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This work experimentally investigates the flow structure around a rectangular cylinder with
an aspect ratio of 2 under varying incidence angles to examine how acoustic perturbations
modify and modulate the unsteady flow instabilities. In the absence of acoustic excitation,
the angle of incidence is found to markedly influence the flow topology and the natural
shedding pattern altering the vortex formation length and wake dynamics. With acoustic
perturbations, it is observed that for incidence angles α = 0◦ and α = 5◦, the masked
impinging leading-edge vortex (ILEV)/trailing-edge vortex shedding (TEVS) instability
modes of n = 1 and n = 2 become evident when their frequencies coincide with the
frequencies of the acoustic perturbations (i.e. resonant condition). Both trailing-edge
and leading-edge vortices were found to be modulated by the acoustic pressure cycle.
These instability modes, which are naturally present under non-resonant conditions for
significantly higher aspect ratios, highlight the role of incidence angle and self-excited
acoustic resonance in virtually augmenting the streamwise length of the cylinder, thereby
facilitating the emergence and sustenance of the ILEV/TEVS shedding pattern.
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1. Introduction

One fundamental distinction between circular and rectangular cylinders lies in the
presence of four well-defined separation points located at the edges of the rectangular
cylinder, resulting in flat wall surfaces between the adjacent edges. Consequently, the
wake flow becomes more intricate due to the presence of two predominant separation
regions in the shear layer, namely the leading-edge (LE) separation and the trailing-edge
(TE) separation (Saha, Biswas & Muralidhar 2003; Inoue, Iwakami & Hatakeyama 2006;
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Prasanth & Mittal 2008; Singh & Biswas 2013; Shoukry & Mohany 2023). For elongated
rectangular cylinders with an aspect ratio l/h > 3, where the aspect ratio represents the
ratio between the streamwise dimension l and the cross-stream dimension h, both the
leading and trailing edges shed vortices at high Reynolds numbers. The shedding from
both edges exhibits synchronization to the same frequency, indicating the existence of
a feedback loop between the pressure perturbations at the TE caused by vortex roll and
formation, and the separation of the shear layer at the LE. Additionally, it is observed that
the Strouhal number demonstrates a stepwise behaviour with respect to the aspect ratio
(Okajima 1982; Nakamura & Nakashima 1986; Ozono et al. 1992; Mills et al. 1995; Tan,
Thompson & Hourigan 1998).

In their pioneering work, Nakamura & Nakashima (1986) introduced the concept of
leading-edge vortex shedding (LEVS) and termed the overall shedding mechanism as
impinging-shear-layer instability. They proposed that this instability is independent of the
mutual induction between the two shear layers originating from the lateral faces of
the cylinder. To verify this hypothesis, a splitter plate was inserted into the wake of
a rectangular cylinder with an aspect ratio of 5. Remarkably, the shedding frequency
remained unchanged both before and after the insertion of the splitter plate. Similarly,
Shaaban & Mohany (2022) recently observed the same shedding mode during self-excited
acoustic resonance, for a rectangular cylinder with an aspect ratio as low as 2. These
findings underscore the presence of this shedding mode even at low aspect ratios and
further highlight its nature as a resonant oscillation of the fluid.

Naudascher & Rockwell (1994) classified three distinct vortex shedding regimes for
rectangular cylinders based on the aspect ratio. Type I, known as LEVS, is characterized
by a separation bubble at the LE of the body. Type II is referred to as impinging
leading-edge vortex (ILEV) instability and involves the shedding of LE vortices from
the separation bubble at the LE, which subsequently interact with the TE vortices. Type
III is the trailing-edge vortex shedding (TEVS), where vortices detach from the TEs of
the rectangular cylinder. Hourigan, Thompson & Tan (2001) later discovered a hybrid
shedding mechanism that can occur at Reynolds numbers below 2000, representing a
combination of the ILEV and TEVS regimes. They observed that the TE vortices are
forced to modulate their frequency to align closely with the shedding frequency, enabling
the shedding of LE vortices within one complete shedding cycle with proper phasing. This
accommodation of the full shedding cycle wavelength along the length of the cylinder
occurs due to the synchronization between the LE and TE shedding modes.

The stepwise behaviour in the Strouhal number is attributed to a locked-feedback
mechanism between the frequency of the LE and TE vortices, with a wavelength that is
directly correlated to the streamwise dimension of the cylinder. The mode progression is
associated with the number n of vortices present on the lateral face of the rectangular
cylinder between the leading and trailing edges. For rectangular cylinders with aspect
ratios between 3 and 5, the first mode of the ILEV is characterized by one LE vortex on the
lateral faces (i.e. n = 1). As the aspect ratio increases, the wavelength also increases until
reaching a threshold that allows for the transition to the second ILEV mode (i.e. n = 2),
which means two distinct vortex cores are formed along the lateral face.

Building upon the work of Nakamura & Nakashima (1986), the ILEVS mode is
considered a resonant oscillation of the fluid that can be triggered when coupling with
a resonant acoustic wave within an enclosure occurs. The feedback loop in this case is
established through the pressure perturbation originating from the flow field discontinuity
at the TE, which results from vortex production at the cylinder’s TE. The formation of
the LE vortices occurs due to the interaction of the shear layer with the LE. When the LE
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vortex passes the TE, a localized pressure pulse is generated due to strain concentration at
a specific point. This pulse subsequently travels upstream, triggering the shedding of a LE
vortex from the LE shear layer.

Parker & Llewelyn (1972) revealed in their study that there could be four possible vortex
shedding patterns depending on the cylinder’s aspect ratio. (I) Cylinders with (l/h < 3.2)
experience flow separation at the LE with no reattachment to the cylinder’s surface. The
separated shear layer at the LE rolls into the wake, forming a regular vortex shedding
street, which is also known as LEVS. (II) Cylinders with (3.2 < l/h < 7.6) exhibit a TE
interaction with the LE vortices, producing the ILEV or TEVS mode. (III) Cylinders
with (7.6 < l/h < 16) experience shear layer reattachment somewhere on the lateral face
before the TE, forming a separation bubble that sheds vortices randomly. This shear
layer behaviour results in irregular shedding patterns with no distinct vortex shedding
street. (IV) Cylinders with (l/h > 16) experience a similar behaviour to those in (III),
but the vortices shedding from the separation bubble dissipate before reaching the TE.
Additionally, a regular shedding pattern exists under acoustic resonance conditions for
high aspect ratios. Nakamura, Ohya & Tsuruta (1991) suggested that although for high
aspect ratios (l/h > 12) there is no organized shedding pattern that can be detected, the
shedding pattern observed by Stokes & Welsh (1986) is a manifestation of the ILEV
inherited in the flow, with the acoustic field acting as an external forcing source to
excite it. However, Mills, Sheridan & Hourigan (2003) proposed a contrasting hypothesis
referred to as the TE shedding. They argued that the shedding pattern detected under
resonant conditions in the study of Stokes & Welsh (1986) was not an instance of
ILEV shedding as proposed by Nakamura et al. (1991) but rather a different shedding
mechanism. Thus, one of the primary objectives of our research is to navigate through
these conflicting viewpoints and clarify the effect of acoustic resonance on the unsteady
flow structures around a rectangular cylinder. Such an endeavor will deliver a more unified
understanding of the underlying shedding mechanisms at both resonant and non-resonant
conditions.

For higher Reynolds numbers, two studies conducted by Okajima (1982) and Igarashi
(1984) have revealed that flow characteristics and aerodynamics remain relatively
insensitive to the upstream Reynolds number beyond a value of approximately 104.
However, the angle of incidence has a notable effect on shifting the separation points,
thereby altering the free shear layer separation and resulting in wake rolling. This shift in
separation points can ultimately impact the hydrodynamic loading, the Strouhal number
of dominant shedding patterns and heat transfer coefficients. Furthermore, several studies
have reported that changes in the shedding pattern in the wake can occur due to variations
in shear layer separation dynamics caused by the angle of incidence (Zaki, Sen &
Gad-El-Hak 1994; Sohankar, Norberg & Davidson 1998). Knisely (1990) thoroughly
reviewed Strouhal number data from the literature for various aspect ratios and incidence
angles. The general trend observed in most cases showed a rapid increase in the Strouhal
number and a significant decrease in the aerodynamic forces at small angles of attack
(α < 15◦). This trend is thought to be associated with the shear layer separation and
subsequent reattachment to the cylinder’s windward lateral face. The reattachment of
the shear layer reduces pressure fluctuations in the wake, which, in turn, reduces the
aerodynamic forces imposed on the rod. Other studies reported similar trends for Strouhal
number and aerodynamic forces (Saha, Muralidhar & Biswas 2000a; Dutta, Muralidhar &
Panigrahi 2003; Sarioglu, Akansu & Yavuz 2005).

