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IDEAL POINT DISCRIMINANT ANALYSIS REVISITED WITH A SPECIAL EMPHASIS
ON VISUALIZATION

MARK DE ROOIJ

LEIDEN UNIVERSITY INSTITUTE FOR PSYCHOLOGICAL RESEARCH

Ideal point discriminant analysis is a classification tool which uses highly intuitive multidimensional
scaling procedures. However, in the last paper, Takane wrote about it. He concludes that the interpretation
is rather intricate and calls that a weakness of the model. We summarize the conditions that provide an
easy interpretation and show that in maximum dimensionality they can be obtained without any loss. For
reduced dimensionality, it is conjectured that loss is minor which is examined using several data sets.
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1. Introduction

Ideal Point Discriminant Analysis (IPDA; Takane, Bozdogan, & Shibayama, 1987) was
originally proposed as a technique for discriminant analysis with a mixed measurement level
of predictor variables. It is a very appealing technique since it uses multidimensional scaling
procedures, which are generally thought to be very intuitive, for classification purposes. In maxi-
mum dimensionality, IPDA equals multinomial logistic regression (MNL). In other words, IPDA
provides a type of biplot (Gower & Hand, 1996) to these logistic regression models. On the
other hand, IPDA provides the possibility of dimension reduction as in Canonical Discriminant
Analysis (CDA) with the same interpretational facilities. An advantage of IPDA over CDA is
that it does not assume normality for the predictor variables, an assumption that in most practical
settings is false.

In the last paper of Takane about IPDA (Takane, 1998), he discussed visualization aspects
and concludes that there are some weaknesses to IPDA’s display. The current paper revisits IPDA,
these weaknesses, and the origins thereof. Then it is shown that in maximum dimensionality
these can be taken away without any loss, and it is conjectured and empirically illustrated that in
reduced space the loss is often minor.

2. IPDA and Visualization

The purpose of classification is to assign subjects (i = 1, . . . , n) to one of several predefined
classes (g = 1, . . . ,G) based on measurements xi = (xi1, . . . , xip)T . The explanatory variables
xi are gathered in a matrix X as X = (x1, . . . ,xn)

T . In ideal point discriminant analysis, this
assignment to classes is based on the following conditional probability model (Takane et al.,
1987)

πg|i = mg exp(−d2
ig)

∑
h mh exp(−d2

ih)
, (1)
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where the mg are bias parameters which can be interpreted as prior probabilities of certain classes
or whatever makes a class more or less likely (Takane et al., 1987), and d2

ig is the squared Euclid-
ean distance in an R-dimensional space between an ideal point for subject i with coordinates yir

and a class point for class g with coordinates zgr , that is,

d2
ig =

R∑

r=1

(yir − zgr )
2. (2)

The ideal points yi = (yi1, . . . , yiR)T that are gathered in a matrix Y = (y1, . . . ,yn)
T are as-

sumed to be a linear combination of the predictor variables X, i.e.,

Y = XB,

with B the regression weights, which are estimated and from which the ideal points are derived.
It is assumed that X is centered (it might be standardized in order to compare the magnitude
of the regression effects). Contrary to standard practice in (generalized) linear models X does
not contain a vector of ones. Such a vector would translate the origin of the Euclidean space
and since distances are invariant with respect to such a translation it is omitted. The number of
independent parameters in this IPDA model equals G − 1 + (p + G) × R − R(R + 1) (Takane
et al., 1987).

Takane et al. (1987) further restrict the model by placing the class points in the centroids of
the ideal points of the subjects observed to be in those classes. Therefore, let fig = 1 if subject i

is observed to be in class g, otherwise fig = 0, such that
∑

g fig = 1, and define F = {fig}. Then

Z = (
FT F

)−1FT Y. (3)

This centroid restriction will be dropped for the moment, but later on we further comment on this
restriction.

