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Abstract

The microzooplankton community structure (species abundance, biomass, diversity) was
investigated at a coastal marine station on the South-West Atlantic Ocean (34°23′S–53°
45′W, Uruguay). This is a hydrographically complex site within the Subtropical
Convergence zone of the SW Atlantic where knowledge of the microzooplankton is particu-
larly scant. The main goal was to perform a first characterization of that community and
evaluate its association to environmental drivers along an annual cycle. Oceanographic vari-
ables (temperature, salinity, irradiance, nutrients, chlorophyll-a) and ciliates (aloricate and
loricate), and dinoflagellates were recorded monthly from July 2019 to June 2020. Over 100
microzooplankton taxa belonging to approximately 30 families and 40 genera were identified,
including several subtropical and subantarctic species. Community structure followed wide
transitions at the seasonal scale – particularly between summer and winter as subtropical
taxa alternated with euryhaline taxa from colder subantarctic waters. The core environmental
variables (temperature, salinity and dissolved inorganic nitrogen [DIN]) explained overall
variance in microzooplankton community assembly. During summer, high temperatures
(20.3, 16.3–22.4°C) and low nutrients (DIN: 3.5, 0.7–6.7 μM; PO4: 1.0, 0.8–1.5 μM) benefited
the development of aloricate ciliates. A nutrient pulse in winter posed favourable stoichiomet-
ric conditions and the numerical abundance was dominated by dinoflagellates and loricate
ciliates in the following months, while diversity remained highest (taxonomic richness: 36
[22–46]; Shannon–Wiener index: 2.5 [1.9–2.8]). Results suggested that the microzooplankton
community at the study site is mainly structured by hydrographic variability linked to the
seasonal replacement of offshore water masses that differed in thermohaline properties and
nutrient levels, and local processes.

Introduction

Microzooplankton communities in the size range of 20–200 μm (Sieburth et al., 1978) are
mostly comprised of ciliates (loricate and aloricate), dinoflagellates and crustacean nauplii
(Calbet, 2008). They encompass strict heterotrophs and mixotrophic protist plankton – mix-
oplankton – combining photo(auto)trophy and phago(hetero)trophy in a single organism
(Flynn et al., 2019). They constitute key components of marine food webs and rapidly syn-
chronize productivity patterns due to their short generation time (Strom, 2002). Their grazing
accounts for 60–75% of phytoplankton mortality across a spectrum of oceanic and coastal
systems (Calbet and Landry, 2004).

Microzooplankton is sensitive to environmental variability and can respond rapidly to
changes in meteorological-oceanographic conditions (Caron and Hutchins, 2013). Changes
in species composition, abundance and size structure have been reported as responses to sea-
sonal fluctuations in temperature (Antacli et al., 2018; Urrutxurtu, 2004), salinity (Bojanić,
2001; Barría de Cao et al., 2011), stratification (Kiørboe, 1993; Stoecker et al., 2014), depth
(Lavrentyev et al., 2019; Romano et al., 2021), trophic state (Bojanić et al., 2012) and
chlorophyll-a (Uye et al., 1996). In coastal environments, plankton communities are further
affected by tidal currents or river plumes (Acha et al., 2020). However, disentangling responses
to environmental variability is challenging as observed conditions represent the outcome of
complex interactions between hydrography and plastic, community-level interactions (Caron
and Hutchins, 2013; López-Abbate, 2021).

The Subtropical Convergence in the South-West Atlantic (SWA) between 30 and 40°S is
dominated by the Brazil–Malvinas Confluence (BMC), which spans over the southern
Brazilian, Uruguayan and northeastern Argentinean shelves, as well as the adjacent ocean
basin. The confluence moves latitudinally with the seasons; thus, a transitional region is alter-
natively affected by the warmer and saltier tropical water (TW) transported poleward by the
Brazil current during summer (December–March), and by the cold and diluted subantarctic
water (SAW) of the Malvinas equatorward flow during winter (July–September) (Piola
et al., 2018). Uruguayan shelf waters (35–38°S) are at the core of the Subtropical
Convergence where hydrographic conditions result from the interplay of water masses
advected from adjacent zones and modified by continental runoff (Matano et al., 2010).
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Low salinity Río de la Plata plume (RPP) waters (ca. 25000 m3 s−1;
Hoffmeyer et al., 2018) are advected beyond the estuary’s mouth
and reach maximum northeastern penetration (up to 1000 km)
during winter (Piola et al., 2008). This buoyant plume adds
hydrographic complexity and makes this an important biogeo-
graphic boundary between communities of coastal-brackish,
oceanic subtropical and subantarctic origins (Boltovskoy et al.,
1999).

Plankton assemblages in the Subtropical Convergence change
with prevailing water masses. As a general trend, small diatoms,
nanoflagellates and cyanobacteria dominate in oligotrophic TW,
while bigger diatoms and dinoflagellates are more abundant in
nutrient-rich SAW. Intermediate areas affected by subtropical
shelf waters that result from the mixing of tropical and coastal
waters (Piola et al., 2018) share features from both water masses
and may be dominated by nanoflagellates (Carreto et al., 2008;
Gonçalves-Araujo et al., 2012). In coastal areas, the winter intru-
sion of RPP is associated with high satellite chlorophyll-a (Garcia
et al., 2004; Garcia and Garcia, 2008; Ciotti et al., 2010), and is a
relevant driver of phytoplankton (Carreto et al., 2008), copepod
and icthyoplankton communities (Muelbert et al., 2008). Such
studies suggested that water masses dramatically influence trophic
dynamics by favouring the development of distinct plankton
assemblages that may impact the top–down control of microzoo-
plankton communities.