Compared with the studies reporting on vortex shedding modes and aerodynamic forces,
fewer investigations have focused on characterizing the velocity field and wake dynamics
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of rectangular cylinders. Work by Durão, Heitor & Pereira (1988), Lyn et al. (1995),
Lyn & Rodi (1994), Ozgoren (2006), Hu, Zhou & Dalton (2006) and Kurtulus, Scarano
& David (2007) employed various flow visualization techniques, such as particle image
velocimetry (PIV) and laser Doppler velocimetry, to accurately construct the near and far
wake velocity fields, time-averaged turbulence properties and phase-averaged streamline
patterns. These approaches provide valuable insights into the wake flow topology, allowing
for choosing the optimum configuration for different industrial applications and the
development of effective techniques for suppressing vortex shedding. Igarashi (1984)
implemented surface-oil flow and smoke to study the flow around a square cylinder
at different angles of incidence. He divided the wake flow patterns into four different
regimes based on the incidence angle, i.e. (I) 0◦ ≤ α ≤ 5◦: symmetric flow with perfect
separation; (II) 5◦ ≤ α ≤ 13◦: asymmetric flow with separation; (III) 14◦ ≤ α ≤ 35◦:
reattachment flow type; and (IV) 35◦ ≤ α ≤ 45◦: wedge flow type. van Oudheusden et al.
(2005) reported the velocity field around a square cylinder using PIV at four different
angles of incidence. For α = 0◦, the boundary layer bifurcates into two branches from the
midpoint on the square section in the cross-stream direction and then separates from the
two leading sharp edges. The free shear layer rolls into the wake forming two distinct
recirculation regions, a primary region that is due to the large-scale vortex formation
in the wake and a secondary region at the cylinder’s lateral faces in the streamwise
direction. Between α = 5◦ and α = 10◦ the two recirculation regions merged together into
one region in the wake. Flow reattachment was observed between α = 10◦ and α = 15◦.
The topological analysis of this study did not precisely match the flow topology equation
outlined by Hunt et al. (1978) due to the difficulties in capturing the near-surface flow
topology because of the laser reflections and insufficient spatial resolution or image
count in the PIV window size. To compensate for the flow visualization challenges,
multiple investigators have conducted computational fluid dynamics studies on square
cylinders to capture the near-surface, wake topology and unsteady flow characteristics
(Taylor & Vezza 1999; Saha, Muralidhar & Biswas 2000b; Cheng, Whyte & Lou
2007).

In light of the previous discussion, for square and rectangular cylinders, the shear layer
behaviour and the periodic flow structures in the wake are found to be sensitive to the
aspect ratio and angle of incidence. However, most of the studies focused on high aspect
ratios (3 < l/h < 16) as it is assumed that below this range the shear layer is said to be
stable with a natural shedding process occurring in the wake. This study aims to address
this gap by employing PIV techniques in a high-speed wind tunnel to investigate the
flow dynamics around a rectangular cylinder with an aspect ratio of 2 at various angles
of incidence. The investigation will be conducted both with and without self-excitation
of acoustic perturbations. The primary objective is to determine whether the resonant
mode previously reported by Stokes & Welsh (1986) arises from a coupling with the
inherent ‘ILEV’ instability, as suggested by Nakamura et al. (1991) or if it represents a
distinct vortex shedding mechanism, as proposed by Mills et al. (2003). By examining
these aspects, we seek to gain a comprehensive understanding of the flow dynamics and
the mechanisms involved in vortex impingement from different edges of the rectangular
cylinder. Furthermore, this study will shed light on the modulation occurring between
the LE and TE vortices. Acoustic resonance, being a global feedback mechanism, plays
a crucial role in modulating the overall system frequency. The detailed analysis and
observations from this study will contribute to a better understanding of the complex flow
behaviour and the impact of acoustic resonance on the flow patterns around rectangular
cylinders.
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2. Experimental set-up

In this section we delineate the experimental apparatus and configurations employed for
various measurements, encompassing both pressure measurements and flow visualization
techniques.

2.1. Wind tunnel facility
Experiments were conducted in an open-loop wind tunnel that has a test section measuring
762 mm in length, 254 mm in height and 127 mm in width. This test section is made out of
acrylic to allow for flow visualization.

To ensure uniform flow distribution in the spanwise direction, pressure measurements
were conducted at 11 different locations along the cylinder’s span, covering a wide range
of Reynolds numbers. The results indicated minimal spanwise variation in the mean base
pressure coefficient, falling within the experimental uncertainty of the measurements.
All tested cases were positioned at a distance of 381 mm from the parabolic bell mouth
entrance. At this location, hot-wire measurements were conducted, revealing that the
transverse flow uniformity deviated by a maximum of 1 % from the free stream velocity.
Analysis of the fast Fourier transform (FFT) of the natural turbulence spectrum revealed
no observable peaks within the frequency range of interest. Throughout the velocity range,
the maximum turbulence intensity was carefully measured and found to be below 0.8 %.
The experiments were conducted under controlled environmental conditions, maintaining
a temperature of 25 ◦C and 50 % humidity. Indoor climate monitoring was performed using
an indoor climate sensor to ensure consistent conditions throughout the experiments. An
optical-grade clear acrylic rectangular cylinder was employed, with a starting position of
zero angle of incidence and dimensions of h = 1.27 cm in the cross-stream direction and
l = 2.54 cm in the streamwise direction (see figure 3). To achieve precise control of the
incidence angle, a laser-cut acrylic window with a dial mechanism was utilized. The dial
allows for rotation and locking at specific orientations via a countersunk screw and nut
externally mounted to the wind tunnel.

2.2. Acoustic pressure measurements
The acoustic pressure signal was recorded for 120 s during each measurement across
the entire velocity range, spanning speeds from 20 m s−1 to 150 m s−1, with incremental
steps of 2.76 m s−1. The velocity range corresponded to a Reynolds number, based
on the streamwise length of the rectangular cylinder, ranging from Rel = 3.5 × 104 to
2.5 × 105, when the cylinder’s angle of incidence was zero. This was achieved by using
a flush-mounted pressure microphone strategically positioned on the top wall of the
test section, directly above the centre of the cylinder. This position corresponded to the
maximum pressure amplitude of the transverse acoustic mode, which was determined in
a separate experiment using an array of flush-mounted microphones on the top wall at
different streamwise positions. Details of this experiment are omitted here for brevity.
A sampling frequency of 20 kHz was employed that was far above the targeted shedding
frequencies. Welch’s modified periodogram method, with a 50 % overlap and a resolution
of 1 Hz, was applied to analyse the pressure signal and generate the frequency spectrum
using FFT. To isolate and accurately capture the desired pressure values, a band-pass filter
with a range of ±50 Hz centred around the dominant frequency peak was employed. This
filtering process enabled the extraction of relevant pressure information. Subsequently, the
resulting filtered pressure signal was used to calculate the root-mean-square (r.m.s.) value
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p1(y) p3(y) p5(y)

Figure 1. Schematic representation of the acoustic pressure distribution inside the duct for the first three
odd-numbered transverse modes.

of the pressure (Prms), which was then normalized and presented as P∗ using the equation

P∗ = 2Prmsc
ρU3∞

, (2.1)

where c is the speed of sound (m s−1), ρ is the air density (kg m−3) and U∞ is the mean
flow speed (m s−1). The cubic dependence of the acoustic pressure with the flow velocity
was first reported by Keefe (1962) and later confirmed by Mohany & Ziada (2005).

