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MULTIDIMENSIONAL LATENT SPACE ITEM RESPONSE MODELS: A NOTE ON THE

RELATIVITY OF CONDITIONAL INDEPENDENCE

Abstract

Conditional dependence (CD) reflects potential interactions between persons and

items in measurement, offering valuable information for deriving personalized diag-

noses, evaluations, and feedback. The recent integration of psychometric models with

latent space provides an effective way to visualize and quantify person-item interac-

tions unexplained by latent variables and item parameters. In such applications, it is

important to recognize the relative nature of CD, as models with different structures and

complexities (e.g., due to factor dimensionality and item parameters) produce varying

systematic explanations of person and item effects, leading to differing residual varia-

tions in both quantitative and qualitative sense. To demonstrate this relativity, we ex-

tend the previously developed unidimensional Rasch-based latent space item response

model by incorporating between-item multidimensionality and item discrimination pa-

rameters. The resulting model can be reduced to simpler models with appropriate con-

straints, allowing us to explore the relativity in CD by comparing them. Simulation

studies demonstrate that 1) the most complex proposed model properly recovers its pa-

rameters, 2) it outperforms the traditional IRT models by accounting for CD, and 3) the

models in comparison exhibit distinctive extents of CD. The study continues with em-

pirical examples that further illustrate relative changes in the extent and configurations

of CD with practical implications.

Key words: conditional dependence, person-item interactions, latent space model, mul-

tidimensionality, item response theory
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1. Introduction

The violation of the conditional independence (CI) assumption, referred to as conditional de-

pendence (CD), has become one of the primary research topics in the field of psychological and

educational measurements. The CI assumption states that covariations between item responses

can be systematically and fully explained through latent variables and item parameters. In con-

trast, CD suggests the presence of item response covariations beyond these explanations. Minor

degrees of CD might be considered a form of randomness that cannot be explained by model pa-

rameters and thus ignored. In contrast, substantial CD could imply that relying solely on models

with the CI assumption risks overlooking a considerable portion of the information inherent in the

data. In the latter cases, it becomes necessary to seek alternative models or appropriately modify

the current ones to analyze the information encapsulated under CD.

In particular, CD reflects data variations due to person-item interactions unexplained by

person and item effects in a model. For a simple analogy to see this (Jeon, Jin, Schweinberger, &

Baugh, 2021), consider the standard Rasch model,

logit(P (Ypi = 1 | θp, bi)) = θp + bi

where Ypi is a binary response of persons p to item i, θp is a latent variable for person p, and bi is an

intercept for item i. This is consistent with a two-way analysis of variance (ANOVA) with the logit

link function and two additive main effects, but no interaction. A latent variable θp explains the

main person effect (which does not vary across items) and an item parameter bi explains the main

item effect (which does not vary across persons). CD, as a part of residual variations unexplained

by θp and bi in the model, reflects some person-item interactions. These interactions indicate that

item characteristics (e.g., difficulty, discrimination) may vary across individuals, and a person’s

abilities or attributes may yield different effects depending on the item. Therefore, the information

implied by CD can provide crucial insights for analyzing the detailed effects of specific persons

and items.

Research in psychometrics has explored and analyzed CD from various perspectives. The

approach of primary interest in this article is the latent space item response model (LSIRM; Jeon et

al., 2021). This model integrates the standard Rasch model, used for analyzing psychometric data,
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with latent space models traditionally used for analyzing network data. The model assumes that

persons and items can be mapped onto a shared metric space called a latent space (also called an

interaction map). The core function of this approach lies in exploring unexplained interactions be-

tween persons and items via their positions and distances on the latent space (while analyzing the

main person and item effects through the Rasch model parameters), through which personalized

information tailored to specific individuals and/or specific items can be extracted. Whereas tradi-

tional research topics related to CD, such as measurement invariance and differential item func-

tioning, focus on group-level differences in item effects, the latent space approach offers greater

potential in addressing individual-level differences in item effects and further allowing for the

analysis of individual differences, individual profiles, and person-item interactions. Since the

study by Jeon et al. (2021) that focused on binary responses, latent space models have been ex-

tended to encompass binary responses and response times (Kang, Jeon, & Partchev, 2023), as well

as non-binary responses (Kang & Jeon, under review).

1.1. The Relative Nature of Conditional Dependence

An important characteristic of CD that has not been richly discussed in the literature is its

relativity: the extent of CD is relative to model complexity due to main model parameters, such

as latent variables and item parameters in psychometric models. These main-effect parameters

account for person and item effects, providing systematic1 explanations for some parts of the

total data variations.2 The remaining part of data variations (i.e., residual variations) would stem

from other sources rather than the main effects already taken into account. These sources include

1By ‘systematic’, we mainly refer to what can be explained by person and item effects when appropriate parameters

are included in a model.

2While we focus on parameters in psychometric models, it is also possible to add some person and item covariates

(e.g., gender, length of item sentence, etc.) to account for person and item effects, as employed in explanatory item re-

sponse theory models (De Boeck & Wilson, 2004). Another exception to note is a person-item covariate. For example, if

measured and incorporated in a model, response times Tpi can capture some person-item interactions as they naturally

vary across persons and items. However, these can also be considered systematic explanations, as they are explicitly

included in a model.
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CD as well as pure random noise. From this perspective, CD reflects a part of the data information

left unexplained even after controlling for the current main effects.

Consequently, the extent of CD can vary depending on the parameters implemented in a

model. This implies that certain aspects of CD can be systematically explained and removed by

incorporating appropriate persons or item parameters. For instance, adding item discrimination

parameters to a standard Rasch model is expected to increase the part of data variations system-

atically explained by the model, thereby reducing the unexplained CD. Similarly, if a large part of

CD arises from prior knowledge about items, employing parameters capturing these effects could

transform this part of CD into systematically explained effects. Even some unexplained person-

item interactions can be absorbed into systematic explanations if they can be captured by, for

example, a product of the main person and item parameters. Furthermore, modifying the model

may sufficiently reduce the extent of CD, making the resulting model satisfy the CI assumption.

However, if there are person-item interactions that cannot be accounted for by main person and

main item effects, these would remain unexplained. To summarize, the following decomposition

of data variations by a psychometric model can be suggested.

Data Variations = Systematic Explained + Residual Variations

= Systematic Explained + CD + Noise

= Systematic Explained + Systematic Unexplained + Irregular Interactions + Noise

(1)

The relative nature of CD means that the components in Equation 1 can differ in their extents

by the choice of main-effect components taken into consideration in a psychometric model. This

is a critical consideration when aiming to analyze and utilize CD, because the choice can influ-

ence the information extracted regarding person-item interactions. If different models produce

different extents of CD, personalized diagnoses and evaluations inferred from CD would differ

accordingly. Furthermore, if a model has insufficient main effect parameters, it might be more ap-

propriate to prioritize expanding systematic explanations of data variations through model mod-

ifications (i.e., adding appropriate main effect parameters) rather than adhering to the existing

model and analyzing the unexplained CD based on it.

