Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T20:32:04.174Z Has data issue: false hasContentIssue false

Microzooplankton community structure in a subtropical South-West Atlantic coastal site

Published online by Cambridge University Press:  06 July 2023

L. Sampognaro*
Affiliation:
Programa de Desarrollo de las Ciencias Básicas, Ministerio de Educación y Cultura–Universidad de la República, Uruguay Grupo Oceanografía Biológica y Ecofisiología del Plancton, Comisión Sectorial de Investigación Científica, Universidad de la República, Uruguay
M. C. López-Abbate
Affiliation:
Instituto Argentino de Oceanografía (CONICETUNS), 8000 Bahía Blanca, Argentina
D. Calliari
Affiliation:
Grupo Oceanografía Biológica y Ecofisiología del Plancton, Comisión Sectorial de Investigación Científica, Universidad de la República, Uruguay Sección Oceanografía y Ecología Marina, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Universidad de la República, Uruguay
*
Corresponding author: L. Sampognaro; Email: lajasampo@gmail.com

Abstract

The microzooplankton community structure (species abundance, biomass, diversity) was investigated at a coastal marine station on the South-West Atlantic Ocean (34°23′S–53°45′W, Uruguay). This is a hydrographically complex site within the Subtropical Convergence zone of the SW Atlantic where knowledge of the microzooplankton is particularly scant. The main goal was to perform a first characterization of that community and evaluate its association to environmental drivers along an annual cycle. Oceanographic variables (temperature, salinity, irradiance, nutrients, chlorophyll-a) and ciliates (aloricate and loricate), and dinoflagellates were recorded monthly from July 2019 to June 2020. Over 100 microzooplankton taxa belonging to approximately 30 families and 40 genera were identified, including several subtropical and subantarctic species. Community structure followed wide transitions at the seasonal scale – particularly between summer and winter as subtropical taxa alternated with euryhaline taxa from colder subantarctic waters. The core environmental variables (temperature, salinity and dissolved inorganic nitrogen [DIN]) explained overall variance in microzooplankton community assembly. During summer, high temperatures (20.3, 16.3–22.4°C) and low nutrients (DIN: 3.5, 0.7–6.7 μM; PO4: 1.0, 0.8–1.5 μM) benefited the development of aloricate ciliates. A nutrient pulse in winter posed favourable stoichiometric conditions and the numerical abundance was dominated by dinoflagellates and loricate ciliates in the following months, while diversity remained highest (taxonomic richness: 36 [22–46]; Shannon–Wiener index: 2.5 [1.9–2.8]). Results suggested that the microzooplankton community at the study site is mainly structured by hydrographic variability linked to the seasonal replacement of offshore water masses that differed in thermohaline properties and nutrient levels, and local processes.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acha, EM, Viñas, MD, Derisio, C, Alemany, D and Piola, AR (2020) Large-scale geographic patterns of pelagic copepods in the southwestern South Atlantic. Journal of Marine Systems 204, 103281. https://doi.org/10.1016/j.jmarsys.2019.103281CrossRefGoogle Scholar
Alder, VA and Morales, CE (2009) Manual de métodos para el estudio de sistemas planctónicos marinos. 1Er ed Buenos Aires: EUDEBA. 272p.Google Scholar