Takane (1998) discussed the interpretation of the graphical display, especially the interpre-
tation of the distances between ideal and class points, and concludes they are “rather intricate”
and “care should be exercised when they are interpreted in probabilistic terms.” Takane’s main
findings are (Takane, 1998, p. 448):

1. πi|g is inversely monotonic with dig for each class g, so that dig > di′g ⇔ πi|g < πi′|g ;
2. πig is not necessarily inversely monotonic with dig unless mg is constant across g;
3. πg|i is inversely monotonic with dig within i for different classes (g) only if the bias

parameters (mg) are constant across classes (g).

In the classification context, the interest is often in the conditional probabilities πg|i or the
joint probabilities πig (situation 2 or 3), neither of which are monotonically related to the dis-
tances. The bias parameters (mg) harm this monotonic relationship.

3. The Zero Effect of the Bias Parameters

In dimensionality G − 1 (i.e., maximum dimensionality) the effect of the bias parameters
on the fit is nil. To show this, we will use dimension augmentation (De Rooij & Heiser, 2005).
Therefore, define ag = logmg and rewrite the IPDA model as

πg|i = exp(ag − d2
ig)

∑
h exp(ah − d2

ih)
. (4)
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FIGURE 1.
A graphical display of IPDA with two classes. The bias parameters are represented using the area of the circles. Con-
ditional probabilities are also shown for the two classes by the curved lines. The vertical axis represents the probability
scale.

The ag are identified only up to an additive constant. Due to this indeterminacy, the ag can be
incorporated in the distance part of the model. Define dimension R + 1 = G, with coordinates
for the classes zg,R+1 = √

maxg(ag) − ag and ideal points equal to zero (yi,R+1 = 0). Now the
classification model is solely based on distances. It has the following form:

πg|i = exp(−d2
ig)

∑
h exp(−d2

ih)
, (5)

where the distances are defined in dimensionality R + 1 (whereas in earlier definitions the di-
mensionality was R).

We illustrate this using a two class model in a single dimension, although the same reasoning
holds for G class models in (G−1)-dimensional space. The solution of an IPDA model is shown
in Fig. 1 where the two classes A and B have their location at 0 and 1, respectively. The bias
parameters are represented by the area of the circles around the points, i.e., the bias parameter
for A is large, while that of B is small. Furthermore, the conditional probabilities of the two
classes are also shown. It should be noted that the conditional probability of being in class B at
the position of B is smaller than the conditional probability of being in class A. The decision
boundary is placed at the crossing of the two probability lines, that is, at the right-hand side of B.

In Fig. 2, we give the same IPDA solution but with augmented dimensionality. Since point A
had largest bias parameter, it has a zero coordinate on the vertical axis, for B the coordinate on the
second axis is � = √

aA − aB . The two new points A’ and B’ are shown. Since this augmented
space is solely based on Euclidean distances, the decision line is exactly in the middle of A’
and B’ and it is represented by the dotted line. Note that it indeed crosses the horizontal axis at
the point where the two conditional probabilities lines also crossed. Observe that the two points
A’ and B’ still lie in a one dimensional space. The (original) ideal points (y) can be projected
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FIGURE 2.
A graphical display of IPDA with the unique dimension (vertical) representing the bias parameters. The horizontal axis
y is the original one-dimensional space, y′ is the one-dimensional space after translation. � represents the square root of
the absolute value of the difference between bias parameters.

onto this new one-dimensional space to obtain y′. That is, using the rules of projection y′ can be
written as

y′ = y × dab
√

d2
ab + �2

(6)

where dab is the distance between the two class points on the y-axis (horizontal/original). The
multiplication with y changes the regression weights

y′ = Xb′ = Xb × dab
√

d2
ab + �2

.