Knowledge of regional microzooplankton derives from investi-
gations further south in Argentinean waters (Thompson et al.,
1999; Thompson and Alder, 2005; Santoferrara and Alder, 2009),
including the Patagonian shelf (Antacli et al., 2018), the Beagle
Channel (Barría de Cao et al., 2013) and the Bahía Blanca estuary
(Barría de Cao et al., 2005, 2011; Pettigrosso and Popovich, 2009;
López-Abbate et al., 2015, 2019). Further observations are available
for Brazilian coastal and shelf waters (Eskinazi-Sant’Anna and
Björnberg, 2006; Islabão and Odebrecht, 2011; Gonçalves-Araujo
et al., 2018; Menezes et al., 2019), and Patos Lagoon estuary
(Jesus and Odebrecht, 2002). Information regarding the microzoo-
plankton at the core area along Uruguayan waters, however, is still
very limited. Early studies dealt with specific taxa (i.e., Ceratium,
Vaz-Ferreira, 1943; loricate ciliates, Balech, 1948, and Souto,
1970), with a special focus on toxic or potentially toxic species
(i.e., Gymnodinium catenatum; Méndez and Ferrari, 2003; see
also Wells and Daborn, 1997). The occurrence of dinoflagellates
is frequently reported as part of phytoplankton assemblages in
studies focused on primary producers (e.g., Calliari et al., 2005,
2009), but a comprehensive analysis of the microzooplankton
assemblage has not been addressed so far, and information is par-
ticularly scant for groups lacking protective structures (i.e., aloricate
ciliates). Also, and in spite of their relevance in both trophic
dynamics and carbon fluxes, microzooplankton’s responses to
environmental conditions have been so far overlooked.

The present paper provides a first characterization of the spe-
cies abundance, biomass and diversity of the microzooplankton
community at a marine coastal site in Uruguay in all seasons,
and analyses its relationship with the environmental variability.
Given the hydrographic context within the Subtropical
Convergence, it can be expected that Uruguayan waters host a
diverse microzooplankton assemblage comprised of temperate
and subtropical taxa, subjected to strong seasonal variability.
The hypothesis is that the periodic fluctuation of water masses
over the continental shelf and the adjacent ocean basin drives
environmental variability (i.e., temperature, salinity, nutrients,
light) and microzooplankton assemblages at this SWA site. To
test the hypothesis, the seasonal and vertical patterns in species
abundance, biomass and diversity were analysed along with envir-
onmental variables on a monthly basis during an annual cycle.
The results provide new insights into the environmental influence

on natural microzooplankton communities, which in turn affects
energy flow in the marine food web.

Materials and methods

Study area, data collection and samples processing

Cabo Polonio is a tombolo resulting from the deposition of sandy
sediments by littoral currents during the Quaternary on the coast
of Uruguay (Panario et al., 1993). The original rocky island is cur-
rently connected to the mainland thus defining two large beach
arcs: La Calavera, northwards of Cabo Polonio proper (facing
east), and Playa Sur (facing south-east). The sampling station is
nearly 2 nautical miles offshore La Calavera beach arc at a
depth of 12 m on the Uruguayan coast (34°23′S-53°45′W)
(Figure 1).

Environmental conditions were recorded and microzooplank-
ton samples taken monthly over a full year (from 11 July 2019 to
9 June 2020). For simplicity, in the present study, seasons are
defined as beginning on the following days: winter = 1 July 2019;
spring = 1 October 2019; summer = 1 January 2020; autumn = 1
April 2020. On every occasion, a Conductivity-Temperature-
Depth profiler (CTD, SBE 19plus V2, Seabird Electronics, USA)
was used to record the vertical distribution of temperature, salin-
ity, the fluorescence of chlorophyll-a, turbidity and photosynthet-
ically active radiation (PAR). Using a 5 L Hydrobios bottle,
samples were collected from three discrete standard depths: sur-
face at 0 m, intermediate at 3.5 m and near-bottom at 8.5 m,
and analysed for nutrients, chlorophyll-a and microzooplankton
taxonomy, abundance and biomass. For inorganic nutrient
analyses, 0.5 L aliquots were filtered (Munktell GF/F equivalent,
47 mm diameter), frozen in clean acid-washed bottles and mea-
sured following standard protocols in a Thermo Evolution 60
spectrophotometer for nitrite, nitrate, ammonium, phosphate
and dissolved reactive silicates. For subsequent analyses, nitrites,
nitrates and ammonium were summed and presented as dissolved
inorganic nitrogen (DIN). For chlorophyll-a concentration,
0.25–0.45 L aliquots were filtered under a low vacuum and stored
at −20°C until analysis, usually 1–2 weeks later. Retained material
was extracted in 96% ethanol at 4°C in the dark and, after 24 h, its
fluorescence was quantified using a Turner Designs fluorometer
(Model No. Trilogy 040) with a non-acidification module
(Welschmeyer, 1994).

Microzooplankton community was analysed in samples from
the surface and 3.5 m, i.e., the depth at which fluorescence max-
ima usually occur (own unpublished data, Calliari et al.). Two
litres of seawater were concentrated to 100 mL with utmost care
by slowly and gentle sieving through a 20 μm-mesh and subse-
quently preserved with Bouin’s solution (10% final concentra-
tion). Filtering and preservation of microzooplankton samples
may lead to underestimation in microzooplankton numbers due
to loss of fragile components (especially aloricate ciliates), and
those with an individual size similar and smaller to sieve’s
pores; also changes in cells morphology may occur due to hand-
ling and the action of fixatives. Thus, routine analysis of filtered
and preserved samples was complemented by a qualitative obser-
vation of fresh unfiltered samples. Bouin’s solution is a suitable
preservative for taxa devoid of protective structures such as
naked ciliates and dinoflagellates as it minimizes cell loss and
deformation, thus facilitating proper identification and quantifi-
cation (Alder and Morales, 2009). In summary, current results
provide information on medium-sized and larger components
of the whole microzooplankton assemblage. A total of 24
samples were collected representing 12 dates and two depths.
Microzooplankton was identified to the lowest possible taxonomic
level (i.e., species or genus level, whenever possible) based on
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morphological characteristics using bibliographic sources and
taxonomic keys (e.g., Balech, 1988; Montagnes and Lynn, 1991;
Barría de Cao, 1992; Lynn and Small, 2002). A special focus
was made on dinoflagellates since they represent the most abun-
dant group in the study area, and on ciliates (both, loricate and
aloricate) as their study remains elusive. For enumeration, 3–6
replicate ∼3 mL subsamples for each date and depth were taken
after thorough homogenization of the 100 mL samples, settled in
Utermöhl chambers, and analysed under an inverted microscope
at 400× and 1000× magnification. Microzooplankton individual
cell volumes (V; μm3) were calculated by assigning standard
geometric configurations to each taxon (Sun and Liu, 2003),
and biomass was calculated in terms of biovolume (μm3 L−1).