The decomposition of data variations by psychometric models described above is analogous
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to the well-known decomposition of the sum of squares in linear regression (with fixed effects) in

which the total sum of squares (SST) is split into the regression sum of squares (SSR) and the error

sum of squares (SSE). If the regression assumptions hold, this decomposition would suffice. How-

ever, if there are some violations, SSE would reflect not only pure random variations due to noise

but also variations due to other sources. These include some ‘systematic’ model violations such

as non-zero shifted expectations of errors and heterogeneity in error variance due to, for instance,

omission of necessary predictors and non-normal distribution. Also, although a basic regression

model assumes the same regression coefficients for all respondents, the actual effects may exhibit

irregular between-respondent differences which imply respondent-variable interactions (which

might be modeled with random effects under statistical assumptions). All these suggest the fol-

lowing conceptual decomposition, which corresponds to Equation 1 for measurement models.

SST = SSR + SSE

= SSR + Systematic Unexplained + Irregular Interactions + Noise
(2)

This analogy highlights an important point in studying CD: main effect parameters should be

carefully selected and added to psychometric models to provide appropriate information regard-

ing person effects, item effects, and person-item interactions implied by CD. As more predictor

variables are added into a linear regression model, SSR rises and SSE falls, but blindly adding pre-

dictor variables can lead to overfitting and lack of interpretability. To psychometric models, this

implies a trade-off in modeling CD: incorporating more person or item parameters into psycho-

metric models can reduce CD but the additional parameters should be precisely estimated and

provide meaningful insights into persons and items in a stable way. If not, an alternative way of

looking into CD (e.g., via a latent space) could be a better option.

1.2. Extensions of the Latent Space Item Response Model

The relativity of CD discussed so far offers several implications for the application of LSIRM.

As LSIRM is based on the standard unidimensional Rasch model, it has only a few main effect

parameters, facing some restrictions in systematically explaining data variations. Consequently,

there is a possibility that the latent space might detect excessively large CD some of which could
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be explained by carefully incorporated person and item parameters. In this regard, this paper

explores two potential extensions of LSIRM and, based on these, discusses the relativity of CD.

The first extension involves the introduction of multidimensional latent variables. Many tests,

exams, and measurement tools aim to simultaneously assess multiple psychological constructs to

investigate their interrelationships. The overall performance of a respondent can be evaluated for

each of these constructs. The existing LSIRM, however, employs a unidimensional latent variable

that would, when applied to data involving multiple factors, only capture an average tendency of

respondents across all factors. The strength of the LSIRM is that specific characteristics of unspec-

ified factors may still emerge through the latent space even in this case, manifesting as clusters

of items corresponding to each factor (Kang & Jeon, 2024). However, simply introducing mul-

tidimensional factors can produce a whole different result on a latent space by systematically

explaining this type of CD due to unspecified factors. After this modification, the latent space

would be able to capture item correlations beyond the multidimensional nature of the current

measurement tool, facilitating a more detailed analysis of person-item interactions and individual

characteristics. Therefore, when the factor dimensionality of the measurement data is known a

priori, employing a multidimensional model can lead to a more accurate analysis of the extent of

CD and the unexplained person-item interactions, as well as the main person and item effects.

The second extension involves incorporating item discrimination parameters, as in the two-

parameter logistic item response theory model (2PLM). This addition allows for analyzing a dis-

tinct item characteristic other than item difficulty and helps to partial out data variations at-

tributable to the corresponding main item effect. More importantly, unlike item difficulty, item

discrimination is directly related to the person-item interactions implied by CD. In item response

theory (IRT) models, discrimination parameters are included as multiplicative factors with the

latent variable, capturing aspects of person-item interactions that can be modeled as a product

of person and item effects. In other words, by incorporating item discrimination parameters, the

model can systematically account for some part of person-item interactions through the combina-

tion of person and item parameters. Consequently, this approach is expected to yield a different

extent and configuration of CD, providing more refined information on unexplained person-item

interactions compared to the standard Rasch model.
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Based on these considerations, this article has a bi-fold aim: to propose the Multidimensional

Latent Space Item Response Models (MLSIRMs) and discuss the relative nature of CD. The ML-

SIRMs integrate multidimensional IRT models with a latent space. The proposed models are direct

extensions of the LSIRM and the parameter spaces of their main model parameters are nested. By

imposing appropriate parameter constraints on these models, it is possible to derive the LSIRM

as well as several other variations of latent space models. Using this nested structure, we aim to

compare CD and person-item interactions that arise from these different versions of latent space

models to discuss the relative nature of CD.

This paper is organized as follows. First, we introduce the MLSIRMs and their relevant es-

timation methods. Next, we conduct simulation studies to explore the statistical properties of

the MLSIRMs, assess the impact of inadequately accounting for substantial CD, and discuss the

relative nature of CD across different latent space models. Following this, we provide empirical

examples using the most complex MLSIRM and its nested variations to further illustrate the rela-

tivity of CD and underscore the importance of appropriate modeling, with examples of individual

difference analysis through latent space. Finally, the paper concludes with a discussion of related

issues.

2. Model

2.1. Multidimensional Latent Space Item Response Model

Throughout the manuscript, Ypi represent an item response of respondent p (p = 1, . . . , P )

to item i (i = 1, . . . , I). To derive extensions of the LSIRM, we start from the multidimensional

IRT models with a logit link function (although a probit function or other choices can be utilized)

such as the Rasch model and the two-parameter logistic model (2PLM), and integrate them with a

latent space. First with the 2PLM, an extension of the LSIRM which we call the Multidimensional

Latent Space Two-parameter Logistic Model (MLS2PLM) can be expressed as follows.

logit(P (Ypi = 1|θp,ai, bi, ξp, ζi)) = aT
i θp + bi − γ · d(ξp, ζi) (3)

The logit of the response accuracy is modeled as a function of several parameters such as 1) θp, a D-

dimensional vector of latent abilities for person p, 2) ai, a D-dimensional vector of discrimination
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parameters for item i, and 3) bi, an intercept for item i (usually interpreted as an overall easiness

or an overall negative difficulty parameter for ability tests and as a symptom threshold parameter

in clinical tests). These correspond to the multidimensional 2PLM. We restrict our interest to the

cases where each item measures a single ability only, as in between-item multidimensional IRT

models (Adams, Wilson, & Wang, 1997; Rijmen & De Boeck, 2005). Thus, the dimensionality

concerned here corresponds to that in CFA models with a simple structure and no cross loadings.

Accordingly, for each item, the vector ai has only one non-zero element. For example, if item i

measures the d-th latent ability, then aid is non-zero and freely estimated whereas every aid′ (d′ ̸=

d) is set to zero. In this case, the first term on the right side of Equation 3 reduces to aT
i θp = aidθdp.

For simplicity, we sometimes denote aid = ai.

