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Abstract. We compute the class groups of full rank upper cluster algebras in terms of the

exchange polynomials. This characterizes the UFDs among these algebras. Our results simul-

taneously generalize theorems of Garcia Elsener, Lampe, and Smertnig from 2019 and of Cao,

Keller, and Qin from 2023. Furthermore we show that every (upper) cluster algebra is a finite

factorization domain.

Introduction

In recent years, cluster algebras have emerged as a powerful tool in various branches of

mathematics, including algebraic geometry, representation theory, and mathematical physics.

These structures provide deep insights into the interplay between algebraic and combinatorial

phenomena. Strongly related to a cluster algebra is its upper cluster algebra. Upper cluster

algebras are overrings of cluster algebras that are in general better behaved from a ring-theoretic

perspective and often even coincide with the cluster algebra, for instance, in the locally acyclic

case [BFZ05, Mul14].

Cluster algebras were introduced by Fomin and Zelevinsky [FZ02] in the early 2000s, with the

intent of investigating dual canonical bases and total positivity within semisimple Lie groups.

Quickly, cluster algebra theory has evolved into a distinct and self-sustained domain, transcending

its initial motivations, cf. for example the surveys [FZ03, Kel12, Lec10, LW14, Nak22, Zel05].

It has found numerous applications, particularly in fields like representation theory, Poisson

geometry, and Teichmüller theory. In this paper we focus on ring-theoretic properties of (upper)

cluster algebras, following in the footsteps of [CKQ23, GELS19, GLS13, Mul13].

The well-known Laurent phenomenon from [FZ02](see Theorem 1.9) implies that every seed

gives rise to an embedding of the cluster algebra into a Laurent polynomial ring. The upper

cluster algebra is defined as the intersection of all these Laurent polynomial rings. Therefore

upper cluster algebras are an upper bound for cluster algebras. The intrinsic characteristics of

upper cluster algebras simplify the exploration of their factorization properties. An even more

accessible scenario emerges within the case of full rank cluster algebras, where upper cluster

algebras take the form of a finite intersection of Laurent polynomial rings.
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2 MARA POMPILI

Locally acyclic cluster algebras and full rank upper cluster algebras are Krull domains. Krull

domains [Fos73] are one of the central objects in the study of non-unique factorizations. They

form an important generalization of unique factorization domains (UFDs), because they possess

unique factorization on the level of divisorial ideals, which allows one to systematically study

factorizations of elements. A key invariant of Krull domains are their class groups, which measure

the failure of unique factorization in these domains. In particular, a domain is a UFD if and

only if it is a Krull domain with trivial class group. In the present paper, we study class groups

of upper cluster algebras that satisfy the starfish condition at one seed (see Definition 1.13), in

particular this includes all full rank upper cluster algebras.

The exploration of factorization properties within cluster algebras was initially undertaken

by Geiss, Leclerc, and Schröer [GLS13]. Subsequently, Garcia Elsener, Lampe, and Smertnig

achieved a breakthrough by computing class groups and their ranks for acyclic cluster algebras

[GELS19]. Very recently, Cao, Keller, and Qin [CKQ23] switched the focus to upper cluster

algebras. They provided a complete characterization of full rank upper cluster algebras that are

UFDs and they also exhibited local factorization properties using valuation pairs.

In this paper, we simultaneously generalize results of Garcia Elsener, Lampe, and Smertnig

and Cao, Keller, and Qin, computing the class group of full rank upper cluster algebras in terms

of the exchange polynomials. We show that the class group C(U) of a full rank upper cluster

algebra U is a finitely generated free abelian group with rank r = t− n, where t is the number of

irreducible factors of the exchange polynomials and n is the number of exchangeable variables

(see Theorem 3.8). Furthermore, we show that in this case the upper cluster algebra U contains

infinitely many height-1 prime divisors in each class. This leads to a fascinating dichotomy

between those upper cluster algebras that are UFDs and those that are not: in the latter case

every finite set L ⊆ Z≥2 can be realized as a length set of some element. This result even applies

to a larger class of upper cluster algebras than the full rank ones (see Section 3).

We remark that compared to the results of Garcia Elsener, Lampe, and Smertnig [GELS19]

we need the extra assumption on full rank; on the other hand we do not need the acyclicity

assumption present in their work. Thus, while our results do not fully generalize results of

[GELS19] in every case, they do so in a large and important subclass.

Whereas factorization properties in cluster algebras that are Krull domains have been studied,

so far it has not been considered which factorization properties hold in full generality in arbitrary

(upper) cluster algebras. For instance, the Markov cluster algebra is not a Krull domain [GELS19,

Section 6]. Interestingly, its upper cluster algebra is however a UFD. Indeed, the question of

whether upper cluster algebras that are not Krull domains exist remains an open problem. In

the setting of (upper) cluster algebras without any extra conditions, we establish that every

(upper) cluster algebra is a finite factorization domain (see Theorem 2.7). That is, every element

has a factorization into atoms (i.e., irreducible elements) and for a given element there are only

finitely many such factorizations up to permutation and associativity. This improves on a recent
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result by which such algebras are bounded factorization domains (i.e., every element has at most

finitely many different factorization lengths) [CKQ23, Appendix A].

The paper is organized as follows. In Section 1, we recall basic definitions and results on cluster

algebras, factorization theory, and Krull domains. In Section 2, we study some factorization

properties of (upper) cluster algebras, proving that cluster algebras and upper cluster algebras

are finite factorization domains. The proof we will not necessitate preliminaries on Krull domains.

In Section 3, we focus on full rank upper cluster algebras, computing their class groups. Finally

in Section 4, we give an interpretation in terms of multiplicative ideal theory of the notion of

valuation pairing and local factorization introduced in [CKQ23].

Notations and assumptions. Throughout the paper we consider cluster algebras of geometric

type, allowing frozen variables. However, we always assume that all frozen variables are invertible.

Moreover, K will denote a field of characteristic zero, or the ring Z of integers. If the base ring

K is a field, we assume that the underlying quiver Γ(B) of the exchange matrix B of our cluster

algebra has no isolated exchangeable vertices.

A domain is a non-zero commutative ring A without non-zero zero-divisors. We denote by A×

its group of units, by A• = A\{0} its monoid of non-zero elements, and by q(A) its quotient field.

We denote by N the semigroup of positive integers and by N0 the monoid N ∪ {0}. Moreover, if

n ∈ N, we denote by [1, n] the set {1, . . . , n}.

1. Preliminaries

1.1. Quivers. A quiver is a finite directed graph. Thus, it is a tuple Q = (Q0,Q1, s, t) where Q0

(the set of vertices) and Q1 (the set of arrows) are finite sets and s, t : Q1 → Q0 are maps (the

sources and the targets). We write α : i→ j to indicate that α is an arrow in Q1 with s(α) = i

and t(α) = j.

Through the entire paper, a quiver has no oriented cycles of length one or two.