Data analysis

Environmental data
To characterize the structure of the water column a {month ×
depth} environmental data matrix of CTD variables was used to
construct TS diagrams using the Ocean Data View software
(Schlitzer, 2021), and to profile CTD variable’s temperature, sal-
inity and fluorescence. Identification of water masses followed
Guerrero and Piola (1997) and Calliari et al. (2009). The light
environment was represented by turbidity, and percentage irradi-
ance (%PAR, with surface PAR as reference) and expressed by the
diffuse attenuation coefficient for downward irradiance (Kd) by
fitting the Beer–Lambert equation. Further analyses and compar-
isons relied on a subset of that data matrix comprising depth
intervals closest to bottle depths, i.e., 0, 3.5 and 8.5 m. All repli-
cates were averaged to obtain monthly values prior to analyses,
when necessary. Differences between ‘season’ and ‘depth’ for
nutrient concentration were assessed by two-way analysis of vari-
ance (ANOVA).

Biological data
Trends in {month × depth} community composition data (e.g.,
abundance and biomass of different taxa) were assessed for
microzooplankton as a whole (i.e., without taxonomical discrim-
ination), and also for meaningful trophic categories. Ciliates were
subdivided by size (maximum width), which is closely linked with
the oral diameter (Hansen et al., 1994). For loricate ciliates, the
lorica oral diameter was used as the hallmark feature (Dolan
et al., 2013). The oral diameter is highly conservative and deter-
mines the size of ingested particles, thus defining functional
groups with similar prey types (Fenchel, 1980). Modal oral

diameter and modal maximum width were used to define small
and large categories, with threshold values of 40 and 55 μm, for
loricate ciliates (LC < 40, LC > 40) and aloricate ciliates (AC <
55, AC > 55), respectively. No size delimitation was employed
for dinoflagellates as they perform diverse feeding strategies and
are thereby considered relatively non-selective feeders (Hansen
et al., 1997). Instead, dinoflagellates were classified into hetero-
trophic (HD) and mixotrophic dinoflagellates (MD) according
to extant published literature.

Differences in microzooplankton abundance and biomass
between ‘season’ and ‘depth’ were tested using factorial ANOVA
followed by post-hoc Tukey analyses. The taxonomic structure
of the microzooplankton along the annual cycle was compared
by non-metric Multi-Dimensional Scaling (nMDS; Field et al.,
1982). The analysis was based on a Bray–Curtis distance matrix
of untransformed abundance data using the R-library vegan
(R Core Team, 2020). Significant differences in microzooplankton
structure between ‘season’ and ‘depth’ were calculated by one-way
analysis of similarities (ANOSIM) at a significance level of 5%
and R statistic > 0.5. SIMilarity PERcentages analysis (SIMPER)
was used to assess the contribution of each species to average
between-group Bray–Curtis dissimilarity. Rare species were
dropped to avoid over-fitting: only those species present in at
least ∼8% of the samples were included. Alpha diversity was esti-
mated for each month and depth as (i) taxonomic richness (S′),
(ii) Shannon–Wiener index (H′) and (iii) Pielou’s evenness
index (J′).

Microzooplankton community structure and environmental
variability
Spearman’s rank correlation (ρ) analysis was used to explore the
links between diversity indexes and environmental conditions.
To identify those environmental variables driving community
structure, a multivariate redundancy analysis (RDA; ter Braak
and Prentice, 1988) was performed. First, a detrended corres-
pondence analysis was carried out with the decorana R-function
to confirm the suitability of an RDA for the present dataset
(Leps and Smilauer, 2003). The microzooplankton abundance
data were square root-transformed and the environmental vari-
ables were standardized and normalized. The explanatory power
was assessed as the percentage of explained constrained variance
(adjusted R2) and its significance was tested with one-way
ANOVA and permutation tests. The importance of each explana-
tory variable was evaluated with a ‘forward’ selection procedure
considering the corresponding inflation factor. In addition, to

Figure 1. (A–B) Map of the study area: La Calavera beach, Cabo Polonio, Uruguay, South-West Atlantic Ocean; (C) Temperature–salinity diagram of monthly CTD
casts performed between 11 July 2019, and 9 June 2020. The straight line indicated the thermohaline limit of water masses: littoral waters (LW) and coastal waters
(CW). Isopycnals lines connecting points of constant density are shown.
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evaluate interaction among functional groups and the environ-
ment, the association of coexisting environmental variables with
the monthly abundance of MD, HD, LC < 40, LC > 40, AC < 55
and AC > 55 were estimated using Pearson’s correlation with the
R package corrplot visual exploratory tool.

Results

Water column, nutrients and chlorophyll-a

Coastal waters (CW, S < 33.4) dominated during most of the study
period, except in winter when colder littoral waters (LW, S < 20,
T < 13°C) were observed in the first 4 m of the water column
(Figure 1C). The vertical structure was subtle (Figure 2). In winter
2019 and autumn 2020, temperature and salinity profiles were
nearly homogeneous except in July 2019 when a strong halocline
was present (δS∼10 over 6 m). A weak thermocline was observed
below 2 m depth in spring 2019 and summer 2020. On most occa-
sions, a subsurface fluorescence maximum was present at around
∼3.5 m. Also, during most of the study period, turbidity was low

(mean 9 Nephelometric Turbidity unit (NTU), range 2–40 NTU
at depth < 7.5 m) except near the bottom where high turbidity
(mean 32, range 1.6–133 NTU) and often also high fluorescence
suggested bottom re-suspension of fine sediments and senescent
phytoplankton.

