges so, by Man-
tel’s theorem, there are three pairwise intersecting edges, say 𝐾1, 𝐾2, 𝐾3. These edges
contribute at most 3 to the defect. The pair of the remaining two edges contributes
|𝐾4 ∩ 𝐾5 | 6 1 to the defect, so there are at least 𝑑 ′ − 3 − 1 = 3 further intersections.
Thus, at least one of the edges 𝐾4, 𝐾5, say 𝐾4, satisfies

|𝐾4 ∩ (𝐾1 ∪ 𝐾2 ∪ 𝐾3) | > 2. (4.10)
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It follows that some three of𝐾1, . . . , 𝐾4 have defect 3, say {𝐾1, 𝐾2, 𝐾3} ∈ S3,3 (K𝑖). By
the same argument as before, we can assume that (4.10) holds. Note that we must have
equality in (4.10) as otherwise the union of 𝐾1, . . . , 𝐾4 has at most 4(𝑟 − 4) + 2 ver-
tices, contradicting the high-girth assumption onK𝑖 . Thus, the defect of {𝐾1, . . . , 𝐾4}
is exactly 5 and

|𝐾5 ∩ (𝐾1 ∪ · · · ∪ 𝐾4) | = 𝑑 ′ − 5 = 2.

We conclude that we can build 𝐹𝑖 using a 0-attachment and a 3-attachment (to construct
{𝐾1, 𝐾2, 𝐾3} ∈ S3,3 (K𝑖)) and two 2-attachments (to add 𝐾4 and then 𝐾5), as desired.

Let us turn to 𝐹𝑖 from the “exceptional" family S = S′
4,3 (K𝑖). We know that 𝐹𝑖

has no isolated edge. Starting with any edge 𝐾1 ∈ 𝐹𝑖 (a 0-attachment), add some edge
intersecting it (a 1-attachment), say 𝐾2. At least one of the two remaining edges, say 𝐾3,
has non-empty intersection with 𝐾1 ∪ 𝐾2 (as otherwise 𝑑 ′ 6 2, a contradiction). This
intersection consists of exactly one vertex (as otherwise the defect of {𝐾1, 𝐾2, 𝐾3} is
already 3, a contradiction). Again, by 𝑑 ′ = 3, the remaining edge 𝐾4 shares exactly one
vertex with 𝐾1 ∪𝐾2 ∪𝐾3. So when we add 𝐾3 and then 𝐾4, we use two 1-attachments,
giving (𝑎0, 𝑎1, 𝑎2, 𝑎3) = (1, 3, 0, 0), as desired.

Let us turn to the second part, namely bounding the number of choices of 𝐹𝑖 ∈ S. We
build each such 𝐹𝑖 as in Part (i). Given a partially built 𝐹 ′ ⊆ 𝐹𝑖 , there are by Claim 4.5 at
most𝑂 (𝛽𝑚2),𝑂 (𝛽𝑚),𝑂 (1) and𝑂 (𝛽2𝑚) ways to do a 𝑗-attachment for 𝑗 = 0, 1, 2, 3
respectively. For example, every 3-attachment can be obtained by taking some 𝑢, 𝑣 ∈
𝑉 (𝐹 ′), having at most

(3(𝑟−2)
2

)
= 𝑂 (1) choices, then choosing some 𝑤 ∈ 𝑁𝐺𝑖

(𝑢) ∩
𝑁𝐺𝑖

(𝑣), having𝑂 (𝛽2𝑚) choices, and then taking (if they exist) the unique two edges of
K𝑖 that contain the pairs 𝑢𝑤 and 𝑣𝑤. Thus, the number of 𝐹𝑖 ∈ S that give a fixed vector
(𝑎0, 𝑎1, 𝑎2, 𝑎3) is at most

𝑂
(
(𝛽𝑚2)𝑎0 · (𝛽𝑚)𝑎1 · (𝛽2𝑚)𝑎3

)
= 𝑂

(
𝛽𝑎0+𝑎1+2𝑎3 𝑚2𝑎0+𝑎1+𝑎3 ) . (4.11)

By the first part, this directly gives an upper bound on |S| stated in the table. �

Recall that we defined 𝑑 = 𝛼 (𝑟−2)2 𝑡.

Claim 4.11 For every quadruple (𝑒1, 𝑑1, 𝑒2, 𝑑2) such that C𝑒1 ,𝑑1 ;𝑒2 ,𝑑2 appears in the right-
hand side of (4.7), the expected value of |C𝑒1 ,𝑑1 ;𝑒2 ,𝑑2 | over the random graph 𝐺3 is at most
𝑂 (𝑑𝑒2 𝑡). Also, the expectation of |C′

4,3;3,3 | is𝑂 (𝑑3𝑡).

Proof of Claim 4.11 We can bound the expectation of |C𝑒1 ,𝑑1 ;𝑒2 ,𝑑2 | from above by

2∑︁
𝑖=1

|S𝑒1 ,𝑑1 (K𝑖) | · |S𝑒2 ,𝑑2 (K3−𝑖) | · 𝛼ℓ ,

where ℓ is the smallest number of pairs in 𝐴1 × 𝐴2 that are covered by a full matching of
some element ofS𝑒2 ,𝑑2 (K3−𝑖) into some element ofS𝑒1 ,𝑑1 (K𝑖). Using the upper bounds
coming from Claim 4.5 and recalling that 𝛽 = 𝛼3/4, 𝑡 = Θ(𝛽𝑚2) and 𝑑 = 𝛼 (𝑟−2)2 𝑡, we

2024/12/30 08:04

https://doi.org/10.4153/S0008414X25000021 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000021


On the (𝑘 + 2, 𝑘)-problem of Brown, Erdős and Sós for 𝑘 = 5, 6, 7 19

obtain the following estimates:

E
[
|C3,3;2,1 |

]
= 𝑂

(
𝛽3𝑚3 · 𝛽2𝑚3 · 𝛼2(𝑟−2)2−1

)
= 𝑂 (𝛽2𝛼−1 · 𝑑2𝑡) = 𝑂 (𝑑2𝑡),

E
[
|C4,4;3,2 |

]
= 𝑂

(
𝛽4𝑚4 · 𝛽3𝑚4 · 𝛼3(𝑟−2)2−2

)
= 𝑂 (𝛽3𝛼−2 · 𝑑3𝑡) = 𝑂 (𝑑3𝑡),

E
[
|C4,5;2,1 |

]
= 𝑂

(
𝛽3𝑚3 · 𝛽2𝑚3 · 𝛼2(𝑟−2)2−1

)
= 𝑂 (𝛽2𝛼−1 · 𝑑2𝑡) = 𝑂 (𝑑2𝑡),

E
[
|C5,7;2,1 |

]
= 𝑂

(
𝛽3𝑚3 · 𝛽2𝑚3 · 𝛼2(𝑟−2)2−1

)
= 𝑂 (𝛽2𝛼−1 · 𝑑2𝑡) = 𝑂 (𝑑2𝑡).

Finally, the obvious adaptation of this argument to the “exceptional” family C′
4,3;3,3 gives

that

E
[
|C′

4,3;3,3 |
]
= 𝑂

(
𝛽4𝑚5 · 𝛽3𝑚3 · 𝛼3(𝑟−2)2−2

)
= 𝑂 (𝛽3𝛼−2 · 𝑑3𝑡) = 𝑂 (𝑑3𝑡).

This finishes the proof of Claim 4.11. �

Fix 𝐺3 such that for each of the five families from Claim 4.11 its size is at most, say,
10 times the expected value, |𝐻 | = Θ(𝑡𝑑) and |𝐺3 | 6 2𝛼𝑚2. This is possible since
the last two properties hold with high probability by the Bounded Difference Inequality
(Lemma 4.2) and the union bound.

Finally, let us describe how to construct amatching in𝐻 avoiding all conflicts listed in
Claim4.9.We shall use the probabilistic deletionmethod. Pick every edge of𝐻 randomly
with probability 𝜇/𝑑, where 𝜇 is a sufficiently small constant which depends on the
implicit constants in the asymptotic notations but not on 𝛼, that is, 1/𝑟 � 𝜇 � 𝛼.
Clearly, the expected number of chosen edges is (𝜇/𝑑) |𝐻 | = Θ(𝜇𝑡) and the expected
number of pairs of edges which overlap is 𝑂 (𝑑2𝑡 · (𝜇/𝑑)2) = 𝑂 (𝜇2𝑡). By Claim 4.11,
the expected number of elements of C all of whose edges have been chosen is at most

𝑂
(
𝑑2𝑡 · (𝜇/𝑑)2 + 𝑑3𝑡 · (𝜇/𝑑)3

)
= 𝑂 (𝜇2𝑡).

Let 𝑀 be obtained from the 𝜇-random subset of 𝐸 (𝐻) by removing edges which
overlap with some other chosen edge or participate in a conflict from C with all of its
edges being chosen. By construction,𝑀 is a matching in𝐻 that avoids all conflicts. Also,

E [ |𝑀 | ] > Ω(𝜇𝑡) −𝑂 (𝜇2𝑡) = Ω(𝜇𝑡).

Take an outcome such that |𝑀 | is at least its expectation and define 𝐹 = 𝐹 (𝑀) by (4.1).
Let us check that the obtained 𝑟-graph 𝐹 satisfies all stated properties listed in

Lemma 4.4. The first two, namely Parts (a) and (b), follow from Claims 4.7, 4.8 and 4.9.
Also, the size of 𝐹 is 2 |𝑀 | = Ω𝜇 (𝑡) = Ω𝜇 (𝛼3/4𝑚2), proving Part (c).

Let us turn to Part (d). Since 𝐹 consists of |𝐹 |/2 diamonds that do not share any
pairs, we have that |𝑃1 (𝐹) | = (2

(𝑟
2
)
− 1) |𝐹 |/2. Since |𝐺3 | 6 2𝛼𝑚2, it is enough to

show that every pair 𝑥𝑦 ∈ 𝑃63 (𝐹) \ 𝑃1 (𝐹) is an edge of𝐺3. Since 𝐹 has no (3𝑟 − 4, 3)-
configuration, we have that 𝑥𝑦 ∈ 𝑃 12 (𝐹). Since every pair of cliques inK1 ∪K2 shares
at most one vertex, some diamond coming from {𝐾1, 𝐾2} ∈ 𝑀 2-claims the pair 𝑥𝑦.
Thus 𝑥𝑦 ∈ {𝑎𝑏 : 𝑎 ∈ 𝐾1, 𝑏 ∈ 𝐾2} ⊆ 𝐸 (𝐺3), as desired. This finishes the proof of
Lemma 4.4. �
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Proof of the lower bounds in Theorem 1.1 and 1.2 with 𝑟 > 4 Let 𝐹 be the 𝑟-graph
given by Lemma 4.4. Thus 𝐹 is G (𝑟 )

𝑘
-free for 𝑘 ∈ {5, 7}, |𝐹 | = Ω𝑟 (𝛼3/4𝑚2) and

|𝑃63 (𝐹) | 6
𝑟2 − 𝑟 − 1

2
|𝐹 | + 2𝛼𝑚2.

By Theorem 4.1, for each 𝑘 ∈ {5, 7}, we have that

lim inf
𝑛→∞

𝑛−2 𝑓 (𝑟 ) (𝑛; 𝑘 (𝑟 − 2) + 2, 𝑘) > |𝐹 |
2 |𝑃63 (𝐹) |

>
1

𝑟2 − 𝑟 + 1 +𝑂 (𝛼1/4)
.

The lower bound 1
𝑟2−𝑟+1 in Theorems 1.1 and 1.2 follows by taking 𝛼 → 0. �

4.2 Lower bounds in Theorems 1.3 and 1.4

𝑥2 𝑥3
𝐷 ′(𝑥1, 𝑎1) 𝐷 ′(𝑥1, 𝑏1)
𝐷 ′(𝑥1, 𝑎′1) 𝐷 ′(𝑥1, 𝑏′1)

𝐷 (𝑥1, 𝑎1) 𝐷 (𝑥1, 𝑏1)

𝐷 (𝑥1, 𝑎′1) 𝐷 (𝑥1, 𝑏′1)

𝑎1 𝑏1

𝑎′1 𝑏′1

Figure 2: The figure depicts the subgraph of the 3-graph 𝐹63 “lying” on the pair 𝑥2𝑥3. The central
vertex in the figure is 𝑥1, and the green diamonds correspond to 𝐷1 and 𝐷 ′

1. Copies of the same
construction “lie” on the pairs 𝑥1𝑥2 and 𝑥2𝑥3 in 𝐹63..

Proof of the lower bound in Theorem 1.3 We define a 3-graph 𝐹63 on 63 ver-
tices with 61 edges as follows. Let 𝑇 be the 3-graph which is obtained from an edge
𝑥1𝑥2𝑥3 by adding, for every 𝑖 ∈ [3] , two diamonds 𝐷𝑖 = {𝑎𝑖𝑏𝑖𝑥𝑠 , 𝑎𝑖𝑏𝑖𝑥𝑡 } and 𝐷 ′

𝑖
=

{𝑎′
𝑖
𝑏′
𝑖
𝑥𝑠 , 𝑎

′
𝑖
𝑏′
𝑖
𝑥𝑡 } where {𝑠, 𝑡} = [3] \ {𝑖}. We say that these 6 diamonds are of level 1.

Then, consider the following 12 pairs, which do not belong to 𝑃1 (𝑇), namely

𝑥𝑖𝑎𝑖 , 𝑥𝑖𝑏𝑖 , 𝑥𝑖𝑎
′
𝑖 , 𝑥𝑖𝑏

′
𝑖 , for 𝑖 ∈ [3] . (4.12)

Let 𝐹63 be obtained from 𝑇 by adding, for every such pair 𝑥𝑦, two vertex-disjoint dia-
monds 𝐷 (𝑥, 𝑦) and 𝐷 ′(𝑥, 𝑦) 12-claiming 𝑥𝑦, calling these 24 diamonds of level 2. Thus,
𝐹63 has 3 + 6 · 2 + 24 · 2 = 63 vertices and 1 + 6 · 2 + 24 · 2 = 61 edges.
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To show that 𝐹63 is G (3)
6 -free, we first prove the following claim.

Claim 4.12 For every subgraph 𝐺 ⊆ 𝐹63, there is an integer 𝑡 > 1 and a sequence ∅ =

𝐺0 ⊆ 𝐺1 ⊆ 𝐺2 ⊆ ... ⊆ 𝐺𝑡 = 𝐺 where, for every 𝑖 ∈ [0, 𝑡 − 1] , 𝐺𝑖+1 \ 𝐺𝑖 is either a
single edge that shares at most one vertex with𝐺𝑖 , or a diamond that shares at most two vertices
with 𝐺𝑖 so that if a pair is shared, then this pair is 12-claimed by 𝐺𝑖+1 \ 𝐺𝑖 .