Antacli, JC, Silva, RL, Jaureguizar, AJ, Hernández, DR, Mendiolar, M, Sabatini, ME and Akselman, R (2018) Phytoplankton and protozooplankton on the southern Patagonian shelf (Argentina, 47°–55°S) in late summer: Potentially toxic species and community assemblage structure linked to environmental features. Journal of Sea Research 140, 6380. https://doi.org/10.1016/j.seares.2018.07.012CrossRefGoogle Scholar
Balech, E (1948) Tintinnoinea de Atlántida (R.O. del Uruguay) (Protozoa Ciliata Oligotr.). Comunicaciones del Museo Argentino de Ciencias Naturales. Serie Ciencias Zoológicas 7, 123.Google Scholar
Balech, E (1988) Los dinoflagelados del Atlántico Sudoccidental. Publ. Espec., Instituto Español de Oceanografía, Madrid, 1, p. 310.Google Scholar
Barría de Cao, MS (1992) Abundance and species composition of Tintinnina (Ciliophora) in Bahía Blanca Estuary, Argentina. Estuarine, Coastal and Shelf Science 34, 295303. https://doi.org/10.1016/S0272-7714(05)80085-XCrossRefGoogle Scholar
Barría de Cao, MS, Abbate, MC, Pettigrosso, R and Hoffmeyer, M (2013) The planktonic ciliate community and its relationship with the environmental conditions and water quality in two bays of the Beagle Channel, Argentina. Journal of the Marine Biological Association of the United Kingdom 93, 17531760. http://dx.doi.org/10.1017/S0025315413000349CrossRefGoogle Scholar
Barría de Cao, MS, Beigt, D and Piccolo, MC (2005) Temporal variability of diversity and biomass of tintinnids (Ciliophora) in a southwestern Atlantic temperate estuary. Journal of Plankton Research 27, 11031111. http://dx.doi.org/10.1093/plankt/fbi077CrossRefGoogle Scholar
Barría de Cao, MS, Pettigrosso, R, Parodi, E and Freije, R (2003) Abundance and species composition of planktonic Ciliophora from the wastewater discharge zone in the Bahía Blanca Estuary, Argentina. Iheringia Série Zoologia 93, 229236. http://dx.doi.org/10.1590/S0073-47212003000300001CrossRefGoogle Scholar
Barría de Cao, MS, Piccolo, MC and Pernillo, GM (2011) Biomass and microzooplankton seasonal assemblages in the Bahía Blanca Estuary, Argentinean Coast. Journal of the Marine Biological Association of the United Kingdom 91, 953959. http://dx.doi.org/10.1017/S0025315411000105CrossRefGoogle Scholar
Bojanić, N (2001) Seasonal distribution of the ciliated protozoa in Kaštela Bay. Journal of the Marine Biological Association of the United Kingdom 81, 383390. https://doi.org/10.1017/S002531540100399XCrossRefGoogle Scholar
Bojanić, N, Vidjak, O, Šolić, M, Krstulović, N, Brautović, I, Matijević, S, Kušpilić, G, Šestanović, S, Ninčević Gladan, Z and Marasović, I (2012) Community structure and seasonal dynamics of tintinnid ciliates in Kaštela Bay (middle Adriatic Sea). Journal of Plankton Research 34, 510530. https://doi.org/10.1093/plankt/fbs019CrossRefGoogle Scholar
Boltovskoy, D, Gibbons, MJ, Hutchings, L and Binet, D (1999) General biological features of South Atlantic. In Boltovskoy, D (ed.), South Atlantic Zooplankton. Leiden, The Netherlands: Backhyus Publishers, pp. 142.Google Scholar
Calbet, A (2008) The trophic roles of microzooplankton in marine systems. ICES Journal of Marine Science 65, 325331. http://doi.org/10.1093/icesjms/fsn013CrossRefGoogle Scholar
Calbet, A and Landry, MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnology and Oceanography 49, 5157. http://www.jstor.org/stable/3597609CrossRefGoogle Scholar
Calbet, A and Saiz, E (2005) The ciliate-copepod link in marine ecosystems. Aquatic Microbial Ecology 38, 157167. http://dx.doi.org/10.3354/ame038157CrossRefGoogle Scholar