Definition 1.1 (Ice quivers). An ice quiver is a quiver Q = (Q0,Q1, s, t) together with a partition

of Q0 into exchangeable and frozen vertices, with the assumption that there are no arrows between

two frozen vertices. The exchangeable part of Q is the subquiver on the set of exchangeable

vertices. We say that Q is acyclic if its exchangeable part is an acyclic quiver, i.e., if it does not

contain any oriented cycles.

Let n,m ∈ N0 such that n+m > 0. Let Q = (Q0,Q1, s, t) be an ice quiver with exchangeable

vertices [1, n] and frozen vertices [n+ 1, n+m]. We can associate to Q a matrix B = B(Q) =
(bij) ∈M(n+m)×n(Z) defined by

bij = |α : i→ j | − |α : j → i |.

Given an (n+m)× n matrix, its principal part is the submatrix supported on the first n rows.

Notice that the principal part of B(Q) is skew-symmetric.

https://doi.org/10.4153/S0008414X25000033 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000033


4 MARA POMPILI

Definition 1.2 (Exchange matrices). A matrix B = (bij) ∈Mn×n(Z) is skew-symmetrizable if

there exists a diagonal matrix D ∈Mn×n(N) such that DB is skew-symmetric. An (n+m)× n

integer matrix is an exchange matrix if its principal part is skew-symmetrizable.

For a matrix B = (bij) ∈Mn×n(Z) being skew-symmetrizable is equivalent to the existence

of positive integers d1, . . . , dn such that dibij = −djbji for every i, j ∈ [1, n], hence if B is a

skew-symmetrizable matrix, either bij = bji = 0 or bijbji < 0, so in particular bii = 0.

Remark 1.3. Let Q be an ice quiver, then the matrix B(Q) is an exchange matrix with skew-

symmetric principal part. Conversely, we can associate to any exchange matrix B an ice quiver

Γ(B). The exchangeable and frozen vertices of Γ(B) are [1, n] and [n+ 1, n+m], respectively.

The arrows of Γ(B) are defined as follows: if bij > 0, add bij arrows from i to j. If i is a frozen

vertex and bij < 0, then add also −bij arrows from j to i. If B has skew-symmetric principal

part, then B(Γ(B)) = B.

1.2. Seeds, mutations and cluster algebras. A cluster is a pair (x,y) with x = (x1,. . ., xn)

and y = (xn+1,. . ., xn+m) such that (x1,. . ., xn,. . ., xn+m) are n+m algebraically independent

indeterminates over K. We refer to the elements of x as exchangeable variables and to the elements

of y as frozen variables. Given a cluster, the field F = q(K)(x1,. . ., xn+m) is called the ambient

field.

Definition 1.4 (Seeds). A seed is a triple Σ = (x,y, B) such that (x,y) is a cluster and B is a

(n+m)×n exchange matrix. We always tacitly assume x = (x1, . . . , xn) and y = (xn+1, . . . , xn+m).

A seed is called acyclic if the ice quiver Γ(B) is acyclic.

We identify two seeds Σ = (x,y, B) and Σ′ = (x′,y′, B′) if there exists a permutation σ ∈ Sn+m

such that σ(i) ∈ [1, n] for all i ∈ [1, n] and

• bij = b′σ(i),σ(j) for every i, j ∈ [1, n+m];

• xi = x′σ(i), yj = y′σ(j) for every i ∈ [1, n] and j ∈ [n+ 1, n+m].

Definition 1.5 (Mutation of seeds). Let Σ = (x,y, B) be a seed with ambient field F . Fix an

exchangeable index i ∈ [1, n]. The mutation of Σ in direction i is the triple µi(Σ) = (xi,yi, Bi)

defined as follows

(a) xi = (x1, . . . , x
′
i, . . . , xn) with

x′i =
1

xi

 ∏
bki>0

xbkik +
∏
bki<0

x−bki
k

 ∈ F ;
(b) yi = y;
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(c) Bi = (b′jk) ∈M(n+m)×n(Z) with

b′jk =

−bjk if j = i or k = i;

bjk +
1
2(|bji|bik + bji|bik|) otherwise.

One can prove that µi(Σ) is a seed with the same number of exchangeable and frozen variables

and the same ambient field as Σ, and Bi has the same rank as B. Notice that (µi ◦ µi)(Σ) = Σ.

Definition 1.6 (Exchange polynomials). Let Σ = (x,y, B) be a seed. Suppose that i ∈ [1, n] is

an exchangeable index. The polynomial

fi := xix
′
i ∈ K[x,y]

is called the exchange polynomial associated to xi (with respect to the seed Σ).

Mutations induce an equivalence relation on seeds. Indeed we say that two seeds Σ =

(x,y, B) and Σ′ = (z,y, C) are mutation-equivalent if there exist i1, . . . , ik ∈ [1, n] such that

Σ′ = (µi1 ◦ · · ·◦µik)(Σ). In this case, we write Σ ∼ Σ′, or, if no confusion can arise, x ∼ z. Denote

by M(Σ) the mutation equivalence class of Σ and by X = X (Σ) the set of all exchangeable

variables appearing inM(Σ).

Definition 1.7 (Cluster algebras). Let Σ = (x,y, B) be a seed. The cluster algebra associated

to Σ is the K-algebra

A = A(Σ) = K[x, y±1 | x ∈ X , y ∈ y].

The elements x ∈ X are called cluster variables of A(Σ); the cluster variables in the initial seed Σ

are called initial cluster variables; the elements y ∈ y are called frozen variables.

In the literature one can also find the definition of a cluster algebra associated to a seed

Σ = (x,y, B) as the K-algebra K[x, y | x ∈ X , y ∈ y]. However we only deal with the case of

invertible frozen variables.

For any seed Σ = (x,y, B), denote by

Lx = K[u±1 | u ∈ x ∪ y]

the localization of K[u | u ∈ x ∪ y] at Sx := {xa11 · · ·x
an+m
n+m | ai ∈ N0 } and by

Lx,Z = Z[u±1 | u ∈ x ∪ y]

the localization of Z[u | u ∈ x ∪ y] at Sx.

Definition 1.8 (Upper cluster algebras). Let Σ = (x,y, B) be a seed. The upper cluster algebra

associated to Σ is the K-algebra

U = U(Σ) =
⋂
z∼x

Lz.
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An upper cluster algebra U(Σ) is called a full rank upper cluster algebra if its initial exchange

matrix has full rank. For a full rank upper cluster algebra U , every exchange matrix of U has

full rank, since, as mentioned above, mutations preserve the rank ([BFZ05, Lemma 3.2]).

The following result, known as Laurent phenomenon, is due to Fomin and Zelevinsky and

explains the relation between cluster algebras and upper cluster algebras.

Theorem 1.9 (Laurent phenomenon, [FZ02]). Let Σ = (x,y, B) be a seed. Let X (Σ) be the

set of cluster variables associated to Σ and let A(Σ), U(Σ) be the cluster algebra and the upper

cluster algebra associated to Σ, respectively. Then

X (Σ) ⊆
⋂
z∼x

Lz,Z , in particular, A(Σ) ⊆ U(Σ).

Given a seed Σ = (x,y, B), the following inclusions hold

A(Σ) ⊆ U(Σ) ⊆
n⋂

i=0

Lxi . (1.1)

In certain instances, the inclusions (1.1) turn into equalities, see Examples 1.12.