Proof of Claim 4.12 We start from 𝐺 and consecutively delete single edges or dia-
mondswith the required property, thus implicitly defining the sequence𝐺1, 𝐺2, ... , 𝐺𝑡

in the reverse order. Suppose that 𝐺 contains an edge 𝑋 in some diamond {𝑋,𝑌 } of
level 2. If 𝑌 ∉ 𝐺 , then 𝐺 \ {𝑋} and 𝑋 share at most one vertex. Otherwise, {𝑋,𝑌 }
attaches to 𝐺 \ {𝑋,𝑌 } via at most two vertices and if there are exactly two shared ver-
tices, then this pair is 12-claimed by {𝑋,𝑌 }. Thus, the edge 𝑋 (in the first case) and the
diamond {𝑋,𝑌 } (in the second case) can be deleted from𝐺 = 𝐺𝑡 to obtain𝐺𝑡−1. Repeat-
ing this step, one can delete all edges of𝐺 from diamonds of level 2. After this, all edges
in𝐺 from diamonds of level 1 can be deleted in a similar way, finishing the proof. �

Note that, for any sequence returned by Claim 4.12, the first non-empty 𝑟-graph𝐺1
contains two more vertices than edges and each new attachment cannot decrease this
difference. It immediately follows that 𝐹63 is ( 𝑗 +1, 𝑗)-free for every 𝑗 and, in particular,
for 𝑗 ∈ [3, 5]. Furthermore, if there exists some subgraph𝐺 ⊆ 𝐹63 with 6 edges and at
most 8 vertices, then the sequence (𝐺𝑖)𝑟𝑖=0 returned by Claim 4.12 satisfies by the parity
of |𝐺 | that 𝑡 = 3 and that each of𝐺1,𝐺2\𝐺1 and𝐺3\𝐺2 is a diamond. Let us argue that
this is impossible. If the diamond𝐺1 is of level 1, say𝐷1, then the only possibility for the
diamond𝐺2 \𝐺1 is𝐷 ′

1, but then no other diamond𝐷 of 𝐹63 connects to𝐺2 = 𝐷1∪𝐷 ′
1

via a pair 12-claimed by 𝐷 , a contradiction. Similarly, if 𝐺1 is of level 2, say 𝐷 (𝑥1, 𝑎1),
then 𝐺2 \ 𝐺1 must be 𝐷 ′(𝑥1, 𝑎1) and, again, there is no suitable choice for the third
diamond𝐺3 \ 𝐺2. We conclude that 𝐹63 is (8, 6)-free and thus G (3)

6 -free.
Note that the only (4, 2)-configurations in 𝐹 are the 6 diamonds of level 1 (12-

claiming only the pairs already 1-claimed by the central edge 𝑥1𝑥2𝑥3) and the 24
diamonds of level 2 (12-claiming the 12 pairs in (4.12)). Also, every (5, 3)-configuration
in 𝐹63 consists of the central edge 𝑥1𝑥2𝑥3 plus a diamond of level 1 (with both of its 13-
claimed pairs being already 2-claimed by diamonds of level 2). It follows that 𝑃63 (𝐹63)
consists of𝑃1 (𝐹63) and the12pairs in (4.12). Thus |𝑃63 (𝐹63) | = 3+(6+24)·5+12 = 165.
Using Theorem 4.1, we derive that

lim inf
𝑛→∞

𝑛−2 𝑓 (3) (𝑛; 8, 6) > |𝐹63 |
2 |𝑃63 (𝐹63) |

=
61
330

,

as desired. �

Proof of the lower bound inTheorem1.4 For 𝑟 > 4, the lower bound on 𝑓 (𝑟 ) (𝑛; 6𝑟−
10, 6) follows by Theorem 4.1 with the 𝑟-graph 𝐹 being a single edge, for which
𝑃63 (𝐹) = 𝑃1 (𝐹) has size

(𝑟
2
)
. �
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5 Upper Bounds

5.1 Some common definitions and results

Recall that for an 𝑟-graph 𝐹 and a pair 𝑢𝑣, the set𝐶𝐹 (𝑢𝑣) consists of all integers 𝑗 > 0
such that 𝐹 has 𝑗 edges that together with 𝑢𝑣 include at most 𝑟 𝑗 − 2 𝑗 + 2 vertices. Note
that, by definition, 0 always belongs to𝐶𝐺 (𝑢𝑣), which is notationally convenient in the
statement of the following easy but very useful observation.

Lemma 5.1 For any F (𝑟 ) (𝑟𝑘 − 2𝑘 + 2, 𝑘)-free 𝑟-graph 𝐺 , any 𝑢𝑣 ∈
(𝑉 (𝐺)

2
)

and any edge-disjoint subgraphs 𝐹1, . . . , 𝐹𝑠 ⊆ 𝐺 , the sum-set
∑𝑠

𝑖=1 𝐶𝐹𝑖
(𝑢𝑣) ={∑𝑠

𝑖=1 𝑚𝑖 : 𝑚𝑖 ∈ 𝐶𝐹𝑖
(𝑢𝑣)

}
does not contain 𝑘 .

Proof If some sequence of 𝑚𝑖 ’s sums up to exactly 𝑘 , then the corresponding 𝑘 edges
of 𝐺 are all distinct and span at most 2 + ∑𝑠

𝑖=1 (𝑟 − 2)𝑚𝑖 = 𝑟𝑘 − 2𝑘 + 2 vertices, a
contradiction. �

As we mentioned in the introduction, our proof strategy to bound the size of an
(𝑟𝑘 − 2𝑘 + 2, 𝑘)-free 𝑟-graph 𝐺 from above is to analyse possible isomorphism types
of the parts of some partition of 𝐸 (𝐺) which is obtained from the trivial partition into
single edges by iteratively applying some merging rules. Unfortunately, we did not find
a single rule that works in all cases that are studied here. In fact, for every new pair (𝑟, 𝑘)
resolved in this paper except for (3, 5), we build the final partition in stages (with each
stage having a different merging rule) as the intermediate families are also needed in our
analysis. Let us now develop some general notation and prove some basic results related
to merging.

Let 𝐺 be an arbitrary 𝑟-graph. When dealing with a partition P of 𝐸 (𝐺), we will
view each element 𝐹 ∈ P as an 𝑟-graph whose vertex set is the union of the edges
in 𝐹 . Let 𝐴, 𝐵 ⊆ N be any (not necessarily disjoint) sets of positive integers. For two
subgraphs 𝐹, 𝐻 ⊆ 𝐺 , if they are edge disjoint and there is a pair 𝑢𝑣 such that 𝐴 ⊆
𝐶𝐹 (𝑢𝑣) and 𝐵 ⊆ 𝐶𝐻 (𝑢𝑣), then we say that 𝐹 and𝐻 are (𝐴|𝐵)-mergeable (via 𝑢𝑣). Note
that this relation is not symmetric in 𝐹 and 𝐻: the first (resp. second) 𝑟-graph 𝐴-claims
(resp. 𝐵-claims) the pair 𝑢𝑣. When the ordering of the two 𝑟-graphs does not matter, we
use the shorthand 𝐴|𝐵-mergeable to mean (𝐴|𝐵)-mergeable or (𝐵 |𝐴)-mergeable. For
a partition P of 𝐸 (𝐺), its 𝐴|𝐵-merging is the partition M𝐴 |𝐵 (P) of 𝐸 (𝐺) obtained
from P by iteratively and as long as possible taking a pair of distinct 𝐴|𝐵-mergeable
parts in the current partition and replacing them by their union. Note that, if 𝐹 and 𝐻
are 𝐴|𝐵-mergeable via 𝑢𝑣, then

𝐴 ∪ 𝐵 ⊆ 𝐶𝐹∪𝐻 (𝑢𝑣) and 𝐴 + 𝐵 ⊆ 𝐶𝐹∪𝐻 (𝑢𝑣). (5.1)

The first inclusion implies that, in particular, the order of merging operations does not
affect the partition M𝐴 |𝐵 (P). Note that the final partition M𝐴 |𝐵 (P) is a coarsening
of P and contains no 𝐴|𝐵-mergeable pairs of 𝑟-graphs. When P is clear from the con-
text, we may refer to the elements ofM𝐴 |𝐵 (P) as 𝐴|𝐵-clusters. Likewise, a subgraph 𝐹
of 𝐺 that can appear as a part in some intermediate stage of the 𝐴|𝐵-merging process
starting with P is called a partial 𝐴|𝐵-cluster and we letM ′

𝐴 |𝐵 (P) denote the set of all
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partial 𝐴|𝐵-clusters. In other words,M ′
𝐴 |𝐵 (P) is the smallest family of 𝑟-graphs which

contains P as a subfamily and is closed under taking the union of 𝐴|𝐵-mergeable ele-
ments. The monotonicity of the merging rule implies thatM𝐴 |𝐵 (P) is exactly the set
of maximal (by inclusion) elements ofM ′

𝐴 |𝐵 (P) and that the final partitionM𝐴 |𝐵 (P)
does not depend on the order in which we merge parts.

In the frequently occurring case when 𝐴 = {1} and 𝐵 = { 𝑗}, we abbreviate
({1}|{ 𝑗}) to ( 𝑗) and {1}|{ 𝑗} to 𝑗 in the above nomenclature. Thus, ( 𝑗)-mergeable (resp.
𝑗-mergeable) means ({1}|{ 𝑗})-mergeable (resp. {1}|{ 𝑗}-mergeable).

As an example, let us look at the following merging rule that is actually used as the
first step in each of our proofs of the upper bounds. Namely, given𝐺 , let

M1 := M{1} | {1} (Ptrivial)

be the 1-merging of the trivial partition Ptrivial of 𝐺 into single edges. We call the
elements of M1 1-clusters. Here is an alternative description of M1. Call a subgraph
𝐹 ⊆ 𝐺 connected if for any two edges 𝑋,𝑌 ∈ 𝐹 there is a sequence of edges 𝑋1 =

𝑋, 𝑋2, ... , 𝑋𝑚 = 𝑌 in 𝐹 such that, for every 𝑖 ∈ [𝑚 − 1] , we have |𝑋𝑖 ∩ 𝑋𝑖+1 | > 2.
Then, 1-clusters are exactly maximal connected subgraphs of 𝐺 (and partial 1-clusters
are exactly connected subgraphs).

We will also use (often without explicit mention) the following result, which is a gen-
eralisationof thewell-known fact thatwe can remove edges fromany connected 2-graph
one by one, down to any given connected subgraph, while keeping the edge set con-
nected. The assumption (5.2) states that, roughly speaking, the merging process cannot
create any new mergeable pairs.

Lemma 5.2 (Trimming Lemma) Fix an 𝑟-graph 𝐺 , a partition P of 𝐸 (𝐺) and sets
𝐴, 𝐵 ⊆ N.

Suppose that, for all (𝐴|𝐵)-mergeable (and thus edge-disjoint) 𝐹, 𝐻 ∈ M ′
𝐴 |𝐵 (P),

there exist (𝐴|𝐵)-mergeable 𝐹 ′, 𝐻 ′ ∈ P such that 𝐹 ′ ⊆ 𝐹 and 𝐻 ′ ⊆ 𝐻.
(5.2)

Then, for every partial 𝐴|𝐵-cluster 𝐹0 ⊆ 𝐹 , there is an ordering 𝐹1, . . . , 𝐹𝑠 of the elements
of P that lie inside 𝐹 \ 𝐹0 such that, for every 𝑖 ∈ [𝑠] , ⋃𝑖−1

𝑗=0 𝐹𝑗 and 𝐹𝑖 are 𝐴|𝐵-mergeable
(and, in particular,

⋃𝑖
𝑗=0 𝐹𝑗 is a partial 𝐴|𝐵-cluster for every 𝑖 ∈ [𝑠]).

Proof Suppose that the lemma is false. For every 𝐻 ∈ M ′
𝐴 |𝐵 (P), denote by |𝐻 |P

the number of elements of P contained in 𝐻. Choose a counterexample (𝐹0, 𝐹) with
𝑚 := |𝐹 |P − |𝐹0 |P smallest possible. Note that 𝑚 > 0 as otherwise 𝐹0 = 𝐹 and the
conclusion of the lemma vacuously holds. Consider some 𝐴|𝐵-merging process which
leads to 𝐹; let 𝐻 be the first occurring partial 𝐴|𝐵-cluster that shares at least one edge
with each of 𝐹0 and 𝐹 \ 𝐹0. Since the final partial 𝐴|𝐵-cluster 𝐹 satisfies both these
properties,𝐻 exists. As 𝐹0 and 𝐹 \𝐹0 are unions of some elements ofP , we have𝐻 ∉ P .
So, let the merging process for 𝐹 build 𝐻 as the union of (𝐴|𝐵)-mergeable partial 𝐴|𝐵-
clusters 𝐻𝐴, 𝐻𝐵 ( 𝐻. By the definition of 𝐻, one of 𝐻𝐴 and 𝐻𝐵 , say 𝐻𝐴, shares an
edge with 𝐹0 but not with 𝐹 \ 𝐹0 while the opposite holds for 𝐻𝐵 . Then, 𝐻𝐴 ⊆ 𝐹0 and
𝐻𝐵 ⊆ 𝐹 \ 𝐹0.
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Since the partial 𝐴|𝐵-clusters 𝐻𝐴 and 𝐻𝐵 are (𝐴|𝐵)-mergeable, the assumption of
the lemma implies that there are (𝐴|𝐵)-mergeable 𝐻 ′

𝐴
⊆ 𝐻𝐴 and 𝐻 ′

𝐵
⊆ 𝐻𝐵 with

𝐻 ′
𝐴
, 𝐻 ′

𝐵
∈ P . Then, 𝐻 ′

𝐵
, which is edge-disjoint from 𝐹0, is 𝐴|𝐵-mergeable with 𝐹0 ⊇

𝐻𝐴 as well. The minimality of 𝑚 guarantees an ordering 𝐹2, . . . , 𝐹𝑚 of the elements
of P that lie inside 𝐹 \ (𝐹0 ∪ 𝐻 ′

𝐵
) satisfying the statement of the claim for the pair

(𝐹0 ∪ 𝐻 ′
𝐵
, 𝐹). However, then the ordering 𝐻 ′

𝐵
, 𝐹2, . . . , 𝐹𝑚 satisfies the statement of

the claim for (𝐹0, 𝐹), so this pair cannot be a counterexample, on the contrary to our
assumption. �

In the special case 𝐴 = 𝐵 = {1} (when partial clusters are just connected subgraphs),
the assumption of Lemma 5.2 is vacuously true. Since we are going to use its conclusion
quite often, we state it separately.