As the shedding patterns evolved in the cross-stream direction, they induced
acoustic pressure perturbations in the transverse direction. Consequently, excitation of
odd-numbered transverse acoustic modes occurred, facilitated by the cylinder’s precise
positioning at the centre of the duct height (i.e. acoustic particle velocity antinodes of
the λ/2, 3λ/2 and 5λ/2 modes), as shown in figure 1, which illustrates the pressure
distribution of the first three odd-numbered acoustic modes in the transverse direction.
The theoretical values of these modes can be calculated using the equations

fa(1) = c
2H
, fa(3) = 3c

2H
, fa(5) = 5c

2H
, (2.2a–c)

where H = 254 mm is the height of the test section.
When the frequency of the vorticity shedding coincides with the natural frequency of

an acoustic duct mode, resonance may occur if the flow excitation energy is higher than
the acoustic damping of the system. This resonance establishes a feedback loop between
the flow and the sound field, leading to the amplification of acoustic energy and the
generation of acute noise. The interaction between the flow dynamics and the acoustic
field significantly influences the wake topology (Blevins 1984; Mohany & Ziada 2009;
Islam, Shaaban & Mohany 2020).

2.3. Particle image velocimetry
In this study the LaVision system was utilized to capture and analyse the instantaneous
velocities of the flow field within the two-dimensional laser sheet domain. Figure 2
illustrates the complete PIV set-up. The utilization of the PIV system ensured accurate
and comprehensive velocity measurements, enabling a detailed examination of the flow
dynamics with and without acoustic perturbations.
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Data acquisition card

Signal conditioner
Pressure microphone

Acrylic rod

Laser sheet

Seeding device

Optical mirror
Nd-YAG laser head

OscilloscopeLaser power

unit

Timing box CCD Camera

Figure 2. Schematic of the complete PIV set-up, which includes a Nd-YAG laser light source, optical lens
and mirrors, a CCD camera, a timing box and a seeding device. The PIV set-up is time synchronized to the
pressure microphone at the wall of the test section. The signal from the microphone was also transmitted to an
oscilloscope for monitoring purposes.

2.3.1. Flow field seeding and illumination
In this study, atomized di-ethyl-hexyl-sebacate with an average particle size of 1 μm
was used for flow seeding. The measurement plane was illuminated by a double-head
532 nm Nd:YAG pulsed laser operating in a double pulse mode with a peak power output
of 200 mJ. A precise linear actuation mechanism was employed to position the laser
sheet in the middle of the x–y plane. The laser sheet illuminated the test section from
the bottom, passing through an optical-grade acrylic wall. The time between pulses was
adjusted to ensure capturing the maximum particle displacement within a quarter of the
interrogation window used for vector calculation. Image pairs from two successive frames
were processed, with specific regions such as the cylinder area and any surface reflections
masked out to ensure accurate analysis.

2.3.2. Image capturing and acquisition
To capture the flow images, a 12-bit charged-coupled device (CCD) camera operating in a
double frame mode was utilized. The camera had a maximum resolution of 2752 × 2200
pixels. In order to enhance the image acquisition process, a green light filter matching the
wavelength of the laser was installed on the camera. The camera was directly connected to
a personal computer, enabling real-time image transfer and analysis. The camera shutter
was synchronized with the laser pulsing to ensure precise timing for capturing the flow
field. This synchronization was achieved through the DaVis software, which facilitated
the coordination between the camera and the laser. To improve the accuracy of the flow
measurements, dynamic filters were applied during the data processing stage. These filters
were designed to eliminate background noise and remove any false vectors from the
analysed flow field.
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To conduct measurements during off-resonance conditions, a series of images were
captured, representing various shedding cycles. To reconstruct a consistent shedding
cycle, proper orthogonal decomposition (POD) analysis was employed using a dataset
comprising 1200 images. This facilitated the identification and extraction of the dominant
flow structures and shedding patterns.

Phase-locked PIV measurements were conducted during self-excited acoustic resonance
to synchronize with the shedding mode. This synchronization was achieved by utilizing the
acoustic pressure cycle as a reference signal. The signal was captured by a flush-mounted
microphone in real time and displayed on an oscilloscope for visualization. A timing unit
then synchronized the frequencies of the camera and the laser with the acoustic pressure
cycle frequency. By dividing the acoustic pressure cycle into eight phases, the camera
captured pairs of images at consistent intervals. Specifically, 250 instantaneous pairs of
images were captured, with each pair corresponding to a phase interval of 45◦ on the
acoustic pressure cycle. This approach ensured that PIV measurements were performed at
precise and consistent phases in the flow/acoustic cycle.

2.3.3. Imaging and post processing
The image acquisition and post-processing were carried out using DaVis 10.0 software.
To extract accurate velocity information, the interrogation window technique was applied
in two steps. In the first step, a single pass was performed with an initial interrogation
window size of 64 × 64 pixels and a 50 % overlap. This step helped capture the overall
flow features and provided an initial estimation of the velocity field. For the second step,
four passes were performed using a smaller interrogation window size of 24 × 24 pixels
with a 50 % overlap. This finer resolution allowed for a more detailed analysis of the
flow field and improved the accuracy of velocity measurements. To ensure high-quality
results, post-processing techniques were employed. Faulty vectors were identified and
removed, and denoising filters were applied to obtain a smooth flow field. In regions where
illuminated particles were missing, dynamic interpolation techniques were utilized to
estimate particle displacements based on the surrounding particles’ motion. Spatial sliding
filters were also applied to further enhance the quality of the flow field. Depending on the
specific requirements of each case, different sliding filters such as Gaussian, minimum
and maximum filters were utilized to optimize the results. These filters helped in reducing
noise and refining the spatial distribution of the velocity field.

3. Flow under non-resonant condition

In this section we examine the flow dynamics around the cylinder with varying angles of
incidence, ranging from 0◦ to 90◦, in conditions devoid of acoustic coupling. The coupling
between the flow structures and the transverse acoustic modes of the duct (acoustic
resonance) is studied in § 4. In § 3.1 the variation of the Strouhal number with respect to
the incidence angle is presented and cross-validated against prior research. Subsequently,
§ 3.3 delves into the spatio-temporal progression of the vorticity field in the vicinity of
the cylinder. To do this, we construct phase-averaged flow fields based on the temporal
coefficients of the two dominant POD modes introduced in § 3.2.

3.1. Strouhal number of natural vortex shedding
Figure 3 shows the Strouhal number Sth′ , based on the projected cross-stream dimension
h′, corresponding to the natural vortex shedding periodicity from a rectangular cylinder at
different flow incidence angles. The utilization of h′ is solely for the purpose of comparing
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Figure 3. Strouhal number Sth′ of natural shedding measured under non-resonant conditions at different angles
of incidence α. Open black circles: Knisely’s experimental measurements at Re = 4.4 × 104; open red squares:
present study at Re = 4.6 × 104.

with the results of Knisely (1990). However, since the formation of vortices dictates the
Strouhal number, normalizing it by the projected length in the streamwise direction l′
is more appropriate, as outlined in § 4. The Strouhal number shown in figure 3, derived
from the FFT analysis of the acoustic pressure signal, accurately mirrors the dominant
shedding mode. Initially, the Strouhal number stands at a value of 0.09 for zero angle of
incidence. As the cylinder begins to tilt, the Strouhal number sharply ascends to around
0.18, indicating substantial alterations in the wake flow characteristics, which are discussed
in detail in this section. At an incidence angle of approximately α ≈ 60◦, the Strouhal
number trend shows an inflection point and begins to descend, reaching a value of about
0.15 at α = 90◦. This observation underscores a significant transformation in the flow
topology beyond the symmetric wedge angle, which is around ∼ 63◦ for the case presented
in this paper with an aspect ratio of 2. This angle represents the symmetric configuration
for the rectangular cylinder in both cross-stream and streamwise directions. The Strouhal
number obtained in this study for all the investigated flow incidence angles aligns well
with existing literature, reflecting both the values and the trend associated with changes in
the angle of incidence.

