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Abstract
Themicrowave energy-harvesting (MEH) and microwave power transfer (MPT) technologies
have become the most emerging areas of research nowadays. The microwave rectifier circuit
is the bottleneck of both the MEH and MPT systems. The efficiency of the system depends on
the power conversion efficiency (PCE) of the rectifier. Due to the recent advancement of the
fifth-generation communication system, it is desirable to propose an efficient rectifier oper-
ating at sub-6 GHz 5G bands. A dual-band rectifier circuit is designed and demonstrated for
MEH/MPT purposes, specifically at sub-6 GHz 5G frequency bands. The dual-band match-
ing is achieved by using a stepped impedance transmission line. The rectifier covers N78
(3.3–3.6 GHz) and N79 (4.8–5.0 GHz) bands. Peak PCE of 67.6% @ 3.5 GHz and 56.8% @
4.9 GHz are achieved. For validation purpose, the rectifier is fabricated and characterized and
measured results show good agreement with simulated results.

Introduction

With the invention of rectenna (rectifying antenna), microwave energy-harvesting (MEH) and
microwave power transfer (MPT) technologies have received wide notice in the research and
industry. Rectennas give MEH and MPT systems flexibility in terms of physical wiring, bat-
tery charging, and periodic replacement. Such systems have found applications in wireless
charging of mobile phones or any electric/electronic equipment, radio-frequency (RF) iden-
tification (RFID) tags, Internet of Things, implantable/wearable biomedical devices, wireless
sensors, and devices in the smart home [1–3]. Wi-Fi, GSM, LTE, and third/fourth/fifth genera-
tion (3G/4G/5G) are somewireless communication systems that radiate electromagnetic power
in the environment. Radiation from these systems may serve as a source of electromagnetic
energy that may harvest using an appropriate rectenna. Rectifying antenna A rectenna consists
of an antenna, and rectifier, through a matching circuit. The rectifier is the crucial component
of the rectenna for converting microwave energy into electrical direct current (DC). Therefore,
several recent studies have been conducted to introduce efficient rectifier circuits [4–8]. The
popular rectifier topologies are series diode [9], shunt diode [10], voltage doubler (VD) [11],
and Greinacher full-wave rectifiers [12]. VD topology doubles the output voltage and improves
the power handling capability for low power requirements [13]. The matching circuit is very
essential for maximum power transfer from the antenna to the rectifier. To know the input
impedance of the rectifier is necessary for proper matching network (MN) design. The oper-
ating frequency and input power level affect the input impedance of the rectifier. Hence, it is
very difficult to find impedance matching at two or more frequencies simultaneously [14–16].
A dual-band rectifier (DBR) has the potential to utilize two bands simultaneously which can
improve the output power levels. In recent years, many techniques have been adopted to design
a DBR. In paper [17], a rectifier using an impedance matching network (IMN), having three
lumped inductors and a radial stub, was designed to work at 0.915 and 2.45 GHz, simultane-
ously. A dual-bandmatching was realized using cascaded L-type and π-type networks to design
a DBR circuit working at 0.915 and 2.45 GHz bands [18]. In paper [19], two-branch IMN was
utilized to match within the 0.9 GHz UHF and 2.45 GHz ISM bands using a T-type MN. In
paper [20], a DBR circuit consisting of a band-stop filter (BSF), a short-ended quarter-wave
transmission line (QWTL) in series with a shunt diode, and a short-ended quarter-wave stub
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Table 1. Sub-6 GHz fifth-generation bands