Corollary 5.3 For every pair 𝐹0 ⊆ 𝐹 of connected 𝑟-graphs, there is an ordering 𝑋1, . . . , 𝑋𝑠

of the edges in 𝐹 \𝐹0 such that, for every 𝑖 ∈ [𝑠] , the 𝑟-graph 𝐹0∪{𝑋1, . . . , 𝑋𝑖} is connected.
�

We say that an 𝑟-graph is a 1-tree if it contains only one edge. For 𝑖 > 2, we recursively
define an 𝑖-tree as any 𝑟-graph that can be obtained from an (𝑖 − 1)-tree 𝑇 by adding a
new edge that consists of a pair 𝑎𝑏 in the 2-shadow 𝑃1 (𝑇) of 𝑇 and 𝑟 − 2 new vertices
(not present in𝑇 ). Clearly, every 𝑖-tree is connected. Like the usual 2-graph trees, 𝑖-trees
are the “sparsest" connected 𝑟-graphs of given size. Any 𝑖-tree 𝑇 satisfies

|𝑃1 (𝑇) | = 𝑖
(
𝑟

2

)
− 𝑖 + 1 and |𝑃 12 (𝑇) | > (𝑖 − 1) (𝑟 − 2)2. (5.3)

(Recall that 𝑃 12 (𝑇) is the set of pairs which are 2-claimed but not 1-claimed by𝑇 .) Note
that the second inequality in (5.3) is equality if, for example, 𝑇 is an 𝑖-path, that is, we
can order the edges of 𝑇 as 𝑋1, . . . , 𝑋𝑖 so that, for each 𝑗 ∈ [𝑖 − 1] , the intersection
𝑋 𝑗+1∩(∪ 𝑗

𝑠=1𝑋𝑠) consists of exactly one pair of vertices and this pair belongs to 𝑃1 (𝑋 𝑗 )\
𝑃1 (∪ 𝑗−1

𝑠=1𝑋𝑠).
The following result shows that the 1-clusters of any G (𝑟 )

𝑘
-free graph have a very

simple structure: namely, they are all small trees.

Lemma 5.4 With the above notation, if𝐺 is G (𝑟 )
𝑘

-free, then every 𝐹 ∈ M1 is an𝑚-tree for
some 𝑚 ∈ [𝑘 − 1].

Proof Since 𝐹 is connected, Corollary 5.3 gives an ordering 𝑋1, . . . , 𝑋𝑚 of its edge
set such that, for each 𝑖 ∈ [2, 𝑚] , the 𝑖-th edge 𝑋𝑖 shares at least two vertices with some
earlier edge. By induction, the number of vertices spanned by {𝑋1, . . . , 𝑋𝑖} is at most
𝑖(𝑟 − 2) + 2 for each 𝑖 ∈ [𝑚]. Since 𝐹 is (𝑘 (𝑟 − 2) + 2, 𝑘)-free, we have 𝑚 < 𝑘 .
Furthermore, for each 𝑖 ∈ [2, 𝑚] , the edge 𝑋𝑖 has at least 𝑟 − 2 vertices not present in
the previous edges by the (𝑖(𝑟 − 2) + 1, 𝑖)-freeness of 𝐺 . It follows that 𝐹 is an 𝑚-tree,
as desired. �
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5.2 Upper bound for (𝑟, 𝑘) = (3, 5)

We begin with the case (𝑟, 𝑘) = (3, 5), which is simpler but still embodies some key
ideas that also apply to higher uniformities.

Proof of the upper bound of Theorem 1.1 for 𝑟 = 3 By Lemma 3.1, it is enough
to prove that |𝐺 | 6 𝑛2/5 for every 3-graph on 𝑛 vertices which is G (3)

5 -free, that is,
contains no (7, 5), (5, 4) and (4, 3)-configurations. Recall thatM1 denotes the partition
of 𝐸 (𝐺) into 1-clusters. By Lemma 5.4, each 1-cluster is an 𝑖-tree with 𝑖 6 4 edges.

For an 𝑖-tree 𝐹 , consider the difference 2 |𝑃1 (𝐹) | − 5 |𝐹 | = 2(2𝑖 + 1) − 5𝑖 = 2 − 𝑖,
which is non-negative when 𝑖 ∈ {1, 2}. For 𝑖 ∈ {3, 4}, we would like to take an extra
pair (in addition to those in 𝑃1 (𝐹)) into account to make the difference non-negative.
The following combinatorial lemma suffices for this.

Claim 5.5 For every 𝑖-tree 𝐹 ∈ M1 with 𝑖 ∈ {3, 4}, there is a pair which is 12-claimed by
𝐹 but neither 1-claimed nor 2-claimed by 𝐺 \ 𝐹 .

Proof of Claim 5.5 Note that no pair 𝑥𝑦 can be 2-claimed by both 𝐹 and 𝐺 \ 𝐹 , for
otherwise we can find a 3-subtree in 𝐹 (by Corollary 5.3) 3-claiming 𝑥𝑦. This would
mean that 5 ∈ 𝐶𝐺 (𝑥𝑦) by (5.1), which contradicts Lemma 5.1.

If 𝑖 = 3, then 𝐹 12-claims at least 2 pairs and at least one of them is not 1-claimed by
𝐺\𝐹: indeed, if they are 1-claimed by different edges, thenwe get a (7, 5)-configuration,
and if they are 1-claimed by the same edge, then we get a (5, 4)-configuration, a contra-
diction in either case. If 𝑖 = 4, then 𝐹 12-claims at least 3 pairs and, in fact, none can be
1-claimed by𝐺 \ 𝐹 (as otherwise we would have a (7, 5)-configuration). �

Now, for each 𝑖-tree 𝐹 ∈ M1, define 𝑃′
1 (𝐹) to be 𝑃1 (𝐹) if 𝑖 ∈ {1, 2}, and to be

𝑃1 (𝐹) plus the pair returned by Claim 5.5 if 𝑖 ∈ {3, 4}.
The sets𝑃′

1 (𝐹) for𝐹 ∈ M1 are pairwise disjoint and satisfy 2 |𝑃′
1 (𝐹) | > 5 |𝐹 |. Thus,

|𝐺 | =
∑︁

𝐹 ∈M1

|𝐹 | 6 2
5

∑︁
𝐹 ∈M1

|𝑃′
1 (𝐹) | 6

2
5

(
𝑛

2

)
<
𝑛2

5
,

giving the desired. �

5.3 Upper bounds of Theorems 1.1 and 1.2

In this section, we shall prove the remaining upper bounds of Theorems 1.1 and 1.2,
that is, the cases when 𝑘 = 5 and 𝑟 > 4, or 𝑘 = 7 and 𝑟 > 3. First, let us present some
definitions and auxiliary results that are common to the proofs of both theorems.

Let 𝑘 ∈ {5, 7} and let 𝐺 be an arbitrary G (𝑟 )
𝑘

-free 𝑟-graph. Recall thatM1 denotes
the partition of 𝐸 (𝐺) into 1-clusters.

We say that a subgraph𝐻 ⊆ 𝐺 2+-claims a pair 𝑢𝑣 ∈
(𝑉 (𝐺)

2
)
if𝐻 has a subtree𝑇 with

3 edges that {2, 3}-claims 𝑢𝑣 (which, by Corollary 5.3, is equivalent to𝑇 2-claiming the
pair 𝑢𝑣). Let us say that two edge-disjoint subgraphs 𝐹, 𝐻 ⊆ 𝐺 are (2+)-mergeable (via
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a pair 𝑢𝑣) if 𝑢𝑣 is 1-claimed by 𝐹 and is 2+-claimed by 𝐻. If the order of 𝐹 and 𝐻 does
not matter, we just say 2+-mergeable. LetM2+ be the partition of 𝐸 (𝐺) obtained from
M1 by iteratively and as long as possible taking two 2+-mergeable elements 𝐹 and 𝐻
and replacing them by 𝐹 ∪ 𝐻. Let M ′

2+ be the smallest family of subgraphs of 𝐺 that
contains all 1-clusters and is closed under 2+-merging. We call the elements of M ′

2+
partial 2+-clusters. By the monotonicity of the merging rule, the familyM2+ consists of
the maximal elements ofM ′

2+ and does not depend on the order of the merging steps.
Note that the relations of being (2+)-mergeable and ({1}|{2, 3})-mergeable, while

havingmany similarities, differ in general (e.g. a subgraphwith 3 edges 3-claiming a pair
need not be a tree). As far as we see, the latter relation can also be used to prove the upper
bounds for 𝑘 ∈ {5, 7} but the former is more convenient for us to work with.

If a partial 2+-cluster 𝐹 2+-claims a pair 𝑢𝑣 as witnessed by a 3-tree 𝑇 ⊆ 𝐹 , then
trivially 𝑇 is a subgraph of one of the 1-clusters in 𝐹 and this 1-cluster 2+-claims the
pair𝑢𝑣. Since the analogous statement for1-claimedpairs is trivial, we have the analogue
of Assumption (5.2) for (2+)-mergeability (withP = M1). The proof of Lemma 5.2with
the obviousmodifications works for partial 2+-clusters.Wewill need only the following
special case.

Lemma 5.6 For every 𝐹 ∈ M ′
2+ and 𝑇 ∈ M1 such that 𝑇 ⊆ 𝐹 , there is an ordering

𝑇1, . . . , 𝑇𝑡 of all 1-clusters in 𝐹 such that𝑇1 = 𝑇 and, for every 𝑖 ∈ [𝑡−1] ,𝑇𝑖+1 and
⋃𝑖

𝑗=1 𝑇𝑗

are 2+-mergeable. (In particular,
⋃𝑖

𝑗=1 𝑇𝑗 ∈ M ′
2+ for every 𝑖 ∈ [𝑡].) �

We say that an 𝑟-graph 𝐹 12+-claims a pair 𝑢𝑣 if it 2+-claims but not 1-claims 𝑢𝑣, and
denote the set of all such pairs by 𝑃 12+ (𝐹). Note that, if we build 2+-clusters by starting
with 1-clusters and merge some (2+)-mergeable 𝐹 and 𝐻 via 𝑢𝑣, then the pair 𝑢𝑣 is
12+-claimed by 𝐻. An integer sequence (𝑒1, . . . , 𝑒𝑡 ) is called a composition of a partial
2+-cluster𝐹 ∈ M ′

2+ if there is a sequence (𝑇1, . . . , 𝑇𝑡 ) as in Lemma5.6with |𝑇𝑖 | = 𝑒𝑖 for
each 𝑖 ∈ [𝑡]. Of course, every two compositions of the same 2+-cluster are permutations
of each other. The (non-increasing) composition of 𝐹 is the non-increasing reordering of
(𝑒1, . . . , 𝑒𝑡 ); in general, there need not be a sequence of iterative legal merges realising
it.

Proof of the upper bound of Theorem 1.1 for 𝑟 > 4 By Lemma 3.1, it is enough
to bound the size of any G (𝑟 )

5 -free 𝑟-graph 𝐺 on [𝑛] from above. As before,M1 (resp.
M2+ ) denotes the set of 1-clusters (resp. 2+-clusters) of𝐺 . By Lemma 5.4, each 1-cluster
is an 𝑖-tree with 𝑖 ∈ [4].

Let every 2+-cluster 𝐹 ∈ M2+ assignweight 1 to every pair in 𝑃1 (𝐹) and in 𝑃 12+ (𝐹).
Note that every pair 𝑥𝑦 receives weight at most 1. Indeed, suppose for contradiction
that 𝑥𝑦 receives weight 1 from two different 2+-clusters 𝐹 and 𝐻. Then, 𝑥𝑦 must be
12+-claimed by both (as otherwise 𝐹 and 𝐻 would be merged together). However, this
implies that {2, 3} ⊆ 𝐶𝐹 (𝑥𝑦) ∩ 𝐶𝐻 (𝑥𝑦), which contradicts Lemma 5.1.

Thus, in order to prove the theorem, it is enough to show that, for every 𝐹 ∈ M2+ ,
we have 𝜆(𝐹) > 0 where

𝜆(𝐹) := 2
(
|𝑃1 (𝐹) | + |𝑃 12+ (𝐹) |

)
− (𝑟2 − 𝑟 − 1) |𝐹 |.
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Indeed, we will then have that

|𝐺 | =
∑︁

𝐹 ∈M2+

|𝐹 | 6 2
𝑟2 − 𝑟 − 1

( |𝑃1 (𝐹) | + |𝑃 12+ (𝐹) |) 6
2

𝑟2 − 𝑟 − 1

(
𝑛

2

)
. (5.4)

Claim 5.7 Every 𝐹 ∈ M2+ has at most four edges.

Proof of Claim 5.7 Suppose for the sake of contradiction that |𝐹 | > 5 (and thus
|𝐹 | > 6 since 𝐹 contains at most (𝑟 − 2) |𝐹 | + 2 vertices and 𝐺 is (5𝑟 − 8, 5)-free). Let
𝐹 be obtained by merging 1-clusters 𝐹1, . . . , 𝐹𝑚 ∈ M1 in this order as in Lemma 5.6.
Let us stop the merging process when we reach a partial 2+-cluster containing at least 5
(and thus at least 6) edges. Suppose that we have merged 𝐹1, . . . , 𝐹𝑠 until this point. By
Lemma 5.4, we have |𝐹𝑠 | 6 4 and thus 𝑠 > 2.

We claim that the last tree 𝐹𝑠 has exactly three edges. As 𝐺 is (5𝑟 − 8, 5)-free, it
holds that |⋃𝑠−1

𝑖=1 𝐹𝑖 | ≠ 5. Thus, 𝐹𝑠 has at least two edges. In fact, 𝐹𝑠 cannot have exactly
two edges as otherwise the subgraph

⋃𝑠−1
𝑖=1 𝐹𝑖 of size 4 would 4-claim a pair in 𝑃1 (𝐹𝑠),

contradicting Lemma 5.1. Also, the tree 𝐹𝑠 cannot have 4 edges as otherwise any 2+-
merging involving it would lead to a (5𝑟−8, 5)-configuration andwewould have 𝑠 = 1,
a contradiction.

Next, we can build the partial 2+-cluster
⋃𝑠

𝑖=1 𝐹𝑖 by starting with 𝐻1 := 𝐹𝑠 as in
Lemma 5.6; let us stop here at the first moment when the current partial 2+-cluster 𝐻,
say composed of 𝐻1, . . . , 𝐻𝑡 ∈ {𝐹1, . . . , 𝐹𝑠} in this order, has at least five edges. As
before, we have that |𝐻𝑡 | = 3. By (5𝑟 − 8, 5)-freeness, the sizes of the 1-clusters in 𝐻
in the order of merging are either (3, 3) or (3, 1, 3). In the former (resp. latter) case, we
can remove an edge from one (resp. each) of the 3-trees𝐻1 and𝐻𝑡 so that the remaining
subgraph is a diamond 12-claiming the pair along which this tree attaches to the rest
of 𝐻. This way, we can find a sequence of trees of sizes (3, 2) or (2, 1, 2) with each one
containing some 2 previously used vertices. This gives a forbidden 5-edge configuration,
proving that |𝐹 | 6 4 for every 𝐹 ∈ M2+ . �

It follows that, if 𝐹 ∈ M2+ is not a tree, then 𝐹 is made of a single edge and a 3-
tree which must share exactly two vertices (for otherwise a (4𝑟 − 7, 4)-configuration
appears). In this case, we have that |𝑃1 (𝐹) | = 4

(𝑟
2
)
− 2 and |𝑃 12+ (𝐹) | > 2(𝑟 − 2)2 − 1.