Locally acyclic cluster algebras were introduced by Muller in [Mul13] to generalize acyclic

cluster algebras and at the same time maintaining some of their properties. They are a much large

class than the acyclic cluster algebras, in particular they include cluster algebras arising from

marked surfaces with at least two marked points in the boundary. Locally acyclic cluster algebras

are finitely generated, noetherian, and integrally closed ([Mul13, Theorem 4.2]). Moreover, the

following theorem holds.

Theorem 1.10 ([Mul14, Theorem 2]). If A is locally acyclic, then A = U .

Another class for which one of the inclusions becomes an equality is the one of full rank upper

cluster algebra. The following result is known as Starfish lemma.

Theorem 1.11 ([CKQ23, Theorem 2.16]). Let U be a full rank upper cluster algebra. Then

U =
n⋂

i=0

Lxi ,

for all seeds (x,y, B).

Assume that K is a field and that Σ is an isolated seed, i.e. Σ = ((x1, . . . , xn) , ∅, 0). Then all

the inclusions (1.1) are equalities. Indeed

A(Σ) = U(Σ) =
n⋂

i=0

Lxi = K[x±1
1 , . . . , x±1

n+m].

Examples 1.12. (1) The first example of a cluster algebra for which A ≠ U is due to

Berenstein, Fomin, and Zelevinsky [BFZ05] and it is the Markov cluster algebra. It is the

cluster algebra with base ring K = Z associated to the following quiver Q
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1

3 2.

A(Q) is a N-graded algebra [Mul13], with the degree of all cluster variables equal to 1.

For any cluster (x1, x2, x3), the element M =
x2
1+x2

2+x2
3

x1x2x3
is in U(Q), but it has graded

degree −1, so it is not in A(Q). Moreover, the upper cluster algebra is factorial and it is

given by Z[x1, x2, x3,M ] ([MM15, Proposition 6.7]).

(2) Consider the quiver A3 = 1 2 3 and the element

s =
1 + x2
x1x3

∈ K(x1, x2, x3).

It is easy to see that

s =
x′1
x3

=
x′3
x1
∈

3⋂
i=0

Lxi .

However, (x′1, x2, x
′
3) is a seed, obtained by mutating x in direction 3 and then 1, and

s /∈ K[x′1
±1, x±1

2 , x′3
±1]. Indeed, if we express s in terms of the new seed we obtain

s =
x′1x

′
3

1 + x2

which is not a Laurent polynomial in (x′1, x2, x
′
3). Hence U(A3) ⊊

⋂3
i=0 Lxi .

However, there are non-full rank upper cluster algebras for which the Starfish lemma holds.

For example, any factorial upper cluster algebra satisfies the Starfish lemma as shown in [GLS13,

Corollary 1.5].

Definition 1.13. Let U be an upper cluster algebra. We say that U satisfies the starfish condition

at the seed (x,yB) if

U =
n⋂

i=0

Lxi .

If U has full rank, then Theorem 1.11 implies that U satisfies the starfish condition at all seeds.

We introduced this definition because for our results we don’t need the starfish condition at all

seeds but just at one of them (see Section 3).

Remark 1.14. Let Σ = (x,y, B) be a seed. Suppose that i ∈ [1, n] is isolated, i.e., xix
′
i = 2. If K

is a field, the index i is isolated if and only if xi ∈ K×. Therefore, if we freeze i, we obtain an

algebra isomorphic to the original one. Hence, from now on, if K is a field we assume without

restriction that [1, n] has no isolated indices.
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1.3. Factorization Theory. In this section, we recall some basic notions of the theory of

factorization. For more details see for instance [GHK06]. We always assume that our monoids

are commutative and cancellative.

Definition 1.15. Let H be a monoid.

(1) Let a, b ∈ H. We say that a|b if there exists an element c ∈ H such that b = ca.

(2) Two elements a, b ∈ H are associated if there exists a unit ε ∈ H× such that a = εb. In

this case we write a ≃H b.

(3) A non-unit u ∈ H is an atom, or an irreducible element, if u = ab with a, b ∈ H implies

a ∈ H× or b ∈ H×.

(4) An atom u ∈ H is a strong atom, or an absolutely irreducible element, if for all positive

integers n > 1 the only factorization (up to associates) of u is un = u · · ·u.
(5) A non-unit p ∈ H is a prime element if p|ab with a, b ∈ H implies p|a or p|b.

It is well known that

prime =⇒ strong atom =⇒ atom.

We will denote by A(H) the set of atoms of the monoid H.

Definition 1.16. Let H be a monoid.

(1) H is atomic if every non-unit of H can be written as a finite product of atoms.

(2) H is a bounded factorization monoid, in short BF-monoid, if it is atomic and for every

non-unit a ∈ H there exist λ(a) ∈ N0 such that a = x1 · · ·xn for x1, . . . , xn atoms implies

n ≤ λ(a).

(3) H is a finite factorization monoid, in short FF-monoid, if it is atomic and every non-unit

factors into atoms in only finitely many ways up to order and associates.

(4) H is factorial, or UF-monoid, if it is atomic and every non-unit of A factors in a unique

way up to order and associates.

The connection between the notions in Definition 1.16 is described by the following picture:

factorial monoid =⇒ FF-monoid =⇒ BF-monoid =⇒ atomic.

Recall these different characterizations of BF-monoids and FF-monoids (see [GHK06, Proposition

1.3.3 and Proposition 1.5.5]).

• H is a BF-monoid if and only if there exists a length function, i.e., a map λ : H → N0

such that λ(a) < λ(b) whenever a|b and a ̸≃H b.

• H is an FF-domain if and only if every a ∈ H has only finitely many non-associated

divisors.

Let A be a domain. We say that A is an atomic (resp. BF, FF, factorial) domain if the monoid

A• is atomic (resp. BF, FF, factorial).
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We conclude this subsection with two well-known properties of localizations of domains. Denote

by Spec(A) the set of all prime ideals of A. Recall that a multiplicative closed subset of A is a

subset S ⊆ A such that 1 ∈ S, S · S ⊆ S, and 0 /∈ S.

Proposition 1.17. Let A be a domain and S ⊆ A a multiplicatively closed set of A. There is

an inclusion-preserving bijection

{ p ∈ Spec(A) | p ∩ S = ∅ } ←→ Spec(S−1A),

p 7→ S−1p = p(S−1A),

q ∩A←[ q.

In particular, the bijection preserves the height of every prime ideal that does not meet S.

Proposition 1.18. Let A be a factorial domain, and S a multiplicatively closed set of A. Denote

by T the set of all the prime elements of A that divide an element of S, and by M = A(A) \ T.
Then S−1T ⊆ (S−1A)× and S−1M ⊆ A(S−1A).

1.4. Krull Domains. In this section, we recall some basic notions about Krull domains. For

more details, see [Fos73, GHK06].