Band Nation Bandwidth

N78 Europe 3.4−3.8 GHz

N78 Korea 3.42−3.7 GHz

N78, N79 China 3.3−3.6 & 4.8−5 GHz

N78 India 3.3−3.6 GHz

was proposed. Here, BSF andQWTLwere applied to block the sec-
ond harmonic at 2.45 and 5.8 GHz, respectively. A short-ended
quarter-wave stub was applied for impedance tuning at the first
band. In papers [21, 22], dual-band IMN at 2.45 and 5.8 GHz has
been designed by tuning the characteristic impedance (width) of
a quarter-wave short-ended stub. A dual-band matching at 0.915
and 2.45 GHz was realized using a stepped impedance stub (SIS)
[23]. The uniform width stub was cut out to form a SIS to find
matching at two resonance bands to design a DBR. In paper [24],
a DBR was designed using lumped component-based modified
T-section IMN. The DBRs above targeted GSM 0.9 GHz, GSM
1.8 GHz, ISM 2.45 GHz, and ISM 5.8 GHz bands. However, the
commercialization of fifth-generation (5G) wireless communica-
tion has gained attention to the design of a rectifier operating at
sub-6 GHz 5G bands. Some of the DBRs are reported at one of the
5G bands. DBR was reported to operate at 2.45 GHz Wi-Fi and
3.5 GHz 5G using composite left/right-handed-based IMN [25],
short-ended stub IMN [26], and two-branch IMN [27]. In [28–30],
DBRs were proposed to work at 3.5 and 5.8 GHz bands. In paper
[31], a rectifier has been designed using π-type dual-band IMN
with a dual-band harmonic termination network (HTN). In paper
[32], a DBR using two-branch IMN was utilized to work at 2.45
and 5 GHz. In paper [33], a three-stage Villard DBR was designed
to operate at 2.4 and 5.2 GHz.

All of these rectifiers have relatively low efficiencies. Also, the
DBR reported in papers [25–33] does not focus on dual 5G bands.
In paper [34], a Greinacher full-wave rectifier circuit was devel-
oped to operate at dual 5G bands, and at 12 dBm input, it achieved
22.7% and 30.7% power conversion efficiency (PCE) at 3.5 and
5.0 GHz, respectively. In paper [35], a transparent and flexible
dual-band 5G rectifier was reported, but the achieved PCE at
13 dBm was 54.67% and 7% at N78 and N79 bands, respec-
tively, which is very poor, especially at the N79 band. Hence, it is
desirable to develop an efficient and compact rectifier circuit to
harvest RF energy of sub-6 GHz dual 5G bands. The 5G bands
adopted in some nations are displayed in Table 1 [36] which is
self-explanatory.

The short-ended stub [20–22], stepped impedance short-
ended stub [23], composite right/left-handed structure [25],
half-wavelength transmission line (TL) [30], π-type dual-band
IMN with dual-band HTN [31], cross-branch dual-stub [34], and
combination of open and short-ended stub [37] were utilized in
some of the existing designs to achieve dual-band matching. The
proposed design uses a novel stepped impedance TL technique to
satisfy thematching at two sub-6 GHz fifth-generation (5G) bands.
Hence, the novelty of the proposed dual-band 5G rectifier is in
terms of (a) dual 5G bands with better performance compared to
existing ones and (b) a novel dual-band matching technique using
a stepped impedance TL.

This paper demonstrates an efficient DBR circuit covering
3.3–3.7 GHz (N 78 band adopted by India, China, Europe, and
Korea) and 4.8–5.0 GHz bands (N 79 band adopted by China).

The power/frequency-weighted efficiency (PFE) has been derived
to compare the overall circuit performance including frequency of
operation and operating power level. The proposed work exhibits
the highest PFE. The rest of this paper is arranged as follows.
The “Dual-band rectifier” discusses the geometric description and
simulated results of the proposed DBR circuit. The “Fabrication,
measurement, and comparison” section discusses the fabrication
and characterization of the rectifier. Finally, the work is concluded
in the “Conclusion” section.

Dual-band rectifier

The design of a DBR is auspicious to operate at sub-6 GHz 5G
bands. For this, a dual-band MN is needed. It is very challeng-
ing to design anMN satisfying two different operating frequencies
because of the diode’s nonlinear nature. One of the methods is
to combine two rectifiers operating at two different operating
frequencies. The second method is to utilize a single dual-band
MN. The proposed design uses a novel stepped impedance TL
to satisfy the matching at two sub-6 GHz fifth-generation (5G)
bands.