Thus,

𝜆(𝐹) > 2
(
4
(
𝑟

2

)
− 2 + 2(𝑟 − 2)2 − 1

)
− (𝑟2 − 𝑟 + 1) · 4 = 4𝑟2 − 16𝑟 + 6,

which is positive for 𝑟 > 4.
Let 𝐹 ∈ M2+ be an 𝑖-tree. If 𝑖 > 3, then |𝑃 12+ (𝐹) | > (𝑖 − 1) (𝑟 − 2)2 and we have

𝜆(𝐹) > 2
(
𝑖

(
𝑟

2

)
− 𝑖 + 1 + (𝑖 − 1) (𝑟 − 2)2

)
− (𝑟2 − 𝑟 − 1)𝑖

= 𝑖
(
2𝑟2 − 8𝑟 + 7

)
− (2𝑟2 − 8𝑟 + 6).
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For 𝑟 > 4, this expression is monotone increasing in 𝑖 and thus is at least its value when
𝑖 = 3, which is 4𝑟2 − 16𝑟 + 15 > 15. Finally, if 𝑖 = 1, 2, then 𝜆(𝐹) is respectively
2
(𝑟
2
)
− (𝑟2 − 𝑟 − 1) = 1 and 2

(
2
(𝑟
2
)
− 1

)
− 2(𝑟2 − 𝑟 − 1) = 0.

Hence, for all 𝐹 ∈ M2+ , we have that 𝜆(𝐹) > 0, which finishes the proof of the
theorem by (5.4). �

Proof of the upper bound of Theorem 1.2 By Lemma 3.1, it is sufficient to bound
the size of any G (𝑟 )

7 -free 𝑟-graph 𝐺 of order 𝑛 from above. As before,M1 (resp.M2+ )
is the set of all 1-clusters (resp. 2+-clusters) of𝐺 . By Lemma 5.4, each element ofM1 is
an 𝑖-tree with 𝑖 ∈ [6].

Let each 2+-cluster 𝐹 ∈ M2+ assign weight 1 to each pair it 1-claims and weight 1/2
to each pair it 12+-claims. Let us show that every pair 𝑥𝑦 ∈

(𝑉 (𝐺)
2

)
receives weight at

most 1. If a pair of vertices is 1-claimed by some 2+-cluster, then it cannot be 1-claimed
or 2+-claimed by another 2+-cluster as otherwise this would violate the merging rules
for M1 or M2+ . Furthermore, a pair of vertices 𝑥𝑦 cannot be {2, 3}-claimed by three
2+-clusters by Lemma 5.1. So 𝑥𝑦 indeed receives weight at most 1.

Thus, in order to prove the upper bound, it is sufficient to show that each 2+-cluster
𝐹 satisfies that

𝜆(𝐹) := 2𝑤(𝐹) − (𝑟2 − 𝑟 − 1) |𝐹 | > 0, (5.5)
where 𝑤(𝐹) := |𝑃1 (𝐹) | + 1

2 |𝑃 12+ (𝐹) | is the total weight assigned by 𝐹 to the vertex
pairs. Indeed, we would then be done since

|𝐺 | =
∑︁

𝐹 ∈M2+

|𝐹 | 6
∑︁

𝐹 ∈M2+

2
𝑟2 − 𝑟 − 1

𝑤(𝐹) 6 2
𝑟2 − 𝑟 − 1

(
𝑛

2

)
.

To show (5.5), we first prove the following claim.

Claim 5.8 For each 𝐹 ∈ M2+ , we have |𝐹 | 6 6.

Proof of Claim 5.8 Suppose for contradiction that 𝐹 ∈ M2+ has at least 7 edges.
Since 𝐹 is (7𝑟 − 12, 7)-free, we have |𝐹 | > 8. Let 𝐹 be obtained by merging 𝑚 distinct
1-clusters 𝑇1, . . . , 𝑇𝑚 ∈ M1 in this order as in Lemma 5.6.

Let 𝑠 ∈ [𝑚] be the first index satisfying |⋃𝑠
𝑖=1 𝑇𝑖 | > 8. Then, |⋃𝑠−1

𝑖=1 𝑇𝑖 | 6 6 as
𝐹 is (7𝑟 − 12, 7)-free. Hence, |𝑇𝑠 | > 2. It is impossible that 𝑇𝑠 and 𝑇1 ∪ ... ∪ 𝑇𝑠−1
are (2+)-mergeable as otherwise we could trim edges from 𝑇𝑠 using Corollary 5.3 to
get a (7𝑟 − 12, 7)-configuration in 𝐹 , a contradiction. Thus, 𝑇𝑠 2+-claims some pair 𝑥𝑦
1-claimed by

⋃𝑠−1
𝑖=1 𝑇𝑖 ; in particular, |𝑇𝑠 | > 3. Let 𝐷 be the diamond in 𝑇𝑠 2-claiming

𝑥𝑦. We note that | (⋃𝑠−1
𝑖=1 𝑇𝑖) ∪ 𝐷 | > 8 since otherwise we could trim edges in 𝑇𝑠 \ 𝐷

using Corollary 5.3 to obtain a (7𝑟 − 12, 7)-configuration. Thus, |⋃𝑠−1
𝑖=1 𝑇𝑖 | = 6. Let

𝑇 ′
1 := 𝑇𝑠 and let 𝑇 ′

2 be any 1-cluster in {𝑇1, . . . , 𝑇𝑠−1} which is 2+-mergeable with 𝑇 ′
1 .

By Lemma 5.6, we can obtain the partial 2+-cluster
⋃𝑠−1

𝑖=1 𝑇𝑖 by starting with 𝑇 ′
2 and 2

+-
merging the remaining 1-clusters one at a time, say 𝑇 ′

3 , . . . , 𝑇
′
𝑠 in this order. Let 𝑡 ∈ [𝑠]

be the smallest index such that 𝑇 ′
1 ∪ · · · ∪ 𝑇 ′

𝑡 has at least 7 edges. By the same argument
as before, we derive that |⋃𝑡−1

𝑖=1 𝑇
′
𝑖
| = 6 and |𝑇 ′

𝑡 | > 3. Also, we can trim edges one by
one from each of the “pendant” 1-clusters 𝑇 ′

1 and 𝑇 ′
𝑡 down to a diamond so that each

intermediate subgraph is always a tree that shares 2 vertices with the partial 2+-cluster
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𝐹 ′ :=
⋃𝑡−1

𝑖=2 𝑇
′
𝑖
. Since |𝐹 ′ | 6 6−|𝑇 ′

1 | 6 3, wemust encounter a (7𝑟−12, 7)-configuration
inside

⋃𝑡
𝑖=1 𝑇

′
𝑖
in this process, a contradiction. �

Now, we prove (5.5) for every 2+-cluster 𝐹 ∈ M2+ .
Take any 2+-merging sequence 𝑇1, . . . , 𝑇𝑚 for 𝐹 as in Lemma 5.6. For 𝑖 ∈ [𝑚] , let

𝑒𝑖 := |𝑇𝑖 |. Thus, (𝑒1, . . . , 𝑒𝑚) is a composition of 𝐹 . Then,

|𝑃 12+ (𝐹) | > 1 − 𝑚 +
∑︁
𝑒𝑖>3

(𝑒𝑖 − 1) (𝑟 − 2)2,

since each 𝑇𝑖 shares exactly two vertices with
⋃𝑖−1

𝑗=1 𝑇𝑗 (as otherwise there would be an
(𝑟ℓ − 2ℓ + 1, ℓ)-configuration in𝐺 for some ℓ ∈ [2, 6]). Thus, by (5.3), we have that

𝜆(𝐹) > 2
𝑚∑︁
𝑖=1

(
𝑒𝑖

(
𝑟

2

)
− 𝑒𝑖 + 1

)
+ 1 − 𝑚 +

∑︁
𝑒𝑖>3

(𝑒𝑖 − 1) (𝑟 − 2)2 − (𝑟2 − 𝑟 − 1)
𝑚∑︁
𝑖=1

𝑒𝑖

= 1 + (𝑟 − 2)2
∑︁
𝑒𝑖>3

(𝑒𝑖 − 1) −
𝑚∑︁
𝑖=1

(𝑒𝑖 − 1). (5.6)

Our goal is to show that (5.6) is non-negative. Let us denote by 𝑥 = 𝑥(𝐹) the number
of diamonds in the merging sequence of 𝐹 , that is, the number of 𝑖 ∈ [𝑚] with 𝑒𝑖 = 2.
Note that 𝑥 6 1: indeed, if𝑚 > 2, thenmax(𝑒1, 𝑒2) > 3 (in order for the firstmerging to
occur) and Claim 5.8 implies that 𝑥 6 b 6−32 c = 1. Since the contribution of each 𝑒𝑖 ≠ 2
to the right-hand side of (5.6) is non-negative, the expression there is at least 1 − 𝑥 > 0,
as desired. �

5.4 Upper bounds for 𝑘 = 6

Here we set 𝑘 = 6. We will continue using the definitions of Section 5.1 for a given
G (𝑟 )
6 -free 𝑟-graph 𝐺 . In particular, recall that M1 denotes the set of 1-clusters of 𝐺 .

However, unlike in the cases 𝑘 = 5, 7, diamonds in the final partition would have to
assign some positive weight to 12-claimed pairs as otherwise the best we could hope for
would be only |𝐺 | 6 ( 1

𝑟2−𝑟−1 + 𝑜(1))𝑛
2, which is strictly larger than the desired upper

bound. This brings extra challenges to proving that each pair of vertices receives weight
at most 1. We resolved this by using a different merging rule. Namely, in addition to the
partitionM1 of 𝐸 (𝐺) into 1-clusters, we will also use the partition

M2 := M{1} | {2} (M1),

which is obtained from the partitionM1 by iteratively and as long as possible combining
(2)-mergeable pairs, that is, two current parts such that the first 1-claims and the second
2-claims the same pair. Also, we define M ′

2 to consist of all subgraphs of 𝐺 that may
appear at any stage of this process, calling the elements ofM2 (resp.M ′

2) 2-clusters (resp.
partial 2-clusters).

Let us observe some basic properties of (partial) 2-clusters. If some two partial 2-
clusters 𝐹 and 𝐻 are (2)-mergeable via a pair 𝑢𝑣 then it holds that 𝑢𝑣 ∉ 𝑃1 (𝐻) (as
otherwise 1-clusters of 𝐹 and 𝐻 1-claiming the pair 𝑢𝑣 would have been merged when
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constructing M1). Likewise, if a partial 2-cluster 𝐹 2-claims 𝑢𝑣 then the pair 𝑢𝑣 is 2-
claimed by one of the 1-clusters thatmake𝐹 . Thus, Assumption (5.2) of Lemma5.2 holds
and the conclusion of the lemma applies here.

For 𝐹 ∈ M ′
2 which is made by merging 1-clusters 𝐹1, . . . , 𝐹𝑚 in this order as in

Lemma 5.2, we call the sequences of sizes ( |𝐹1 |, . . . , |𝐹𝑚 |) a composition of 𝐹 . Its non-
increasing reordering is called the (non-increasing) composition of 𝐹 .

Also, recall that, by Lemma 5.1, it holds for any edge-disjoint subgraphs 𝐹1, . . . , 𝐹𝑠 ⊆
𝐺 and any 𝑥𝑦 ∈

(𝑉 (𝐺)
2

)
that

6 ∉

𝑠∑︁
𝑖=1

𝐶𝐹𝑖
(𝑥𝑦). (5.7)

Next, in Lemma 5.9 below, we derive some combinatorial properties that every par-
tial 2-cluster has to satisfy and that will suffice for our estimates. (An exact description
of all possible partial 2-clusters is possible, with some extra work.) Since the proof of the
lemma does not introduce any new ideas in addition to the ones seen before, the reader
may skip it in the first reading.

Lemma 5.9 Let 𝑟 > 3 and 𝐺 be an arbitrary G (𝑟 )
6 -free 𝑟-graph. Let a partial 2-

cluster 𝐹 be obtained by merging the elements 𝑇1, . . . , 𝑇𝑚 of M1 in this order as in
Lemma 5.2. Let (𝑒1, . . . , 𝑒𝑚) be the composition of 𝐹 , that is, the non-increasing reordering
of ( |𝑇1 |, . . . , |𝑇𝑚 |). Then, each of the following statements holds.

(a) If 𝐹 has at least 7 edges, then (𝑒1, . . . , 𝑒𝑚) is either (3, 2, 2) or (2, . . . , 2, 1) with at
most 𝑟 (𝑟 − 1) entries equal to 2. If, moreover, 𝑇1 is the unique 1-cluster of size different
from 2 (that is, |𝑇1 | = 1 or 3) then, for each 𝑖 ∈ [2, 𝑚] , 𝐻𝑖 :=

⋃𝑖−1
𝑗=1 𝑇𝑗 and 𝑇𝑖 are (2)-

mergeable via some pair 𝑥𝑦 ∈ 𝑃 12 (𝑇𝑖) while no other pair in 𝑃 12 (𝑇𝑖) is 1-claimed or
2-claimed by 𝐻𝑖 .

(b) It holds that |𝑃 12 (𝐹) | > 1 − 𝑚 + ∑𝑚
𝑖=1 (𝑒𝑖 − 1) (𝑟 − 2)2.

(c) If (𝑒1, . . . , 𝑒𝑚) = (2, 1, 1, 1) then no pair in 𝑃 12 (𝐹) is 1-claimed or 2-claimed
by 𝐺 \ 𝐹 .

Proof Suppose first that the partial 2-cluster 𝐹 has at least 7 edges. We prove the first
two claims of the lemma for this 𝐹 simultaneously.

Let 𝑠 ∈ [𝑚] be the first index such that |⋃𝑠
𝑖=1 𝑇𝑖 | > 7. Then, |𝐻𝑠 | 6 5 as 𝐹 is

(6𝑟 − 10, 6)-free, and hence, |𝑇𝑠 | > 2. If 𝑇𝑠 and 𝐻𝑠 are (2)-mergeable, then by Corol-
lary 5.3 we can remove some edges from 𝑇𝑠 to get a (6𝑟 − 10, 6)-configuration inside
𝐻𝑠 ∪ 𝑇𝑠 , a contradiction. Hence, 𝑇𝑠 must 12-claim some pair 𝑥𝑦 1-claimed by 𝐻𝑠 . Let
𝐷 ⊆ 𝑇𝑠 be the (unique) diamond 12-claiming 𝑥𝑦. Note that |𝐻𝑠 ∪ 𝐷 | > 7 as otherwise
Corollary 5.3 implies that we could remove some edges from𝑇𝑠 \𝐷 one by one to obtain
a (6𝑟 − 10, 6)-configuration. Thus, |𝐻𝑠 | = 5.