Recall that a discrete valuation ring, in short DVR, is a factorial domain A with a unique prime

element p (up to associates), that is, every a ∈ A has a unique factorization of the form a = upn

with u ∈ A× and n ∈ N0. Equivalently, a domain A is a discrete valuation ring if there exists a

discrete valuation v : q(A)→ Z∪{∞} such that A = {x ∈ q(A) | v(x) ≥ 0 }. With this notation,

every a ∈ A can be uniquely written as a = upv(a), with u ∈ A× (see [GHK06, Theorem 2.3.8]).

Definition 1.19 (Krull domains). Let A be a domain and let X(A) be the set of all height-1

prime ideals of A. Then A is a Krull domain if

(1) Ap is a discrete valuation ring for every p ∈ X(A);

(2) A =
⋂

p∈X(A)Ap;

(3) every non-zero element a ∈ A is contained in at most a finite number of height-1 prime

ideals of A.

Equivalently, A is a Krull domain if and only if there exists a family {vi}i∈I of discrete

valuations on the quotient field q(A) such that, for all x ∈ q(A) \ {0},
(i) vi(x) = 0 for all but finitely many i ∈ I;

(ii) x ∈ A if and only vi(x) ≥ 0 for all i ∈ I.

Let A be a domain. For any non-empty subsets X, Y ⊂ q(A), we define

(Y : X) = { a ∈ q(A) | aX ⊂ Y }, X−1 = (A : X), and Xv = (X−1)−1.

A subset c ⊆ A is called a divisorial ideal of A if cv = c and a subset c ⊆ q(A) is called a

fractional divisorial ideal of A if there exists some x ∈ A• such that xc is a divisorial ideal of A.
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We denote by Iv(A) the set of all divisorial ideals of A and by Fv(A) the set of all fractional

divisorial ideal of A. For fractional ideals a, b ∈ Fv(A), define their v-product by a ·v b = (ab)v,

and for k fractional divisorial ideals a1, . . . , ak define their v-product to be

k∏
v

i=1

ai :=
( n∏
i=1

ai

)
v
.

By convention an empty product is equal to the trivial ideal A. A fractional divisorial ideal

a ∈ Fv(A) is v-invertible if a ·v a−1 = A. Every non-zero principal fractional ideal xA is invertible

with inverse x−1A. The group Fv(A)
× is the group of v-invertible fractional ideals. We have

that (xA) ·v (yA) = xyA, hence the subset H(A) of all non-zero principal fractional ideals is a

subgroup of Fv(A)×. So the following definition makes sense.

Definition 1.20 (Class groups). Let A be a Krull domain. The (divisor) class group of A is the

quotient group C(A) = Fv(A)×/H(A). We write the group additively. For a ∈ Fv(A)× we denote

by [a] ∈ C(A) the class containing a.

A domain A is v-noetherian if it satisfies the ascending chain condition on divisorial ideals. An

element x ∈ q(A) is almost integral if there exists c ∈ q(A)• such that cxn ∈ A for all n ≥ 0. A

domain A is completely integrally closed if A = {x ∈ q(A) | x almost integral }. Every noetherian

domain is v-noetherian and a noetherian domain is integrally closed if and only if it is completely

integrally closed. The following theorem is a characterization of Krull domains in terms of

multiplicative ideal theory.

Theorem 1.21 ([Fos73]). Let A be a domain. Then A is a Krull domain if and only if A is

completely integrally closed and v-noetherian.

Dedekind domains are exactly the one-dimension Krull domains [GHK06, Theorem 2.10.6]. In

a Dedekind domain every non-zero proper ideal factors into a product of prime ideals. Krull

domains generalize this property of Dedekind domains, as shown in the next theorem.

Theorem 1.22 ([Fos73, Corollary 3.14]). Let A be a Krull domain. Then every invertible

fractional divisorial ideal a ∈ Fv(A)× has a representation as divisorial product

a =
∏

v

p∈X(A)

pnp ,

with uniquely determined np ∈ Z, almost all of which are 0. We have a ∈ Iv(A)• if and only if

np ≥ 0 for all p ∈ X(A).

For a ∈ Fv(A)
× we define the p-adic valuation of a as vp(a) = np with np as in the previous

theorem. For x ∈ q(A) one has x ∈ A if and only if vp(x) = vp(xA) ≥ 0 for every p ∈ X(A).

Krull domains theory and factorization theory are intimately related by the following theorem.

Theorem 1.23 ([GHK06]). Let A be a domain. Then the following are equivalent:
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(a) A is factorial;

(b) A is atomic and every atom is a prime element;

(c) A is a Krull domain and C(A) = 0.

Krull domains have the following important property, which we will use later to prove our

main theorem (cfr. Section 3).

Theorem 1.24 (Approximation property, [Fos73]). Let A be a Krull domain. For all n ∈ N,
pairwise distinct p1, . . . , pn ∈ X(A) and integers e1, . . . , en ∈ Z, there exists an element x ∈ q(A)

such that vpi(x) = ei and vp(x) ≥ 0 for every p ∈ X(A) \ {p1, . . . , pn}.

2. Factorization theory in upper cluster algebras

In this section, we prove that every cluster variable is a strong atom and that every (upper)

cluster algebra is an FF-domain. Recall the following.

Theorem 2.1 ([CKQ23]). Let Σ = (x,y, B) be a seed. Let A = A(Σ), U = U(Σ) be the cluster

algebra and upper cluster algebra associated to Σ, respectively. Then

(1 ) (i) A× = {λxan+1

n+1 . . . x
an+m
n+m | λ ∈ K×, ai ∈ Z };

(ii) every cluster variable is an atom of A (pairwise non-associated).

(2 ) (i) U× = {λxan+1

n+1 . . . x
an+m
n+m | λ ∈ K×, ai ∈ Z };

(ii) every cluster variable is an atom in U (pairwise non-associated).

From the existing literature ([GLS13, Corollary 4.2], [GELS19, Corollary 1.23], and [CKQ23,

Theorem 4.9]), we obtain the following characterization of factorial (upper) cluster algebras. We

remark the directions (c)⇒(a) (or (b)⇒ (a)) actually make use of the fact that (upper) cluster

algebras are atomic, see Remark 2.8 below.

Proposition 2.2. Let Σ = (x,y, B) be a seed. Let H be either A(Σ) or U(Σ). Then the following

are equivalent:

(a) H is factorial,

(b) every cluster variable is a prime element of H,

(c) the variables x1, . . . , xn are prime elements of H,

If H = U and H is factorial, then H =
⋂n

i=0 Lxi.

To show that cluster variables are not just atoms, but even strong atoms, we need the following.

Lemma 2.3 ([CKQ23, Lemma 5.2]). Let U be an upper cluster algebra and (x,y, B) be a seed.

If xa11 . . . xann ∈ U for some a1, . . . , an ∈ Z, then a1, . . . , an ∈ N0.

For every subset S of a domain A we denote by JSKA the divisor-closed submonoid generated by

S, that is the set of all elements that divide an element of the submonoid generated by S. In

particular if u ∈ A then

JuKA = { a ∈ A : a|un, for somen ∈ N0 }.

https://doi.org/10.4153/S0008414X25000033 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000033


12 MARA POMPILI

Proposition 2.4. Let A be a cluster algebra and U be the corresponding upper cluster algebra.