Descriptive statistics of CTD-derived variables are summarized
in Table 1. Briefly, temperature varied between 11.4 (August,
winter) and 22.4°C (March, summer). Salinity also fluctuated sea-
sonally between 17.6 (July, winter) and 32.8 (October, spring).
Fluorescence and turbidity ranged between 0.95 and 5.88
Relative Fluorescence units (RFU), and between 1.61 and 133.39
NTU, respectively, without clear seasonality. PAR% was always
<1% at 8.5 m, while at 3.5 m varied between 4 and 30% through-
out the year. The Kd varied between 0.79 and 1.84 m−1, both
extreme values were recorded in autumn, and average values
were similar in all seasons. Nutrient concentrations varied
throughout the annual cycle and were generally higher in winter
and lower in summer and spring (Figure 3). SiO4 (range: 9–40
μM) concentration was highest in winter, lower in summer and
lowest in spring (F[3] = 3.88, P < 0.01). No significant differences

Figure 2. Monthly vertical variability of CTD-derived environmental variables shown by season (from top to bottom, the first three panels correspond to the winter
(Win), the next three to spring (Spr), then to summer (Sum) and the last three to autumn (Aut)) and date (day-month-year) at the study site.
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were detected in PO4 (0.4–2 μM) (F[6] = 0.18, P = 0.98) and DIN
(0.7–18 μM) (F[6] = 0.23, P = 0.96) between seasons. No signifi-
cant differences were detected between depths for PO4, DIN
and SiO4 (ANOVA, P > 0.05). In July, inorganic nutrients showed
the highest concentration and were closest to the Redfield ratio
(N:P = 8:1, N:Si = 0.45:1). Chlorophyll-a ranged between 0.2
(July) and 21.9 mgm−3 (January) (Figure 3), and was highest in
autumn and summer (mean 4.7 mg m−3, n = 27) and lower in
winter (3.9 mgm−3, n = 21) (F[3] = 2.82, P < 0.03) although a
peak was observed in September (14.5 mg m−3). In addition,
chlorophyll-a was higher at the surface and 3.5 m (5.4 mg m−3;
SD = 3.8, n = 64) compared to 8.5 m (2.5 mgm−3; SD = 2.0, n =
32) (F[2] = 11.07, P < 0.001).

Microzooplankton abundance and biomass

Microzooplankton absolute abundance ranged from 1 indL−1

(July) to 8800 indL−1 (May); the annual average abundance
was 350 indL−1 for dinoflagellates and 100 indL−1 for ciliates
(both loricate and aloricate). Total biovolume varied between
566 μm3 L−1 (July) and 7.1 × 108 μm3 L−1 (August) (leaving aside
Noctiluca scintillans whose average diameter was ca. 410 μm). The
annual average biovolume was 1.9 × 107 μm3 L−1 for dinoflagel-
lates, 1.0 × 107 μm3 L−1 for loricate ciliates and 1.7 × 106 μm3 L−1

for aloricate ciliates. Monthly variation in the abundance of
microzooplankton groups is shown in Figure 3. It is worth men-
tioning that estimates corresponding to total counts <10 indL−1

are subject to potentially substantial errors and should be taken
with caution. Microzooplankton abundance and biovolume chan-
ged seasonally (complete ANOVA tables are provided in
Supplementary Table S1). Total abundance was higher in autumn
(total [mean, range]: 6.8 × 104, 385 [5–8800] indL−1) and lower in
summer (2.6 × 104, 159 [5–5370] indL−1) and spring (3.2 × 104,
156 [2–2555] indL−1). Total biovolume followed a similar sea-
sonal trend but without significant differences. The abundance
of dinoflagellates (MD and HD) was also higher in autumn
(total [mean, range]: 5.2 × 104 [680, 5–8780] indL−1 for MD
and 9.3 × 103 [206, 5–1685] indL−1 for HD) and lower in summer
(1.8 × 104 [380, 5–5370] indL−1 for MD and 2.0 × 103 [60, 5–525]
indL−1 for HD). HD biovolume also varied between seasons
(autumn > summer). In summer, AC < 55 abundance and biovo-
lume were highest (total [mean, range]: 3.1 × 103 [138, 7–570]
indL−1 and 1.0 × 107 [4.6 × 105, 1.5 × 104–2.4 × 106] μm3 L−1,
respectively); a peak was observed in June (i.e., autumn) asso-
ciated with a Strombidium species of 35 μm maximum width.
The biovolume of AC > 55 was highest in winter (2.6 × 107

[3.3 × 106, 3.0 × 105−8.3 × 106] μm3 L−1), and as in the small alor-
icate ciliates, it did not differ between depths either. Yet, while the

Table 1. Monthly mean and range of the environmental variables sampled at the study site; and mean and standard deviation (SD units) by season.