The new regression weights b′ are equal to b′ = b × dab√
d2
ab+�2

. The new coordinates for the class

points are z′
A = zA√

d2
ab+�2

and z′
B = z′

A +
√

d2
ab + �2. We thus found a new one-dimensional

space with the same classification probabilities (πg|i ), but without the bias terms.
Comparing the distances on y′ with those in the two-dimensional plane, we can say that the

effects of this projection are that the distances between ideal points and class points change.
These distances change in such a way that the choice probabilities are unaffected since the
squared length of a line segment perpendicular to y′ from a point on y to a point on y′ has
no effect on the classification probabilities, being common to both squared distances from the
point on y to all the class points on y′. Since the likelihood is a function of the probabilities,
the transformation does not change it’s value. The distances between ideal points are uniformly
shrunk. The distances between the class points remain the same compared to the distances in the
two-dimensional plane, but became larger compared to the original one dimensional representa-
tion. These latter two sets of distances, however, do not affect the likelihood.
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If the class coordinates are subject to the centroid restriction as proposed by (Takane et al.,
1987) this combination of changes is not possible, since if the distances between ideal points
uniformly shrink by the centroid restriction the distances between class points also uniformly
shrink.

Now suppose there are three class points in a two-dimensional plane. The bias parameters
can be transformed to coordinates on a third dimension. For one of the three class points (the one
with the largest bias parameter), this coordinate is zero, so two of the three points are raised in
this third dimension. However, there still exists a two-dimensional plane containing these three
points. The ideal points can be projected onto this two-dimensional plane which changes the re-
gression weights, but not the classification probabilities. The coordinates of the class points have
to be recomputed relative to this new two-dimensional plane. Further generalizing, suppose there
are G classes, which lie in a (G− 1)-dimensional space. The bias parameters can be transformed
to coordinates on a Gth dimension, but still the G points lie in a (G − 1)-dimensional subspace.
The original space can be projected onto this new space which changes the regression weights,
but not the classification probabilities and the class points have to be recomputed with respect to
this new plane, but preserving their distances.

In summary, in maximum dimensionality the bias parameters have no effect on the fit of
the model, they complicate the interpretation in terms of distances, but this complication can be
circumvented as discussed above.

When the dimensionality decreases the reasoning presented above does not hold anymore.
As an example, consider three points and a single dimension. The bias parameters can be trans-
formed to coordinates on a second dimension. However, by doing so, the three points are not
necessarily on a line anymore (this can easily be seen when the middle category has the largest
bias parameter). However, we conjecture that in most practical cases the effect of the bias para-
meters is minor. This conjecture will be further studied in Section 5.

4. Degrees of Freedom and Identification for the Model without Bias Parameters

Before we turn our attention to verifying our conjecture, we will discuss the number of
independent parameters in the model without bias terms. This is important, since we are going to
compare fit measures which must be related to the difference of independent parameters. For the
model with bias parameters, the number of independent parameters equals G − 1 + (p + G) ×
R − R(R + 1) (Takane et al., 1987).

For the model without bias parameters, the number of parameters is (p + G)R. However,
there are a number of indeterminacies, such as rotational freedom that do not change the prob-
abilities. Therefore, first consider our probability model (5). The probabilities remain the same
when a constant is added for each subject, i.e.,

πg|i = exp(−d2
ig)

∑
h exp(−d2

ih)
= exp(−d2

ig + ci)
∑

h exp(−d2
ih + ci)

. (7)

Since the probabilities in our model are solely based on squared Euclidean distances, we have
that a model based on any squared distance matrix D∗ defined as D∗ = D + c1T provides the
same probabilities as the model defined with squared distances D. Suppose B and Z give D
and B∗ and Z∗ give D∗, such that D∗ = D + c1T . How are these related? The squared distance
matrices can be written as

D = diag
(
XBBT XT

)
1T + 1

(
diag

(
ZZT

))T − 2XBZT ,
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where diag(·) takes the diagonal of a matrix and puts it in a vector, and

D∗ = diag
(
XB∗BT∗ XT

)
1T + 1

(
diag

(
Z∗ZT∗

))T − 2XB∗ZT∗ .

Since these two must be equal up to an additive row constant, it follows that

1. diag(XBBT XT ) may change without restrictions, since this will be captured in c;
2. diag(Z∗ZT∗ ) and diag(ZZT ) must be equal up to a constant q , i.e., diag(Z∗ZT∗ ) =

diag(ZZT ) + q1, otherwise it cannot be captured in the c1T term;
3. XB∗ZT∗ must be equal to XBZT + c̃1T , then again changes are captured in the c1T term.

