GALACTIC DISTRIBUTION OF SYMBIOTIC STARS

G. A. MEDINA TANCO AND J. E. STEINER
Instituto Astronomico e Geofísico - USP
Av. Miguel Stéfano 4200, CEP 04301, Sao Paulo, SP, Brazil

Statistical distances to the known galactic symbiotic stars are derived from the calibration of the absolute K magnitude of galactic bulge symbiotic giants versus spectral type. The resulting space distributions of S, D and yellow symbiotic stars are studied.

The spectral types of bulge symbiotic giants calculated by [1] from absorption bands in the near infrared are combined with K magnitudes from [2] to obtain a spectral-type-K-magnitude calibration for galactic bulge symbiotics ($K \approx -0.175 \times [SpT] - 5.82$). Extrapolating this relation outside the bulge, one can estimate the spatial distribution and total number of symbiotic stars in the galaxy. The sample of symbiotic stars seems complete up to $K \approx 5$ (r < 2.9 kpc). This implies a surface density of $\approx 0.64 * /kpc^2$ in the solar vicinity, from which the surface density of symbiotic stars in the galaxy: $N(r) = 13.5 \times e^{-r/2.78} kpc^{-2}$. Hence, the total number of symbiotic stars in the Galaxy is: $\approx \int N(r)2\pi r dr \simeq 650$. Other results are: (1) most of the symbiotics are located inside a thick disk of $\approx r = 8 - 10$ kpc and $\Delta z/2 = 1$ kpc, where L and T_{eff} are \approx constant; (2) above z = 1 kpc the scale height decreases strongly. T_{eff} increases also at higher z, which points to a different population (possibly of lower metalicity) and; (3) there is a sharp difference between the inner and outer regions of the solar circle in both, L, T_{eff} and probably n, which can be related with the observed relative abundance of oxygen and carbon giant stars.

References

- Medina Tanco, G. A. and Steiner, J. E. (1994), Spectral Classification and HR Diagram of Symbiotic Stars, Astron. J. submitted
- 2. Kenyon, S. J. (1986), The Symbiotic Stars. Cambridge Univ. Press, Cambridge.