Let (x,y, B) be an arbitrary seed. Then the divisor-closed submonoid generated by a cluster

monomial in x is

Jxe11 · · ·x
en
n KU = Jxe11 · · ·x

en
n KA = { εxa11 · · ·x

an
n | ε ∈ U×, ai ∈ N0, with ai = 0 if ei = 0 },

for all e1, . . . , en ∈ N0.

In particular, the monoid Jxe11 · · ·xenn KU = Jxe11 · · ·xenn KA is isomorphic to K× × Nn
0 .

Proof. Denote by M the set M = { εxa11 · · ·xann | ε ∈ U×, ai ∈ N0, with ai = 0 if ei = 0 }.
First, we prove that M ⊆ Jxe11 · · ·xenn KA. Let a ∈M , say a = εxa11 · · ·xann for some ai ∈ N0, ε ∈

U×. Then a divides the N th-power of xe11 · · ·xenn with N = max{⌈aiei ⌉, i ∈ [1, n], ei ̸= 0}, since
trivially

(xe11 · · ·x
en
n )N = (εxa11 · · ·x

an
n )(ε−1xe1N−a1

1 · · ·xenN−an
n )

holds. Hence a ∈ Jxe11 · · ·xenn KA.
Now, we show that Jxe11 · · ·xenn KU ⊆M . Let a ∈ Jxe11 · · ·xenn KU , so there exist a non-negative

integer N ∈ N0 and an element b ∈ U such that

xe1N1 · · ·xenNn = ab. (2.1)

Consider the Laurent expansion of a and b with respect to x, say

a =
P (x1, . . . , xn+m)

xα1
1 · · ·x

αn+m
n+m

, b =
Q(x1, . . . , xn+m)

xβ1
1 · · ·x

βn+m
n+m

,

where P , Q ∈ K[x,y] and αi, βi ∈ N0 for every i ∈ [1, n+m].

So Equation (2.1) can be rewritten as

xα1+β1+e1N
1 · · ·xαn+βn+enN

n x
αn+1+βn+1

n+1 · · ·xαn+m+βn+m
n+m = PQ,

hence P and Q must be monomials in x1, . . . , xn+m, and a fortiori a, b are associated to Laurent

monomials in x1, . . . , xn+m. By Lemma 2.3, we get a = εxa11 · · ·xann with a1, . . . , an ∈ N0 and

ε ∈ U×. Observe that, if there is i ∈ [1, n] such that ei = 0, then xi ∤ a, whence ai = 0.

Therefore, we have proved the following inclusions

M ⊆ Jxe11 · · ·x
en
n KA ⊆ Jxe11 · · ·x

en
n KU ⊆M,

and this concludes the proof. □

Corollary 2.5. Let Σ = (x,y, B) be a seed. Let A = A(Σ)and U = U(Σ) be the cluster algebra

and upper cluster algebra associated to Σ, respectively. Then every cluster variable is a strong

atom of A and U .

Proof. The statement is a direct consequence of Proposition 2.4 applied to the divisor-closed

submonoid generated by one cluster variable. □
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The Laurent phenomenon implies that A ⊆ U ⊆
⋂n

k=0 Lxk
, for every seed (x,y, B). The ring⋂n

k=0 Lxk
is a finite intersection of Laurent polynomial rings, which, being factorial, are in turn

intersections of DVRs. So we can write
⋂n

k=0 Lxk
=

⋂
i∈I Di, with Di a DVR for every i ∈ I.

Hence we have a monoid homomorphism

v : U → N(I)
0 , u 7→ (vi(u))i∈I ,

where vi : q(Di) → Z is the discrete valuation of Di and N(I)
0 = { (ai) ∈ NI

0 | ai = 0 for all but

finitely many i ∈ I }. Observe that, by Theorem 2.1,

A× = U× =
( n⋂
k=0

Lxk

)×
=

(⋂
i∈I

Di

)×
=

⋂
i∈I

D×
i . (2.2)

Lemma 2.6. Let Σ = (x,y, B) be a seed and A = A(Σ) and U = U(Σ) be the cluster algebra

and the upper cluster algebra associated to Σ, respectively. Let v : U → N(I)
0 be the monoid

homomorphism defined above. Then

v(a) = v(b) ⇐⇒ a ≃U b ⇐⇒ a ≃A b.

Proof. First assume that a, b are two elements of U such that v(a) = v(b), say vi(a) = vi(b) = ni

for every i ∈ I. Let pi denote the unique (up to associates) prime element of Di with i ∈ I. By

definition of a DVR (see Section 1.4), for every i ∈ I, we have that a = uip
ni
i and b = u′ip

ni
i with

ui, u
′
i ∈ D×

i , that is a = wib for some wi ∈ D×
i . Hence wib = wjb for all i, j ∈ I implies wi = wj

and so a = wb for some w ∈
⋂

i∈I D
×
i . Thus Equation (2.2) implies that a ≃U b, and this is

equivalent to a ≃A b. The other direction is straightforward. □

Theorem 2.7. Let Σ = (x,y, B) be a seed and A = A(Σ) and U = U(Σ) be the cluster algebra

and the upper cluster algebra associated to Σ, respectively. Then A and U are FF-domains. In

particular, they are BF-domains and atomic.

Proof. Let H denote either A• or U•, and let a ∈ H. We want to show that a has only finitely

many non-associated divisors. Consider the set Ω = { ei | vi(a) > 0 } of all the atoms of N(I)
0

that divide v(a). Here ei denotes the tuple with all components 0 except the i-th entry that is 1.

Notice that Ω is finite.

Let v ∈ H be such that v|a. Then, since v(v)|v(a), there exist ω1, . . . , ωk ∈ Ω such that

v(v) = ω1 + · · ·+ ωk, hence, since Ω is finite, there are only finitely many possibilities for v(v)

for each divisor v of a. So let u be another divisor of a such that v(u) = ω1 + · · ·+ ωk = v(v).

Then Lemma 2.6 implies that u ≃H v, thus a has only finitely many non-associated divisors. □

Remark 2.8. In [GELS19] the cluster algebras under investigation are usually Krull domains,

and hence FF-domains (in particular, atomic). However, [GELS19, Corollary 1.23] (which is

subsumed in our Proposition 2.2), concerns arbitrary cluster algebras. To deduce that the cluster

variables being prime is sufficient for an (upper) cluster algebra to be factorial, one needs to know

a priori that the cluster algebra is atomic. This was taken for granted in [GELS19, Corollary
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1.23]. However, it is somewhat non-trivial and our Theorem 2.7 provides a proof of this fact.

More generally, in the statement [GELS19, Corollary 1.20] of a corollary of Nagata’s Theorem,

an assumption that A be atomic is missing. See [AAZ92, Section 1] for details. A proof that

(upper) cluster algebras are atomic is published in [CKQ23, Appendix A]. In fact, this proof

shows that they are BF-domains (but not the the stronger claim that they are FF-domains).

Recall that a domain is a Krull domain if and only if it is completely integrally closed and

v-noetherian. Moreover, a Krull domain is always an FF-domain.