3.2. Leading POD modes
In § 3.3 we explore the shedding topology through the construction of a phase-averaged
flow field. The overarching objective here is threefold: (i) to quantify the energy associated
with each mode, (ii) to chronicle the temporal evolution of the wake flow structures and
(iii) to map out the spatial characteristics of the flow. To fulfil this objective, the POD
modes are extracted denoted by ψk(x), eigenvalues (λk) and temporal coefficients (ak).
The mode number (k) represents each mode’s contribution to the turbulent kinetic energy
(TKE) within the wake (van Oudheusden et al. 2005; Perrin et al. 2007). In the context
of bluff body wakes, the dominant pair of POD modes encapsulates the majority of the
inherent TKE resulting from the high vorticity content of the large-scale vortices shed in
the wake.

As depicted in figure 4(a), the principal pair of modes accounts for a range of 38–56 %
of the total TKE. Notably, for the incidence angles α = 0◦ and α = 5◦, the total energy
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Figure 4. Proper orthogonal decomposition on the PIV data for the angle of incidence α = 0: (a) energy
distribution of the POD modes in the TKE (λk), and (b) scatter plot of the temporal coefficients a1 and a2. The
definition of the red circle is given by (3.1).

within the first pair is significantly lower compared with the other angles of incidence.
Specifically, α = 5◦ demonstrates the least energy encapsulated within the first pair of
modes. As the incidence angle increases, there is a corresponding increase in the energy
contained within the first pair of modes. This implies that the shedding process at the initial
two incidence angles might be subject to perturbations from turbulence, flow reattachment
or flow instabilities. However, beyond these angles, the shedding pattern exhibits enhanced
coherence, with reduced random turbulence and fewer formations of small-scale vortical
structures.

The POD method is employed to acquire phase-averaged data. Fortunately, the majority
of the TKE is concentrated within the first pair of POD modes, as depicted in figure 4(a). In
figure 4(b) a scatter plot of the temporal coefficients (a1 and a2) derived from the snapshot
POD post-analysis data for the incidence angle α = 0◦ is presented. The data scatter forms
an ellipse, conforming to the equation

a1(φ)
2

2λ1
+ a2(φ)

2

2λ2
= 1, (3.1)

where aj(φ) represents the mean value of the temporal coefficient aj at phase φ, indicated
by a red circle in figure 4(b). The terms λ1 and λ2 correspond to the eigenvalues of the
dominant pair of POD modes. To determine the phases of the instantaneous flow field, the
following equation is utilized:

φ(t) = tan−1
[√
λ2a1(t)√
λ1a2(t)

]
. (3.2)

The entirety of the instantaneous flow field data is categorized into several bins, with the
quantity determined by (3.2). To capture the evolution of the shear layer and its subsequent
roll into the wake, the instantaneous flow fields are divided into 16 bins. Consequently,
there is a phase difference of 22.5◦ between every pair of successive phases.
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3.3. Phase-averaged flow topology

3.3.1. Cases with incidence angles α = 0 and 5◦
Presented in figure 5 is the phase-averaged vorticity field with the streamlines
superimposed, which is constructed by averaging the fields in the φ angular sector defined
by (3.2). There exists a phase difference of 180◦ between the columns on the left and right,
this exact phase shift is chosen for its vivid illustration of the alternation in the shear layer
and flapping behaviour. A hyperbolic stagnation point, denoted by a red dot, is introduced
to the diagram. This point, representing a saddle in the streamfunction ∇2ψ = −ωz, can
be visually identified from the distribution of the wake streamlines. Due to its inherent
instability and the resulting flow divergence, the hyperbolic stagnation point serves as
a valuable indicator for identifying the instant of large-scale vortex separation from the
shear layer. For figure 5(a,b) (α = 0), the flow separates from the LEs (windward edges)
without evidence of flow reattachment or impingement on the lateral faces of the cylinder.
The shear layer rolls into the wake, forming large-scale vortices through mutual induction
between the flapping shear layers, which exhibit a pure LEVS mode. Moving to α = 5◦,
the shear layer separates from the windward upper edge mainly rolling into the wake, but
there is partial shear layer reattachment to the windward lateral face, evident from the shear
layer evolution from the LE and streamlines paths. However, the shear layer separated from
the windward lower edge shows no interaction with the cylinder, and the vortex detaches
further downstream.

3.3.2. Cases with incidence angles α ≥ 10
Starting from α = 10◦ up to α = 30◦, the upper shear layer remains fully attached to
the windward lateral face, while vortices shed from the TE. Meanwhile, the lower shear
layer separates from the windward lower edge and sheds into the wake. It is evident
that the leeward lower edge contributes to shaping the lower shear layer vortex. The
shedding pattern can be identified as a hybrid LEVS/TEVS mode for these cases. The
consistency of the shedding mode and shear layer behaviour across these cases can be
attributed to the angle of incidence range. This range lies above the threshold of flow
reattachment, approximately 5◦ (Knisely 1990), but remains below the symmetric wedge
angle of incidence. Moving to figure 6, at α = 75◦, the lower shear layer separates from
the windward upper edge and impinges on the TE, while the upper shear layer separates
at the leeward upper edge with no evidence of flow reattachment. The vortex cores are
significantly larger compared with the previous cases, attributed to the fact that this
angle of incidence exceeds the symmetric wedge angle. Beyond this angle, the lower
shear layer reattaches to the windward face near the TE, and the windward lateral face
acts as an impinging surface rather than having the flow fully attached to it. Therefore,
the shedding mode can be designated as the LEVS/ILEVS mode from the upper and
lower shear layers, respectively. At an angle of incidence of α = 90◦, a spatio-temporal
symmetry manifests due to the inherent symmetry of the cylinder, resulting in a LEVS
mode, similar to the case at α = 0◦. However, the vortex cores appear notably larger and
less elliptical in shape. This occurrence can be attributed to two primary reasons. Firstly,
a reduced streamwise dimension amplifies the momentum of the shear layer as it rolls into
the wake, fostering the formation of a vortex with enhanced vorticity content. Secondly,
the expanded cross-stream dimension allows for a more substantial gap between the
separation edge and the wake centreline, providing a wider spatial range for the vortex to
form.
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Figure 5. Phase-averaged vorticity field constructed employing the first pair of POD modes. Positive vorticity
in red, negative in blue, with the streamlines superimposed at U∞ = 19.32 m s−1 for all the tested angles of
incidence α from 0 and 90◦ (here up to 30). Two phases of the mean oscillating cycle, φ = 0 (a,c,e,g,i) and
φ = 180◦ (b,d, f,h, j), are shown for each angle of incidence. (Continued in figure 6.)
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Figure 6. Phase-averaged vorticity field constructed employing the first pair of POD modes. Positive vorticity
in red, negative in blue, with the streamlines superimposed at U∞ = 19.32 m s−1 for all the tested angles of
incidence α from 0 and 90◦ (here 75◦ and 90◦). Two phases of the mean oscillating cycle, φ = 0 (a,c) and
φ = 180◦ (b,d), are shown for each angle of incidence.

4. Flow-sound interaction response

This section focuses on the flow–acoustic coupled response of the rectangular cylinder
at various angles of incidence. The objective is to understand how the different shedding
modes are selected in response to transverse acoustic perturbations.