Date Season
Temperature

°C Salinity
Fluorescence

RFU
Turbidity
NTU

PAR
%

Kd
m−1

11/07/2019 Winter 12.91
12.56–13.28

22.11
17.64–27.23

1.57
1.11–2.44

19.31
10.56–55.45

20
0–100

0.97

16/08/2019 Winter 11.57
11.42–11.81

23.31
23.01–24.14

2.26
1.71–2.74

6.52
5.04–15.42

25
0–100

1.36

13/09/2019 Winter 12.45
12.09–12.75

24.60
24.04–26.53

4.78
3.24–5.88

9.59
2.98–46.44

24
0–100

1.15

Mean
SD

12.32
0.60

23.31
2.42

2.84
1.50

11.93
10.32

23
35

1.16
0.20

10/10/2019 Spring 13.32
12.85–14.83

32.49
31.80–32.81

1.55
0.95–1.83

7.28
4.07–9.67

23
0–100

1.34

14/11/2019 Spring 14.58
14.08–15.78

32.03
31.64–32.23

1.90
1.27–3.15

33.50
7.19–133.39

14
0–100

1.07

17/12/2019 Spring 20.66
19.80–21.95

26.91
26.36–27.79

3.22
1.85–5.29

11.84
3.36–41.12

16
0–100

1.27

Mean
SD

16.48
3.34

30.26
2.62

2.29
1.10

17.91
26.87

17
26

1.23
0.14

07/01/2020 Summer 17.95
16.23–20.81

31.49
30.00–32.27

1.78
1.22–3.12

12.44
1.92–30.57

28
0–100

1.69

11/02/2020 Summer 20.40
19.66–21.42

32.11
31.83–32.38

3.20
2.74–3.73

22.11
10.35–48.55

15
0–100

0.92

21/03/2020 Summer 21.82
21.42–22.44

32.21
32.13–32.27

2.01
1.57–2.68

21.99
9.78–66.99

14
0–100

0.85

Mean
SD

20.00
1.98

31.92
0.61

2.29
0.72

18.61
14.92

19
30

1.15
0.47

18/04/2020 Autumn 19.81
19.64–20.55

30.13
29.89–30.23

1.90
1.45–2.38

31.68
6.44–69.40

16
0–100

0.79

12/05/2020 Autumn 17.10
16.98–17.25

28.83
28.76–28.94

3.65
2.63–5.16

4.85
1.61–12.51

18
1–100

1.84

09/06/2020 Autumn 15.02
14.98–15.09

29.11
27.77–31.15

2.26
1.01–3.94

8.15
3.92–27.33

24
0–100

1.64

Mean
SD

17.31
1.95

29.35
0.81

2.62
1.08

14.71
16.62

19
28

1.42
0.56

PAR, irradiance; Kd, light attenuation coefficient.
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depths selected for microzooplankton analysis were within the
mixed layer, some differences were detected for heterotrophic
dinoflagellates and loricate ciliates between the upper and inter-
mediate layers. Abundance and biovolume were highest at 3.5 m
for HD (total: 1.5 × 104 indL−1, and 1.7 × 109 μm3 L−1, respect-
ively) and for LC > 40 (3.7 × 103 indL−1 and 7.2 × 108 μm3 L−1,
respectively).

Dinoflagellates (both MD and HD) were numerically domin-
ant during most of the study period and represented >65% of
total abundance and biovolume, in all seasons (Supplementary
Figure S1). The most significant numerical contribution of ciliates
occurred in spring for loricates (∼20%) and in summer for alor-
icates (∼15%). In certain summer months (i.e., February–March),
ciliates dominated microzooplankton abundance (∼63–67%,
respectively) associated mainly with the presence of Strombidium
spp. and AC < 55, and biovolume (>75%) associated mainly with
loricate ciliates. In spring, and particularly in October–November,
ciliates reached a second peak that surpassed 40–30% of total abun-
dance and 30–55% of total biovolume, associated mainly with large
loricates Tintinnopsis gracilis and Tintinnidium spp. During late
spring–early summer (i.e., December–January), MD biovolume
total contribution was the highest (>90%), while in winter HD bio-
volume contribution exceeded 40%.

Microzooplankton composition and diversity

A total of 100 taxonomic groups of dinoflagellates and ciliates
(loricate and aloricate) were identified in the sample collection,
mostly belonging to classes Dinophyceae and Oligotrichea. The
complete list is shown in Supplementary Text S1; 68% were
identified at the species level, 27% at the genus level and 5% at

the order level. The class Dinophyceae consisted of eight
orders and 15 families, of which the Protoperidiniaceae and
Ceratiaceae (in particular, Protoperidinium and Tripos genera)
contributed the most to morpho-species diversity.
Dinoflagellates also included several potentially harmful species
from the genera Alexandrium, Dinophysis, Gymnodinium,
Gonyaulax and Prorocentrum. Loricate ciliates (Choreotrichids)
were spread in seven families of which Codonellidae was the
most representative. Tintinnopsis was the most diversified genus,
comprising ∼55% of the total recorded species with agglutinated
lorica. Aloricate ciliates comprised five orders and nine families,
of which Strombidiids were the most species-rich oligotrichous
ciliates. Other, rarer taxa present at low abundance were
radiolaria, rotifers, cladocerans of the genus Evadne and Podon,
copepodid and nauplii stages.

The nMDS ordination based on microzooplankton abundance
illustrated large overlapping in samples from different depths but
clear seasonal segregation, especially between winter and summer
(stress = 0.17) (Figure 4). Microzooplankton assemblages differed
between seasons (ANOSIM, P = 1 × 10−4, global R = 0.58):
unidentified nanociliates, mixotrophic ciliates (e.g., Lohmaniella
oviformis, Strombidium spp.) and marine Tintinnopsis species
occurred mainly in summer, while species from Tripos and
Dinophysis genera did so mainly in winter; still, dinoflagellates
were dominant throughout the year. No differences in community
composition between depths were found (ANOSIM, P = 0.81, glo-
bal R = 0.10). SIMPER analysis identified dinoflagellates as the
dominant group responsible for the biotic characterization of
each season (Supplementary Table S2). The species that contrib-
uted most to the dissimilarity between seasons were
Kryptoperidinium cf triquetrum and Scrippsiella cf acuminata in
winter (total 1.8 × 104 and 7.1 × 103 indL−1, respectively, corre-
sponding to 28 and 11% of total abundance) together with the
hyaline loricate ciliate Eutintinnus sp. (2.7 × 103 indL−1 only
recorded in August). In summer, the taxa that contributed most
to dissimilarity were nanociliates and the unarmoured dinoflagel-
late Akashiwo sanguinea (that surpassed 7.7 × 103 indL−1 and
accounted for 42% of total abundance in January), while in
autumn–spring were Prorocentrum spp. and Pseliodinium sp.
(accounting for 20 and 14%, respectively). Overall, the dissimilar-
ity between microzooplankton communities was highest (∼90%)
between winter and summer and lowest (∼78%) between spring
and autumn.