If we transform Z and B to

Z∗ = 1vT + ZT,

B∗ = B
(
T−1)T

with T an R × R matrix and v an R × 1 vector, we have

XB∗ZT∗ = XB
(
T−1)T (

1vT + ZT
)T

= XBZT + XB
(
T−1)T v1T

= XBZT + c̃1T

such that (1) and (3) are fulfilled. However, diag(Z∗ZT∗ ) = diag(ZZT ) + q1 is not necessarily
fulfilled by these transformations. We have to explicitly impose these G − 1 restrictions on the
transformations. From the two transformation equations, we see that

• there are R(R + 1) indeterminacies with G − 1 restrictions;
• a rotation is always possible, in that case v = 0 and diag(ZZT ) does not change, such that

the minimum number of indeterminacies is R(R − 1)/2;
• in dimensionality R = G−1, the number of indeterminacies is R(R+1)− (G−1) = R2:

any nonsingular T can be used and this can be solved by finding an appropriate vector v
such that the restrictions are true

Summarizing, we have R2 unknowns in T, R in v, but the transformations have G−1 restrictions.
The number of indeterminacies thus equals max(R(R − 1)/2,R(R + 1) − (G − 1)).

In order to obtain an identified solution, we observe the following. If J is defined as J =
IG − 1G1T

G/G, � as � = {πg(xi )}, and � as � = log�, we have −�J = DJ = D∗J, i.e., row
wise centering makes solutions equal, and so identifies the solution if parameters can be obtained
from these centered distance matrices. In order to do so, metric unfolding with single centering
as described in Heiser (1981) can be used. This procedure works as follows. DJ is a matrix of
rank R + 1, and can be written as

DJ = 1βT − 2YZT (8)

where β is the sum of squares of the rows of Z in deviation from their mean. A singular value
decomposition of DJ = U∗�VT∗ = UVT can be computed where the R + 1 nonzero singular val-
ues and corresponding vectors are retained. It does matter how the singular values are distributed
over U∗ and V∗, we use U = U∗�1/2 and V = V∗�1/2. To obtain an identified solution U and V
should be transformed such that (8) is true. Therefore, define the (R + 1) × (R + 1) nonsingular
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matrix R and solve the following system of equations simultaneously

UR =
⎡

⎣1 −2Y

⎤

⎦ ,

VST =
⎡

⎣β Z

⎤

⎦ ,

with S = R−1. This gives an identified solution. This procedure works fine, except in the situation
of maximum dimensionality, i.e., R = G−1 due to the fact that R+1 singular values and vectors
have to be retained. In this case (i.e., R = G − 1), we identify the solution by a transformation
of Y such that YT Y = nI (which can be obtained using a singular value decomposition), and
solve for v. In both cases (if R = G − 1 and R < G − 1), we thereafter solve the rotational
indeterminacy by requiring that bjr = 0 for r > j .

In order to fit the model, the first step is to fit the unidentified model using a quasi-Newton
algorithm where the Hessian is computed using a finite difference method. Then the obtained
distance matrix is row wise centered and the system of equations is solved. Finally, the solution is
rotated. The procedure is implemented in MATLAB (Mathworks, 2006), and uses the MATLAB
optimization toolbox for optimization of the likelihood and solving the system of equations. The
programs can be obtained from the author upon request.

5. Empirical Verification of the Zero Effect in Lower Dimensionality

In this section, empirical evidence of the conjecture posed in Section 3 is provided. Several
empirical data sets will be discussed. The first three data sets have 3, 4, and 5 response classes,
respectively; the fourth data set has many (12) response classes. The fifth example has one re-
sponse class that is very large, while the sixth data set has one class that is really small. For each
data set, we discuss the observed marginal proportions and the predictor variables. Then for the
models with and without bias terms the deviance value is shown and the difference thereof, given
dimensionality 1 through G − 1. One should act with caution, however, to use these likelihood
ratio statistics for dimensionality selection, since there are indications that these statistics are not
chi-squared distributed (Takane, van der Heijden, & Browne, 2003). For the third, fourth, and
fifth example, the explanatory variables are categorical. In these cases, the data can be grouped
(see Agresti, 2002, Sect. 4.5.3) which results in a different deviance measure. This latter deviance
measure can also be used for checking model fit. For the other examples, deviance is based on
the individual records (ungrouped) and can only be used to compare nested models. Results for
all data sets are shown in Table 1.