4.1. Overall picture
Figure 7 depicts the power spectral density (PSD) of the acoustic pressure measured at
four distinct flow velocities: two prior to the onset of acoustic resonance excitation and
two during its occurrence. Before acoustic resonance excitation, a dominant shedding
mode corresponding to St = 0.18 is evident in the spectrum, with its amplitude increasing
with the flow velocity. Notably, the third acoustic mode is strongly excited instead of
the expected first mode, reaching an amplitude exceeding 1200 Pa Hz−1. This sudden
coupling with the third acoustic mode appears to be triggered by vorticity shedding that is
undetectable during the off-resonance conditions. The absence of excitation of the first
acoustic mode by the natural vortex shedding is attributed to the third acoustic mode
being triggered at a lower flow velocity than the coincidence between the natural shedding
at St = 0.18 and the first acoustic mode at approximately 675 Hz. The amplitude of the
acoustic pressure during the excitation of the third mode is remarkably high, and the
flow structures corresponding to a Strouhal number of 0.6 are in a locked-in state, as
we shall see in § 4.2, preventing the manifestation of acoustic resonance between the first
acoustic mode and the natural shedding at St = 0.18. A similar phenomenon of sudden
mode coupling, not aligning with the observed Strouhal progression, akin to what is
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Figure 7. The PSD (i) before (U = 26 m s−1), (ii) just before (U = 55 m s−1), (iii) after (U = 76 m s−1) and
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observed in our study, was noted by Welsh & Gibson (1979), where sudden resonance
excitation occurred. They observed substantial differences in the flow visualization using
a traditional smoke method before and during this abrupt acoustic resonance, identifying
it as contingent upon rod geometry, an observation later supported by Nakamura et al.
(1991) for larger aspect ratios ranging from 3 to 16, primarily emphasizing the effect of the
aspect ratio on the flow structure. This finding underscores the fact that acoustic resonance
excitation can augment the streamwise length of the cylinder, thereby facilitating the
emergence and sustenance of the ILEV/TEVS shedding pattern. This is further validated
using the phase-locked PIV measurements presented in figure 9.

Figure 8 represents the amplitude and the frequency of the dominant flow instabilities
from the cylinder, as extracted from the pressure spectra (refer to figure 7 for an example),
for a range of upstream flow velocities and how they couple with different transverse
acoustic modes. The normalized acoustic pressure is plotted on the y axis, while the
secondary y axis represents the peak frequency detected in the pressure spectra. The green
shade resembles the region where self-excited acoustic resonance is observed.

4.2. Case α = 0
Figure 8(a) illustrates the shedding progression from the rectangular cylinder at zero angle
of incidence. The shedding frequency gradually increases in a consistent manner up to a
flow velocity of U∞ = 73.41 m s−1 where a sudden frequency jump occurs accompanied
by a rapid increase in the normalized acoustic pressure and both frequencies are locked-in.
The shedding frequency experiences a significant jump, increasing approximately fourfold
from fs = 469 Hz to fs = 1931 Hz, which is close to the frequency of the third acoustic
transverse mode of the duct. This clear frequency lock-in suggests the occurrence of
self-excited acoustic resonance. As mentioned earlier, Welsh & Gibson (1979) observed
a similar phenomenon with a rectangular cylinder possessing an aspect ratio of 5.
Intriguingly, they reported a sudden stimulation of the duct’s primary transverse mode,
with the frequency abruptly doubling. This event was ascribed to what they termed
‘excited vortex shedding.’ Nevertheless, a definitive source of this excitation was not
substantiated, as their study lacked the implementation of modern flow visualization
techniques. Nakamura et al. (1991) later stated that this is attributed to the ‘ILEV’ being
excited. They stated two main reasons for this hypothesis: first, this is an intrinsic masked
characteristic of coherent flow structures in turbulent flows (Taneda 1983) that can be
excited by an externally tuned source; second, the frequency at which the jump took place
matches the natural ILEVS frequency. The Strouhal number that matches the jump in our
case is Stl′ = 0.6 (shown as a dotted line in figure 8a), which is exactly equal to the first
mode of the ILEV for elongated rectangular rods with an aspect ratio ranging from 3 to
5 as reported in the literature, (see, for example, Okajima 1982; Nakamura & Nakashima
1986; Ozono et al. 1992; Mills et al. 1995). To resolve whether this constitutes an inherent
ILEV or it is reflective of a natural vortex shedding mode, flow–acoustic phase-locked PIV
measurements are conducted and will be discussed in § 5.

4.3. Case α = 5◦

Looking at figure 8(b), which shows the aeroacoustic response at α = 5◦, one can notice
that there are only data points during resonance excitation and no data points outside
acoustic resonance excitation. This is because outside of acoustic resonance, no distinct
peaks are observed in the spectra of the acoustic pressure signals. Rockwell (1977) reported
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Figure 8. Aeroacoustic response of the rectangular cylinder at different angles of incidence α for increasing
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data points (i,ii,iii and iv) shown in (a) are taken from figure 7. (Dashed Strouhal line: from literature; solid
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that there are no distinct peaks in the velocity fluctuations spectrum for a square cylinder at
an angle of incidence α = 14◦, which means that there is no detectable contribution to the
vortex shedding process. However, for higher α values, the distinct peaks reappear again,
which was attributed to the flow reattachment. Since the rectangular cylinder employed in
our study has l/h = 2, this phenomenon occurs at a substantially lower α. Even though
this case shows no dominant peaks in the acoustic pressure spectra, the POD analysis
shown in figure 4 can identify organized turbulent fluctuations that form this shedding
mode. However, the flow reattachment destabilizes the mode and that is why this case
showed the least turbulent energy in the first two modes. Additionally, as can be seen in
figure 8(b), multiple acoustic modes are excited and they are coinciding with two main
Strouhal lines, corresponding to Stl′ = 0.6 and Stl′ = 1.21, respectively. It is intriguing to
observe that the transitions between the different shedding modes occur instantaneously
without any lock-out periods. The switch between the first and the third modes, as well as
the fifth and the third modes, happens abruptly. During acoustic resonance excitation, the
vortices exhibit spanwise correlation (Islam et al. 2020), and the vortex shedding process
is significantly enhanced, masking any minor or masked instabilities. This enhancement is
evident from the acoustic pressure spectra, which exhibits a sharp peak with a high-quality
factor. However, it is important to note that higher modes of flow instabilities are still
able to synchronize with higher acoustic transverse modes. This implies that even during
self-excited acoustic resonance, other shedding modes or instabilities are inherently
present and can engage in continuous energy exchange with the nearest acoustic resonant
mode. When comparing these values to the prior case of α = 0◦, the Strouhal line with
the lesser slope coincides with the steeper line for the α = 0◦ case, both aligning with the
ILEV periodicity for aspect ratios within the range of 3–5 as indicated in the existing
literature. Intriguingly, the steeper Strouhal line for α = 5◦ aligns with the values for
the second mode (n = 2) of the ILEV periodicity, which was previously observed in the
literature exclusively for aspect ratio values ranging from 6 to 9.

4.4. For α ≥ 10◦

Figure 8(c) corresponds to an incidence angle of α = 10◦ and displays a similar behaviour,
with two shedding modes where one dominates and matches the Strouhal number of
the natural vortex shedding, while the higher Strouhal periodicity emerges only when it
coincides with an acoustic duct mode frequency. From an incidence angle of α = 15◦
onwards, the higher Strouhal periodicity appears to diminish, leaving only the dominance
of the natural vortex shedding and its coupling with the first transverse acoustic mode at
the velocity of frequency coincidence. The trend of the maximum normalized acoustic
pressure demonstrates an increasing pattern, except for a drop observed at α = 75◦.
This suggests a significant change in the vortex formation and the wake dynamics at
this particular angle, which will be further discussed later in the paper. The flow-sound
interaction response provides clear evidence that for incidence angles α < 15◦, the
dominant shedding mode outside of acoustic resonance excitation is the natural vortex
shedding. However, there exists an instability or higher-order shedding mode that abruptly
couples with the third and the fifth acoustic transverse modes. The insights gleaned from
these findings necessitate the visualization of the flow dynamics under specific resonant
conditions to better understand the mechanism that governs their selection in response to
acoustic perturbations.

998 A51-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

76
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.767


A. Mohany, A. Shoukry and L. Pastur

5. Flow-sound phase-locked flow topology

To address the pivotal question posed in the previous section, a detailed investigation of the
vorticity field during self-excited acoustic resonance is carried out. The acoustic pressure
signal is used to trigger the laser to visualize the flow over one complete acoustic pressure
cycle dividing it into eight consecutive phases.