Calliari, D, Brugnoli, E, Ferrari, G and Vizziano, D (2009) Phytoplankton distribution and production along a wide environmental gradient in the South-West Atlantic off Uruguay. Hydrobiologia 620, 4761. http://dx.doi.org/10.1007/s10750-008-9614-7CrossRefGoogle Scholar
Calliari, DL, Gómez-Erache, M, Cantonnet, DV and Alonso, C (2018) Near-surface biogeochemistry and phytoplankton carbon assimilation in the Rio de la Plata Estuary. In Hoffmeyer, M, Sabatini, M, Brandini, F, Calliari, D and Santinelli, N (eds), Plankton Ecology of the Southwestern Atlantic. Cham: Springer, pp. 289306. https://doi.org/10.1007/978-3-319-77869-3_14.CrossRefGoogle Scholar
Calliari, D, Gómez-Erache, M and Gómez, N (2005) Biomass and composition of the phytoplankton in the Rio de la Plata: large-scale distribution and relationship with environmental variables during a spring cruise. Continental Shelf Research 25, 197210. http://dx.doi.org/10.1016/j.csr.2004.09.009CrossRefGoogle Scholar
Caron, DA and Hutchins, DA (2013) The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. Journal of Plankton Research 35, 235252. https://doi.org/10.1093/plankt/fbs091CrossRefGoogle Scholar
Carreto, JI, Montoya, N, Akselman, R, Carignan, MO, Silva, IR and Cucchi Colleoni, DA (2008) Algal pigments patterns and phytoplankton assemblages in different water masses of the Río de la Plata maritime front. Continental Shelf Research 28, 15891606. https://doi.org/10.1016/j.csr.2007.02.012CrossRefGoogle Scholar
Ciotti, ÁM, Garcia, CAE and Jorge, DSF (2010) Temporal and meridional variability of satellite-estimates of surface chlorophyll concentration over the Brazilian continental shelf. Pan-American Journal of Aquatic Sciences 5, 236253. http://repositorio.furg.br/handle/1/3035Google Scholar
Ciotti, AM, Odebrecht, C, Fillman, G and Möller, OO (1995) Freshwater outflow and Subtropical Convergence influence on phytoplankton biomass on the southern Brazilian continental shelf. Continental Shelf Research 15, 17371756. https://doi.org/10.1016/0278-4343(94)00091-ZCrossRefGoogle Scholar
Dolan, JR, Landry, MR and Ritchie, ME (2013) The species-rich assemblages of tintinnids (marine planktonic protists) are structured by mouth size. The ISME Journal 7, 12371243. https://doi.org/10.1038/ismej.2013.23CrossRefGoogle ScholarPubMed
Eskinazi-Sant'Anna, EM and Björnberg, TKS (2006) Seasonal dynamics of microzooplankton in the São Sebastião channel (SP, Brazil). Brazilian Journal of Biology 66, 221231. https://doi.org/10.1590/S1519-69842006000200006CrossRefGoogle Scholar
Fenchel, T (1980) Suspension feeding in ciliated protozoa: functional response and particle size selection. Microbial Ecology 6, 111. https://doi.org/10.1007/bf02020370CrossRefGoogle ScholarPubMed
Ferrari, G and Vidal, L (2006) Fitoplancton de la zona costera uruguaya: Río de la Plata y Océano Atlántico. In Menafra, R, Rodríguez-Galllego, L, Scarabino, F and Conde, D (eds), Bases Para la Conservación y el Manejo de la Costa Uruguaya. Montevideo-Uruguay: Vida Silvestre Uruguay, pp. 4556.Google Scholar
Field, JG, Clarke, KR and Warwick, RM (1982) A practical strategy for analysing multispecies distribution patterns. Marine Ecology Progress Series 8, 3752. http://dx.doi.org/10.3354/meps008037CrossRefGoogle Scholar
Flynn, KJ, Mitra, A, Anestis, K, Anschütz, AA, Calbet, A, Duarte Ferreira, G, Gypens, N, Hansen, PJ, John, U, Martin, JL, Mansour, JS, Maselli, M, Medić, N, Norlin, A, Not, F, Pitta, P, Romano, F, Saiz, E, Schneider, LK, Stolte, W and Traboni, C (2019) Mixotrophic protists and a new paradigm for marine ecology: where does plankton research go now? Journal of Plankton Research 41, 375391. https://doi.org/10.1093/plankt/fbz026CrossRefGoogle Scholar