The first data set comes from Tabachnik and Fidell (2007, Chap. 9) and includes 465 women
who were role-dissatisfied housewives, role-satisfied housewives, or working women with pro-
portions 0.1763, 0.2946, and 0.5290, respectively. There are four explanatory variables: locus
of control, satisfaction with marital status, attitude towards women’s role, and attitude toward
housework. In both, the one-dimensional and two-dimensional solution there is no discernible
difference in attained deviance.

The second data set comes from the book by Lattin, Carroll, and Green (2003) and con-
tains information from 141 households from a suburban panel in a Midwestern US market. Each
household subscribed to one and only one of the following magazines: Better Homes & Gardens,
Reader’s Digest, TV Guide, and Newsweek. The proportions of the four magazines in the sample
are 0.1844, 0.3475, 0.2766, 0.1915, respectively. Explanatory variables are family size, income,

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 06:54:26, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


324 PSYCHOMETRIKA

T
A

B
L

E
1.

D
ev

ia
nc

es
of

m
od

el
s

w
ith

an
d

w
ith

ou
t

bi
as

te
rm

s
an

d
th

ei
r

di
ff

er
en

ce
.T

he
nu

m
be

r
of

pa
ra

m
et

er
s

ar
e

gi
ve

n
in

pa
re

nt
he

si
s,

w
hi

ch
ar

e
fo

r
th

e
m

od
el

w
ith

bi
as

te
rm

s
G

−
1

+
(p

+
G

)R
−

R
(R

+
1)

an
d

w
ith

ou
t(

p
+

G
)R

−
m

ax
(R

(R
−

1)
/
2,

R
(R

+
1)

−
(G

−
1)

).
D

at
a

se
ts

:[
R

ol
e]

Fe
m

al
e

ro
le

sa
tis

fa
ct

io
n

da
ta

fr
om

Ta
ba

ch
ni

k
an

d
Fi

de
ll

(2
00

7)
,(

p
=

4;
G

=
3)

;[
M

ag
az

in
es

]
C

ho
ic

e
of

m
ag

az
in

e
da

ta
fr

om
L

at
tin

et
al

.(
20

03
),

(p
=

10
;G

=
4)

;[
A

lli
ga

to
r]

Pr
im

ar
y

fo
od

ch
oi

ce
of

al
lig

at
or

s
fr

om
A

gr
es

ti
(2

00
2)

,(
p

=
5;

G
=

5)
;[

B
itt

er
lin

g]
R

ep
ro

du
ct

iv
e

be
ha

vi
or

of
th

e
m

al
e

bi
tte

rl
in

g
fr

om
W

ie
pk

em
a

(1
96

1)
,(

p
=

11
;G

=
12

);
[S

ea
t-

be
lt]

C
ar

cr
as

h
da

ta
fr

om
A

gr
es

ti
(2

00
2)

,(
p

=
6;

G
=

5)
;[

D
PE

S]
D

ut
ch

pa
rl

ia
m

en
ta

ry
el

ec
tio

n
st

ud
ie

s,
fr

om
Ir

w
in

et
al

.(
20

03
),

(p
=

5;
G

=
4)

.

D
at

a
M

od
el

D
im

en
si

on
al

ity
1D

2D
3D

4D
5D

6D
7D

8D
9D

10
D

11
D

R
ol

e
W

ith
90

0.
95

88
2.

80
(7

)
(1

0)
W

ith
ou

t
90

0.
95

88
2.

80
(7

)
(1

0)
D

if
fe

re
nc

e
0.

00
0

M
ag

az
in

es
W

ith
34

1.
48

32
1.

25
30

6.
98

(1
5)

(2
5)

(3
3)

W
ith

ou
t

34
1.