5.1. Third acoustic mode excitation at α = 0◦

Figure 9 depicts a phase-locked vorticity field with the streamlines superimposed during
the third acoustic mode excitation ( fa3) for α = 0◦. The Strouhal number that matches
this case is Stl′ = 0.6, as shown previously in figure 8. It is clear at the first glance that
the shedding pattern is completely different from the natural shedding pattern observed
outside of the resonant condition (figure 5a). At φ = 0◦, which corresponds to the zero
phase of the acoustic pressure cycle, there is one clear LE vortex within the upper and
lower shear layers both separated by a phase shift and convecting downstream. At the same
instant, there is a TE vortex already formed and partially rolled on the leeward face toward
the wake centreline. At φ = 45◦, the LE vortex from the upper shear layer impinged on
the TE combines with the TE vortex that was already formed from the previous phase. At
φ = 90◦, the combined vortex detaches and sheds in the wake forming a hyperbolic saddle
point. At φ = 135◦, a TE vortex is already forming and the vortex shed in the wake from
the upper shear layer has a completely different topology with enhanced vorticity content
and more circular topology. This is attributed to the flow-sound interaction occurring under
resonant conditions, during which there is an exchange of energy leading to heightened
acoustic pressure levels and an enhancement of flow correlation. The resonance conditions
effectively serve as a platform for energy transfer, thereby amplifying the acoustic pressure
levels and enhancing the flow correlation. At φ = 180◦, the LE vortex is formed within the
upper shear layer and the TE vortex grows significantly from the last phase. Afterward, the
symmetric alternation takes place until the acoustic pressure cycle is complete.

Now, let us focus on the formation phase of the LE and TE vortices within the lower
shear layer, which rotates in an anticlockwise direction. The TE vortex takes shape between
φ = 90◦ and φ = 135◦. Assuming it forms equidistant between these two phases, the
formation phase of the TE vortex can be approximated to be at φ ≈ 112.5◦. Regarding the
LE vortex, it materializes between φ = 315◦ and φ = 0◦. Adopting the same assumption,
the LE vortex formation phase approximates to φ ≈ 337.5◦. Consequently, a phase
difference of φ ≈ 135◦ can be observed between the LE and TE vortices. Figure 10 shows
one complete cycle of the acoustic pressure signal discretized from the time domain at
phase angles that match those shown in figure 9. It is clear that there are two distinct peaks
that are distant by φa ≈ 135◦. This phase shift exactly matches the phase shift between
the LE and TE vorticies calculated from the vorticity field. This is clear evidence that this
shedding pattern is an ILEV/TEVS shedding pattern with n = 1, which is controlled by the
acoustic resonance that excites and modulates the feedback between the TE and LE within
the acoustic pressure cycle. Indeed, it is modulated and masked by the natural shedding
mode. Interestingly, the ILEV mode has been documented in the literature to emerge from
a rectangular cylinder with an aspect ratio higher than 3, with a corresponding stepwise
increase in the Strouhal number as the aspect ratio increases. This signifies that in our case
with l/h = 2, the resonant condition imparts an added streamwise length effect on the
cylinder, thereby enabling the manifestation of the instability. This is clear evidence that
this shedding pattern is an ILEV/TEVS shedding pattern with n = 1, which is controlled
by the TE vortices. This is evident from φ = 90◦ at which there is a LE vortex within
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Figure 9. Phase-locked vorticity field in colour (positive vorticity in red, negative in blue) with the streamlines
superimposed over a complete acoustic pressure cycle during the acoustic excitation of the third transverse
mode fa3 for α = 0◦ at Stl′ = 0.6. The LE vortices are circled in green, the TE vortices in red, the ILEV/TEVS
in blue.
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Figure 10. Single complete acoustic pressure cycle discretized at an arbitrary phase ϕa during acoustic
excitation of the third transverse mode fa3 for α = 0◦ at Stl′ = 0.6. The pressure peaks, marked by dotted
vertical lines, are associated with a LE vortex formation for the first and a TE vortex formation for the second.
The phase difference between the two phenomena is�φa = 135◦. The small encapsulated diagram on the right
shows the acoustic feedback loop, with the complementary phase difference between the TE and the LE vortex
formations (�φa = 225◦).

the lower shear layer and no TE vortex is formed. Moving to φ = 180◦ the TE vortex is
formed because of the suction pressure caused by the detached vortex from the upper face
at the previous phase. So, the TE vortex formation is self-sustained and as it sheds after
impingement the pressure perturbation caused by this vortex stimulates the LE to shed
a new vortex. The acoustic resonance excites and modulates the feedback between the
leading and trailing edge. The reason why this mode is not detectable under non-resonant
conditions is because the feedback pressure perturbation between the two edges is weak
and its frequency is significantly lower than the natural shedding mode frequency. Indeed,
it is modulated and masked by the natural shedding mode. This suggests a coupling
of the acoustic mode with the pressure feedback loop that exists between the leading
and trailing edges. This coupling effectively ’locks’ the system, generating sound at its
resonant frequency and subsequently modulating the global instability. As a result, this
mechanism allows for the dominance of the shear layer instability. Such a finding aligns
with Nakamura et al. (1991) comment on Stokes & Welsh (1986) self-excited acoustic
resonance experiment and contradicts Mills et al. (2003) statement that the excited pattern
is a natural shedding mode.

5.2. Third acoustic mode excitation at α = 5◦

Figure 8(b) shows that the excitation of the third acoustic mode can occur at either Stl′ =
1.21 or 0.6.

5.2.1. Excitation at Stl′ = 1.21
Figure 11 illustrates the phase-locked vorticity field for α = 5◦ at the peak coincidence
between the Strouhal line Stl′ = 1.21 and the third transverse acoustic mode of the duct.
Evidently, a unilateral shedding street is present, devoid of any vortex alternation in the
wake. Steady separation bubbles form in the wake. In the upper shear layer (rotating
clockwise), the shear layer experiences complete separation, with no boundary layer
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Figure 11. Phase-locked vorticity field in colour (positive vorticity in red, negative in blue) with the
streamlines superimposed over a complete acoustic pressure cycle during acoustic excitation of the third
transverse mode fa3 for α = 5◦ at Stl′ = 1.21. The ILEV and LEVS are circled in green. Only phases
φ = 0, 90, 180, 270◦ of the cycle are shown for the sake of illustration.

originating from the windward upper edge, leading to vortex formation within the shear
layer. Subsequently, this vortex impinges just before the TE, prompting the formation
and shedding of a TE vortex into the wake, and the initiation of a new vortex at the
LE. In contrast, for the lower shear layer, vortices shed at the windward lower edge are
convected downstream, with the shear layer drifting in the same direction. Over a single
complete acoustic pressure cycle, two vortices are shed from both the upper and lower
windward edges. Notably, a hybrid mode is observed, termed ILEV/LEVS, that has not
been reported in the existing literature. However, the matching Strouhal number equates
to that for ILEV/TEVS at n = 2, which has been previously noted for elongated cylinders
(6 < l/h < 9) in the literature.

Figure 12 portrays a single complete acoustic pressure cycle, discretized at different
acoustic phase angles (φa), during the coincidence between the third acoustic mode ( fa3)
and the Strouhal line at Stl′ = 1.21 for α = 5◦. It is clear that the signal is a pure sinusoidal
wave, reinforcing the observation that the ILEV at the upper shear layer is not modulated
by a feedback loop between the discrete TE and LE vortices, but rather by the impinging
LE vortex on the TE with the absence of the formation of the TE vortices. Considering the
sinusoidal characteristic of the acoustic pressure signal, the shedding of LE vortices from
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Figure 12. Single complete acoustic pressure cycle discretized at an arbitrary phase φa during third mode
excitation fa3 for α = 5◦ at Stl′ = 1.21.

the lower shear layer is instigated and regulated by a global acoustic perturbation, thereby
producing a spatiotemporally symmetric wake.

Analogously, Nakamura & Nakashima (1986) conducted an experiment on a rectangular
cylinder with l/h = 5, both with and without a splitter plate in the wake, discovering that
the instability mechanism and the shedding frequency were not influenced by the splitter
plate positioned at the TE. In this instance, the small incidence angle introduces this
pseudo-isolation in the wake even though the cylinder is not symmetric in the cross-stream
direction. This provides compelling evidence that the instability observed here is indeed
an ILEV instability that is globally modulated by the acoustic perturbations under resonant
conditions.