Another difference between the proposed MLS2PLM and the standard 2PLM is in the last

term −γ · d(ξp, ζi) on the right side of Equation 3. The MLS2PLM assumes that persons and items

can be mapped onto a shared K-dimensional metric space as in previous latent space modeling

of psychometric data. Parameters ξp ∈ RK and ζi ∈ RK represent latent positions/coordinates

of person p and item i, respectively. On the latent space, distances between persons, between

items, and between persons and items can be computed. The function d(·, ·) determines how

these distances are computed. In this article, we use the Euclidean distance and set K = 2 for

visualization so that d(ξp, ζi) = ||ξp − ζi||2 =
√∑2

k=1(ξpk − ζik)2, as done in many previous latent

space models (Handcock, Raftery, & Tantrum, 2007; Hoff, Raftery, & Handcock, 2002; Kang et al.,

2023; Kang & Jeon, 2024; Jeon et al., 2021; Smith, Asta, & Calder, 2019). Distances are multiplied by

the distance tuning parameter γ, which adjusts the scale differences between distances and linear

predictor in the logit link function, and then included in Equation 3.

With the distance effect, the latent space can be utilized to extract valuable information to

further understand the interactions between respondents and items as well as derive customized

diagnoses and feedback for them. The distance effect is assumed to decrease logit accuracy. Thus,

the larger the distance between person p and item i is, the more likely the person produces the

incorrect response to the item. By visualizing the latent positions of persons and items in a single

figure, one can obtain an interaction map with which person-item dynamics unexplained by latent

abilities and item parameters can be studied. This map reveals that even respondents with similar
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levels of latent abilities can produce considerably different response profiles as the same item can

have higher or lower probabilities of being solved by these respondents (Jeon et al., 2021; Kang et

al., 2023). If items are from clinical scales, the interaction map can show that persons with similar

overall clinical states might exhibit different symptom profiles as the same item can have higher or

lower probabilities of being endorsed (Kang & Jeon, under review). Person-item distances can be

computed for any person-item pair to formally quantify these kinds of observations. Then, more

detailed diagnoses and treatments can be made for a specific person based on the distances from

this person to the items.

Because distance has a negative relationship with response probability, we can instead define

and rely on a similarity measure to ease straightforward interpretations of person-item interac-

tions. To this end, we introduce a negative exponential decay function defined as follows:

s(ξp, ζi) = exp(−γ · d(ξp, ζi)) (4)

This transformed measure s(ξp, ζi) has a positive relationship with response probability. Specifi-

cally, a larger similarity indicates a smaller distance implying a relatively higher response proba-

bility, whereas a smaller similarity indicates a larger distance implying a relatively lower response

probability. Also, Equation 4 maps positive-valued distance onto [0, 1], producing a scaled mea-

sure of person-item interactions that ease comparisons. It is worth noting that this transformation

has been widely used in mathematical models in psychology, such as the SIMPLE (termed for

scale-independent memory, perception, and learning; Brown, Neath, & Chater, 2007) model of

memory and Generalized Context Model (GCM; Nosofsky, 1986) of Categorization, as well as in

clustering (e.g., Ng, Jordan, & Weiss, 2001). Also, it can be derived from Equation 3 that

πpi
1− πpi

= exp(aT
i θp + bi) · exp(−γ · d(ξp, ζi))

where πpi = P (Ypi = 1|θp,ai, bi, ξp, ζi). This equation implies that the transformed measure in

Equation 4 represents the decreases in the probability of Ypi = 1 relative to that of Ypi = 0 (i.e.,

odds) due to person-item interactions unexplained by the main model parameters.

It should be noted that the latent space in the proposed models is not the space of factors

(latent variables or abilities). As Equation 3 shows, the model estimates factor scores θp and la-

tent positions ξp and ζi simultaneously. The factor score for respondent p provides the overall
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level of this respondent regarding the ability (or any psychological construct) being measured by

items. Once estimated, this factor score does not depend on and vary across items, meaning that

the factor score captures the global characteristics of the respondent. Beyond this information, the

person-item distances d(ξp, ζi) of the same respondent p to different items capture person-item

interactions that vary across items. In this way, the distance effects account for item-specific vari-

ations and reactivities of the same respondent that are not captured by the factor score. These

person-item interactions can be utilized to provide detailed information, diagnosis, and/or feed-

back for this respondent.

For more detailed descriptions of how to use the latent space models and their resulting in-

teraction map for practical purposes, we refer the readers to some previous literature regarding

the integration of latent space and psychometric models (e.g., Jeon et al., 2021; Kang & Jeon, 2024;

Kang et al., 2023, see also Section 4.3. of the current article for examples of utilizing CD and latent

positions). Below in this article, we focus on illustrating the nested models of the MLS2PLM, the

relativity of CD with simulation-based studies, empirical applications, and theoretical discussions.

All these compare estimated latent spaces from the MLS2PLM and its reduced models, which are

described in the following section.

2.2. Related Models

Among the proposed MLSIRMs, the most complex MLS2PLM serves as a main framework

for us to illustrate the relativity of CD because, with appropriate parameter constraints, it reduces

to simpler models with larger expected CD. Primarily we focus on two constraints: 1) no item

discrimination parameter, i.e., ai = 1 for all items (i = 1, . . . , I) and 2) unidimensionality θ1p =

θ2p = ... = θDp = θp for all persons (p = 1, . . . , P ).

Applying the first constraint, the MLS2PLM reduces to the multidimensional Rasch model

with a latent space integrated. We will refer to this model as the Multidimensional Latent Space

Rasch Model (MLSRM). Similarly applying the second constraint, the MLS2PLM reduces to the

Unidimensional Latent Space Two-parameter Logistic Model (ULS2PLM). Lastly, with both con-
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ai = 1 Fixed (Rasch) Free ai (2PLM)

Unidimensional: D = 1 ULSRM ULS2PLM

Multidimensional: D > 1 MLSRM MLS2PLM

Table 1: Taxonomy of the proposed Multidimensional Latent Space Item Response Models. The table pro-

vides the abbreviations of the model names. See the main text for the full names.

straints applied, the MLS2PLM is simplified to the LSIRM (Jeon et al., 2021):

logit(P (Ypi = 1|θp, bi, ξp, ζi)) = θp + bi − γ · d(ξp, ζi) (5)

In this article, we will call this model the Unidimensional Latent Space Rasch Model (ULSRM), just

for consistency with the other models. Table 1 provides a taxonomy of the model abbreviations

for future reference.

It would be worth noting that another constraint of γ = 0 can reduce the models described

above to traditional IRT models. Without latent spaces, these models assume CI and are not able

to capture CD, beyond what can be explained by person and item parameters. Leaving CD unex-

plained may produce unwanted influences on the parameter estimation when CD is substantial,

as shown in Kang and Jeon (under review) in the context of factor analysis models. Also in this

article, we demonstrate a potential bias in estimates due to CD by comparing the MLS2PLM and

its reduced version with γ = 0 constraint and the CI assumption, which we will call the Multidi-

mensional Item Response Model (MIRM) hereafter. Note that this is just the traditional multidi-

mensional IRT model, and we focus on the multidimensional 2PLM in the following comparisons.

2.3. Inference

Most of the previous latent space modeling approaches have exploited Bayesian methods to

estimate the model parameters. Also for the proposed models in this article, we developed a Stan

(Stan Development Team, 2024) program, which utilizes the Hamiltonian Monte Carlo method for

model estimation. The Stan code to fit the most complex MLS2PLM can be found in Section S1 in

our online supplementary material.