Theorem 2.9. Let Σ = (x,y, B) be a seed and U = U(Σ) be the upper cluster algebra associated

to Σ. Then U is completely integrally closed. Moreover, if there exists a seed such that U satisfies

the starfish condition at that seed, then U is a Krull domain.

Proof. The upper cluster algebra U , being an intersection of completely integrally closed domains,

is completely integrally closed. Moreover, if we assume U =
⋂n

i=0 Lxi for some seed (x,y, B),

then U , being a finite intersection of Krull domains, is a Krull domain. □

3. Class Groups of Upper Cluster Algebras

In this section we determine the class groups of full rank upper cluster algebras (more generally,

upper cluster algebras, satisfying the starfish condition). To do so, we need some preliminary

results. We prove them in the more general setting of upper cluster algebras that are Krull

domains.

Proposition 3.1. Let A be a domain and let x1, . . . , xn ∈ A be such that Ax := A[x−1
1 , . . . , x−1

n ] =

D[x±1
1 , . . . , x±1

n ] is a factorial Laurent polynomial ring for some subring D of A. If f ∈ A is such

that f /∈ A×
x and f has no repeated factors in Ax, then there exist a height-1 prime ideal p of A

and a discrete valuation vp : q(A)→ Z ∪ {∞} such that vp(f) = 1 and vp(xi) = 0 for i ∈ [1, n].

Proof. Let p ∈ Ax be a prime factor of f . Set p = pAx ∩A. The prime ideal pAx has height 1 by

Krull’s Principal Ideal Theorem and hence so does p (Proposition 1.17). Since f has no repeated

factors, vp(f) = 1. For i ∈ [1, n], xi is a unit of Ax, therefore xi /∈ p. Hence vp(xi) = 0. □

Notice that for the proof a weaker assumption is sufficient. It is enough to assume that there

exists f /∈ A×
x that has a prime factor of multiplicity 1.

Corollary 3.2. Let Σ = (x,y, B) be a seed. Let U = U(Σ) be the upper cluster algebra associated

to Σ. Then, for every i ∈ I there exists a height-1 prime ideal p of U such that vp(xi) = 1 and

vp(xj) = 0 for every j ∈ [1, n] \ {i}.

Proof. We mutate x = (x1, . . . , xn) in direction i obtaining a new seed xi. Let fi = xix
′
i ∈ K[xi,y]

be the exchange polynomial of xi associated to Σ. We have that

U [x−1
i ,y−1] = K[x±1

i ,y±1],
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hence K[x±1
i ,y±1] is a Laurent polynomial ring, and therefore factorial. By [GELS19, Proposition

2.3] we know that fi does not have repeated factors. Moreover, due to our assumption on isolated

seeds (Remark 1.14), one has fi /∈ K[x±1
i ,y±1]×, so fi satisfies the hypothesis of Proposition

3.1. Hence we can conclude that there exists a height-1 prime ideal p of U such that vp(fi) = 1,

vp(xj) = 0 for every j ∈ [1, n] \ {i}, and vp(x
′
i) = 0, hence vp(xi) = 1. □

Let us recall this very general result on Krull domains.

Theorem 3.3 ([GELS19, Theorems 3.1 and 3.2]). Let A be a Krull domain, and let x1, . . . , xn ∈ A

be such that Ax := A[x−1
1 , . . . , x−1

n ] = D[x±1
1 , . . . , x±1

n ] is a factorial Laurent polynomial ring for

some subring D of A. Let p1, . . . , pt be the pairwise distinct height-1 prime ideals of A containing

one of the elements x1, . . . , xn. Suppose that

xiA =

t∏
v

l=1

p
aij
j ,

with ai = (aij)
t
j=1 ∈ Nt

0. Then C(A) ∼= Zt/⟨ai | i ∈ [1, n]⟩ and it is generated by [p1], . . . , [pt].

Suppose in addition that D is infinite and either n ≥ 2 or n = 1 and D has at least |D|
height-1 prime ideals. Then every class of C(A) contains precisely |D| height-1 prime ideals.

Before presenting the main result on the class groups of upper cluster algebras that are Krull

domains, it should be noted that Theorem 3.4 is, with the exception of the transition from cluster

algebras to upper cluster algebras, almost verbatim Theorem A from [GELS19].

Theorem 3.4. Let Σ = (x,y, B) be a seed and let U = U(Σ) be the upper cluster algebra

associated to Σ. Suppose that U is a Krull domain. Let t ∈ N0 denote the number of height-1

prime ideals that contain one of the exchangeable variables x1, · · · , xn. Then the class group

C(U) of U is a free abelian group of rank t− n.

In particular, each class contains exactly |K| height-1 prime ideals.

Proof. The proof follows the strategy of [GELS19, Theorem A] where the authors proved the

statement for cluster algebras that are Krull domains.

In order to apply Theorem 3.3, notice that the Laurent phenomenon implies that

U [x−1,y−1] = K[x±1,y±1]

and K[x±1,y±1] is a factorial domain. U is a Krull domain by assumption, hence any principal

ideal is a divisorial product of height-1 prime ideals, in particular, for every i ∈ [1, n] there exist

ai1, . . . , ait ∈ N0 such that

xiU =
t∏

v

l=1

p
aij
j , (3.1)

with p1, . . . , pt pairwise distinct height-1 prime ideals of U that contain one of the elements

x1, . . . , xn and aij = vpj (xi). Thus Theorem 3.3 implies that C(U) is generated by [p1], . . . , [pt].
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By Corollary 3.2, for every i ∈ [1, n] there exists p ∈ X(U) such that vp(xi) = 1 and vp(xj) = 0

for every j ̸= i. Thus, since p1, . . . , pt are all the height-1 prime ideals that contain xi, there

exists ki ∈ [1, t] such that vpki (xi) = aiki = 1 and vpki (xj) = ajki = 0 for every j ∈ [1, n] \ {i}.
Hence, by (3.1),

0 = ai1[p1] + · · ·+ [pki ] + · · ·+ ait[pt],

that is [pki ] is a linear combination of [p1], . . . , [pt]. If i, j ∈ [1, n] with j ≠ i, then pki ̸= pkj .

Indeed, if they were equal, Corollary 3.2 would imply 1 = aiki = aikj = 0 and this would be a

contradiction. Thus pk1 , . . . , pkn are n superfluous generators and C(U) is a free abelian group

generated by t− n elements.

If n+m ≥ 2, or n+m = 1 and K = Z, we can apply Theorem 3.3 to obtain that every class

contains exactly |K| height-1 prime ideals. Suppose then n+m = 1 and K is a field. Since we

assumed there is no isolated exchangeable index, necessarily n = 0 and m = 1. Then U = K[x±1
1 ],

C(U) = 0 and U contains |K| pairwise non-associated prime elements. □

This theorem leads us to a dichotomy between factorial upper cluster algebras and non-

factorial ones. Let A be a domain and a ∈ A•. We call k ≥ 0 a length of a if there exist atoms

u1, . . . , uk ∈ A• such that a = u1 · · ·uk. The length set of a, denoted by L(a), is the set of all

such lengths; we set L(a) = {0} for a ∈ A×. Then L(a) = {0} if and only if a is a unit, and

L(a) = {1} if and only if a is an atom. In a Krull domain L(a) is always a finite set.