5.2.2. Excitation at Stl′ = 0.6
Figure 13 depicts the phase-locked vorticity field at an incidence angle of α = 5◦, during
the coincidence between the Strouhal line at Stl′ = 0.6 and the third transverse acoustic
mode of the duct ( fa3). Despite the similarity in the coupling with the third acoustic
mode as in the case with α = 0◦, the characteristics of the flow and the mechanism of
vortex shedding differ substantially. Evidently, the vortex shedding mechanism of the
upper and lower shear layers significantly differs. Looking at the upper shear layer, the
ILEV/TEVS mechanism is present. However, the boundary layer is more attached to the
windward lateral face compared with the α = 0◦ case. This is due to the incidence angle,
which stimulates the shear layer to attach to the windward lateral face. Furthermore, the
LE vortex exhibits less vorticity content and is smaller in comparison with the α = 0◦
case. Conversely, the shedding mechanism of the lower shear layer is primarily LEVS,
characterized by a vortex forming at the windward lower edge and convecting within the
shear layer. Interestingly, the vortex impinges on the leeward lower edge (the TE), but this
interaction does not disrupt the vortex circulation. Instead, it modifies the vortex topology
into a more elliptical shape. Nevertheless, the vortex regains its circular topology in the
wake due to the coupling with the acoustic resonance.

Figure 14 displays one complete cycle of the acoustic pressure discretized from the
time signal at various acoustic phase angles. A cycle trend very similar to the case of
α = 0◦ is evident, with a phase shift between the two peaks approximately equaling φa ≈
135◦, matching the TE and LE vortices’ phasing from the phase-locked vorticity field.
Interestingly, despite the shedding mechanism not being symmetric between the upper
and lower shear layers, the ILEV/TEVS still dominates the frequency response, and the
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Figure 13. Phase-locked vorticity field in colour (positive vorticity in red, negative in blue) with the
streamlines superimposed over a complete acoustic pressure cycle during acoustic third mode excitation fa3
for α = 5◦ at Stl′ = 0.6. The highlights of the cycle are circled: LE vortex and vortex shedding (LEVS) in
green, TE vortex in red, ILEV/TEVS in blue.
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Figure 14. Single complete acoustic pressure cycle discretized at an arbitrary phase φa during third mode
excitation fa3 for α = 5◦ at Stl′ = 0.6. The pressure peaks, marked by dotted vertical lines, are associated with
a LE vortex formation for the first and a TE vortex formation for the second. The phase difference between the
two phenomena is �φa = 135◦.

acoustic resonance modulates both shear layers’ mechanisms to reproduce an organized
vortex shedding street in the wake.

5.2.3. Conclusion on the resonant case at α = 5◦
In the case where α = 5◦, the interaction with the third acoustic mode occurred at
two distinct flow velocities, corresponding to the coincidence of two separate Strouhal
lines with the acoustic mode. Nonetheless, the mechanisms of excitation in both cases
differ markedly, as evident from the flow topology and the acoustic pressure signal.
These observations highlight the principle that although acoustic perturbation serves
as an external stimulus, the flow self-selects and sustains its instability, contingent
upon favourable frequency alignments with the inherent flow instability. Comparing
the flow topology for the cases of α = 0◦ and α = 5◦ during resonant conditions and
before resonant conditions in figure 5, the flow topology is substantially different. This
emphasizes the fact that, at low incidence angle during resonant conditions, the flow
self-selects an inherent flow instability that can be masked by the coherent turbulent
structures and the organized natural vortex shedding.

5.3. For α ≥ 10◦

Figure 15 shows the phase-locked vorticity field corresponding to an incidence angle
of α = 10◦, aligning with a Strouhal number of Stl′ = 0.29. This corresponds to the
lower-slope Strouhal line in figure 8(c). Capturing the phase-locked flow field for the
higher-slope line coincidence was not achievable due to the narrow lock-in range and the
weak excitation. The Strouhal number for this case aligns with the natural vortex shedding
range, evident from the vorticity field displaying natural shedding in the wake. The upper
shear layer is fully attached to the windward lateral face and sheds from the TE, while
the shear layer separates entirely from the windward lower edge, forming a vortex and a
recirculation zone bounded by the leeward lateral face. This shear layer interaction results
in a LEVS/TEVS mode with the acoustic mode modulating the shedding frequency and
locking it to the acoustic mode frequency over a range of flow velocities. Intriguingly, the
phase difference in vortex formation between the upper and lower shear layers is virtually
nil.
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Figure 15. Phase-locked vorticity field in colour (positive vorticity in red, negative in blue) with the
streamlines superimposed over a complete acoustic pressure cycle during acoustic third mode excitation fa3
for α = 10◦ at Stl′ = 0.29.

Figure 16 illustrates the case where α = 15◦. Here, the shear layer is fully attached to
the windward lateral face, with vortices being shed from the leeward upper edge. The
shear layer extends spatially downstream, with the TE vortex forming at a certain distance
from the leeward face. This configuration results from the incidence angle, which, as with
the previous case, segregates the upper and lower shear layers and shifts the formation of
a hyperbolic stagnation point further downstream. However, in this case (α = 15◦), the
vortex formation is out of phase. This is attributed to the higher incidence angle, which
allows for a longer vortex formation length for the lower shear layer, enabling it to interact
with the forming upper shear layer vortex. This interaction induces the creation of a saddle
point in an out-of-phase manner.

For the case where α = 75◦, the flow topology within the wake varies significantly
compared with the previously discussed cases of α = 10◦ and α = 15◦. As depicted in
figure 17, the flow impacts the windward lateral face for this scenario, separating fully from
the windward upper edge and rolling into the wake to form a large-scale vortex. However,
the flow partially separates from the windward lower edge, with the vortex forming at the
leeward lower edge (the TE), as evident from figure 17(a). Increasing the incidence angle
to α = 90◦, the wake becomes spatially symmetric in the cross and streamwise directions.
The two shear layers experience significant flapping in the streamwise direction. The LE
separation induces the formation of vortical structures. Due to the large suction pressure in
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Figure 16. Phase-locked vorticity field in colour (positive vorticity in red, negative in blue) with the
streamlines superimposed over a complete acoustic pressure cycle during acoustic first mode excitation fa1
for α = 15◦ at Stl′ = 0.26.

the wake, the shear layer is diverted toward the upper and lower faces and the large-scale
vortex forms at the cylinder TE and starts growing until its centre passes through the wake
centreline at which it detaches from the shear layer and shedding alters its direction. The
larger vortex cores are due to the larger crosswise cylinder length, which allows the shear
layer to entrain more flow, inducing a higher suction pressure.

6. Discussion and conclusion

The results presented in the previous sections are strengthened in § 6.2 using a hybrid
model introduced in § 6.1 that combines numerical and experimental parameters to unravel
the acoustic sources and aeroacoustic energy transfer. A conclusive section of the salient
results of this study is given in § 6.3.

6.1. Hybrid model
Acoustic sources and the transfer of aeroacoustic energy between the fluid flow and the
resultant acoustic field can be identified using a hybrid model of aerodynamic sound that
combines numerical and experimental parameters. The model is based on Howe’s1980
integral formulation and is detailed in Howe (1997); Mohany et al. (2014); Alziadeh &
Mohany (2023).
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Figure 17. Phase-locked vorticity field in colour (positive vorticity in red, negative in blue) with the
streamlines superimposed over a complete acoustic pressure cycle during acoustic first mode excitation fa1
for α = 75◦ at Stl′ = 0.1.