Let 𝑇 ′
1 := 𝑇𝑠 and let 𝑇 ′

2 ∈ {𝑇1, . . . , 𝑇𝑠−1} be a 1-cluster 2-mergeable with 𝑇𝑠 . Let
(𝑇 ′

2 , . . . , 𝑇
′
𝑠 ) be the ordering of {𝑇1, . . . , 𝑇𝑠−1} returned by Lemma 5.2 for the partial

2-clusters 𝑇 ′
2 ⊆ ⋃𝑠−1

𝑖=1 𝑇𝑖 . By the choice of 𝑇 ′
2 , for each 𝑖 = 2, . . . , 𝑠 the 1-cluster 𝑇 ′

𝑖
is

2-mergeable with the partial 2-cluster
⋃𝑖−1

𝑗=1 𝑇
′
𝑗
. Let 𝑡 ∈ [𝑠] be the first index such that

|⋃𝑡
𝑖=1 𝑇

′
𝑖
| > 7. Set 𝐻 ′ :=

⋃𝑡−1
𝑖=1 𝑇

′
𝑖
. By the same argument as in the previous paragraph,
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we have that |𝐻 ′ | = 5 and there is a diamond 𝐷 ′ ⊆ 𝑇 ′
𝑡 such that 𝐻 ′ and 𝐷 ′ are (2)-

mergeable.
Thus, we have a partial 2-cluster 𝐹 ′ :=

⋃𝑡
𝑖=1 𝑇

′
𝑖
with at least 7 edges built via the

sequence (𝑇 ′
1 , 𝑇

′
2 , . . . , 𝑇

′
𝑡 ) so that the first 1-cluster 𝑇 ′

1 = 𝑇𝑠 (resp. the last 1-cluster 𝑇 ′
𝑡 )

can be merged with the rest through only one pair, which is 12-claimed by the diamond
𝐷 ⊆ 𝑇𝑠 (resp. 𝐷 ′ ⊆ 𝑇 ′

𝑡 ). Here we have the freedom to trim one or both of these two
clusters, leaving any number of edges in each except exactly 1 edge. It routinely follows
that |𝑇 ′

1 | = |𝑇 ′
𝑡 | = 2 (that is, 𝑇 ′

1 = 𝐷 and 𝑇 ′
𝑡 = 𝐷 ′). For example, if ( |𝑇 ′

1 |, |𝑇 ′
𝑡 |) = (3, 3),

then we can trim exactly one edge (from 𝑇 ′
1 ), two edges (one from each of 𝑇 ′

1 and 𝑇
′
𝑡 ) or

three edges (all of 𝑇 ′
1 ), with one of these operations leaving a forbidden subgraph of 𝐹 ′

with exactly 6 edges.
Thus, the 1-clusters𝑇 ′

𝑖
with 2 6 𝑖 6 𝑡−1 contain exactly 3 edges in total. This leaves

uswith the following possibilities for the sequence (𝑒′1, . . . , 𝑒′𝑡 ) of the encountered sizes
𝑒′
𝑖
:= |𝑇 ′

𝑖
|.

The first case that (𝑒′1, . . . , 𝑒′𝑡 ) = (2, 1, 1, 1, 2) is in fact impossible because one of the
1-trees can be removed so that the remaining 𝑟-graph is a partial 2-cluster with exactly
6 edges, a contradiction.

If (𝑒′1, . . . , 𝑒′𝑡 ) = (2, 3, 2) then, in order to avoid a forbidden configuration, the fol-
lowing statements must hold:𝑇 ′

2 is a 3-path, the diamonds𝑇 ′
1 and𝑇

′
3 12-claim pairs that

are 1-claimed by the opposite end-edges of the 3-path 𝑇 ′
2 but not by the middle edge,

|𝑉 (𝑇 ′
1) ∩𝑉 (𝑇 ′

2) | = |𝑉 (𝑇 ′
3) ∩𝑉 (𝑇 ′

2) | = 2, |𝑉 (𝑇 ′
1) ∩𝑉 (𝑇 ′

3) | 6 1, no further 1-cluster can
be merged with 𝐹 ′ = 𝑇 ′

1 ∪ 𝑇 ′
2 ∪ 𝑇 ′

3 (so 𝐹
′ = 𝐹 by Lemma 5.2), and therefore 𝐹 satisfies

Part (a) of the lemma. Part (b) now easily follows.
Finally, suppose that (𝑒′1, . . . , 𝑒′𝑡 ) is (2, 1, 2, 2) or (2, 2, 1, 2), with the single-edge 1-

cluster being {𝑋}. By two applications of Lemma 5.2 (for {𝑋} ⊆ 𝐹 ′ and for 𝐹 ′ ⊆ 𝐹),
we can additionally assume that 𝐹 ′ is made of 𝑇1 = {𝑋} and three diamonds 𝑇2, 𝑇3 and
𝑇4 (and thus 𝐹 can be obtained from 𝐹 ′ by iteratively merging 1-clusters 𝑇5, . . . , 𝑇𝑚 in
this order). Call a 1-cluster 𝑇𝑖 for 𝑖 > 2 of type 𝑎𝑏 if the merging chain connects it to 𝑋
via a pair {𝑎, 𝑏} ⊆ 𝑋 . (Note that the vertices 𝑎, 𝑏 are not necessarily in 𝑇𝑖 : for example,
𝑇𝑖 can merge with a diamond 2-claiming 𝑎𝑏.) By convention, we assume that the 1-tree
𝑇1 is of all

(𝑟
2
)
types. Observe that at least two of the initial diamonds 𝑇2, 𝑇3, 𝑇4 must be

of different types (as otherwise 𝑇2 ∪ 𝑇3 ∪ 𝑇4 would be a (6𝑟 − 10, 6)-configuration).
Let us continue denoting 𝐻𝑖 := 𝑇1 ∪ · · · ∪ 𝑇𝑖−1 for 𝑖 ∈ [𝑚 − 1]. In order to finish

Part (a), it remains to prove the following.

Claim 5.10 For every 𝑖 ∈ [2, 𝑚] ,𝑇𝑖 is a diamond that 12-claims some previously 1-claimed
pair 𝑥𝑖𝑦𝑖 ∈ 𝑃1 (𝐻𝑖), and no pair in 𝑃 12 (𝑇𝑖) \ {𝑥𝑖𝑦𝑖} is 1-claimed or 2-claimed by 𝐻𝑖 . Also,
𝑚 6 1 + 2

(𝑟
2
)
.

Proof of Claim 5.10 For the first part, we use induction on 𝑖 ∈ [𝑚]. To begin with,
it is easy to check that the configuration on 𝑇1, 𝑇2, 𝑇3, 𝑇4 satisfies the statement of the
claim. Let 𝑖 ∈ [5, 𝑚] and let the 1-cluster 𝑇𝑖 be of type 𝑎𝑏. Note that we have at most
two 1-clusters of each type among the diamonds 𝑇2, . . . , 𝑇𝑖−1 (otherwise, the first three
diamonds of any given type would form a forbidden 6-edge configuration). If some edge
𝑒′ ∈ 𝑇𝑖 1-claims a pair 12-claimed by 𝐻𝑖 , then by keeping only the edge 𝑒′ in 𝑇𝑖 and
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removing one by one the diamonds of types different from 𝑎𝑏, we can reach a partial 2-
cluster with exactly 6 edges, a contradiction. So let the diamond𝐷𝑖 ⊆ 𝑇𝑖 12-claim a pair
𝑥𝑖𝑦𝑖 ∈ 𝑃1 (𝐻𝑖). We know that there is at most one previous diamond𝑇𝑗 of the same type
as 𝑇𝑖 (otherwise 𝐷𝑖 with two such diamonds would form a (6𝑟 − 10, 6)-configuration).
It follows that 𝐷𝑖 = 𝑇𝑖 as otherwise a forbidden 6-edge configuration would be formed
by 𝑇1, 𝐷𝑖 , some suitable edge of 𝑇𝑖 \ 𝐷𝑖 plus either the diamond 𝑇𝑗 of type 𝑎𝑏 (if it
exists) or a diamond 12-claiming a pair in 𝑃1 (𝑇1) \ {𝑎𝑏} (such diamond exists among
𝑇2, 𝑇3, 𝑇4). If 𝐷𝑖 contains some other vertex 𝑧𝑖 ∉ {𝑥𝑖 , 𝑦𝑖} from an earlier 1-cluster of
the same type 𝑎𝑏, then some edge 𝑒′ of 𝐷𝑖 shares at least two vertices with 𝐻𝑖 , again
leading to a forbidden 6-vertex configuration in 𝐻𝑖 ∪ {𝑒′}. Thus, we are done unless
𝑃 12 (𝑇𝑖) contains a pair 𝑢𝑣 with both vertices in a 1-cluster of some different type 𝑎′𝑏′
(where {𝑢, 𝑣} may possibly intersect {𝑥𝑖 , 𝑦𝑖}). If each of the types 𝑎𝑏 and 𝑎′𝑏′ contains
an earlier diamond (which then must be unique), then these two diamonds and 𝑇𝑖 form
a configuration on 6 edges and at most 6𝑟 − 10 vertices; otherwise, we have in total at
most two diamonds of Type 𝑎𝑏 or 𝑎′𝑏′ (including𝑇𝑖 ) and these diamonds together with
𝑇1 have 5 edges and at most 5(𝑟 − 2) + 1 vertices, a contradiction.

Finally, the inequality 𝑚 6 1 + 2
(𝑟
2
)
follows from the observation made earlier that

for every type 𝑎𝑏 ∈
(𝑒
2
)
there are atmost 2 diamonds among𝑇2, . . . , 𝑇𝑚 of this type. �

Claim 5.10 implies that the addition of each new diamond gives (𝑟 − 2)2 − 1 new
12-claimed pairs, from which Part (b) follows in the case |𝐹 | > 7.

Now, suppose that |𝐹 | 6 6, and thus |𝐹 | 6 5. When we construct 𝐹 by merging 1-
clusters one by one as in Lemma 5.2, each new 1-cluster shares exactly 2 vertices with
the current partial 2-cluster (since𝐺 is G (𝑟 )

6 -free). Thus, Part (b) follows.
Finally, if (𝑒1, . . . , 𝑒𝑚) = (2, 1, 1, 1), then 𝐹 consists of a diamond 𝐷 with three

single edges 𝑋1, 𝑋2, 𝑋3 attached along some pairs 12-claimed by 𝐷. Take any pair 𝑥𝑦 ∈
𝑃 12 (𝐹); then, 𝑥𝑦 is 12-claimed by𝐷 but not 1-claimed by any 𝑋𝑖 . Note that, for an edge
𝑋 ∈ 𝐺 \ 𝐹 1-claiming 𝑥𝑦 (resp. a diamond 𝐷 ′ ⊆ 𝐺 \ 𝐹 12-claiming 𝑥𝑦), 𝐹 ∪ {𝑋}
(resp. (𝐹 ∪ 𝐷 ′) \ {𝑋1}) is a (6𝑟 − 10, 6)-configuration. Thus, 𝐺 \ 𝐹 neither 1-claims
nor 2-claims 𝑥𝑦, finishing the proof of Part (c). �

5.4.1 Upper bound of Theorem 1.4
Here, we deal with the case 𝑘 = 6 and 𝑟 > 4.

Proof of the upper boundofTheorem1.4 ByLemma3.1, it is enough to upper bound
the size of aG (𝑟 )

6 -free 𝑟-graph𝐺 with 𝑛 vertices. Recall that, by Lemma5.4, each element
ofM1 is an 𝑖-tree with 𝑖 ∈ [5].

Now, we define the weights. A 2-cluster 𝐹 ∈ M2 assigns weight 1 to each pair
in 𝑃1 (𝐹) and weight 1/2 to each pair in 𝑃 12 (𝐹), except if the composition of 𝐹 is
(2, 1, 1, 1) in which case every pair 12-claimed by 𝐹 receives weight 1 (instead of 1/2).
Let us show that every pair 𝑥𝑦 of vertices of𝐺 receives weight at most 1. This is clearly
true if there is a 2-cluster 𝐹 with the composition (2, 1, 1, 1) such that 𝑥𝑦 ∈ 𝑃 12 (𝐹):
then, 𝐹 gives weight 1 to 𝑥𝑦 and no other 2-cluster 1-claims or 2-claims 𝑥𝑦 by Part (c)
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of Lemma 5.9. Suppose that 𝑥𝑦 is not 12-claimed by any 2-cluster with the composi-
tion (2, 1, 1, 1). If 𝑥𝑦 is 1-claimed by some 2-cluster 𝐹1, then it cannot be 1-claimed or
2-claimed by another 2-cluster 𝐹2 (as otherwise 𝐹1 and 𝐹2 would be merged). On the
other hand, the pair 𝑥𝑦 can be 2-claimed by at most two 2-clusters by (5.7). In all cases,
the pair 𝑥𝑦 receives weight at most 1.

Let us show that for each 2-cluster 𝐹 ∈ M2, we have

𝜆(𝐹) := 2𝑤(𝐹) − 𝑟 (𝑟 − 1) |𝐹 | > 0, (5.8)

where 𝑤(𝐹) denotes the total weight assigned by the 2-cluster 𝐹 . First, consider the
exceptional case when 𝐹 is composed of a diamond and 3 single edges. Here,𝑤(𝐹) does
not depend on how the three edges are merged with the diamond and we have

𝜆(𝐹) = 2
(
5
(
𝑟

2

)
+ (𝑟 − 2)2 − 4

)
− 𝑟 (𝑟 − 1) · 5 = 2((𝑟 − 2)2 − 4) > 0.

(Note that, if 𝐹 gave weight of 1/2 to each 12-claimed pair, then (5.8) may be false for
𝑟 = 4, so some exceptional weight distribution is necessary.)

So let 𝐹 be any other (non-exceptional) 2-cluster. For 𝑗 ∈ N, let 𝑛 𝑗 denote the
number of 1-clusters in 𝐹 with 𝑗 edges. Thus, 𝑛 𝑗 = 0 for 𝑗 > 6 by Lemma 5.4. We have

𝜆(𝐹) = 2 |𝑃1 (𝐹) | + |𝑃 12 (𝐹) | − 𝑟 (𝑟 − 1) |𝐹 |

> 2
5∑︁
𝑗=1

(
𝑗

(
𝑟

2

)
− 𝑗 + 1

)
𝑛 𝑗 +

(
1 −

5∑︁
𝑗=1
𝑛 𝑗 +

5∑︁
𝑗=1

( 𝑗 − 1) (𝑟 − 2)2𝑛 𝑗

)
− 𝑟 (𝑟 − 1)

5∑︁
𝑗=1

𝑗𝑛 𝑗

= 1 +
5∑︁
𝑗=1

(
(𝑟2 − 4𝑟) ( 𝑗 − 1) + 2 𝑗 − 3

)
𝑛 𝑗 ,

where the inequality in the middle follows from Part (b) of Lemma 5.9. Since 𝑟 > 4, the
coefficient at 𝑛 𝑗 is at least 2 𝑗 − 3. This is negative only if 𝑗 = 1. Thus, 𝜆(𝐹) > 0 unless
𝑛1 > 2. By Part (a) of Lemma 5.9 (and since we have already excluded the exceptional
(2, 1, 1, 1)-case of Part (c)), this is only possible if 𝐹 has the composition (3, 1, 1) or
(2, 1, 1). The corresponding sequences of (𝑛1, 𝑛2, 𝑛3) are (2, 0, 1) and (2, 1, 0); thus, the
corresponding values of 𝜆(𝐹) are 2 and 0. Hence, 𝜆(𝐹) > 0 for every 2-cluster 𝐹 , so the
familiar double counting argument implies that |𝐺 | 6

(𝑟
2
)−1 (𝑛

2
)
, proving the theorem.

�

5.4.2 Upper bound of Theorem 1.3
In this section, we deal with the case (𝑟, 𝑘) = (3, 6).

Proof of the upper bound of Theorem 1.3 By Lemma 3.1, it is enough to provide a
uniform upper bound on the size of an arbitrary G (3)

6 -free 3-graph𝐺 on𝑉 := [𝑛] from
above.