Taxonomic richness (S′) ranged between 17 and 48 (in April
and August, respectively), Shannon index (H′) between 1.3 and
2.9 (in April and March, respectively) and evenness (J′) between
0.5 and 0.9 (in April and March, respectively). Spring was charac-
terized by the highest values in the three metrics, while in autumn
H′ and J′ and in summer S′ were the lowest (ANOVA, all P < 0.05;
F[3] = 2.89 for S’; F[3] = 3.68 for H′; F[3] = 2.99 for J′)
(Supplementary Figure S2). Differences between depths were
detected only for S′, which was higher at 3.5 m (F[1] = 1.47, P =
0.02).

Microzooplankton community structure and environmental
conditions

Environmental variables affected microzooplankton abundance
and composition. S′ and H′ were negatively correlated to tempera-
ture (ρ =−0.75, P < 0.001 and ρ =−0.47, P < 0.01, respectively).
In addition, S′ was negatively correlated with turbidity (ρ =−0.37,
P < 0.05). In turn, H′ and J′ were negatively correlated with
chlorophyll-a (ρ =−0.50 and ρ =−0.60, respectively, P < 0.05).

RDA (Figure 5) identified three core environmental variables
(temperature, salinity and DIN) which statistically explained
overall variance in microzooplankton composition (R2 = 0.32,

Figure 3. Monthly variability of nutrient concentration (μM), chlorophyll-a (Chl-a; mg
m-3) and microzooplankton abundance (indL–1) (MD, mixotrophic dinoflagellate; HD,
heterotrophic dinoflagellate, small and large loricate ciliates: LC < 40 and LC > 40 and
aloricate ciliates: AC < 55 and AC > 55) registered in the first 3.5 m of the water column
at the study site.
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P < 0.001). The first two axes (RDA1 and RDA2) accounted for
35 and 20% of the total variance, respectively. Seasonal patterns
were clearer along RDA1, as the summer months were located
on the positive side of the first axis, while winter months were
mainly on the negative side, reflecting warm- and cold-water
microzooplankton assemblages. Although several species were
dispersed near the centre of the triplot, thus suggesting lower
correlations with the first two axes, first-order variability in
microzooplankton communities corresponded to a seasonal
temperature–salinity gradient, with higher ciliate abundances
in summer months and at salinity >32 during spring (i.e.,
October–November). A second-order effect on microzooplank-
ton community structure was driven by DIN concentration.
Correlation matrix analysis revealed significant associations
among environmental variables and microzooplankton

functional groups (Figure 6; Supplementary Table S3). LC < 40
and HD were positively related and both responded negatively
to temperature. Aloricate ciliates were related to salinity (posi-
tive), and to SiO4 (negative). MD was related to chlorophyll-a
(positive), and to turbidity and temperature (both negative).
Nutrients (DIN and PO4) were negatively associated with the
concentration of dinoflagellates. In addition, correlation analysis
relating specific microplankton genera of dominant ecophysio-
logical groups (sensu Mitra et al., 2016) and environmental vari-
ables (Supplementary Table S4) revealed that non-constitutive
generalist mixotrophic species (i.e., Strombidium spp.) thrived
under high salinity, while constitutive mixotrophs (i.e., Tripos
spp.) and specialists non-constitutive (SNC, i.e., Dinophysis
spp., Mesodinium rubrum) were positively associated with fluor-
escence and chlorophyll-a.

Figure 4. (A) Non-metrical multidimensional scaling (nMDS) at two standard depths (0 and 3.5 m) at the study site. Stress value indicates the goodness of represen-
tation of differences among samples. Win, winter; Spr, spring; Sum, summer; Aut, autumn. (1) Mesodinium rubrum, (2) Pelagostrobilidium spirale, (3) Strombidium cf
conicum, (4) Strombidium cf epidemum, (5) Strombidium spp., (6) Paratontonia gracillima, (7) Ciliate 2, (8) Nanociliate, (9) Ciliate 3, (10) Tintinnopsis buetschlii var
mortensenii, (11) Tintinnopsis radix, (12) Stenosemella sp. 3, (13) Tintinnopsis cylindrica, (14) Tintinnopsis sp. 3, (15) Tintinnopsis sp. 4, (16) Tintinnidium balechi, (17)
Tripos dens, (18) Tripos fusus, (19) Tripos cf horridum, (20) Tripos muelleri, (21) Dinophysis acuminata-complex, (22) Dinophysis tripos, (23) Kryptoperidinium cf trique-
trum, (24) Polykrikos kofoidii, (25) Katodinium sp., (26) Protoperidinium depressum, (27) Protoperidinium grande. (B) Microzooplankton from Cabo Polonio, inverted
microscope images at total magnification of 400×; numbers identify each species/genus and correspond to those of panel A.

Figure 5. RDA triplot showing only significant vectors (P < 0.05). Species are repre-
sented as points, environmental variables as arrows (DIN, dissolved inorganic nitro-
gen; T, temperature; S, salinity), and each date with the abbreviation of each month
(i.e. Jul for July, etc.) followed by 0 or 3.5 indicating depth level.