Franco, BC, Defeo, O, Piola, AR, Barreiro, M, Yang, H, Ortega, L, Gianelli, I, Castello, JP, Vera, C, Buratti, C, Pájaro, M, Pezzi, LP and Möller, OO (2020) Climate change impacts on the atmospheric circulation, ocean, and fisheries in the southwest South Atlantic Ocean: a review. Climatic Change 162, 23592377. https://doi.org/10.1007/s10584-020-02783-6CrossRefGoogle Scholar
Garcia, CAE and Garcia, VMT (2008) Variability of chlorophyll-a from ocean color images in the La Plata continental shelf region. Continental Shelf Research 28, 15681578. https://doi.org/10.1016/j.csr.2007.08.010CrossRefGoogle Scholar
Garcia, CAE, Sarma, YVB, Mata, MM and Garcia, VMT (2004) Chlorophyll variability and eddies in the Brazil–Malvinas Confluence region. Deep Sea Research Part II: Topical Studies in Oceanography 51, 159172. http://dx.doi.org/10.1016/j.dsr2.2003.07.016CrossRefGoogle Scholar
Gonçalves-Araujo, R, de Souza, MS, Borges Mendes, CR, Tavano, VM, Pollery, RC and Eiras Garcia, CA (2012) Brazil-Malvinas confluence: effects of environmental variability on phytoplankton community structure. Journal of Plankton Research 34, 399415. https://doi.org/10.1093/plankt/fbs013CrossRefGoogle Scholar
Gonçalves-Araujo, R, de Souza, MS, Tavano, VM, Mendes, CR, de Souza, RB, Schultz, C and Pollery, RC (2018) Phyto- and protozooplankton assemblages and hydrographic variability during an early winter survey in the southern Brazilian continental shelf. Journal of Marine Systems 184, 3649. https://doi.org/10.1016/j.jmarsys.2018.04.005CrossRefGoogle Scholar
Guerrero, RA and Piola, AR (1997) Masas de agua en la plataforma continental. In Boschi, EE (ed.), El mar Argentino y sus Recursos Pesqueros, vol. 1. Mar del Plata, Argentina: INIDEP, pp. 107118.Google Scholar
Hansen, B, Bjornsen, PK and Hansen, PJ (1994) The size ratio between planktonic predators and their prey. Limnology and Oceanography 39, 395403. https://doi.org/10.4319/LO.1994.39.2.0395CrossRefGoogle Scholar
Hansen, PJ, Bjørnsen, PJ and Hansen, BW (1997) Zooplankton grazing and growth: Scaling within the 2-2,000-μm body size range. Limnology and Oceanography 42, 687704. http://dx.doi.org/10.4319/lo.2000.45.8.1891CrossRefGoogle Scholar
Hoffmeyer, MS, Sabatini, ME, Brandini, FP, Calliari, DL and Santinelli, NH (eds) (2018) Plankton Ecology of the Southwestern Atlantic. Cham, Switzerland: Springer International Publishing, 586 p, ISBN 978-3-319-77868-6.CrossRefGoogle Scholar
Islabão, CA, Mendes, CRB, Detoni, AMS and Odebretch, C (2017) Phytoplankton community structure in relation to hydrographic features along a coast-to-offshore transect on the SW Atlantic continental shelf. Continental Shelf Research 151, 3039. http://dx.doi.org/10.1016/j.csr.2017.10.003CrossRefGoogle Scholar
Islabão, C and Odebrecht, C (2011) Microplankton dinoflagellates (Peridiniales, Prorocentrales) at the continental shelf and slope in southern Brazil (winter 2005, summer 2007). Biota Neotropica 11, 153166. https://doi.org/10.1590/S1676-06032011000300012CrossRefGoogle Scholar
Jesus, AR and Odebrecht, C (2002) Impacto da Herbivoria do Microzooplâncton no fitoplâncton no estuário da Lagoa dos Patos (Verão). Atlântica 24, 3744. http://dx.doi.org/10.5088/atl.2002.5CrossRefGoogle Scholar
Jonsson, P and Tiselius, P (1990) Feeding behaviour, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates. Marine Ecology Progress Series 60, 3544.CrossRefGoogle Scholar