Geometrical description

Figure 1(a) and (b) displays the schematic and layout view of the
proposed DBR circuit. The SOT-23 package of HSMS-2862 (VD
topology) is used in the proposed rectifier. The substrate used
in this design is RO4003 (dielectric constant = 3.55, loss tan-
gent = 0.0027, and thickness = 1.524 mm). The MN is based on
stepped impedance TL segments of different lengths. For simpli-
fication, the principle of dual-band impedance transformation is
analyzed using lossless TL theory [38]. The impedance Za across
the TL, TL1 can be calculated using (1):

Za@fi = Z0TL1
ZL@fi + jZ0TL1 tan𝛽fiLTL1
Z0TL1 + jZL@fi tan𝛽fiLTL1

(1)

Here, “i” denotes 1 and 2 of the DBR’s first and second bands, f 1
and f 2, respectively. The impedance Zb, Zc, and Zin across the TL2,
TL3, and TL4, respectively, can be calculated using (2), (3), and (4),
respectively:

Zb@fi = Z0TL2
Za@fi + jZ0TL2 tan𝛽fiLTL2
Z0TL2 + jZa@fi tan𝛽fiLTL2

(2)

Zc@fi = Z0TL3
Zb@fi + jZ0TL3 tan𝛽fiLTL3
Z0TL3 + jZb@fi tan𝛽fiLTL3

(3)

Zin@fi = Z0TL4
Zc@fi + jZ0TL4 tan𝛽fiLTL4
Z0TL4 + jZc@fi tan𝛽fiLTL4

(4)

For matching at two frequencies, f 1 and f 2, the real and imagi-
nary parts of the input impedance Zinshould follow the criteria of
(5) and (6).

Re (Zin@f1) ≈ Re (Zin@f2) ≈ 50 Ω (5)

Im (Zin@f1) ≈ Im (Zin@f2) ≈ 0 Ω (6)
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Figure 1. Image of dual-band rectifier: (a) Schematic
view and (b) Layout view.

Figure 2. Input impedance of rectifier (a) without MN (ZL) and (b) with an MN (Zin).

Thematching at two frequency bands is achieved by tuning the
TL parameters. The 3.5 and 4.9 GHz dual sub-6 GHz 5G bands are
selected as f 1 and f 2, respectively.

Figure 2(a) shows the input impedance of the rectifier cir-
cuit without using the MN are ZL@f 1 = 157 + j8 Ω and
ZL@f 2 = 20 – j61 Ω. After introducing a MN using the source
pulling technique, Fig. 2(b) shows the input impedance of the
rectifier becomes, Zin@3.53 GHz = 52-j1 Ω and Zin@4.89 GHz = 45 –
j9 Ω which satisfies (5) and (6). The optimal dimensions of the
TLs (in mm) are; LTL1 = 4.5, LTL2 = 4.2, LTL3 = 5, LTL4 = 3.8,
LTL5 = 6, LTL6 = 6.4, LTL7 = 3.8,WTL1 = 1,WTL2 = 8.6,WTL3 = 7,
WTL4 = 3.6,WTL5 = WTL6 = 1,WTL7 = 1.1, radius of fan-shaped
stub r = 9 and angle 𝜃 = 60o.