As before, M1 (resp. M2) denotes the partition of 𝐸 (𝐺) into 1-clusters (resp. 2-
clusters). Call edge-disjoint subgraphs 𝐹, 𝐹 ′ ⊆ 𝐺 (3+)-mergeable (via 𝑢𝑣 ∈

(𝑉
2
)
) if they
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are ({1}|{3, 4}) or ({1, 2}|{3})-mergeable via 𝑢𝑣, that is, if at least one of the following
two conditions holds:

• 1 ∈ 𝐶𝐹 (𝑢𝑣) and {3, 4} ⊆ 𝐶𝐹 ′ (𝑢𝑣), or
• {1, 2} ⊆ 𝐶𝐹 (𝑢𝑣) and 3 ∈ 𝐶𝐹 ′ (𝑢𝑣).

If the order of 𝐹 and 𝐹 ′ does not matter, then we simply say that they are 3+-mergeable.
Let the partition M3+ of 𝐸 (𝐺) be obtained by starting with M2 and, iteratively and
as long as possible, merging any two 3+-mergeable parts. Also, letM ′

3+ be the set of 3-
graphs that could appear at some point of the above process. We refer to the elements of
M3+ (resp.M ′

3+ ) as 3
+-clusters (resp. partial 3+-clusters). By monotonicity, the partition

M3+ does not depend on the order in which we perform the merging steps.
Let us observe some basic properties ofM3+ .

Lemma 5.11 Suppose that the edge-disjoint partial 3+-clusters 𝐹 and𝐻 are (3+)-mergeable
via some pair 𝑢𝑣. Then, there are 2-clusters 𝐹 ′ ⊆ 𝐹 and 𝐻 ′ ⊆ 𝐻 that are (3+)-mergeable
via 𝑢𝑣.

Proof Let 𝐹 ′ ⊆ 𝐹 be the (unique) 2-cluster that 1-claims the pair 𝑢𝑣. Let 𝐻 ′′ be
a (5, 3)-configuration in 𝐻 that 3-claims the pair 𝑢𝑣. Note that the pair 𝑢𝑣 is not 2-
claimed by 𝐻 ′′ since otherwise the 2-cluster in 𝐻 ′′ claiming this pair would have been
merged with 𝐹 ′. Since 𝐻 ′′ ⊆ 𝐺 is G (3)

6 -free, 𝐻 ′′ is either a 3-tree or the union of a
single edge and a diamond that can be (2)-merged. Thus, 𝐻 ′′ lies entirely inside some
2-cluster 𝐻 ′. Of course, 𝐻 ′ ⊆ 𝐻. Let us show that 𝐹 ′ and 𝐻 ′ satisfy the lemma.

If {1, 2} ⊆ 𝐶𝐹 (𝑢𝑣), as witnessed by an edge 𝑒 and a diamond 𝐷 in 𝐹 , then 𝑒 is an
edge of 𝐷 (as otherwise 𝐷 ∪ {𝑒} ∪𝐻 ′′ would be a forbidden 6-edge configuration) and
the lemma is satisfied (since 𝐹 ′ must contain 𝐷 as a subgraph).

So suppose that 4 ∈ 𝐶𝐻 (𝑢𝑣). We are done if 4 ∈ 𝐶𝐻 ′ (𝑢𝑣) so suppose otherwise.
This assumption implies that no pair in 𝑃 12 (𝐻 ′′) can be 1-claimed by an edge from
𝐺 \ 𝐻 ′′. Furthermore, no pair in 𝑃1 (𝐻 ′′) can be 2-claimed by a diamond 𝐷 in𝐺 \ 𝐻 ′′

as otherwise 𝐷 ∪ 𝐻 ′′ together with an edge of 𝐹 ′ 1-claiming the pair 𝑢𝑣 would form
a (8, 6)-configuration. Hence, 𝐻 ′ = 𝐻 ′′. Since 𝐶𝐻 (𝑢𝑣) 3 4 is strictly larger than
𝐶𝐻 ′ (𝑢𝑣), the 2-cluster 𝐻 ′ is 3+-mergeable with some other 2-cluster 𝐻 ′′′ in 𝐻 \𝐻 ′ via
somepair𝑢′𝑣′. Note that 3 ∈ 𝐶𝐻 ′ (𝑢′𝑣′) since𝐻 ′ is a (5, 3)-configuration, so it 3-claims
every pair of vertices it contains. By (5.7), 3 ∉ 𝐶𝐻 ′′′ (𝑢′𝑣′), and hence 1 ∈ 𝐶𝐻 ′′′ (𝑢′𝑣′).
It follows that 𝑢′𝑣′ ≠ 𝑢𝑣 as otherwise 𝑢𝑣 is 1-claimed by 𝐹 and 𝐻 ′′′, contradicting
the merging rule for M1. As 𝐻 ′ has only 3 edges, the definition of 3+-mergeability
gives that 2 ∈ 𝐶𝐻 ′′′ (𝑢′𝑣′). However, in that case the union of 𝐻 ′, a diamond 𝐷 in
𝐻 ′′′ that 2-claims the pair 𝑢′𝑣′, and an edge in 𝐹 ′ that 1-claims the pair 𝑢𝑣 forms a
(8, 6)-configuration, a contradiction. �

Lemma 5.11 provides us with an analogue of Assumption (5.2) of Lemma 5.2 and
the proof of Lemma 5.2 trivially adapts to 3+-merging. We will need only the following
special case.
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Claim 5.12 For every partial 3+-cluster 𝐹 and any 2-cluster 𝐹0 ⊆ 𝐹 , there is an ordering
𝐹0, . . . , 𝐹𝑠 of the 2-clusters constituting 𝐹 such that, for each 𝑖 ∈ [𝑠] , the 3-graphs 𝐹𝑖 and⋃𝑖−1

𝑗=0 𝐹𝑗 are 3+-mergeable. �

Now, we consider the following two functions 𝑓 and ℎ from subsets of [5] to the
reals. Namely, for 𝐴 ⊆ [5] , we define

𝑓 (𝐴) :=



55/61 if 𝐴 = {1},
1 if 𝐴 = {1, 𝑥} for some 𝑥 ∈ {2, 3},
55/61 if 𝐴 = {1, 𝑥} for some 𝑥 ∈ {4, 5},
25/61 if 𝐴 = {2},
36/61 if 𝐴 = {2, 3},
1 if 𝐴 = {2, 3, 4},
1/2 if 𝐴 = {2, 4},
6/61 if 𝐴 = {3},
11/61 if 𝐴 = {3, 5},
1 if 𝐴 = {3, 4},
0 for all other sets 𝐴 ⊆ [5],

and

ℎ(𝐴) := max{ 𝑓 (𝐴′) : 𝐴′ ⊆ 𝐴}.

Then, the function ℎ is clearly non-decreasing and satisfies that

ℎ(𝐴) > 0 ⇔ 𝐴 ∩ {1, 2, 3} ≠ ∅. (5.9)

In the sequel, we abbreviate ℎ({𝑖1, . . . , 𝑖𝑠}) to ℎ(𝑖1, . . . , 𝑖𝑠).
Define the weight attributed to a pair 𝑢𝑣 ∈

(𝑉
2
)
by a subgraph 𝐹 ⊆ 𝐺 to be

𝑤𝐹 (𝑢𝑣) := ℎ( [5] ∩ 𝐶𝐹 (𝑢𝑣)).

Moreover, we set 𝑤(𝑢𝑣) := ∑
𝐹 ∈M3+

𝑤𝐹 (𝑢𝑣) to be the total weight received by a pair
𝑢𝑣 from all 3+-clusters.

Claim 5.13 For every 𝑢𝑣 ∈
(𝑉
2
)
, it holds that 𝑤(𝑢𝑣) 6 1.

Proof of Claim 5.13 Fix 𝑢𝑣 and let 𝐹1, . . . , 𝐹𝑠 be all 3+-clusters with 𝑤𝐹𝑖
(𝑢𝑣) > 0.

We have to show that
∑𝑠

𝑖=1 𝑤𝐹𝑖
(𝑢𝑣) 6 1. Note that each 𝐶𝐹𝑖

(𝑢𝑣) intersects {1, 2, 3}
by (5.9). If 𝑠 = 1, then we are done (since ℎ(𝐴) 6 1 for every 𝐴 ⊆ [5]), so assume that
𝑠 > 2.

The following cases cover all possibilities up to a permutation of 𝐹1, . . . , 𝐹𝑠 .

Case 1. Assume that𝐶𝐹1 (𝑢𝑣) contains 1.

Then, for every 𝑗 ∈ [2, 𝑠] , we have that 1, 2 ∉ 𝐶𝐹𝑗
(𝑢𝑣) (as otherwise the correspond-

ing 1-clusters of 𝐹1 and 𝐹𝑗 would be merged when buildingM1 orM2) and it follows
from (5.9) that 3 ∈ 𝐶𝐹𝑗

(𝑢𝑣). Since the subgraphs 𝐹1, . . . , 𝐹𝑠 ⊆ 𝐺 are edge-disjoint,
(5.7) implies that 𝑠 = 2. Furthermore, since 𝐹1 and 𝐹2 are not (3+)-mergeable, it holds
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that 4 ∉ 𝐶𝐹2 (𝑢𝑣) and 2 ∉ 𝐶𝐹1 (𝑢𝑣). By (5.7), 5 ∉ 𝐶𝐹2 (𝑢𝑣) and 3 ∉ 𝐶𝐹1 (𝑢𝑣). Thus,

𝑤(𝑢𝑣) = 𝑤𝐹1 (𝑢𝑣) + 𝑤𝐹2 (𝑢𝑣) 6 ℎ(1, 4, 5) + ℎ(3) =
55
61

+ 6
61

= 1.

Case 2. Assume that no𝐶𝐹𝑖
(𝑢𝑣) contains 1 but𝐶𝐹1 (𝑢𝑣) contains 2.

Here, it is impossible to have distinct 𝑖, 𝑗 ∈ [2, 𝑠] with 2 ∈ 𝐶𝐹𝑖
(𝑢𝑣) ∩ 𝐶𝐹𝑗

(𝑢𝑣) as
otherwise the edge-disjoint subgraphs 𝐹1, 𝐹𝑖 , 𝐹𝑗 ⊆ 𝐺 would contradict (5.7). We split
this case into 2 subcases.

Case 2-1. Assume 2 ∈ 𝐶𝐹2 (𝑢𝑣).

Suppose first that 𝑠 > 3. Then, for every 𝑗 ∈ [3, 𝑠] , we have 2 ∉ 𝐶𝐹𝑗
(𝑢𝑣) by (5.7) and

thus 3 ∈ 𝐶𝐹𝑗
(𝑢𝑣) by (5.9). It follows from (5.7) that 𝑠 = 3 and, moreover, 4 ∉ 𝐶𝐹3 (𝑢𝑣)

and 3, 4 ∉ 𝐶𝐹1 (𝑢𝑣) ∪ 𝐶𝐹2 (𝑢𝑣). Hence

𝑤(𝑢𝑣) = 𝑤𝐹1 (𝑢𝑣) + 𝑤𝐹2 (𝑢𝑣) + 𝑤𝐹3 (𝑢𝑣) 6 2 ℎ(2, 5) + ℎ(3, 5) = 2 · 25
61

+ 11
61

= 1.

If 𝑠 = 2, then (5.7) implies that 4 ∉ 𝐶𝐹1 (𝑢𝑣) ∪ 𝐶𝐹2 (𝑢𝑣) and 3 ∉ 𝐶𝐹1 (𝑢𝑣) ∩ 𝐶𝐹2 (𝑢𝑣).
Therefore,

𝑤(𝑢𝑣) = 𝑤𝐹1 (𝑢𝑣) + 𝑤𝐹2 (𝑢𝑣) 6 ℎ(2, 5) + ℎ(2, 3, 5) =
25
61

+ 36
61

= 1.

Case 2-2. Assume that 2 ∉ 𝐶𝐹𝑗
(𝑢𝑣) for all 𝑗 ∈ [2, 𝑠].

By (5.9), 𝐶𝐹𝑗
(𝑢𝑣) contains 3 for every 𝑗 ∈ [2, 𝑠]. By (5.7), it holds that 𝑠 = 2 and,

moreover, 3 ∉ 𝐶𝐹1 (𝑢𝑣) and 4 ∉ 𝐶𝐹2 (𝑢𝑣). Thus, we have

𝑤(𝑢𝑣) = 𝑤𝐹1 (𝑢𝑣) + 𝑤𝐹2 (𝑢𝑣) 6 ℎ(2, 4, 5) + ℎ(3, 5) =
1
2
+ 11
61
6 1.

Case 3. Assume that no𝐶𝐹𝑖
(𝑢𝑣) contains 1 or 2.

By (5.9), we have 3 ∈ 𝐶𝐹𝑖
(𝑢𝑣) for each 𝑖 ∈ [𝑠]. However, our assumption that 𝑠 > 2

contradicts (5.7). This finishes the case analysis and the proof. �

Now, let us show that, for every 𝐹 ∈ M3+ , the total weight

𝑤(𝐹) :=
∑︁

𝑢𝑣∈(𝑉2 )
𝑤𝐹 (𝑢𝑣)

assigned by 𝐹 to different vertex pairs is at least 165
61 |𝐹 |.

First, we check this for the 3+-clusters 𝐹 consisting of a single 1-cluster.

Claim 5.14 For all 𝐹 ∈ M1, we have 𝑤(𝐹) > 165
61 |𝐹 |.

Proof of Claim 5.14 Recall that 𝐹 is an 𝑖-tree with 𝑖 6 5 by Lemma 5.4. Assume that
𝑖 > 2 as otherwise 𝑤(𝐹) = 3ℎ(1) = 165

61 and the claim holds.
Every pair in 𝑃1 (𝐹) is {1, 2}-claimed (in fact, {1, . . . , 𝑖}-claimed by Corollary 5.3)

and, in particular, receives weight at least ℎ(1, 2) = 1 from 𝐹 . Moreover, since 𝐹 is an
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𝑖-tree, it 1-claims 2𝑖 + 1 pairs. Then, if 𝑖 = 2, 𝑤(𝐹) = 5 ℎ(1, 2) + ℎ(2) = 5+ 25
61 = 165

61 · 2,
as desired.

Now, assume that 𝑖 > 3. Then, each pair in 𝑃 12 (𝐹) is {2, 3}-claimed byCorollary 5.3
and receives weight at least ℎ(2, 3) = 36

61 . Moreover, |𝑃 12 (𝐹) | > 𝑖−1, and if we exclude
all pairs in 𝑃1 (𝐹) and some 𝑖 − 1 pairs in 𝑃 12 (𝐹) then, regardless of the structure of 𝐹 ,
there will remain at least 𝑖 − 2 pairs that are 3-claimed. Indeed, easy induction shows
that any 𝑖-tree with 𝑖 > 3 contains at least 2𝑖−3 different sub-paths of length 2 or 3 such
that the opposite vertices of degree 1 in these paths give distinct pairs outside of 𝑃1 (𝐹)
that are 3-claimed by 𝐹 . Thus,

𝑤(𝐹) > (2𝑖 + 1) ℎ(1, 2) + (𝑖 − 1) ℎ(2, 3) + (𝑖 − 2) ℎ(3)

= (2𝑖 + 1) + (𝑖 − 1) 36
61

+ (𝑖 − 2) 6
61

=
13 − 𝑖
61

+ 165
61

𝑖 >
165
61

|𝐹 |,

as required. �

As a next step, we estimate the weight assigned by those 2-clusters that consist of
more than one 1-cluster.