Corollary 3.5. Let U be an upper cluster algebra. Assume that U is a Krull domain.

• If U is factorial, then L(u) is a singleton for each non-zero element u ∈ U .
• If U is not factorial, then for every finite set L ⊆ Z≥2 there exists an element u ∈ U•

such that L(u) = L.

Proof. If U is factorial the claim is trivial. If U is not factorial, the claim follows by Theorem 3.4

and a result of Kainrath [Kai99, Theorem 1]. □

Now we compute the rank of the class group of a full rank upper cluster algebra in terms of

the irreducible factors of the exchange polynomials.

Let Σ = (x,y, B) be a seed and U = U(Σ) be the upper cluster algebra associated to Σ.

Recall that, by definition, the upper cluster algebra U is an intersection of some Lz, where Lz =

K[u±1 | u ∈ z ∪ y] is the localization of U to the set Sz = { za11 · · · zann x
an+1

n+1 · · ·x
an+m
n+m | ai ∈ N0 },

where z ∼ x. On the other hand if we suppose that U is a Krull domain, then U =
⋂

p∈X(U) Up.
Moreover, the following equalities holds

U =
⋂
z∼x

Lz =
⋂
z∼x

⋂
p∈X(Lz)

(Lz)p =
⋂
z∼x

⋂
q∈X(U)
q∩Sz=∅

Uq,

where the last equality follows from Proposition 1.17, since Lz is the localization of U at Sz.
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Theorem 3.6. Let Σ = (x,y, B) be a seed and U = U(Σ) be the upper cluster algebra associated

to Σ. Suppose in addition that U is a Krull domain. Then for every height-1 prime ideal p of U
there exists a seed (z,y, C) such that pLz ∈ X(Lz).

Furthermore, if U =
⋂n

i=0 Lzi for some seed (z,y, C), then for every height-1 prime ideal p of

U there exists k ∈ [0, n] such that pLzk ∈ X(Lzk).

Proof. We prove the first claim, the second is completely analogous. Proceed by contradiction,

i.e., suppose that there exist p0 ∈ X (U) such that p0Lz /∈ X(Lz) for every seed (z,y, C). We

claim that there exists an element a ∈ U such that vp0(a) < 0.

Let y ∈ p0, and let p1, . . . , pr ∈ X(U) be such that {p0, p1, . . . , pr} is the set of all the distinct

height-1 prime ideals of U that contain y. Notice that vpi(y) > 0 for every i ∈ [0, r] and vq(y) = 0

for every q ̸= pi. Set ei := vpi(y) ∈ N for every i ∈ [1, r] and e0 = 0. By the Approximation

property (Theorem 1.24) there exists an element x ∈ U such that vpi(x) = ei for every i ∈ [0, r]

and vq(x) ≥ 0 for every q ∈ X(U) \ {p0, . . . , pr}.
Define now a := x/y ∈ q(U). By construction then

vp0(a) = vp0(1/y) < 0, vpi(a) = vpi(x)− vpi(y) = 0

for every i ∈ [1, r] and vq(a) = vq(x) ≥ 0 for every q ∈ X(U) \ {p0, p1, . . . , pr}. Hence this implies

that a ∈ Uq for every q ∈ X(U) \ {p0} and a /∈ Up0 , hence a /∈ U . On the other hand, by

assumption p0 ∩ Sz ̸= ∅ for every seed (z,y, C), hence

a ∈
⋂
z∼x

⋂
q∈X(U)
q∩Sz=∅

Uq = U ,

therefore we found our contradiction. □

The theorem has an important consequence if we consider the case of upper cluster algebras

that satisfy the starfish condition at one seed.

Corollary 3.7. Let U be an upper cluster algebra that satisfies the starfish condition at a seed

(x,y, B). Let p be a height-1 prime ideal of U that contains xi for some i ∈ [1, n]. Then pLxi is

a height-1 one prime ideal of Lxi. In particular, every height-1 prime ideal of U that contains

the cluster variable xi does not contain any element of the set {x1, . . . , x′i, . . . , xn+m}.

Proof. By Theorem 3.6 there exists k ∈ [0, n] such that pLxk
∈ X(Lxk

). In particular p ∩
{x1, . . . , x′k, . . . , xn+m} = ∅. Therefore k must be i and xj /∈ p for every j ∈ [1, n+m] \ {i}. □

We are now ready to determine the rank of the class group of an upper cluster algebra that

satisfies the starfish condition at one seed.

Theorem 3.8. Let U be an upper cluster algebra that satisfies the starfish condition at a seed

(x,y, B). For every i ∈ [1, n] let li be the number of irreducible factors in K[x,y±1] of the
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exchange polynomial fi. Then

C(U) ∼= Zr, with r =
n∑

i=1

li − n.

Proof. Theorem 2.9 implies that U is a Krull domain, so we can apply Theorem 3.4 and claim

that C(U) is a free abelian group of rank t− n with t the number of prime ideals that contain

one of the cluster variables x1, . . . , xn. By Corollary 3.7, if a height-1 prime ideal of U contains a

cluster variable xi, then it does not contain xj for every j ∈ [1, n] \ {i}, that is

t =
n∑

i=1

|{ p ∈ X(U) | xi ∈ p }|.

Fix an index i ∈ [1, n], and let r1, . . . , rli ∈ K[xi,y] be the pairwise non-associated irreducible

factors of the exchangeable polynomial fi = xix
′
i ∈ K[xi,y]. We claim that

li = |{ p ∈ X(U) | xi ∈ p }|.

Let p ∈ X(U) be a height-1 prime ideal that contains the cluster variable xi. Corollary 3.7

implies that p′ := pLxi is a height-1 prime ideal of Lxi that contains xi. Observe that fi ∈ p′.

Since none of the factors of fi can be a monomial in x, Lemma 1.18 implies that, for all k ∈ [1, li],

rk is also irreducible in Lxi . The ideal p′ is prime, hence necessarily one of the irreducible factors

of fi, say rk, must be in p′. Therefore, since p′ has height 1 and Lxi is factorial, we have that

p′ = rkLxi , and hence p = U ∩ rkLxi . This proves that

|{ p ∈ X(U) | xi ∈ p }| ≤ li.

A similar argument shows that pj := U ∩ rjLxi is a height-1 prime ideal of U that contains

xi, for every j ∈ [1, li]. Assume pj = pk for some j ̸= k. Then rjLxi = rkLxi and hence rj ≃ rk,

that is impossible by assumption, whence

li = |{ p ∈ X(U) | xi ∈ p }|. □

If li = 1 for every i ∈ [1, n], we get immediately the following corollary, which is a slight

generalization of [CKQ23, Theorem 4.9].

Corollary 3.9. Let U be an upper cluster algebra that satisfies the starfish condition at a seed

(x,y, B). Then U is factorial if and only if the exchange polynomials fi = xix
′
i are irreducible in

K[x,y±1].

Notice we cannot extend this theorem to upper cluster algebras that are just Krull domains.