Simulated results and discussion

The rectifier circuit is simulated using Keysight advanced design
system. At different values of input power levels, the simulated S11
vs. frequency is depicted in Fig. 3(a). The result shows that the cir-
cuit is well-matched at both 3.5 GHz and 4.9 GHz 5G bands. The
PCE in the desired band is simulated for different load values and
input power. The PCE vs. Pin at 3.5 and 4.9 GHz is displayed in
Fig. 3(b). The maximum PCE is 70.6% @6 dBm and 62.9% @ 5
dBm at 3.5 and 4.9 GHz, respectively, for a 3 kΩ load. The sim-
ulated PCE is greater than 50% for the input power range from
−2.5 to 12.4 and −0.8 to 8.3 dBm for 3.5 and 4.9 GHz, respec-
tively. PCE vs. load is depicted in Fig. 3(c) at 0, 3, and 6 dBm input
power levels at both frequencies. With the increase of load value,
PCE starts increasing and reached its maximum value, and then

starts decreasing. Hence, a 3-kΩ resistor is selected as the opti-
mum load to better perform at an input power level between −10
and 10 dBm.

Figure 3(d) shows the PCE vs. frequency graph. The maxi-
mum simulated PCE at two different bands is 72.8% and 67.2%
at 3.55 and 4.94 GHz at 6 dBm. PCE is higher than 60%, from
3.35 to 3.83 and 4.83 to 5.09 GHz. At a 3 dBm power level, the
PCE is higher than 55% from 3.3 to 3.74 and 4.8 to 5.0 GHz.
PCE is 61.4% and 53.5% at 3.45 and 4.8 GHz, respectively, at 0
dBm. The Vout vs. frequency at −3, 0, 3, and 6 dBm input power
levels are displayed in Fig. 3(e). At 3 dBm, the Vout is greater
than 1.5 V for both bands from 3.1 to 3.84 and 4.6 to 5.07 GHz.
Also, the Vout is more than 2.5 V from 3.28 to 3.86 and 4.76
to 5.13 GHz.

Fabrication, measurement, and comparison

For the endorsement of the proposed 5G rectifier, an experimental
setup is depicted in Fig. 4(a). Figure 4(b) describes the fabricated
prototype of the proposed DBR.The RF signal generator was used
for input power feeding to the rectifier circuit, and a digital meter
was used for output voltage measurement. The output DC voltage
was noted, and the PCE was calculated using (7).

PCE = V2
out

RL * Pin
× 100% (7)

Figure 5(a) shows the measured S11 (bottom left negative
y-axis), Vout (right y-axis), and PCE (top left positive y-axis) vs.
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Figure 3. Simulated performance: (a) S11 vs. frequency, (b) PCE vs. input power (Pin), (c) PCE vs. load (RL). (d) PCE vs. frequency, and (e) Vout vs. frequency.

frequency, respectively at 6 dBm input power. Load resistance
of 3 kΩ and input power of 0 dBm are applied to the rectifier.
The measured value of |S11| is −28.9 and −16.2 dB at 3.7 and
5.0 GHz respectively. The maximum recorded DC output volt-
age is 2.96 and 2.77 V at 3.7 and 5.05 GHz, respectively. The
PCE is more than 50% for 3.25–3.96 and 4.81−5.15 GHz bands.
Figure 5(b) and (c) show the Vout and PCE vs. Pin, respectively.
The measured DC output voltages recorded are 1.32 V @ 0 dBm
and 2.53 V @ 5 dBm at 3.5 GHz, respectively. At 4.9 GHz, the
output voltages are 1.26 V @ 0 dBm and 2.31 V @ 5 dBm. At
3.5 GHz, the measured PCE is 58.1% @ 0 dBm, 67.3% @ 5 dBm,
and the maximum PCE reached 67.6% @ 6 dBm input power.

The measured value of PCE at 4.9 GHz is 52.8% at 0 dBm, 56.3%
at 5 dBm, and the peak PCE reached 56.8% at 3.5 dBm input
power. Measured results show good agreement with the simulated
ones. The little difference between simulated and measured per-
formance may be due to diode model inaccuracies and fabrication
tolerance.