Claim 5.15 For all 𝐹 ∈ M2 \M1, we have 𝑤(𝐹) > 165
61 |𝐹 |.

Proof of Claim 5.15 Note that if 𝐹, 𝐻 ⊆ 𝐺 are (2)-mergeable via a pair 𝑢𝑣, then
{1} + 𝐶𝐻 (𝑢𝑣) ⊆ 𝐶𝐹∪𝐻 (𝑢𝑣) and {2} + 𝐶𝐹 (𝑢𝑣) ⊆ 𝐶𝐹∪𝐻 (𝑢𝑣) holds. In particular, we
conclude by (5.7) that 5 ∉ 𝐶𝐻 (𝑢𝑣) and 4 ∉ 𝐶𝐹 (𝑢𝑣).

Suppose first that |𝐹 | > 7. By Lemma 5.9(a), there are two cases to consider. First, let
𝐹 be made from a 3-tree by (2)-merging two diamonds one by one. Note that 𝐹 {1, 2}-
claims all 17 pairs in 𝑃1 (𝐹). Since each new diamond 𝑎𝑏𝑥, 𝑎𝑏𝑦 attaches to the rest via
its 12-claimed pair 𝑥𝑦, which is also {1, 2}-claimed by the previous edges (in particular,
one of these edges is 𝑥𝑦𝑧 for some vertex 𝑧 ∈ 𝑉 \ {𝑎, 𝑏}), this gives 2 further pairs
{3, 4}-claimed by 𝐹 , namely 𝑧𝑎 and 𝑧𝑏 (so 4 such pairs in total for the two diamonds).
Thus,

𝑤(𝐹) > 17 ℎ(1, 2) + 4 ℎ(3, 4) = 17 + 4 >
165
61

· 7,

as desired. So, by Lemma 5.9(a), we can assume that 𝐹 is made from a single edge 𝑒 by
iteratively (2)-merging 𝑖 ∈ [3, 6] diamonds. Then, all 5𝑖 + 3 pairs in 𝑃1 (𝐹) are {1, 3}-
claimed. Also, 𝐹 {3, 5}-claims further 2𝑖 pairs. Indeed, each new diamond 𝑎𝑏𝑥, 𝑎𝑏𝑦
2-claims a pair 𝑥𝑦 1-claimed by some previous edge 𝑥𝑦𝑧, and since 𝑖 > 3, the pairs 𝑧𝑎
and 𝑧𝑏 are {3, 5}-claimed by the final 2-cluster 𝐹 . Thus, we have

𝑤(𝐹) > (5𝑖 + 3) ℎ(1, 3) + 2𝑖 · ℎ(3, 5) = (5𝑖 + 3) + 2𝑖 · 11
61

=
18 − 3𝑖
61

+ 165
61

· (2𝑖 + 1) > 165
61

· |𝐹 |.

Thus, suppose that |𝐹 | 6 6. By (8, 6)-freenees, we have that |𝐹 | 6 5. First, consider
the case that 𝐹 = 𝐹1 ∪ 𝐹2 for (2)-mergeable 𝐹1, 𝐹2 ∈ M1 via some pair 𝑢𝑣 (thus
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1 ∈ 𝐶𝐹1 (𝑢𝑣) \𝐶𝐹2 (𝑢𝑣)). Let 𝐹1 be an 𝑖-tree and 𝐹2 be a 𝑗-tree. Then, 𝐹 has 𝑖 + 𝑗 edges
and 1-claims 2𝑖+2 𝑗 +2 pairs. Note that 𝑗 > 2 as 𝐹2 has to contain a diamond. Also, since
𝐺 is G (3)

6 -free, the subgraphs 𝐹1 and 𝐹2 do not share any further vertices in addition to
𝑢 and 𝑣.

Suppose first that 𝑖 = 1. Every pair in 𝑃1 (𝐹) is {1, 3}-claimed by 𝐹 . If 𝑗 = 2, then 𝐹
3-claims the remaining 2 pairs and we have

𝑤(𝐹) = 8 ℎ(1, 3) + 2 ℎ(3) = 8 + 2 · 6
61

=
500
61

>
165
61

· 3.

If 𝑗 > 3, then 𝐹 {3, 4}-claims at least 2 pairs not in 𝑃1 (𝐹). Hence,

𝑤(𝐹) > (2 𝑗 + 4) ℎ(1, 3) + 2 ℎ(3, 4) = (2 𝑗 + 4) + 2 =
(201 − 43 𝑗)

61
+ 165

61
( 𝑗 + 1),

which is at least 165
61 ( 𝑗 + 1) since 𝑗 = |𝐹 | − 1 6 4, as desired.

Suppose that 𝑖 > 2. Then, every pair in 𝑃1 (𝐹) is {1, 2}-claimed by 𝐹 . Also, given
an edge 𝑢𝑣𝑥 in 𝐹1 and a diamond 𝑎𝑏𝑢, 𝑎𝑏𝑣 in 𝐹2, the 2-cluster 𝐹 {3, 4}-claims the
pairs 𝑎𝑥, 𝑏𝑥 ∉ 𝑃1 (𝐹). Moreover, if 𝑖 = 2, then the (unique) pair in

(𝑉 (𝐹1)
2

)
\ 𝑃1 (𝐹1) is

{2, 4}-claimed by 𝐹; combining this with the fact that 𝑗 = |𝐹 | − 𝑖 6 3 yields

𝑤(𝐹) > (2 𝑗 + 6) ℎ(1, 2) + 2 ℎ(3, 4) + ℎ(2, 4) = (2 𝑗 + 6) + 2 + 1
2

=
377 − 86 𝑗

122
+ 165

61
( 𝑗 + 2) > 165

61
|𝐹 |.

If 𝑖 = 3, then 𝑗 = 2. Again, 𝐹 {1, 2}-claims all 12 pairs in 𝑃1 (𝐹) and {3, 4}-claims
another 2 pairs, but it also {2, 3}-claims at least 2 other pairs, namely the pairs 2-claimed
but not 1-claimed by 𝐹1. Hence, we have

𝑤(𝐹) > 12 ℎ(1, 2) + 2 ℎ(3, 4) + 2 ℎ(2, 3) = 12 + 2 + 2 · 36
61

=
926
61

>
165
61

· 5.

Now, note that a 2-cluster made of at least four 1-clusters has at least 6 edges: indeed,
this 2-cluster was obtained by doing at least 3 consecutive {1}|{2}-mergings, so some
1-cluster in it contains at least three edges or some two 1-clusters in it contain at least
two edges each. Thus, it remains to consider the case when 𝐹 is obtained by merging
three trees 𝐹1, 𝐹2, 𝐹3 ∈ M1. We cannot have |𝐹 | 6 4 as then, the 2-cluster 𝐹 would be
made of at least two 1-trees and at most one 2-tree, which is impossible for 3-graphs.
Hence, we obtain that |𝐹 | = 5 with the composition (3, 1, 1) or (2, 2, 1).

If 𝐹 has composition (3, 1, 1), then 𝐹 {1, 3}-claims all 13 pairs in 𝑃1 (𝐹) and {3, 4}-
claims at least 4 other pairs (namely, for each 1-tree 𝑥𝑦𝑧 and the corresponding diamond
𝑎𝑏𝑦, 𝑎𝑏𝑧 inside the 3-tree, the pairs 𝑎𝑥 and 𝑏𝑥 are {3, 4}-claimed by 𝐹). We have that

𝑤(𝐹) > 13 ℎ(1, 3) + 4 ℎ(3, 4) = 13 + 4 =
1037
61

>
165
61

· 5.

Suppose that𝐹 has composition (2, 2, 1). Then,𝐹 {1, 3}-claims all 13pairs in𝑃1 (𝐹).
Also, 𝐹 can be built from its 1-tree by attaching each new diamond 𝑎𝑏𝑥, 𝑎𝑏𝑦 via a
previously 1-claimed pair 𝑥𝑦, say by 𝑥𝑦𝑧 ∈ 𝐹; here each of the pairs 𝑎𝑧 and 𝑏𝑧 is
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Figure 3: Configurations 𝑃3 and𝐶3..

{3, 5}-claimed by the final 2-cluster 𝐹 . Thus, we have that

𝑤(𝐹) > 13 ℎ(1, 3) + 4 ℎ(3, 5) = 13 + 4 · 11
61

=
837
61

>
165
61

· 5,

which finishes the case analysis and the proof. �

Finally, we prove the following claim.

Claim 5.16 For all 𝐹 ∈ M3+ \M2, we have that 𝑤(𝐹) > 165
61 |𝐹 |.

Proof of Claim 5.16 Recall that if 𝐹1, 𝐹2 ∈ M2 are (3+)-mergeable via 𝑢𝑣, then 1 ∈
𝐶𝐹1 (𝑢𝑣) and 3 ∈ 𝐶𝐹2 (𝑢𝑣) and, in addition, either 2 ∈ 𝐶𝐹1 (𝑢𝑣) or 4 ∈ 𝐶𝐹2 (𝑢𝑣). In
particular, we have that 1, 2 ∉ 𝐶𝐹2 (𝑢𝑣) (as otherwise we would have already merged 𝐹1
and 𝐹2 when constructingM2); also, by (5.7) 5 ∉ 𝐶𝐹2 (𝑢𝑣) and 3 ∉ 𝐶𝐹1 (𝑢𝑣).

Let 𝐹 ∈ M3+ \ M2 be made of 𝐹1, . . . , 𝐹𝑠 ∈ M2 3+-merged in this order as
in Claim 5.12. Assume without loss of generality that 𝐹1 and 𝐹2 are (3+)-mergeable
via some pair 𝑢𝑣. Let 𝐹 ′ := 𝐹1 ∪ 𝐹2. As 1, 2 ∉ 𝐶𝐹2 (𝑢𝑣) and 3 ∈ 𝐶𝐹2 (𝑢𝑣), we
know that there is a (5, 3)-configuration in 𝐹2 containing 𝑢𝑣 which is either a 3-path
𝑃3 = {𝑢𝑎𝑏, 𝑎𝑏𝑐, 𝑏𝑐𝑣} ⊆ 𝐹2 or a 2-cluster 𝐶3 = {𝑎𝑢𝑏, 𝑎𝑢𝑐, 𝑏𝑐𝑣} ⊆ 𝐹2 (which is the
union of a 1-tree and a 2-tree that are (2)-mergeable), see Figure 3. Since 3 ∉ 𝐶𝐹1 (𝑢𝑣)
by (5.7), 𝐹1 cannot be an 𝑖-tree for 𝑖 > 3. We split the proof into 3 cases depending on
whether 𝐹1 is a 2-tree, a 1-tree or an element ofM2 \M1.

Case 1. Assume that 𝐹1 is a 2-tree.

Then, 1, 2 ∈ 𝐶𝐹1 (𝑢𝑣). By (5.7), we have 4, 5 ∉ 𝐶𝐹2 (𝑢𝑣), and recall that 𝐹2 contains
one of 𝑃3 or 𝐶3 as described above. Also, the union 𝐹 ′′ := 𝐹1 ∪ 𝑃3 or 𝐹1 ∪ 𝐶3 is a
(7, 5)-configuration, so (

𝑉 (𝐹 ′′)
2

)
∩ 𝑃1 (𝐺 \ 𝐹 ′′) = ∅. (5.10)

Moreover, since 5 ∉ 𝐶𝐹2 (𝑢𝑣), no pair in𝑉 (𝑃3) (resp.𝑉 (𝐶3)) can be 2-claimed by𝐺\𝐹 ′.
It follows that the 2-cluster 𝐹2 is equal to 𝑃3 or𝐶3, and thus 𝐹 ′′ = 𝐹 ′.

Suppose that 𝐹 consists of 𝑠 > 3 2-clusters. Let the next 3+-merging step (of 𝐹 ′

and 𝐹3) be via a pair 𝑢′𝑣′. It follows from (5.10) (and from 𝐹 ′′ = 𝐹 ′) that 𝑢′𝑣′ ∈
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𝑃1 (𝐹 ′) ∩ 𝑃3 (𝐹3). By (5.7), it holds that 3 ∉ 𝐶𝐹 ′ (𝑢′𝑣′). As 𝐹2 contains 3 edges, nec-
essarily 𝑢′𝑣′ ∈ 𝑃1 (𝐹1). Also, since 𝑢′𝑣′ is in 𝑃1 (𝐹1) ⊆ 𝑃2 (𝐹1), we see that 𝐹1 alone
and 𝐹3 are (3+)-mergeable via 𝑢′𝑣′. Now, our previous argument about the structure
of 𝐹2 applies to 𝐹3 as well and shows that 𝐹3 is isomorphic to a copy of 𝑃3 or 𝐶3 3-
claiming 𝑢′𝑣′. Furthermore, the (5, 3)-configurations 𝐹2 and 𝐹3 can share at most one
vertex, so

(𝑉 (𝐹2)
2

)
∩

(𝑉 (𝐹3)
2

)
= ∅. The very same reasoning applies in turn to each

𝐹𝑖 with 𝑖 ∈ [4, 𝑠] with the analogous conclusion. Indeed, by Lemma 5.11, there is
𝑗 ∈ [1, 𝑖−1] such that𝐹𝑖 and𝐹𝑗 3+-merge. Togetherwith the (8, 6)-freeness and the fact
that𝐹1∪𝐹2, ... , 𝐹1∪𝐹𝑖−1 form (7, 5)-configurations,𝐹𝑖 can only 3+-mergewith𝐹1. Let
us bound from below the total weight assigned by 𝐹 , being rather loose in our estimates.
The five pairs in 𝑃1 (𝐹1) are {1, 2}-claimed (andwe just ignore the remaining pair inside
𝑉 (𝐹1) which is 2-claimed). For each 𝑖 ∈ [2, 𝑠] , if 𝐹𝑖 is a 3-path, then it {1, 3}-claims
all seven pairs in its 2-shadow 𝑃1 (𝐹𝑖) and two further pairs inside 𝑉 (𝐹𝑖) are {2, 3, 4}-
claimed by 𝐹1 ∪ 𝐹𝑖 ⊆ 𝐹 (for example, if 𝑖 = 2, then these are the pairs 𝑢𝑐 and 𝑎𝑣). All
these pairs are unique to 𝐹𝑖 and thus 𝐹𝑖 contributes at least 7 ℎ(1, 3) + 2 ℎ(2, 3, 4) = 9
to 𝑤(𝐹). Also, if 𝐹𝑖 is isomorphic to 𝐶3, then it {1, 3}-claims all 8 pairs in 𝑃1 (𝐹𝑖) and
one further pair inside𝑉 (𝐹𝑖) is {3, 4}-claimed by 𝐹1∪𝐹𝑖 (for example, if 𝑖 = 2 then it is
the pair 𝑎𝑣). Thus, 𝐹𝑖 contributes at least 8 ℎ(1, 3) + ℎ(3, 4) = 9 to 𝑤(𝐹). We conclude
by 𝑠 > 2 (which follows from 𝐹 ∉ M2) that

𝑤(𝐹) > 5 ℎ(1, 2) + 9(𝑠 − 1) = 5 + 9(𝑠 − 1)

=
54𝑠 − 79

61
+ 165

61
· (3𝑠 − 1) > 165

61
|𝐹 |,

as desired.