Samples from the joint posterior distribution can be obtained with the following specifications
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of the prior distributions as our recommendations:

θp ∼ MVN(0,Φ), p = 1, · · · , P,

log(ai) ∼ N(µa, σ
2
a), i = 1, · · · , I,

bi ∼ N(µb, σ
2
b ), i = 1, · · · , I,

Φ ∼ LKJ(1),

ξp ∼ MVNK(0, IK), p = 1, · · · , P,

ζi ∼ MVNK(0, IK), i = 1, · · · , I,

log(γ) ∼ N(µγ , σγ)

(6)

Here MVN(µ,Σ) is a multivariate normal distribution with mean vector µ and covariance matrix

Σ, with an appropriate dimension, N(µ, σ2) is a normal distribution with mean µ and standard de-

viation (SD) σ, and LKJ(s) is a Lewandowski-Kurowicka-Joe distribution for a correlation matrix

(Lewandowski, Kurowicka, & Joe, 2009) with a shape parameter s. To establish the identifiability

of the model, the mean vector of the latent variables θp is fixed to the zero vector 0 and means and

SDs of the latent positions ξp and ζi are set to 0 and 1, respectively. Hyperparameters can be given

appropriate hyperprior distributions or specific values. For item parameters, hyperpriors can be

given, e.g., N(0, 12) for µa, N(0, 52) for µb and Half -Cauchy(5) for σ2
a and σ2

b . Note that a prior on

log ai allows positive discrimination parameters only, implying that the probability of endorsing

an item or giving the correct response increases as the latent trait/ability increases. This choice is

based on the assumption that all items measure the target constructs appropriately (Baker, 1985)

and reverse-keyed items are also reverse-coded before the main analysis. If a more general appli-

cation is required, a normal prior can be imposed on ai instead of log ai. For the log-transformed

distance tuning parameter, log(γ), µγ = 0.5 and σγ = 1 can be used as in the previous latent space

approaches (Jeon et al., 2021; Kang et al., 2023), with which γ on its raw scale has mean of 2.718

and SD of 3.563.

On the latent space, the Euclidean distance function d(·, ·) exhibits translational, rotational,

and reflectional invariance with respect to the latent positions. Consequently, different configu-

rations of these positions can yield identical distance values for all respondents and items. This

issue can be resolved using matching methods commonly employed in multidimensional scaling.
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For the proposed models, we use Procrustes matching (e.g., Chapter 20 in Borg & Gorenen, 2005).

After obtaining posterior samples of all model parameters, we apply this method to each posterior

sample of the latent positions. First, the posterior sample of model parameters with the highest

log posterior density should be identified. The latent positions within this posterior sample can

serve as the reference set. Then, configurations of latent positions in all other posterior samples

can be aligned with this reference set while preserving the distances of all respondent-item pairs.

Once the matching procedure is complete, the convergence of Bayesian chains can be assessed,

and the posterior samples can be explored for further inferences. For practical applications of the

Procrustes matching in the context of latent space modeling of psychometric data, we refer read-

ers to the R package prolsirm, which is developed based on the R package MCMCpack (Martin,

Quinn, & Park, 2011).

2.4. Statistical Test of Conditional Dependence using a Slab-and-Spike Prior

If the main effect parameters such as latent variables and item parameters are insufficient

to account for variations in item responses and the residual variations imply some person-item

interactions, a latent space in the proposed models can account for variations and yield useful

information for diagnoses and evaluations. In contrast, in some cases, a model may already be

equipped with sufficient main effect parameters to describe data variations, not requiring addi-

tional model-based mechanisms to capture CD (i.e., achieving CI). However, the distance effect

assumed in the proposed models would always attempt to capture CD if a simple normal prior is

given as in Equation 6.

To address this concern, a regularization method with the slab-and-spike prior (Ishwaran &

Rao, 2005; Mitchell & Beauchamp, 1988) can be given to the distance tuning parameter, as follows:

log(γ) ∼ (1− δ) ·Nspike(µγ0, σ
2
γ0) + δ ·Nslab(µγ1, σ

2
γ1) (7)

Following the previous applications of this prior to the latent space models (Jeon et al., 2021;

Kang et al., 2023), we use µγ0 = −5, µγ1 = 0.5, and σγ0 = σγ1 = 1, which lead γ|δ = 0 (spike)

to have a distribution with mean of 0.011, mode of 0.002, and SD of 0.015 and γ|δ = 1 (slab)

to have mean of 2.718, mode of 0.607, and SD of 3.563. Thus, if δ = 0 is selected, the prior
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effectively shrinks γ to zero, removing the distance effect on the logit accuracy from the model.

In contrast, if δ = 1 is selected, latent positions and distance effects can be well estimated without

large shrinkage toward zero.

One complication in using the slab-and-spike prior with Stan is that the program does not

support sampling of a discrete parameter like δ. As an alternative, δ can be marginalized to pro-

duce a mixture distribution of log(γ), with ω = P (δ = 1) and 1 − ω as choice proportions of the

two components of the slab-and-spike prior. In this case, ω can be given a prior such as Beta(1, 1)

for estimation. Also, the posterior inclusion probability (PIP) of δ can be obtained as

P (δ = 1 | γ, ω, µγ0, σγ0, µγ1, σγ1) =
ω · f(γ | µγ1, σ

2
γ1)

(1− ω) · f(γ | µγ0, σ2
γ0) + ω · f(γ | µγ1, σ2

γ1)
(8)

where f(· | µ, σ2) is a density function of N(µ, σ2)

For latent space modeling of psychometric data, simulation-based studies have shown that

the slab-and-spike prior can correctly detect significant CD and reject ignorable residual variations

(Jeon et al., 2021; Kang et al., 2023; Kang & Jeon, under review). Thus, in this article, we employ

this prior in our simulation studies and empirical illustrations of examining the relativity in CD.

2.5. Model Complexity and Relativity in Conditional Dependence

As discussed in the Introduction, psychometric models utilize latent variables and item pa-

rameters to account for person and item effects within the overall data variations. Also, by com-

bining these main model parameters (e.g., the product of latent variables and item discrimination

parameters), the models may capture some systematic person-item interactions. The remaining

residual variations may imply CD and furthermore, person-item interactions that cannot be fully

explained by simply combining the main effect parameters. These are the primary focus of the

latent space approach.

According to this decomposition of data variations, model complexity plays a crucial role

in balancing systematic and residual variations, providing some predictions for the MLSIRMs

and their nested unidimensional models. Latent space models with fewer main effect parameters

are more likely to detect larger CD due to reduced systematic explanations, whereas those with

more main parameters would identify reduced CD or even reject it. Among the four models to
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compare, it is anticipated that the MLS2PLM will generally exhibit the smallest extent of CD, while

the simplest ULSRM will show the largest extent. Comparing the MLSRM with the ULS2PLM has

some complexity, as their main model parameters are not nested and can account for different

types of main effects. Hence, the result of this comparison would be context-dependent and may

vary by the appropriate dimensionality of the measurement data, item properties related to the

slope of the item characteristic curve, etc.