Indeed, consider the (upper) cluster algebra of finite type A3. The cluster algebra is a Krull

domain and we know that is not factorial (1 + x22 = x1x
′
1 = x3x

′
3), hence C(U) ̸= 0. However,∑3

i=1 li − 3 = 0, so the theorem does not apply in this case.

Remark 3.10. If the seed is in addition acyclic, the cluster algebra and the upper cluster algebra

coincide and we could get the conclusions of Theorem 3.8 as a consequence of the main Theorem
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of [GELS19]. Two indices i, j ∈ [1, n] are partners if fi and fj have a common non-trivial

factor. If U satisfies the starfish condition at a seed (x,y, B), then no distinct indices are

partners. Indeed, first notice that, if i and j are partners, then (x1, . . . , x
′
i, . . . , x

′
j , . . . , xn) is a

seed, since bij = bji = 0 (cf. [GELS19, Lemma 2.7]). Suppose now, by contradiction, that there

exist two partners i, j ∈ [1, n] with i < j. Thus there exists h ∈ K[x,y] \K[x,y]× such that

fi = hgi and fj = hgj for some gi, gj ∈ K[x,y]. Hence the element s =
hgigj
xixj

∈
⋂n

k=0 Lxk
, but

s /∈ K[x±1
1 , . . . , x′i

±1, . . . , x′j
±1, . . . , x±1

n ], and this is a contradiction. Assume in addition that the

(upper) cluster algebra U is acyclic. Then, since the only partner sets are the sets {i}, i ∈ [1, n],

Theorem A in [GELS19] implies that the rank of the class group of U is equal to t − n with

t =
∑n

i=1 |{ p ∈ X(U) | xi ∈ p }|.

Remark 3.11. For a more detailed discussion on the factorization of exchange polynomials, the

reader is referred to [GELS19, Section 2.1], where this topic is treated exhaustively.

Denote by µ∗
d(K) the set of primitive d-th roots of unit in K.

Examples 3.12. Let us compute the class group in some specific examples.

(1) Consider the seed Σ = ((x1, x2, x3, x4) , ∅, B) where B is the matrix

B =


0 −1 0 4

2 0 3 6

0 −3 0 0

−4 −3 0 0

 .

B is a full rank skew-symmetrizable matrix (consider d1 = d4 = 2, d2 = d3 = 1).

The exchange polynomials associated to Σ are:

f1 = x22 + x44, f2 = x1x
3
3x

3
4 + 1,

f3 = x32 + 1, f4 = x41x
6
2 + 1.

The polynomial f1 has 2 factors if µ∗
4(K) ̸= ∅, otherwise 1, the polynomial f3 has 3 factors

if µ∗
6(K) ̸= ∅, otherwise 2, and the polynomial f4 has 2 factors if µ∗

4(K) ̸= ∅, otherwise
1. The following table shows the class group of U in all the possible cases: Notice that

µ∗
4(K) ̸= ∅ µ∗

4(K) = ∅
µ∗
6(K) ̸= ∅ Z4 Z2

µ∗
6(K) = ∅ Z3 Z

U(Σ) is not factorial independently from the choice of the field.
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(2) Consider the following quiver Q:

1

2

3 4.

The matrix associated to Q is

B =


0 0 1 −1

0 0 −1 −1

−1 1 0 1

1 1 −1 0


and the exchange polynomials are:

f1 = x3 + x4, f2 = x3x4 + 1,

f3 = x2x4 + x1, f4 = x1x2 + x3.

B has full rank and the polynomials are irreducible, hence U(Q) is factorial.
(3) Consider the seed Σ = ((x1, x2, x3), {x4}, B) where B is the matrix

B =


0 2 −2

−2 0 2

2 −2 0

2 0 0

 .

B has full rank and the exchange polynomials are

f1 = x22 + x23x
2
4, f2 = x21 + x23, f3 = x21 + x22.

Hence, if µ∗
4(K) ̸= ∅, then C(U) ∼= Z3, otherwise U is factorial.

Observe that the exchangeable part of the quiver Γ(B), being the Markov quiver, is

not acyclic, hence we could not have applied Theorem B in [GELS19].

4. Valuation Pairing

In [CKQ23], the authors introduced the notion of a valuation pairing on an upper cluster

algebra and proved a local unique factorization for full rank upper cluster algebras. In this

section we give an interpretation of the valuation pairing in terms of the p-adic valuation in Krull

domains.
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Definition 4.1 (Valuation pairing, [CKQ23]). Let U be an upper cluster algebra and X be the

set of cluster variables of U . Define

(−|−)v : X × U → N ∪ {∞} (x, u) 7→ (x | u)v := max{ s ∈ N | u/xs ∈ U . }

Clearly, (x | u)v = 0 if and only if x ∤ u. If r = (x | u)v > 0, then u/xr ∈ U and u/xr+1 /∈ U ,
that is there exists y ∈ U such that u = xry and x ∤ y.

Definition 4.2 (Local Factorization, [CKQ23]). Let U be an upper cluster algebra and u ∈ U .
We say that u = ab is a local factorization of u with respect to the seed (x,y, B) if a is a monomial

in x and (xi | b)v = 0 for every i ∈ [1, n].

Using valuation pairings, Cao, Keller, and Qin proved the following.

Theorem 4.3 ([CKQ23, Propisition 3.5 and Theorem 3.7]). Let U be an upper cluster algebra

and (x,y, B) any seed. Then every 0 ̸= u ∈ U admits a local factorization with respect to (x,y, B).

Moreover, if U has full rank, then this local factorization is unique (up to associates).

Let U be an upper cluster algebra. We can interpret the valuation pairing in terms of

discrete valuations on U . By definition, U is an intersection of (possibly infinitely many) Laurent

polynomial rings. Each of these Laurent polynomial rings gives rise to a family of discrete

valuations, arising from the height-1 prime ideals of the Laurent polynomial ring. Let { vi : i ∈ I }
be the set of all such discrete valuations arising from all the Laurent polynomial rings.

Let x ∈ X and let V ⊆ { vi : i ∈ I } the subset of all valuations vi for which vi(x) > 0. Now

consider an element u ∈ U• and set r = (x | u)v. Let us write u = xry with y ∈ U such that x ∤ y.
Clearly, we have that vi(x)r ≤ vi(u), for every vi ∈ V , hence

r ≤ inf
vi∈V

⌊
vi(u)

vi(x)

⌋
.

Let s := infvi∈V

⌊
vi(u)
vi(x)

⌋
. Then u/xs ∈ U since

vi(ux
−s) = vi(u)− svi(x) ≥ vi(u)−

⌊
vi(u)

vi(x)

⌋
vi(x) ≥ vi(u)−

vi(u)

vi(x)
vi(x) = 0,

hence

(x | u)v = inf
vi∈V

vpi(u)

vpi(x)
.

Remark 4.4. If U is a Krull domain, then the discrete valuations V are just those arising from

the finitely many height-1 prime ideals of U containing x, so in this case

(x | u)v = min
p∈X(U)
x∈p

⌊
vp(u)

vp(x)

⌋
.
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