Kiørboe, T (1993) Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Advances in Marine Biology 29, 172. https://doi.org/10.1016/S0065-2881(08)60129-7CrossRefGoogle Scholar
Lavrentyev, PJ, Franzè, G and Moore, FB (2019) Microzooplankton distribution and dynamics in the Eastern Fram Strait and the Arctic Ocean in May and August 2014. Frontiers in Marine Science 6, 264. https://doi.org/10.3389/fmars.2019.00264CrossRefGoogle Scholar
Leps, J and Smilauer, P (2003) Multivariate Analysis of Ecological Data Using CANOCO. Cambridge, UK: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511615146CrossRefGoogle Scholar
Li, J, Roughan, M and Kerry, C (2022) Drivers of ocean warming in the western boundary currents of the Southern Hemisphere. Nature Climate Change 12, 901909. https://doi.org/10.1038/s41558-022-01473-8CrossRefGoogle Scholar
López-Abbate, MC (2021) Microzooplankton communities in a changing ocean: a risk assessment. Diversity 13, 82. https://doi.org/10.3390/d1302008 2CrossRefGoogle Scholar
López-Abbate, MC, Molinero, JC, Guinder, VA, Dutto, MS, Barría de Cao, MS, Ruiz Etcheverry, LA, Pettigrosso, RE, Carcedo, MC and Hoffmeyer, MS (2015) Microplankton dynamics under heavy anthropogenic pressure. The case of the Bahía Blanca Estuary, southwestern Atlantic Ocean. Marine Pollution Bulletin 95, 305314. https://doi.org/10.1016/j.marpolbul.2015.03.026CrossRefGoogle Scholar
López-Abbate, MC, Molinero, JC, Perillo, GME, Barría de Cao, MS, Pettigrosso, RE, Guinder, VA, Uibrig, R, Berasategui, AA, Vitale, A, Marcovecchio, JE and Hoffmeyer, MS (2019) Long-term changes on estuarine ciliates linked with modifications on wind patterns and water turbidity. Marine Environmental Research 144, 4655. https://doi.org/10.1016/j.marenvres.2018.12.001CrossRefGoogle ScholarPubMed
Lynn, DH and Small, EB (2002) Phylum Ciliophora. In Lee, JJ, Bradbury, PC and Leedale, GF (eds), An Illustrated Guide to the Protozoa. Lawrence, Kansas: Society of Protozoologists, 371656.Google Scholar
Mann, KH and Lazier, JRN (2006) Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans, 3rd Edn. Malden, MA and Oxford, UK: Blackwell Publishing, 496.Google Scholar
Manta, G, de Mello, S, Trinchin, R, Badagian, J and Barreiro, M (2018) The 2017 record marine heatwave in the southwestern Atlantic shelf. Geophysical Research Letters 45, 1244912456. https://doi.org/10.1029/2018GL081070CrossRefGoogle Scholar
Matano, RP, Palma, ED and Piola, AR (2010) The influence of the Brazil and Malvinas currents on the southwestern Atlantic shelf circulation. Ocean Science 6, 983995. http://dx.doi.org/10.5194/os-6-983-2010CrossRefGoogle Scholar
Méndez, S and Carreto, I (2018) Harmful Algal Blooms in the Río de la Plata Region. In Hoffmeyer, M, Sabatini, M, Brandini, F, Calliari, D, Santinelli, N (eds), Plankton Ecology of the Southwestern Atlantic. Cham: Springer, pp. 477493. https://doi.org/10.1007/978-3-319-77869-321CrossRefGoogle Scholar
Méndez, SM and Ferrari, G (2003) Floraciones tóxicas de Gymnodinium catenatum en aguas uruguayas. Frente Marítimo 19, 97102.Google Scholar
Menezes, BS, de Macedo-Soares, LCP and Freire, AS (2019) Changes in the plankton community according to oceanographic variability in a shallow subtropical shelf: SW Atlantic. Hydrobiologia 835, 165178. https://doi.org/10.1007/s10750-019-3936-5CrossRefGoogle Scholar