However, this prediction is not without exceptions. Despite the similarity between the de-

composition of SST in linear regression and that of data variations by psychometric models,

increases or decreases in model complexity of psychometric models do not always correspond

to reductions or enlargements of residual variations and CD, due to several complications. This

complexity arises because psychometric models often face greater uncertainty in parameter esti-

mation compared to linear regression models. In contrast to SSR and SST in linear regression,

which have closed-form solutions and monotone relationships with the number of predictor vari-

ables, systematic and residual variations in psychometric models lack such simplicity and are

linked to model complexity in much more intricate ways. Furthermore, there might be various

sources of data variations that cannot be captured by specific person or item parameters. For

the models in our examination, if there are unknown data variations that cannot be explained by

adding multidimensional factors or item slope parameters, previous predictions about the extent

of CD may no longer apply.

Note that the discussion above concerns possibilities rather than established findings. To

explore and investigate these possibilities, we proceed with simulation studies and empirical ex-

amples using the proposed MLSIRMs and their simplified variations. These models will serve as

our primary tools to examine the relative nature of CD.

3. Simulation Studies

We conducted a series of simulation studies to 1) examine parameter recovery of the

MLS2PLM under substantial CD, 2) illustrate influences of not accounting for non-negligible CD

on parameter estimation, and finally, 3) demonstrate the discussed relativity of CD by comparing

LS models with different model parameters and complexities.
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3.1. Parameter Recovery

Data Generation and Analysis

For the first simulation study, we generated data from the MLS2PLM with the data-generating

parameter values sampled or determined as follows. Item discrimination parameters ai were

given I numbers evenly dividing the interval [0.5, 2.5] and item difficulty parameters bi were sim-

ilarly given I numbers evenly dividing the interval [0.0, 5.0], but the numbers were randomly

permuted. The latent ability scores θp were sampled from a multivariate normal distribution with

zero mean vector and covariance matrix Φ with ϕjj = 1 and ϕjl = 0.00, 0.30, 0.75 (j, l = 1, . . . , D,

j ̸= l). To examine the parameter recovery under CD, we used latent positions randomly sam-

pled from the standard multivariate normal distribution and the distance tuning parameter of

γ = 1.5. We repeated data generation across simulation conditions with the number of persons

P = 300, 500, 1000, the number of factors D = 2, 4, and the number of items per factor Id = 8, 16,

which yielded 12 conditions. For each condition, we generated 50 synthetic datasets for repeti-

tions.

We fitted the MLS2PLM to each synthetic dataset with the inference method described in

Section 2.3. We sampled from the joint posterior distribution of the MLS2PLM with three Bayesian

chains, each with 1500 iterations. The first 500 iterations from each chain were discarded for burn-

in. To ensure convergence, we examined the potential scale reduction factor (R̂; Gelman, 1996;

Gelman, Carlin, Stern, Dunson, & A. Vehtari, 2013) with 1.1 as its cutoff and visually inspected

posterior densities, which did not reveal any convergence issue.

Results

To assess parameter recovery, we obtained the point estimates of the model parameters from

the posterior chains and computed their mean squared error (MSE), bias (evaluated with the ab-

solute difference between estimates and true values), and standard error (SE). The calculation was

done for each parameter but averaged across items (for ai, bi, ζi), across persons (for ξp), across

persons and factors (for θp) and across matrix elements (for Φ) to summarize results. For latent

positions, their values were also averaged across K = 2 dimensions.
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Table 2 presents the recovery results with ϕjl = 0.30. The other recovery results (with ϕjl =

0.00, 0.75) can be found in Section S2 in our supplementary material. The results show that the

MLS2PLM can recover its parameters reasonably well. Statistics of person parameters (θp and

ξp) were a bit large when the number of items is small (e.g., Id = 8), but 1) these values were

comparable to previously reported MSE values of unidimensional θp in the parameter recovery

study of the 2PLM without CD (0.4-0.7; Hulin, Lissak, & Drasgow, 1982; Stone, 1992; Natesan,

Nandakumar, Minka, & Rubright, 2016). Also, recovery showed expected improvements as the

number of items increased. Estimation of ξp became more accurate with a larger D (D = 4),

because the same latent positions can be constrained with more items (I = Id ×D). However, for

θp, a larger D did not improve the estimation because it introduced more factors to estimate. In

fact, what was important for θp was the number of items per factor Id, not the number of total

items I .

The values of MSE, bias, and SE for the other parameters were reasonable and exhibited the

anticipated effects due to the simulation conditions. For example, item parameters were generally

estimated more accurately with a larger number of persons, and person parameters improved

with more items. Notably, although having more items means more item parameters to be esti-

mated, all item parameters (ai, bi, and ζi) were estimated more accurately with larger Id and I .

This would be because the additional items provided better constraints on the person parameters,

which in turn, improved the calibration of item parameters.

It is important to note that this simulation study examined parameter recovery under the ef-

fect of CD. The results show that the main model parameters to capture person and item effects

are not much affected by CD when a model with a latent space is employed to account for unex-

plained data variations implied by CD. If a model is not equipped with a component to capture

CD, its effect can propagate to the recovery of the main model parameters in an unwanted way.

In the next simulation study, we perform similar parameter recovery but compare the MLS2PLM

and the MIRM to illustrate this point and further demonstrate the advantages of incorporating a

latent space in modeling measurement data.
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D = 2 D = 4

Measure P Id log(ai) bi θp Φ ξp ζi γ log(ai) bi θp Φ ξp ζi γ

MSE

300
8 0.076 0.272 0.403 0.014 0.630 0.245 0.013 0.050 0.160 0.356 0.007 0.343 0.101 0.004

16 0.048 0.182 0.270 0.003 0.341 0.100 0.003 0.042 0.201 0.252 0.007 0.209 0.103 0.001

500
8 0.046 0.247 0.375 0.003 0.544 0.130 0.011 0.035 0.134 0.385 0.003 0.345 0.086 0.002

16 0.030 0.107 0.263 0.002 0.349 0.066 0.002 0.022 0.099 0.235 0.002 0.183 0.051 0.002

1000
8 0.023 0.105 0.390 0.004 0.502 0.053 0.006 0.020 0.081 0.373 0.002 0.334 0.040 0.002

16 0.017 0.086 0.244 0.001 0.348 0.041 0.002 0.013 0.063 0.232 0.005 0.179 0.028 0.000

Bias

300
8 0.124 0.308 0.364 0.091 0.509 0.223 0.017 0.102 0.189 0.319 0.047 0.283 0.135 0.007

16 0.103 0.243 0.274 0.032 0.271 0.111 0.010 0.092 0.200 0.234 0.067 0.174 0.096 0.005

500
8 0.086 0.311 0.344 0.008 0.409 0.154 0.014 0.067 0.171 0.346 0.023 0.277 0.116 0.019

16 0.063 0.102 0.262 0.020 0.266 0.070 0.012 0.047 0.125 0.215 0.019 0.148 0.072 0.002

1000
8 0.036 0.154 0.357 0.048 0.388 0.065 0.024 0.045 0.134 0.325 0.024 0.267 0.076 0.021

16 0.048 0.121 0.240 0.006 0.282 0.063 0.012 0.037 0.090 0.203 0.060 0.149 0.043 0.004