The sound generated as a result of fluid flow obeys

∂2ρ

∂t2
− c2

0∇2ρ = ∂2

∂xi∂xj

(
ρvivj + pij − c2

0ρδij

)
, (6.1)

where vi and vj are the components of the fluid velocity in the i and j directions,
respectively, pij represents the perturbed stress tensor of the fluid and δij is the Kronecker
delta function, which equals 1 when i = j and 0 otherwise. The term ∂2ρ/∂t2 describes
the temporal acceleration of density fluctuations and the term c2

0∇2ρ reflects the spatial
variation of these density fluctuations. The density ρ inherits fluctuations that are
dependent on the spatial turbulent stress tensor. The challenge of deriving definitive
solutions for (6.1) is anticipated, given that this formulation represents an integral variation
of the Navier–Stokes equation. The source term within this equation embodies several
aspects of fluid dynamics and acoustic interactions. It encompasses not only the generation
of sound but also accounts for self-modulation brought about by acoustic nonlinearity,
convective transport, refractive shifts related to variations in sound speed and attenuation
stemming from thermal and viscous effects. Howe’s 1997 seminal work proposed that the
sound generation resulting from the fluctuating fluid forces driven by a vorticity field can
be effectively modelled as a dipole source. In a scenario with an incompressible flow field,
characterized by vorticity ω, acoustic particle velocity ua, the acoustic pressure p, which
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is radiated from a localized dipole source, obeys

∂2p
∂2t

− ∇2p = c0ρ0∇ · (ω × ua) . (6.2)

The acoustic power Π (J m−2) is defined as

Π = −ρ0

∫
ω · (U × ua) dV, (6.3)

where U is the velocity flow field. The algorithm is designed to calculate the total acoustic
energy distribution in proximity to the rectangular cylinder during self-excited acoustic
resonance by integrating the instantaneous acoustic power over a complete acoustic
cycle. This methodology assists in pinpointing the regions where large-scale vortices
act as acoustic sources and the areas where they serve as sinks. In order to carry out
this method, an experimental measurement of the acoustic pressure during resonance is
required to ascertain the acoustic pressure (Prms). Phase-locked PIV is conducted at eight
distinct phases of the acoustic pressure cycle to define the two-dimensional velocity field.
Subsequently, the vorticity field (ω) is computed using the eight-point circulation method
suggested by Raffel et al. (2018). Next, a numerical simulation is carried out to derive
the two-dimensional spatial distribution of the acoustic particle velocity at the mid-plane,
which aligns with the plane where the PIV measurements are conducted. The solution
to the Helmholtz equation, calculated through a finite element analysis, provides the
distribution of the normalized acoustic pressure at the selected plane for various acoustic
transverse modes. The Helmholtz equation for sound pressure in a moving fluid is given
as

∇2ϕ + k2ϕ = 0, (6.4)

where ∇2 is the Laplacian operator and k = 2πfa/c is the wavenumber. The acoustic
pressure can be modelled as a simple harmonic wave as follows:

p(x, y, z, t) = Re
[
ϕ(x, y, z)ei(2πfa)t

]
. (6.5)

Equations (6.4) and (6.5) are solved over the two-dimensional domain with a 30l upstream
and downstream distance to employ the zero acoustic pressure boundary condition. The
domain is discretized with a quadrilateral mesh. Euler’s equation is then used to derive the
acoustic particle velocity distribution from the acoustic pressure distribution

ρ0
∂ua

∂t
= −∇p. (6.6)

To obtain the spatial field of the acoustic particle velocity Ua at the frequency of excitation,
(6.6) is integrated, giving

Ua(x, y, z) = Prms · ∇ϕ(x, y, z)
2π · ρ0 · fa

, (6.7)

where Prms is the acoustic pressure (r.m.s.) obtained experimentally and fa evaluated for
the first, third and fifth acoustic mode. As a consequence of (6.6), the acoustic particle
velocity leads the acoustic pressure by 90◦ during acoustic resonance (Mohany et al. 2014;
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Figure 18. Scheme of the hybrid experimental/numerical methodology implemented to compute the acoustic
power production.

Alziadeh & Mohany 2023). Thus, the acoustic particle velocity vector as a function of
time ua(x, y, z, t) is calculated over the acoustic pressure cycle as

ua(x, y, z, t) = Re[Ua(x, y, z) exp (i(2πfat + π/2))]. (6.8)

Subsequently, all requisite parameters are input into (6.3) to determine the instantaneous
acoustic power, denoted as Π(x, y, t), at the mid-plane. This is where the velocity field
is ascertained using PIV measurements. The net acoustic energy is then calculated by
integrating the instantaneous acoustic power over a complete acoustic cycle. Figure 18
summarizes the methodology used to compute the acoustic power production.

6.2. Discussion
Figure 19(a,c,e) show the net normalized acoustic power distribution in the flow field
for α = 0, 5, 10◦; respectively. For α = 0, alternating acoustic sources (red) and sinks
(blue) are clearly present within the span of the cylinder, associated with the LE vortex
alternating between being a source and a sink as the acoustic particle velocity is alternating
(figure 19a). This is strong evidence that the LE vortex fully forms at the LE and, as it
convects downstream to the TE, contributes to the acoustic field. A strong acoustic sink is
present just downstream of the cylinder. This is attributed to the formation of TE vorticies
as the vortex formation process absorbs energy from the acoustic field. Such findings
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Figure 19. Net normalized acoustic energy Πh/U3∞ distribution in the flow field (a,c,e) and y-integrated
downstream distribution of energy transfer per cycle (b,d, f ), during the third acoustic mode excitation fa3 for
(a,b) α = 0◦ at Stl′ = 0.6, (c,d) for α = 5◦ at Stl′ = 1.21, (e, f ) for α = 10◦ at Stl′ = 0.29. Red means sources
and blue sinks of the acoustic power, in the colour map of (a,c,d).

elucidate the synchronization between the LE vorticies, TE vorticies and the acoustic field
to sustain the ILEV/TEVS instability.

When α = 5◦ at Stl′ = 1.21, figure 19(c) shows that local alternating sources and sinks
are present in the upper and lower shear layers. This outlines the isolation between the
upper and lower shear layers, since there is no spatially extended source or sink in the
transverse direction. Interestingly, a significant acoustic source is present at the upper
TE of the cylinder. Looking back at figure 11, it is obvious that this point is a shear
layer impingement point, which generates sound and acts as an acoustic source over
the pressure cycle. Moreover, figure 19(d) depicts two sinusoidal net acoustic power
alternations compared with only one observed in the previous case. This is attributed to
the different mode number of the ILEVS/TEVS shedding mode associated with each case.
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At α = 10◦, the net acoustic power of the natural shedding mode is negative in the
near wake due to the formation of large-scale vortices. However, there is no net power
production or absorption along the span of the cylinder as evident from figure 19( f ). This is
due to the absence of LE vortices, which is evident from figure 15. So, the vortex formation
and convection are mainly present in the cylinder wake in this case.

This hybrid analysis confirms the complex interplay between flow and sound under
resonant conditions, and illuminates the self-selection mechanism of the inherent flow
instabilities reported in the previous section.

6.3. Conclusion
Flow visualization methodologies have clearly demonstrated that the wake structure of
a rectangular cylinder with an aspect ratio of 2 is strongly influenced by the incidence
angle under non-resonant conditions. Furthermore, under acoustic perturbations triggered
during resonance excitation, the inherent shear layer instability with a Stl′ = 0.6n can
couple with an acoustic transverse mode given a frequency coincidence. However, this
instability is completely undetectable under non-resonant conditions.

In the case of an incidence angle of α = 0◦, the ILEV/TEVS instability mode with
n = 1 arises when its frequency synchronizes with the third transverse acoustic mode.
This ILEV/TEVS instability mode was reported in the literature only when the aspect
ratio of the cylinder was much larger than 3 (i.e. AR > 3) under non-resonant conditions.
For an incidence angle of α = 5◦, the ILEV/TEVS instabilities of n = 1 and n = 2 are
observed under resonant conditions at different flow velocities. These different velocities
correspond to the coincidence of two separate Strouhal lines with the third acoustic mode.
The ILEV/TEVS instability of n = 2 is reported in the literature for 6 < l/h < 9 under
non-resonant conditions. Such observations underscore that the combined effect of the
angle of incidence and self-excited acoustic resonance can exert a substantial influence
on the effective streamwise length of the cylinder. Beyond α = 5◦, only natural vortex
shedding, characterized by a hybrid LEVS/TEVS mode, is observed under both resonant
and non-resonant conditions. However, during resonance, an increase in the correlation
and vortex strength is noted. The work presented in this paper shows that the excited
resonant mode that was reported in the literature by Stokes & Welsh (1986) is in fact due
to a coupling with the inherent ‘ILEV’ instability as reported by Nakamura et al. (1991).
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