Mitra, A, Flynn, KJ, Tillmann, U, Raven, JA, Caron, D, Stoecker, DK, Not, F, Hansen, PJ, Hallegraeff, G, Sanders, R, Wilken, S, McManus, G, Johnson, M, Pitta, P, Våge, S, Berge, T, Calbet, A, Thingstad, F, Jeong, HJ, Burkholder, J, Gilbert, PM, Granéli, E and Lundgren, V (2016) Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition; incorporation of diverse mixotrophic strategies. Protist 167, 106120. http://dx.doi.org/10.1016/j.protis.2016.01.003CrossRefGoogle ScholarPubMed
Montagnes, DJS and Lynn, DH (1991) Taxonomy of choreotrichs, the major marine planktonic ciliates, with emphasis on the aloricate forms. Marine Microbial Food Webs 5, 5974.Google Scholar
Muelbert, JH, Acha, M, Mianzan, H, Guerrero, R, Reta, R, Braga, ES, Garcia, VMT, Berasategui, A, Gomez-Erache, M and Ramírez, F (2008) Biological, physical and chemical properties at the subtropical shelf front zone in the SW Atlantic continental shelf. Continental Shelf Research 28, 16621673. http://dx.doi.org/10.1016/j.csr.2007.08.011CrossRefGoogle Scholar
Panario, D, Piñeiro, G, de Álva, D, Fernández, G, Gutierrez, O and Céspedes, C (1993) Dinámica sedimentaria y geomorfológica de dunas y playas en Cabo Polonio, Rocha. Informe Técnico. Unidad de Ciencias de la Epigénesis, Facultad de Ciencias, Universidad de la República, Montevideo.Google Scholar
Pettigrosso, RE and Popovich, C (2009) Phytoplankton–aloricate ciliate community in the Bahía Blanca estuary (Argentina): seasonal patterns and trophic groups. Brazilian Journal of Oceanography 57, 215227. http://dx.doi.org/10.1590/S1679-87592009000300005CrossRefGoogle Scholar
Piola, AR, Palma, ED, Bianchi, AA, Castro, BM, Dottori, M, Guerrero, RA, Marrari, M, Matano, RP, Möller, OO Jr and Saraceno, M (2018) Physical oceanography of the SW Atlantic shelf: A review. In Hoffmeyer, M, Sabatini, M, Brandini, F, Calliari, D and Santinelli, N (eds), Plankton Ecology of the Southwestern Atlantic. Cham: Springer, pp. 3756. https://doi.org/10.1007/978-3-319-77869-3_2CrossRefGoogle Scholar
Piola, AR, Romero, SI and Zajaczkovski, U (2008) Space–time variability of the Plata plume inferred from ocean color. Continental Shelf Research 28, 15561567. http://dx.doi.org/10.1016/j.csr.2007.02.013CrossRefGoogle Scholar
R Core Team (2020) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at https://www.R-project.org/Google Scholar
Romano, F, Symiakaki K, and Pitta, P (2021) Temporal variability of planktonic ciliates in a coastal oligotrophic environment: mixotrophy, size classes and vertical distribution. Frontiers in Marine Science 8, 641589. https://doi.org/10.3389/fmars.2021.641589CrossRefGoogle Scholar
Santoferrara, L and Alder, V (2009) Abundance trends and ecology of planktonic ciliates of the south-western Atlantic (35–63°S): a comparison between neritic and oceanic environments. Journal of Plankton Research 31, 837851. https://doi.org/10.1093/plankt/fbp033CrossRefGoogle Scholar
Schlitzer, R (2021) Ocean data view. Available at https://odv.awi.deGoogle Scholar
Sherr, EB and Sherr, BF (2007) Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Marine Ecology Progress Series 352, 187197. http://dx.doi.org/10.3354/meps07161CrossRefGoogle Scholar
Sieburth, JM, Smetacek, V and Lenz, J (1978) Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnology and Oceanography 23, 12561263. https://doi.org/10.4319/lo.1978.23.6.1256CrossRefGoogle Scholar
Sivasankar, R, Ezhilarasan, P, Sathish Kumar, P, Naidu, SA, Rao, GD, Kanuri, VV, Ranga Rao, V and Ramu, K (2018) Loricate ciliates as an indicator of eutrophication status in the estuarine and coastal waters. Marine Pollution Bulletin 129, 207211. https://doi.org/10.1016/j.marpolbul.2018.02.027CrossRefGoogle ScholarPubMed