SE

300
8 0.220 0.358 0.407 0.072 0.431 0.327 0.112 0.187 0.294 0.417 0.063 0.430 0.252 0.063

16 0.169 0.307 0.362 0.045 0.435 0.262 0.055 0.160 0.305 0.382 0.045 0.371 0.242 0.036

500
8 0.186 0.311 0.398 0.049 0.462 0.266 0.102 0.163 0.266 0.417 0.050 0.439 0.221 0.043

16 0.142 0.274 0.367 0.033 0.443 0.230 0.048 0.133 0.256 0.379 0.033 0.357 0.196 0.040

1000
8 0.140 0.275 0.404 0.042 0.463 0.212 0.074 0.124 0.227 0.427 0.035 0.432 0.165 0.040

16 0.110 0.219 0.374 0.022 0.442 0.164 0.040 0.103 0.202 0.381 0.024 0.352 0.145 0.021

Table 2: Parameter Recovery Results of the Multidimensional Latent Space Item Response Model

3.2. Impact of Ignoring Conditional Dependence

In the second simulation study, we aimed to demonstrate the advantages of implementing a

latent space for parameter recovery. To this end, we fitted the MIRM, which has the same main

parameters as the MLS2PLM but does not employ a latent space, to the synthetic datasets used

in the first simulation study. To balance computational efficiency with the main objectives of the

study, we chose four conditions with P = 500, 1000, Id = 8, 16, and D = 2 (i.e., the total number

of items were I = 16, 32). The MIRM was fitted to the synthetic datasets using the same Bayesian

estimation method as the MLS2PLM except that latent positions and distance tuning parameters

were excluded. Consequently, the MIRM could not account for any residual dependencies, par-

ticularly person-item interactions that cannot be explained by the product of item discrimination

parameters and latent abilities. The key question we sought to address was how much the person
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and item parameters of MIRM would be influenced by not accounting for the distance effect and

CD considered in the data-generation process.

We compared the MLS2PLM and the MIRM based on MSE, Bias, and SE of the estimates.

Figure 1 shows the results. The left, middle, and right panels present results for MSE, Bias, and

SE, respectively, as denoted on top of the upper panels. The upper and lower panels present results

for ai and θp, respectively, as denoted at the top-left side of the left-most panels. In each panel,

the blue circles with solid connecting lines and the red triangles with dashed connecting lines

represent results from the MLS2PLM and the MIRM, respectively. Each panel has four points for

each model, representing the computed values of the measure across four conditions as shown as

(P, I) on the x-axis.

As shown in the figure, we restricted the comparison to the two parameters ai and θp and ex-

cluded bi. This was because bi estimates from the MIRM are not comparable to the data-generating

bi values used for the MLS2PLM. Due to the negative distance effect, bi of the MLS2PLM is typi-

cally much larger than those in the MIRM, unless the CD is very small. Simply put, overall sizes of

bi−γ ·d(ξp, ζi) correspond to those of bi in the MIRM, but the former vary across persons, making

comparisons with the latter and evaluations of bias infeasible.

In general, the results show that the MLS2PLM outperformed the MIRM. Estimates from the

MLS2PLM had larger SEs due to the need to estimate more parameters and higher model com-

plexity. However, they exhibited greater reductions in bias, resulting in considerable reductions in

MSEs. Importantly, the impact of CD did not decrease with increasing data size; instead, it turned

out from the simulation study that CD exerted larger influences on the MIRM estimates as the

data size grew.

The results in Figure 1 can be investigated from an extended perspective based on model

predictions. This is because the influences of CD on parameter estimates can be propagated to

predictions generated by the models. To demonstrate that the proposed MLS2PLM can yield

better predictive accuracy, we performed posterior predictive checking (PPC) with MLS2PLM

and MIRM, computed predicted item-wise and person-wise response proportions, and examined

which model produced better predictions by comparing predictions against data-based item-wise

and person-wise proportions. To save space, we present the results in our supplementary mate-
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Figure 1: Comparison of Parameter Estimation

rial (see Section S3), which show that capturing CD with the integrated latent space approach can

improve model predictions as well.

The comparison presented here might seem unfair given that the MLS2PLM was used as the

true data-generating model. However, the MLS2PLM can still perform better than the MIRM as

long as data imply any form of CD. This is because this latent space model can at least partially

account for CD, whereas the traditional model does not. Moreover, even if the data-generating

process adheres to the CI assumption and implies no CD at all, the MLS2PLM can reduce to the

MIRM with the slab-and-spike prior3.

Overall, the results have a clear implication that ignoring CD can distort parameter estima-

tion in psychometric models to a great extent, potentially leading to incorrect inferences and con-

clusions. Using an integrated psychometric model with a latent space can facilitate more robust

3Good performance of the slab-and-spike prior in the context of latent space modeling in psychometrics has been

shown in Jeon et al. (2021) and Kang et al. (2023) by their simulation studies. We also conducted a similar simulation

study, which confirms a comparable finding. The result can be found in our supplementary material (Section S4).
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parameter estimation.

3.3. Relativity in the Extent of Conditional Dependence

After establishing the appropriate parameter recovery of the MLS2PLM and demonstrating

the utility of implementing a latent space in the context of parameter estimation, we proceeded

to the third simulation study to illustrate the relative nature of CD. We again used the synthetic

datasets generated in the first simulation study but limited our analysis to the four conditions

used in the second study. The previously obtained results of the MLS2PLM were compared to the

results from two reduced models, the ULS2PLM and the MLSRM, both fitted to the same datasets.

Comparing the MLS2PLM to the ULS2PLM allows us to investigate the effect of underspecifing

the number of factors. Similarly, comparison against the MLSRM reveals the impact of dropping

the item discrimination parameters (i.e., fixing all ai’s to 1). The difference between the models

may yield not only changes in the extent of CD but also substantive and qualitative differences in

unexplained interactions (e.g., patterns of latent positions). However, for this simulation, we focus

on the effect of main model parameters on the extent of CD only as the patterns of interactions

can vary across repetition, making it hard to consistently compare it for all three models and

simulation repetitions.

Both competing models would not account for certain sources of person-item interactions,

potentially producing increases in the extent of CD. To compare these effects quantitatively, we

examined the γ estimates (γ̂) from the three models. Generally, we anticipate that models with

constraints on latent variables and main item parameters would exhibit larger CD because they

lose some of their capacity to systematically explain data variations. Consequently, overestimated

γ values are expected in most cases. However, exceptions may occur where γ̂ is larger in a more

complex model due to randomness in estimation. This outcome contrasts with what is typically

expected (and can be mathematically proven) in linear regression analysis.

Comparison of the models solely based on γ̂ would need justification. The parameter γ is sim-

ply a tuning parameter to adjust the scale difference between the Euclidean distance and the other

model parameters. Typically, comparing γ̂ could not be meaningful in practical cases because its
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Figure 2: Comparison of Estimated Distance Tuning Parameters: MLS2PLM vs ULS2PLM, i.e., the effect of

underspecifying the number of factors

value can vary due to factors other than the extent of CD, such as differences in the underlying

structure of latent positions, link functions, etc. For example, if one model detects largely deviant

clusters of items or persons while the other model yields randomly distributed latent positions, it

could be argued that the former model exhibits much larger CD even if its γ̂ is smaller. In such

cases, sizes of γ̂ do not correctly represent the extent of CD. However, in the current simulation,

data-generating values of latent positions were randomly generated from the standard multivari-

ate normal distribution. Also, all models in comparison use the same logit link function. These

constraints in simulation design help observe and evaluate changes in the extent of CD based on

γ̂ across three latent space models.