55
32

1.
25

30
6.

98
(1

4)
(2

5)
(3

3)
D

if
fe

re
nc

e
0.

07
0.

00
0

A
lli

ga
to

r
W

ith
77

.2
6

59
.1

4
51

.7
1

50
.2

6
(1

2)
(1

8)
(2

2)
(2

4)
W

ith
ou

t
77

.9
4

59
.2

1
51

.7
1

50
.2

6
(1

0)
(1

8)
(2

2)
(2

4)
D

if
fe

re
nc

e
0.

68
0.

08
0.

00
0

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 06:54:26, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


MARK DE ROOIJ 325

T
A

B
L

E
1.

(C
on

ti
nu

ed
.)

D
at

a
M

od
el

D
im

en
si

on
al

ity
1D

2D
3D

4D
5D

6D
7D

8D
9D

10
D

11
D

B
itt

er
lin

g
W

ith
32

90
.1

6
10

56
.1

2
40

5.
04

13
7.

38
8

48
.9

4
27

.8
6

4.
26

1.
37

0.
06

0.
03

0
(3

2)
(5

1)
(6

8)
(8

3)
(9

6)
(1

07
)

(1
16

)
(1

23
)

(1
28

)
(1

31
)

(1
32

)
W

ith
ou

t
48

96
.4

5
12

34
.4

0
42

6.
50

13
8.

94
49

.1
6

27
.8

6
4.

28
1.

38
0.

06
0.

03
0

(2
3)

(4
5)

(6
6)

(8
3)

(9
6)

(1
07

)
(1

16
)

(1
23

)
(1

28
)

(1
31

)
(1

32
)

D
if

fe
re

nc
e

16
06

.2
8

17
8.

28
21

.4
5

1.
56

0.
22

0.
00

0.
01

0.
01

0.
00

0.
00

0

Se
at

-b
el

t
W

ith
10

1.
31

31
.8

8
15

.3
8

10
.8

4
(1

3)
(2

0)
(2

5)
(2

8)
W

ith
ou

t
19

2.
00

33
.1

6
15

.4
1

10
.8

4
(1

1)
(2

0)
(2

5)
(2

8)
D

if
fe

re
nc

e
90

.6
9

1.
28

0.
03

0

D
PE

S
W

ith
91

0.
10

80
1.

92
79

3.
72

(1
0)

(1
5)

(1
8)

W
ith

ou
t

91
0.

28
80

1.
92

79
3.

72
(9

)
(1

5)
(1

8)
D

if
fe

re
nc

e
0.

18
0.

00
0

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 06:54:26, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


326 PSYCHOMETRIKA

race, number of TV sets, newspaper subscription, missing male or female head of household,
children, age, and education (see Lattin et al., 2003, Table 12.6). Since there are four magazines,
the dimensionality runs from one to three. Table 1 shows the difference of deviances in each
dimensionality, which support our conjecture.

The third data set comes from Chapter 7 of Agresti (2002) and considers the primary food
choice of alligators. This response variable has five categories: fish, invertebrate, reptile, bird,
and other with proportions are 0.4292, 0.2785, 0.0868, 0.0594, and 0.1461, respectively. There
are three categorical explanatory variables, lake (4 categories), gender, and size (two categories).
Table 1 shows the difference of deviances in each dimensionality, which again support our con-
jecture. For the two-dimensional model, we would expect the deviances to be the same since
both models gave the same number of independent parameters. We might have ended in a lo-
cal optimum. Fifty random starts, a start from a correspondence analysis, and a start using the
regression parameters and class points from the two-dimensional model with bias terms did not
yield a better deviance, however.