Table 2 describes the comparison of the 5G DBR perfor-
mance with some existing works. The rectifier achieved 58.1% and
52.8% PCE at 0 dBm for operating frequencies 3.5 and 4.9 GHz,
respectively. The PCE at 0 dBm of existing rectifiers presented in
papers [24, 26, 27, 39] looks better because of the lower operating
frequency (band). Because of the skin effect and parasitic effects,
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Figure 4. (a) Measurement setup, (b) rectifier prototype.
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Figure 5. Measured results of (a) S11, PCE, Vout vs. frequency, (b) Vout, vs. Pin, (c) PCE vs. Pin.

the loss increases at a high operating frequency.Therefore, to com-
pare DBRs operating at different bands, a frequency-weighted
efficiency (FE) can be calculated using (8) [39].The PCE presented
in papers [31, 39] looks better because of the higher input power
level. As the PCE of the rectifier circuit is also influenced by input

power level, a new PFE is presented in (9) to compare the overall
circuit performance.

FE =
n

∑
i=1

[𝜂i f 0.25
i ] (8)
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Table 2. Comparison with existing works

Reference/Year Frequency (GHz) Diode and topology Pin(dBm) PCE(%) FE PFE

[24]/2023 1.4/2.45 SMS7630 in VD 0 65/57 141.65 141.65

[39]/2023 1.81/2.35 HSMS2860 in Class F−1 13 76.3/76.2 182.85 135.51

[36]/2023 3.5 HSMS2862 in VD 0 59 80.7 80.7

[25]/2020 2.5/3.6 SMS7630 in VD 2 59/41 130.66 124.82

[26]/2018 2.4/3.5 SMS7630 in Series 0 59/56 150.03 150.03

[27]/2019 2.45/3.5 HSMS 2852 in Greinacher 0 60/53 147.56 147.56

[28]/2020 3.5/5.8 SMS7630 in series 0 44/29 105.19 105.19

[29]/2021 3.5/5.8 HSMS2860 in Series 0 45.6/33 113.58 113.58

[30]/2022 3.5/5.8 HSMS2860 in Series 0 51.8/39.7 131.37 131.37

[37]/2022 2.6/3.5 SMS7630 in Series −5 53/53 139.79 156.86

[31]/2023 2.32/3.48 SMS7621 in Class F−1 5 64.5/64.2 167.29 149.11

[32]/2019 2.45/5.0 HSMS286B in VD 0 30.6/36.7 93.01 93.01

[33]/2023 2.4/5.2 SMS7630 in 3-stage Villard 0 69.1/35.1 139.01 139.01

[34]/2023 3.5/5.0 HSMS286C in Greinacher 12 22.7/30.7 76.96 58.38

[35]/2022 3.5/5.0 HSMS286C in VD 13 54.7/7 85.26 63.19

Proposed 3.5/4.9 HSMS2860 in VD 0 58.1/52.8 158.02 158.02

5 67.3/56.3 175.81 155.98

FE: frequency-weighted efficiency FE. PFE: power/frequency-weighted efficiency.

PFE = 1
Pin0.1 × FE (9)

where n is the number of bands, fi is the ith frequency band, 𝜂i is
the PCE at ith frequency band, and Pin is input power level in mW.

The power factor of input power in the denominator of (9) is
decided based on the proposed circuit FOM at two different power
levels (0 and 5 dBm). The circuit performance is found approxi-
mately equal using this overall PFE (i.e., approximately 158 and 156
at 0 and 5 dBm, respectively).

Conclusion

A rectifier to operate at dual sub-6 GHz 5G band has been
designed. An HSMS2862 in the SOT-23 package (VD configu-
ration) has been employed for RF to DC conversion. A stepped
impedance TL-based MN has been utilized to transform the rec-
tifier input impedance close to 50 Ω at both operating bands. The
rectifier efficiently covers the 3.5 GHz (N78 band) and 4.9 GHz
(N79 band) bands of fifth-generation wireless communication. A
maximumPCE of 67.6% at 3.5 GHz and 56.8% at 4.9 GHz has been
achieved.These characteristicsmake this rectifier a good candidate
for MEH and MPT systems. Future work includes improving the
sensitivity of the rectifier and a dual-band 5G antenna design to
implement a rectenna circuit.
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