The comparison results are presented in Figures 2 and Figures 3. In each figure, there are four

panels of scatter plots corresponding to four conditions of P and I , as shown at the bottom-right

side of each panel. In each panel, γ̂ values from the MLS2PLM are plotted on the x-axis against

those from the two competing models on the y-axis. The purple triangles in Figure 2 and the green

circles in Figure 3 represent comparisons against the ULS2PLM and the MLSRM, respectively, as

denoted by the y-axis labels. The diagonal line in each panel indicates the points at which γ̂ values

from the MLS2PLM and the other competing models are equivalent. Hence, circles and triangles

distributed on the top-left side of the diagonal line indicate that the simpler competing models

detect larger CD and produce larger γ̂ than the MLS2PLM. If this is the case, increases in CD

can be attributed to the parameter constraints imposed on the simpler models and their resulting

decreases in systematic explanations of data variations.
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The results correspond to the anticipated relativity in CD as described in the introduction.

The estimates γ̂ from the MLS2PLM were generally distributed around its data-generating value

1.5 and as the data size increased, its estimation precision improved. The estimates from the

competing models were mostly larger than those from the MLS2PLM. Specifically, the ULS2PLM

that underspecified the number of factors produced larger CD than the MLS2PLM in almost all

cases, with only two exceptions when P = 500 and I = 32.

The MLSRM, which constrains all item discriminations to be 1, yielded a similar effect of

increasing CD. However, there were some exceptions. Specifically, when P = 500, the MLSRM

produced smaller γ̂ values than the MLS2PLM in 12 and 18 repetitions (out of 50) in the conditions

with I = 16 and I = 32, respectively. When P = 1000, overestimated γ̂ values from the MLSRM

were more consistently observed, with only one exception in the condition with I = 32. Also,

across both conditions of P , the MLSRM estimates of γ̂ tended to be closer to those from the

MLS2PLM when I = 32 than when I = 16 (i.e., the green circles were closer to the diagonal lines

when I = 32). These findings align with expectations, considering the estimation issue with the

item discrimination parameters. With larger numbers of persons (P ), the MLS2PLM can more

precisely estimate ai and detect the extent of CD. Consequently, there were fewer cases in which

the MLS2PLM yielded larger error in estimating γ̂ and the MLSRM produced smaller γ̂ values.

As the number of items (I) increases, more item discrimination parameters need to be estimated,

which can lead to less precise estimates of âi as well as less precisely estimated extents of CD.

This could be associated with the observation that the MLSRM estimated smaller γ̂ values than

the MLS2PLM in more repetitions when I = 32, compared to when I = 16.

It might be tempting to compare the two results and examine the differences between the

two constraints on CD. However, we do not pursue this here, as the actual differences can vary

considerably depending on the number of underlying dimensions, the degree of misspecification,

the distribution of true item discriminations, etc. A more thorough and comprehensive simulation

study would be required to address this, which is beyond the scope of the current article.
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Figure 3: Comparison of Estimated Distance Tuning Parameters: MLS2PLM vs MLSRM, i.e., the effect of

dropping the item discrimination parameters

4. Empirical Illustrations

We continue to illustrate the relativity in CD as well as the practical utility of the proposed

models, now with empirical examples. To this end, we utilized two datasets. The first dataset was

from the Inductive Reasoning Developmental Test (IRDT; Golino & Epskamp, 2017). The IRDT

dataset was collected from 1803 test-takers and used to illustrate an exploratory graph analysis

(EGA) as a new way of estimating the number of latent dimensions. The IRDT has 56 items

to measure seven sequential stages of the development of inductive reasoning. Each stage was

measured with 8 items and item responses could be represented by a 7-factor structure. With this

dataset, Golino and Epskamp (2017) showed that the EGA can be a better alternative to detect the

number of factors than the traditional approaches used in exploratory factor analysis (EFA).

It is worth mentioning that the IDRT dataset was recently analyzed with the LSIRM (also

denoted as ULSRM in the current article) to illustrate the utility of the model (Kang & Jeon, 2024).

Noting that unspecified factors can be a data-based source of CD, it was shown that misspecified

factors can emerge as item clusters in a latent space. Thus, a latent space can serve as another

statistical tool to explore the dimension of factors. They also illustrated how to derive personalized

diagnoses and evaluations for different respondents with similar latent abilities from the same

data application.

The second dataset was collected from patients with Attention-Deficit/Hyperactivity Disor-

der (ADHD; Silk et al., 2019). From the Diagnostic Statistical Manual (DSM-5), the list of 18 symp-

toms (9 inattentive and 9 hyperactive) was obtained and the presence/absence of each symptom
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was measured from 146 ADHD patients and 209 control subjects. A network approach imple-

mented in the R package qgraph was applied to this dataset to explore the symptom network.

In our empirical illustrations, we applied the four latent space models (ULSRM, ULS2PLM,

MLSRM, MLS2PLM) to the two datasets. For the IRDT dataset, the multidimensional models

(MLSRM and MLS2PLM) account for the factor structure with D = 7 factors while examining

CD with their latent spaces. Golino and Epskamp (2017) also analyzed this dataset using a 7-

factor CFA model and a bi-factor model with 7 specific factors to illustrate their similarities and

dissimilarities from EGA. Similarly, as the ADHD dataset was concerned with inattentive and

hyperactive symptoms, the multidimensional models examined this dataset with D = 2 factors.

The unidimensional models (ULSRM and ULS2PLM) employed a single factor for both datasets.

As the models differ in the number of main person and item parameters, they differ in their

capabilities to systematically explain data variations, producing different extents of unexplained

variations and configurations of latent spaces. This perspective has already been illustrated in

the third simulation study. Now we further demonstrate it with real-world datasets, focusing on

presenting and interpreting the estimated latent spaces.

In doing so, we first focus on the changes in the extent of CD in Sections 4.1 (IRDT) and 4.2

(ADHD). The resulting latent spaces exhibit differences not only in the extent of CD but also in the

patterns of latent positions. This implies that, depending on which model is employed, utilizing

CD via latent space can lead us to qualitatively different diagnoses for persons and items. These

differences are examined and illustrated separately in Section 4.3.

For both data examples, we fitted the models with the Bayesian approach described in Section

2.3. We ran three Bayesian chains with 3000 iterations, the first half of which were discarded for

burn-in. Convergence was examined with R̂ and visual inspection of posterior densities. The

MLS2PLM with appropriate numbers of factors did not yield any convergence issues (see Section

S5 in our supplementary material). The models with less flexibility produced rather large R̂ values

in our initial attempt and sometimes failed to reach the convergence criterion. We resolved this by

simply re-fitting the models with different initial values and obtained the results with convergence

for all models.
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Figure 4: Estimated latent spaces for the IRDT dataset.