Figure 6. Pearson’s correlations matrix among study site microzooplankton trophic
groups abundance (small ciliates: AC < 55 and LC < 40, large ciliates: AC > 55 and
LC > 40, hetero- and mixotrophic dinoflagellates: HD and MD, respectively) and envir-
onmental variables (temperature: T, salinity: S, turbidity: Turb, nutrient concentra-
tion: PO4, DIN, SiO4, chlorophyll-a: Chl-a, fluorescence: Fluor).
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Discussion

Temporal sampling at the coastal sea of Cabo Polonio allowed to
cover a wide range of environmental conditions (e.g., temperature,
salinity, nutrients) in a region subjected to ample hydrographic
variability linked to the dynamics of the SWA Subtropical
Convergence and under the influence of the nearby land mass.
A rich microzooplankton community included subtropical and
subantarctic taxa typically found further north or south of the
study area, respectively. Briefly, microzooplankton community
structure evidenced significant seasonal variability coherent with
the evolution of hydrographical conditions.

Environmental variability

Environmental conditions at the study site changed throughout
the year cycle in response to regional hydrodynamics and local
forcing. In the SWA, slope and open ocean areas at latitudes ca.
35°S are subjected to Brazil–Malvinas currents; that influence
extends also over the shelf by the coastal penetration of both west-
ern boundary currents (Piola et al., 2018). The observed tempera-
ture cycle in Cabo Polonio (that yields a thermal range of 11°C)
was consistent with an alternating influence of modified subtrop-
ical waters in summer and subantarctic in winter. However,
evidence is inconclusive as it is difficult to set the boundaries
between such influence and the typical mid-latitude seasonal
warming/cooling cycle over shallow seas (Mann and Lazier,
2006). Hence, consideration of salinity variability can aid in the
identification of regional forcing on local hydrology. In the
SWA, CW (6.5 < T < 21°C and S < 33.4) results from the mixing
of oceanic water masses and freshwater from the continental
drainage (Thomsen, 1962; Guerrero and Piola, 1997). For shal-
lower areas near the coast, it is useful to extend that classification
for a broader salinity regime. For instance, within this same region
and for the full salinity spectrum (0–36), Calliari et al. (2009)
defined Río de la Plata (RP) waters as those with S < 20. At the
study site, salinity varied over a wide range (>15) and during win-
ter low values prevailed (18 < S < 27, mean = 23.3), i.e., water sub-
jected to strong dilution but still above the estuarine range quoted
formerly. These low salinity LW likely resulted from further local
dilution of the already low salinity subantarctic shelf water.
Despite the absence of significant freshwater point-sources in
the vicinity of the study area, important diffuse groundwater dis-
charges are expected (Windom et al., 2006). Also, winter penetra-
tion of the RPP likely contributed to the lower salinity. In turn,
the highest salinity recorded during summer months (ca. 32) sug-
gests the presence of modified subtropical shelf waters subjected
to lower dilution by local freshwater sources. Nutrients and
chlorophyll-a concentrations mean values at the study site were
higher than those typically reported for shelf waters in the vicinity
area (Gonçalves-Araujo et al., 2012, 2018), similar to that in
coastal areas affected by the RPP (Ciotti et al., 1995; Garcia
et al., 2004; Carreto et al., 2008), and lower than those within
the RP estuary (Calliari et al., 2018). Thus, although similarities
regarding hydrology, nutrients and chlorophyll-a can be identified
in comparison to other areas of the Subtropical Convergence,
some particularities emerged likely related to the proximity to
land of the sampling site.

Microzooplankton abundance and community structure

The absolute abundance of microzooplankton (total [mean;
SD]: 1.8 × 105 [245; 740] indL−1) at the study site was in agree-
ment with the reports for the coastal areas of the SWA in Brazil
(Gonçalves-Araujo et al., 2012; Menezes et al., 2019) and
Argentina (Antacli et al., 2018; Santoferrara and Alder, 2009).

The range of abundance and mean biovolume by taxa were
also similar to those observed in the region (e.g., for loricate cili-
ates: at 38°S, Barría de Cao et al., 2005; and at 23°S,
Eskinazi-Sant’Anna and Björnberg, 2006). Abundance and bio-
volume were mostly dominated by thecate dinoflagellates, with
maxima in autumn and considerable relative contribution of
HD in winter. In turn, ciliates encountered more favourable
conditions in spring and summer months. In areas with no
clear recurrent primary productivity patterns, the dominance
of dinoflagellates over loricate and aloricate ciliates may be
favoured by more flexible trophic requirements, along with
their ability to sustain latent populations during periods of
low food supply by resorting to reserves (Sherr and Sherr,
2007). The annual pattern of MD mirrored that of the
chlorophyll-a, suggesting that this group is an important con-
tributor to total pigment concentration. That agrees well with
observations of dinoflagellates as co-dominant contributors to
total pigment concentration along with diatoms in coastal and
shelf areas of the Subtropical Convergence (Carreto et al.,
2008). Vertically, the predominance of HD and LC > 40 at 3.5
m, matching peaks in chlorophyll-a and fluorescence, may
reflect the capability of dinoflagellates to control their vertical
aggregation at preferred depths (Islabão et al., 2017).

Microzooplankton at the coastal sea of Cabo Polonio was a
taxonomically rich coastal marine association comprising a
large set of species, most of which are widely distributed in estu-
arine, temperate, coastal and shelf waters in Brazil
(Eskinazi-Sant’Anna and Björnberg, 2006; Menezes et al., 2019),
Argentina (Antacli et al., 2018; Barría de Cao et al., 2003;
Santoferrara and Alder, 2009) and Uruguay (for dinoflagellates:
e.g., Balech, 1988; Ferrari and Vidal, 2006). During the observed
period, a core group of taxa (∼20% of the total) with a frequency
of occurrence >50% was constituted by widespread species in
the SWA known for their ample environmental tolerance (e.g.,
dinoflagellates: Prorocentrum spp., Dinophysis acuminata-
complex and Protoperidinium depressum; ciliates: L. oviformis,
Tintinnidium balechi and Tintinnopsis gracilis). Instead, several
other taxa occurred with low or moderate frequency throughout
the year (∼30% of species occurred <10% of the time) under
more specific conditions associated with given seasons (e.g.,
Tintinnopsis tocantinensis, Leprotintinnus nordqvistii and
Paratontonia gracillima in summer, Strombidium cf capitatum
and S. cf emergens in autumn, Stenosemella species in spring
and several unidentified Tintinnopsis and Protoperidinium species
mainly in winter). Those taxa were the main contributors to the
differentiation of the assemblages at different times of the year.