Case 2. Assume that 𝐹1 is a 1-tree {𝑢𝑣𝑤}.

As 𝐹1 and 𝐹2 are (3+)-mergeable via 𝑢𝑣, we have 3, 4 ∈ 𝐶𝐹2 (𝑢𝑣). Thus, |𝐹2 | > 4 and
|𝐹2 | ∉ {5, 6} (otherwise, we would get a (8, 6)-configuration). Also, 1, 2 ∉ 𝐶𝐹2 (𝑢𝑣)
since 𝐹1, 𝐹2 ∈ M2 are distinct. Hence, as before, 𝐹2 contains a copy of 𝑃3 or 𝐶3 3-
claiming 𝑢𝑣.

Suppose first that |𝐹2 | > 7. Then, 𝐹2 has the structure given by Lemma 5.9(a),
consisting of a 1-tree or 3-tree with a number of diamonds merged in one by one. A
(5, 3)-configuration in 𝐹2 that contains 𝑢𝑣 involves at most two 1-clusters of 𝐹2, whose
union 𝐹 ′′ has at most 5 edges; moreover, if 𝐹 ′′ consists of two 1-clusters, then these 1-
clusters are 2-mergeable. The proof of Lemma 5.9(a) shows that, if we build 𝐹2 ∈ M2
by starting with the partial 2-cluster 𝐹 ′′ and attaching 1-clusters one by one, then we
reach a (7, 5)-configuration 𝐹 ′′′ just before the number of edges jumps over 6. How-
ever, 𝐹1 shares at least 2 vertices with 𝐹 ′′′ ⊇ 𝐹 ′′, so 𝐹1 ∪ 𝐹 ′′′ is a (8, 6)-configuration.
This contradiction shows that |𝐹2 | = 4.

Now, denote the 4-edge hypergraph 𝐹2 by 𝑇4 if 𝐹2 consists of (a copy of) 𝑃3 that 3-
claims 𝑢𝑣 togetherwith onemore edge (thus,𝑇4 is a 4-tree or a 2-clustermade of a 3-tree
and a 1-tree as its 1-clusters), and denote 𝐹2 by 𝐶4 if 𝐹2 consists of (a copy of) 𝐶3 that
3-claims 𝑢𝑣 with one more edge (thus, the 1-clusters of 𝐶4 are two 2-trees, or a 3-tree
and a 1-tree). Recall that 𝐹 ′ = 𝐹1 ∪ 𝐹2.

Suppose first that 𝑠 > 3. Let 𝐹3 and 𝐹 ′ be merged via a pair 𝑢′𝑣′. The 3-graphs 𝐹3
and 𝐹 ′ cannot be (3+)-mergeable via 𝑢′𝑣′ as otherwise an edge in 𝐹3 containing 𝑢′𝑣′
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together with 𝐹 ′ would be a (8, 6)-configuration. So 𝐹 ′ and 𝐹3 are (3+)-mergeable,
that is, 1 ∈ 𝐶𝐹 ′ (𝑢′𝑣′) and 3 ∈ 𝐶𝐹3 (𝑢′𝑣′). Then, 3 ∉ 𝐶𝐹 ′ (𝑢′𝑣′). This greatly limits the
number of possibilities for the pair 𝑢′𝑣′ inside 𝑃1 (𝐹 ′). If 𝐹2 = 𝑇4, one can easily notice
that 𝑢′𝑣′ cannot be in 𝑃1 (𝐹2) ∪ {𝑢𝑣} and thus 𝑢′𝑣′ ∈ 𝑃1 (𝐹1) \ {𝑢𝑣}. Hence, 𝐹1 alone
and 𝐹3 are (3+)-mergeable and the above analysis for 𝐹2 applies to 𝐹3 as well, showing
that the 2-cluster 𝐹3 is isomorphic to a copy of 𝑇4 or 𝐶4 3-claiming 𝑢′𝑣′. If 𝐹2 = 𝐶4,
then either 𝑢′𝑣′ ∈ 𝑃1 (𝐹1) \ {𝑢𝑣} (and, again, 𝐹3 is isomorphic to 𝑇4 or 𝐶4) or, for
some vertices 𝑎, 𝑏, 𝑐, 𝑑, we have 𝐹2 = {𝑎𝑢𝑏, 𝑎𝑢𝑐, 𝑏𝑐𝑣, 𝑐𝑑𝑣} and 𝑢′𝑣′ is 𝑐𝑑 or 𝑑𝑣; also,
the argument of Case 1 (with {𝑏𝑐𝑣, 𝑐𝑑𝑣} playing the role of the 2-tree 𝐹1 from Case 1)
shows that 𝐹3 rooted at 𝑢′𝑣′ is isomorphic to 𝑃3 or 𝐶3, no other 𝐹𝑖 with 𝑖 > 4 can be
3+-merged with 𝐹3, and all pairs in

(𝑉 (𝐹3)
2

)
are unique to 𝐹3. Using Lemma 5.11, the

same argument applies to each new 𝐹𝑖 with 𝑖 > 4. To summarise, we obtained that each
𝐹𝑖 for 𝑖 > 2 is either some instance of𝑇4 or𝐶4 3+-merged with the single edge 𝐹1, or an
instance of 𝑃3 or𝐶3 3+-merged with a copy of𝐶4 as specified above; also, the only pairs
shared between these 2-clusters are the pairs along which these 3+-mergings occur.

Now, assume the final 𝐹 consists of one 1-tree, 𝑖 copies 𝑇4 or 𝐶4, and 𝑗 copies of 𝑃3
or𝐶3. (Although we could say more about the structure of 𝐹 , e.g. that 𝑖 6 3 and 𝑗 6 2𝑖,
these observations are not needed for our estimates.) Then, |𝐹 | = 1 + 4𝑖 + 3 𝑗 . Each
copy of 𝑇4 (which is a 4-tree or a 3-tree 2-merged with a single edge) has, in addition to
the pair via which it is merged with 𝐹1, at least nine {1, 3}-claimed pairs and other two
{2, 3, 4}-claimed pairs. Thus, it contributes at least 9 ℎ(1, 3)+2 ℎ(2, 3, 4) = 11 to𝑤(𝐹).
Likewise, each copyof𝐶4 contributes at least8 ℎ(1, 3)+2 ℎ(1, 2)+ℎ(3, 4) = 11 to𝑤(𝐹).
Also, as in Case 1, each copy of 𝑃3 or𝐶3 contributes at least 9 to 𝑤(𝐹). Additionally, we
have 3 pairs in 𝑃1 (𝐹1) which are {1, 4}-claimed by 𝐹1 ∪𝐹2. Hence, we get the required:

𝑤(𝐹) > 3 ℎ(1, 4) + 11𝑖 + 9 𝑗 = 3 · 55
61

+ 11𝑖 + 9 𝑗

=
11𝑖 + 54 𝑗

61
+ 165

61
(1 + 4𝑖 + 3 𝑗) > 165

61
|𝐹 |.

Case 3. Assume that 𝐹1 ∈ M2 \M1.

Here, 𝐹1 is a 2-merging of at least two 1-clusters and thus has at least 3 edges. Let 𝑇1 ∈
M1 be the 1-cluster in 𝐹1 1-claiming 𝑢𝑣 (recall that 𝑢𝑣 is the pair via which 𝐹1 and
𝐹2 are (3+)-mergeable). The tree 𝑇1 has at most 2 edges as otherwise 𝑇1 together with
𝐹2 would contain an (8, 6)-configuration, a contradiction. Also, 𝑇1 cannot be a 1-tree
as otherwise 𝐹1 \ 𝑇1 would contain a diamond 2-claiming a pair in 𝑃1 (𝑇1) (since 𝐹1 ∈
M2 \M1), which implies that 3 ∈ 𝐶𝐹1 (𝑢𝑣), a contradiction. Therefore,𝑇1 is a 2-tree. As
𝐹1 ∈ M2\M1,𝑇1 has to be 2-mergedwith someother 1-cluster𝑇2 ⊆ 𝐹1. It is impossible
that 𝑇2 and 𝑇1 are (2)-mergeable as otherwise 𝑇1 plus an edge of 𝑇2 would be a (5, 3)-
configuration containing 𝑢𝑣 in 𝐹1, which contradicts 3 ∉ 𝐶𝐹1 (𝑢𝑣). Thus, 𝑇1 and 𝑇2 are
(2)-mergeable. Also, 𝑇2 has at most 3 edges since trees with more edges would form an
(8, 6)-configuration with𝑇1. It is routine to check that we can assume (after swapping 𝑢
and 𝑣 if necessary) that, for some vertices 𝑎, 𝑏 ∈ 𝑉 , the 2-tree 𝑇1 is {𝑎𝑣𝑢, 𝑎𝑣𝑏} and the
pair 2-claimed by 𝑇2 is 𝑎𝑏 or 𝑏𝑣. Also, any further 2-merging involving 𝑇1 ∪ 𝑇2 would
cause an (8, 6)-configuration. We conclude that 𝐹1 = 𝑇1 ∪ 𝑇2.
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The same argument as in Case 1 shows that 𝐹2 is given by 𝑃3 (a 3-path) or𝐶3 (a dia-
mond and a single edge), see Figure 3. Let 𝐹 ′ := 𝐹1 ∪ 𝐹2. We have 2 subcases depending
on 𝑇2.

Case 3-1. Assume that |𝑇2 | = 2.

Suppose first that 𝑠 > 3. If 𝐹3 and 𝐹 ′ are (3+)-mergeable via some pair 𝑢′𝑣′ then, by
(8, 6)-freeness, 𝑢′𝑣′ must be one of the two pairs 13-claimed by 𝐹1, and 𝐹3 is a 1-tree;
therefore, by Claim 5.12, we can reorder 2-clusters constituting 𝐹 starting with 𝐹3 and
follow the analysis in the Case 2. Now assume that both pairs 13-claimed by 𝐹1 are not
used for further 3+-mergings. Thus, 𝐹 ′ and 𝐹3 are (3+)-mergeable via 𝑢′𝑣′. Then, since
3 ∈ 𝐶𝐹3 (𝑢′𝑣′), 𝑢′𝑣′ must be in 𝑃1 (𝐹 ′) \ 𝑃3 (𝐹 ′) = {𝑎𝑢} (recall that 3 ∈ 𝐶𝐹2 (𝑢𝑣) ⊆
𝐶𝐹 ′ (𝑢𝑣)), 𝐹3 rooted at 𝑢′𝑣′ = 𝑎𝑢 is isomorphic to 𝑃3 or 𝐶3; moreover no further 3+-
mergings are possible and thus 𝑠 = 3. Thus, for both 𝑠 = 2 and 𝑠 = 3, we can assume the
final 3+-cluster 𝐹 is made of 𝐹1 and 𝑗 copies of 𝑃3 or𝐶3 where 𝑗 ∈ {1, 2}. Then, |𝐹 | =
4+3 𝑗 , 𝐹1 contributes at least 8 ℎ(1, 3) +2 ℎ(1, 2) +2ℎ(3, 4) + ℎ(2, 4) = 10+2+ 1

2 = 25
2

to 𝑤(𝐹). Hence, we have

𝑤(𝐹) > 25
2

+ 9 𝑗 =
108 𝑗 + 205

122
+ 165

61
(4 + 3 𝑗) > 165

61
|𝐹 |,

as desired.

Case 3-2. Assume that 𝑇2 is a 3-tree.

Here 𝐶𝐹1 (𝑢𝑣) ⊇ {1, 2, 4, 5} so 𝐹2 has exactly 3 edges and 𝐹 ′ = 𝐹1 ∪ 𝐹2 is a (10, 8)-
configuration. Suppose first that 𝑠 > 3. Since no 3-claimed pair of 𝐹 ′ can be 1-claimed
by𝐺 \ 𝐹 ′, the 3-graphs 𝐹3 and 𝐹 ′ cannot be (3+)-mergeable. So let 𝐹 ′ and 𝐹3 be (3+)-
mergeable via some pair 𝑢′𝑣′. Since 3 ∈ 𝐶𝐹3 (𝑢′𝑣′), 𝑢′𝑣′ must be in 𝑃1 (𝐹 ′) \ 𝑃3 (𝐹 ′) =
{𝑎𝑢}; furthermore, 𝐹3 rooted at 𝑢′𝑣′ = 𝑎𝑢 is isomorphic to 𝑃3 or 𝐶3, no further 3+-
mergings are possible and 𝑠 = 3. Thus, for both 𝑠 = 2 and 𝑠 = 3, the final 3+-cluster
𝐹 consists of 𝐹1 and 𝑗 copies of 𝑃3 or 𝐶3 where 𝑗 ∈ {1, 2}. Here, |𝐹 | = 5 + 3 𝑗 . Note
that 𝐹1 contributes at least 10 ℎ(1, 3) + 2 ℎ(1, 2) + 4 ℎ(3, 4) = 12 + 4 = 16 to the total
weight. We have

𝑤(𝐹) > 16 + 9 𝑗 =
54 𝑗 + 151

61
+ 165

61
(5 + 3 𝑗) > 165

61
|𝐹 |.

This finishes the proof of the claim. �

Hence, by the previous claims, we conclude that

|𝐺 | =
∑︁

𝐹 ∈M3+

|𝐹 | 6 61
165

∑︁
𝐹 ∈M3+

𝑤(𝐹) = 61
165

∑︁
𝑢𝑣∈(𝑉 (𝐻 )

2 )
𝑤(𝑢𝑣) 6 61

165

(
𝑛

2

)
.

This proves Theorem 1.3. �

6 Concluding remarks

In this paper, we made progress on the Brown–Erdős–Sós Problem (the case of 3-
uniform hypergraphs) with 𝑘 ∈ {5, 6, 7} edges and its extension to 𝑟-graphs. We note
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that a further extension of the Brown–Erdős–Sós Problem proposed by Shangguan and
Tamo [27] asks to determine whether the limits

lim
𝑛→∞

𝑛−𝑡 𝑓 (𝑟 ) (𝑛; 𝑘 (𝑟 − 𝑡) + 𝑡, 𝑘)

exist for all fixed 𝑟, 𝑡, 𝑘 and, if so, to find their values. (The case that we studied here
corresponds to 𝑡 = 2.)

Let us briefly summarise what is known. The results in [4, 24] resolve the case 𝑘 =

2. In [13, 15, 27], this problem was completely solved when 𝑘 ∈ {3, 4}. In [8, 26], the
existence of the limit was proved for 𝑡 = 2. In [21], the value of the limit (and thus
its existence) was established for even 𝑘 when 𝑟 � 𝑘, 𝑡 is sufficiently large. Also, it
was proved in [21] that if 𝑘 ∈ {5, 7} then the limit exists for any 𝑟 and 𝑡. Our results
determine the limit values when 𝑡 = 2 and 𝑘 ∈ {5, 6, 7}.

It would be interesting to study the existence of limits for the remaining sets of
parameters as well as their precise values.
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