The fourth data set was analyzed by De Rooij and Heiser (2005) and is a transition frequency
table of 12 × 12 describing reproductive behavior of male bitterlings (Wiepkema, 1961). Behav-
ioral categories (proportions) are jerking (0.1661), turning beats (0.0525), head butting (0.0978),
chasing (0.0663), fleeing (0.0724), quivering (0.1977), leading (0.0451), head down posture
(0.1292), skimming (0.0533), snapping (0.0749), chafing (0.0258), and finflickering (0.0188).
The previous behaviors (rows of the transition frequency table) serve here as categories of a sin-
gle explanatory variable for the current behavior (columns) and were transformed using dummy-
coding. Results can be found in Table 1 where it can be seen that for low dimensional models
(one to three) the difference between the models with and without bias terms is substantial, in
higher dimensionalities, the difference is ignorable. Notice that for the dimensionalities where
the models differ in fit statistics, the deviance points out that neither the model with nor the
model without bias terms fits the data adequately (degrees of freedom are 144 minus the number
of independent parameters). For the four and five-dimensional models, the same comment as for
the two-dimensional alligator solutions applies: we expected the same deviance for the models
with and without bias terms here, but many analyses did not yield them. It seems that the model
without bias parameters has some difficulties in finding the global optimum of the likelihood
function.

The fifth data set comes from Agresti (2002) and has one very large class. The data deals with
injuries after a car crash having five categories: Not injured (0.9087); injured but not transported
by emergency medical services (0.0131); injured and transported by emergency medical services
(0.0649); injured and hospitalized, but did not die (0.0113); injured and died (0.0020). Although
the response variable has ordered categories, we do not use that information here. Explanatory
variables are gender, location (urban/rural), and seat belt use (yes/no). We included also the
pairwise interactions between the explanatory variables as predictors. In Table 1, we see that
in all dimensionalities except the one-dimensional model the bias parameters can be removed
without considerable loss. Looking at the deviances of both one-dimensional models, we see that
they do not fit the data, however (degrees of freedom equal 40 minus the number of independent
parameters). For the two-dimensional model, we expected the same deviance for the model with
and without bias terms.

In order to also show a data set with one very small response class, we created a data set
from the Dutch parliamentary election studies 2002–2003 (Irwin, Van Holsteyn, & Den Ridder,
2003). We created a data set of 629 subjects that either voted in 2003 for one of the three large
political parties in the Netherlands PvdA, CDA, and VVD (proportions in data set 0.3911, 0.3831,
and 0.2162, respectively) or a very small party SGP, with proportion 0.0095. There are five
explanatory variables self left-right scaling, age, sex, religious denomination, and social class.
Table 1 shows that in all dimensionalities there is no considerable difference in fit.
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FIGURE 3.
Result of the model with bias parameters for the magazines data. The response categories are labeled by BH&G (Better
Homes and Gardens), RD (Reader’s Digest), TV (TV-Guide), and NW (Newsweek). Bias terms are represented by the
area of the circle. Also shown are lines between prediction regions with in the regions the name of which category has the
highest odds. Notice that TV-Guide is outside it’s own prediction region. Explanatory variables are family size, income,
race, number of TV sets (nTV), newspaper subscription, missing male (NMHH) or female head of household (NFHH),
children, age, and education.

In some cases, as noted above, the models with and without bias terms differ in the deviance
values, but have the same number of independent parameters. In all cases, the deviance is smaller
for the model with bias parameters. This difference is probably due to suboptimal solutions for
the model without bias terms. In all cases, we did a smart start using correspondence analysis,
fifty random starts, and a start from the solution of the model with bias parameters. It seems that
the model without bias terms and with only categorical explanatory variables is somewhat more
difficult to fit. In all cases, the differences are not very large.

Now we have showed that the models with and without bias parameters differ not much in
fit, we will show some graphical results. In Figures 3 and 4, we show the results for the magazines
data in two dimensions with and without bias terms. In Figures 5 and 6, we show the results of
the alligator data in two dimensions. The figures show class points, explanatory variables, and
prediction regions. Prediction regions are areas in which the predicted odds are in favor of a
specific class.