Environmental drivers of microzooplankton community
structure

Environmental variability impacted microzooplankton structure
through the seasonal evolution of water masses with contrasting
thermohaline properties and nutrients. Distinct assemblages
occurred in summer and winter, when subtropical taxa alternated
with euryhaline groups associated with colder SAW. The winter
season (lowest salinity, highest nutrients concentration and stoi-
chiometry closest to Redfield’s) was characterized by high species
richness (mean = 38) and the dominance of dinoflagellates, spe-
cially pigmented mixotrophic species. In that season, the structure
resembled neritic assemblages found in the SWA shelf under the
influence of continental runoff and low salinity (e.g., K. cf trique-
tum, S. cf acuminata, D. acuminata-complex, Dinophysis caudata,
Tripos furca and Tripos muelleri) (Ciotti et al., 1995), together
with brackish loricate ciliates like Tintinnopsis fimbriata and
Codonellopsis lusitanica and the eutrophic water species
Tintinnopsis uruguayensis (Sivasankar et al., 2018). Those features
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indicate the importance of LW and the influence of the buoyant
RPP on the coast of Cabo Polonio during that season.

In contrast, during summer under higher temperatures, salin-
ity and turbidity, microzooplankton species richness was the low-
est (mean = 27), and ciliates were better represented. Typically,
marine loricate ciliates L. nordqvistii, T. tocantinensis,
Tintinnopsis radix and Tintinnopsis buetschlii occurred exclu-
sively during this season.

Seasonality impacted also the functional structure of the
microzooplankton assemblage, i.e., during summer non-
constitutive generalist mixotrophs (i.e., Strombidium spp.) were
well represented in terms of numbers and biomass levels, while
in winter the same was valid for constitutive mixotrophs (i.e.,
Tripos) and SNC mixotrophs (i.e., Dinophysis spp., Mesodinium
rubrum). Seasonal alternation between functional groups was
likely related to changes in key environmental attributes. For
instance, lowest nutrient concentrations in summer may have
favoured the former, as they are better adapted to subsist by pre-
dation and are less dependent on photosynthesis. In contrast, the
latter groups were favoured under the short-day lengths of the
cold season, when nutrients and average fluorescence levels
were higher, and turbidity lower. A relevant consequence of the
seasonal alternation of functional groups is increased resilience
of microzooplankton at the community level regarding its role
as a shunt for chemical energy between primary producers and
higher trophic levels in the mesozooplankton and micronekton
communities, despite significant environmental variability.

Results from community-based ecological parameters (e.g.,
species richness, diversity and evenness) were complementary to
those discussed so far: they mostly captured differences between
transition seasons spring and autumn, which were otherwise
least different in terms of actual species composition.
Differences in diversity metrics resulted from a sharp decrease
in the abundance of several species of loricate and aloricate ciliates
in autumn compared to spring months; instead, the composition
and abundance of mixotrophic dinoflagellate species were rather
similar between both periods. So far, it is unclear which processes
could have specifically affected loricate and aloricate ciliates, but
not mixotrophic dinoflagellates, between spring and autumn.
That is a matter that deserves further attention in next
investigation.

Top–down control by mesozooplankton predators, particu-
larly copepods, can be a relevant structuring process for micro-
zooplankton assemblages. Copepods are able to predate on
actively swimming prey (Jonsson and Tiselius, 1990; Tiselius
et al., 2013), and they frequently select those over traditional
phytoplankton (e.g., diatoms) due to enhanced hydromechanical
perception of moving prey and their generally higher nutritive
quality (Calbet and Saiz, 2005). As a result, heterotrophic prey
may constitute >50% of copepods’ daily carbon intake (Calliari
et al., 2009). It was beyond the scope of the present study to char-
acterize top–down regulation on microzooplankton, but prelimin-
ary results on copepods species and abundance in samples taken
concurrently (main taxa: Acartia tonsa, Paracalanus spp., Temora
turbinata, Oithona spp.; total copepods abundances ∼104–105
ind m−3; own unpublished data) suggest they may actually
represent a relevant factor for microzooplankton dynamics in
Cabo Polonio.

Finally, microzooplankton assemblages can be expected to
shift in response to large-scale regional processes, particularly
those linked to climate change. The SWA is undergoing rapid
warming. Increased instabilities and eddy generation in the west-
ern boundary current that transports heat to higher latitudes lead
to enhanced poleward penetration of the Brazil current (Li et al.,
2022), directly impacting our study area. Also, in recent years,
marine heatwaves in the SWA between 32°S and 38°S have

increased in frequency, duration and intensity (Manta et al.,
2018). Several actual and projected consequences of climate
change have been identified for the SWA ecosystem (Franco
et al., 2020), including among the former an intensification of
harmful dinoflagellates blooms along Uruguayan coasts
(Méndez and Carreto, 2018).

Conclusions

This study provides the first comprehensive assessment of the
microzooplankton within a broad area of the SWA, contributing
to fill critical information gaps on ciliates and dinoflagellates
communities in Uruguayan waters. Current results for Cabo
Polonio suggest the existence of coherent patterns in the variabil-
ity of environmental conditions and that of the microzooplank-
ton. Within that community, a core group of dinoflagellates and
ciliates widely distributed in SWA were frequently found along
the year cycle under varying environmental conditions, and
their abundance was often linked to chlorophyll-a, nutrients
and probably also driven by internal regulation mechanisms
(e.g., competition, predation). On top of those, several other
taxa occurred with a more marked seasonality under narrower
environmental conditions, supporting a hypothesized hydro-
graphic modulation on the microzooplankton community struc-
ture in this subtropical coastal site.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0025315423000358
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