Souto, S (1970) Tintínidos de la costa atlántica entre los 31° y 35° de latitud sur (Uruguay y sur de Brasil) (Protozoa, Ciliata). Physis 30, 187208.Google Scholar
Stoecker, DK, Weigel, AC, Stockwell, DA and Lomas, MW (2014) Microzooplankton: Abundance, biomass and contribution to chlorophyll in the eastern Bering Sea in summer. Deep Sea Research, Part II 109, 134144. https://doi.org/10.1016/j.dsr2.2013.09.007CrossRefGoogle Scholar
Strom, S (2002) Novel interactions between phytoplankton and microzooplankton: their influence on the coupling between growth and grazing rates in the sea. Hydrobiologia 480, 4154. http://dx.doi.org/10.1023/A:1021224832646CrossRefGoogle Scholar
Sun, J and Liu, D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25, 13311346. https://doi.org/10.1093/plankt/fbg096CrossRefGoogle Scholar
ter Braak, CJF and Prentice, IC (1988) A theory of gradient analysis. Advances in Ecological Research 18, 271317. https://doi.org/10.1016/S0065-2504(08)60183-XCrossRefGoogle Scholar
Thompson, GA and Alder, VA (2005) Patterns in tintinnid species composition and abundance in relation to hydrological conditions of the southwestern Atlantic during austral spring. Aquatic Microbial Ecology 40, 85101. http://dx.doi.org/10.3354/ame040085CrossRefGoogle Scholar
Thompson, GA, Alder, VA, Boltovskoy, D and Brandini, F (1999) Abundance and biogeography of tintinnids (Ciliophora) and associated microzooplankton in the southwestern Atlantic Ocean. Journal of Plankton Research 21, 12651298. https://doi.org/10.1093/plankt/21.7.1265CrossRefGoogle Scholar
Thomsen, H (1962) Masas de agua características del Océano Atlántico (parte Sudoeste). Buenos Aires: Servicio de Hidrografía Naval, Secretaría Marina, Publication, H632 1–27.Google Scholar
Tiselius, P, Saiz, E and Kiørboe, T (2013) Sensory capabilities and food capture of two small copepods, Paracalanus parvus and Pseudocalanus sp. Limnology and Oceanography 58, 16571666.CrossRefGoogle Scholar
Urrutxurtu, I (2004) Seasonal succession of tintinnids in the Nervión River estuary, Basque Country, Spain. Journal of Plankton Research 26, 307314. https://doi.org/10.1093/plankt/fbh034CrossRefGoogle Scholar
Uye, SI, Nagano, N and Tamaki, H (1996) Geographical and seasonal variations in abundance, biomass and estimated production rates of microzooplankton in the Inland Sea of Japan. Journal of Oceanography 52, 689703. https://doi.org/10.1007/BF02239460CrossRefGoogle Scholar
Vaz-Ferreira, R (1943) Sobre algunas especies del género Ceratium (Schrank) de aguas uruguayas. Servicio Oceanográfico y de Pesca, Montevideo, 20 pp.Google Scholar
Wells, PG and Daborn, GR (eds) (1997) The Rio de la Plata: An environmental overview. An EcoPlata project background report. Dalhousie University, Halifax, Nova Scotia, Canada, 256 p.Google Scholar
Welschmeyer, NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography 39, 19851992. https://doi.org/10.4319/lo.1994.39.8.1985CrossRefGoogle Scholar
Windom, HL, Moore, WS, Niencheski, LFH and Jahnke, RA (2006) Submarine groundwater discharge: a large, previously unrecognized source of dissolved iron to the South Atlantic Ocean. Marine Chemistry 102, 252266. https://doi.org/10.1016/J.MARCHEM.2006.06.016CrossRefGoogle Scholar
Supplementary material: File

Sampognaro et al. supplementary material

Sampognaro et al. supplementary material

Download Sampognaro et al. supplementary material(File)
File 691.2 KB