Comparing the representations of the models with and without bias parameters, it can be
seen that for the models without bias parameters the class points always lie in the interior of their
own prediction region and decision boundaries are exactly in the middle of two class points, i.e.,
πg|i is inversely monotonic with d2

ig . This is not true for the model with bias terms. In the model
with bias terms, a subject can have an ideal point right on top of a class point and still have a
higher odds for another class.
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FIGURE 4.
Result of the model without bias parameters for the magazines data. The response categories are labeled by BH&G
(Better Homes and Gardens), RD (Reader’s Digest), TV (TV-Guide), and NW (Newsweek). Also shown are lines be-
tween prediction regions. Explanatory variables are Family size, income, race, number of TV sets (nTV), newspaper
subscription, missing male (NMHH) or female head of household (NFHH), children, age, and education.

More specifically, comparing Figures 3 and 4, the deviances of the models underlying these
figures are equal as well as the number of independent parameters. The interpretation of 4 is,
however, much simpler since for every subject the highest probability of a certain magazine is
given by the closest class point. Contrarily, in Figure 3, a subject can be very close to TV-Guide,
but has the highest probability for Readers Digest.

Similar remarks apply to Figures 5 and 6. In Figure 5, the problem is even stronger: the
“other” category is nowhere predicted and “bird” is only predicted at the boundary of the display.
This concurs with the discrepancy as noted by Takane (1998), the conditional probabilities πg|i
are not inversely monotonic with dig when the bias parameters are unequal. In Figure 6, this
cannot occur: if an alligator is on top of the “other” class, then it has the highest probability for
this class.

In Section 3, it was shown that in maximum dimensionality the distances between the class
points in the model without bias terms is larger than those distances in the model with bias
terms. In Figures 3, 4 and 5, 6, it can be seen that this is not necessarily true for models in
lower dimensionality. For example, for the magazines data in the model with bias terms the class
points are well spread with the variables (and thus the ideal points) in between, while for the
model without bias terms the class points and variables are better mixed. For the alligator data,
it is the other way around. In the results for the model with bias terms, the variables and class
points are well mixed, while in the model without bias terms, the class points are somewhat on
the boundary.
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FIGURE 5.
Result of the model with bias parameters for the Alligator data. The response categories are labeled by F (fish), I (inver-
tebrates), R (reptiles), B (bird), and O (other). Bias terms are represented by the area of the circle. The origin refers to
large female alligators in Lake George. The variables give the displacement for being small, male, or living in another
lake. Also shown are lines between prediction regions with in the regions the name of which category has the highest
odds. Notice that there is no place where “other” gets predicted.

6. Conclusion

Ideal point discriminant analysis is a classification tool based on multidimensional scaling
techniques. The model looks very much the same as the canonical discriminant analysis tool,
however, it does not assume multivariate normality of the explanatory variables. However, as
discussed in Takane (1998), the interpretation of IPDA is hampered by the bias terms in this
model. The model without bias parameters has a much clearer interpretation, since the decision
boundaries are based on distances only, and are thus orthogonal to the line joining two class
points and through their centroid, while in the case the model includes bias parameters the deci-
sion boundaries shift away from the class with largest bias term.

We showed that in maximum dimensionality the bias terms have a zero effect in case the
class point are estimated, i.e., the model without bias effect provides the same fit to the data.
This is an important finding since the model without bias terms has an easier interpretation.
Moreover, both the model with and the model without bias terms provide the same fit to the data
as the multinomial logit model when fitted using the maximum dimensionality.

For reduced dimensionality, it was conjectured and illustrated that in general the effect of the
bias parameters is small. There are a few exceptions to this rule. The first is when the response
variable has many categories, in that case, it pays of to use bias parameters in low dimensional
models. The second case is when the response variable has a category that dominates the other
categories, i.e., a category that takes the vast majority of the responses. If the bias parameters
are important for a one- or two-dimensional model, these bias parameters could be represented
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FIGURE 6.
Result of the model without bias parameters for the Alligator data. The response categories are labeled by F (fish), I
(invertebrates), R (reptiles), B (bird), and O (other). The origin refers to large female alligators in Lake George. The
variables give the displacement for being small, male, or living in another lake. Also shown are lines between prediction
regions.

as an extra dimension (as shown in Section 3). The graphical display in that case has a clear
interpretation solely based on distances again.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License
which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and
source are credited.
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