4.1. Example 1: IRDT dataset

For the IRDT dataset, all four models selected the slab part of the slab-and-spike prior with

the PIP > 0.999, implying substantial CD. Figure 4 shows the four latent spaces from four different

models, as indicated at the top-left side of the panels. All panels have the same ranges for the x-

and y-axes for comparison across the models. In each panel, the gray dots represent respondents

and the colored numbers represent items. Items measuring the same factor (e.g., items 1-8) were

given the same color code (e.g., dark cyan).

The results from the ULSRM (top-left) showed seven clusters of items, corresponding to the
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presumed 7-factor structure. As the model had a unidimensional latent ability that was supposed

to influence all items, the differences between items measuring different factors remained unex-

plained by the main model parameters. These residuals were captured as the item clusters on the

latent space, which corresponded to the specific factors used in the previous application of the

bi-factor model (Golino & Epskamp, 2017). Some item clusters were close to each other, reflect-

ing high correlations between their items beyond what can be explained by the common latent

ability. Putting it all together, the latent space showed that the primary source of CD detected by

the model would be the item clusters (i.e., unspecified factors). This finding generally replicated

the result presented in Kang and Jeon (2024). When item discrimination parameters were incor-

porated (top-right), some item clusters merged, for instance, items 41-48 (lime) and 49-56 (green).

This implies that some inter-cluster item correlations can be largely accounted for by item discrim-

ination parameters, leading the corresponding clusters to seemingly merge. However, this did not

entirely remove the clustering patterns of items.

The latent spaces produced by the multidimensional models exhibited an important distinc-

tion. Both MLSRM and MLS2PLM chose the slab part of the slab-and-spike prior, even after

controlling for the effect of the seven underlying factors. In other words, the models detected sub-

stantial CD unaccounted for by correlations between those factors, and thus, the primary source

of CD from the multidimensional models is not the underlying factors and their corresponding

person effects. Due to this difference, configurations of the resulting latent spaces considerably

changed. Most importantly, all items were intermixed regardless of which factor they were sup-

posed to measure. This pattern was also consistent with the interpretation that variations due

to the seven developmental stages of IRDT were not the main source of CD. From simple vi-

sual inspection, it seemed that incorporating item discrimination parameters or not did not yield

noticeable differences in estimated latent spaces. Their differences may be revealed by more thor-

ough investigations with quantification of interactions based on distances. An example of this

with inter-item distances is provided in our supplementary material (Section S6.2).
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Reduction in the extent of CD: IRDT

The estimated value of the distance tuning parameter was 2.662 in the simplest ULSRM and

changed to 2.877 (ULS2PLM), 0.969 (MLSRM), and 0.883 (MLS2PLM). The estimates did not al-

ways decrease as the model complexity with regard to the main effect parameters increased, but

except for the comparison between ULSRM and ULS2PLM, the pattern was consistent with our

anticipation and the simulation results. Notably, when the number of factors and the factor struc-

ture were correctly specified in the multidimensional model, the estimates were reduced to a large

degree.

The spread of latent person and item positions showed similar reductions. For instance, the

estimated positions from the unidimensional models are less spread than those from the multidi-

mensional models in Figure 4. The left section of Table 3 presents the SDs of the estimated latent

positions, quantifying this pattern in the spread. In general, SD decreased as the model complex-

ity increased, except that the MLS2PLM yielded slightly larger SDs than the MLSRM. Potentially,

this could be compensated by the reduction in γ̂.

Motivated by the findings described above, we took a deeper look into the reduction in CD

based on the estimated interaction terms γ̂ · d(ξ̂p, ζ̂i). We first computed all person-item distances,

then averaged them first over persons and subsequently over items, resulting in person-wise and

item-wise distance effects. This process was repeated for each model, providing each person and

item with four distance estimates corresponding to the four models under examination. Figure

5 illustrates the changes in the distance effects, with person-wise estimates on the left panel and

IRDT ADHD

Model γ̂ CI SD(ξ1p) SD(ξ2p) SD(ζ̂1i) SD(ζ̂2i) γ̂ CI SD(ξ̂1p) SD(ξ̂2p) SD(ζ̂1i) SD(ζ̂2i)

ULSRM 2.662 [2.535, 2.800] 0.797 0.792 1.255 1.346 1.493 [1.270, 1.745] 0.869 0.612 1.116 0.892

ULS2PLM 2.877 [2.674, 3.089] 0.744 0.750 1.003 1.061 1.569 [1.325, 1.832] 0.834 0.606 1.030 0.753

MLSRM 0.969 [0.813, 1.139] 0.372 0.303 0.692 0.636 1.345 [1.103, 1.601] 0.723 0.639 0.940 0.979

MLS2PLM 0.883 [0.719, 1.055] 0.364 0.315 0.712 0.695 1.415 [1.125, 1.729] 0.637 0.516 0.842 0.704

Table 3: Statistics related to Latent Positions. Left Section: IRDT, Right Section: ADHD.

CI: 95% Credible Intervals of γ. SD: Standard Deviations of Estimated Latent Positions for Persons (ξ̂1p, ξ̂2p)

and Items (ζ̂1p, ζ̂2p)
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Figure 5: Reduction in the Estimated Distance Effects γ̂ · d(ξ̂p, ζ̂i) as a Function of Model Complexity: The

IRDT Dataset. Left: Person-wise Average Distance Effects. Right: Item-wise Average Distance Effects.

item-wise estimates on the right panel. In each panel, the x-axis lists the four models in the order of

their model complexity, and the y-axis represents the averaged distance effects. Each dashed line

corresponds to a single person or a single item. We used the same color codes as the latent spaces

in Figure 4. Additionally, for clearer visualization, we randomly selected 10% (approximately 180)

of the total sample for the person-wise estimates.

For both persons and items, the distance effects generally exhibited decreasing trends as a

function of the number of person and item parameters incorporated into the model. The dif-

ferences stemming from item discrimination parameters were weak and somewhat inconsistent,

but the differences related to the dimensionality of factors were salient. Also, when the number

of factors and the factor structure were adequately specified, the impact of item discrimination

parameters became more consistent despite its small size. Overall, this result aligns with our ex-

pectations regarding the relativity of CD.

4.2. Example 2: ADHD dataset

We analyzed the ADHD dataset as similarly as we did for the IRDT dataset to examine the

relativity in CD. The primary goal was to replicate the findings from the IRDT dataset. Figure

6 shows the four latent spaces from the four models fitted to the ADHD dataset. The associated
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Figure 6: Estimated latent spaces for the ADHD dataset.

inter-item distance matrices are provided in the supplementary material (Section S6.2). All models

yielded that the extent of CD was substantial with the PIPs > .999. In each panel, the gray num-

bers indicate respondents and words represent abbreviated symptoms used in the measurement.

Section S6.1 in the supplementary material gives the full list of symptoms with their abbreviations,

which can also be accessed from p.4 in Silk et al. (2019).

The figure suggests implications similar to those from Figure 4. The estimated latent spaces

from the unidimensional models in the top panels showed greater variations across both persons

and items. Also, items could be separated into two groups, e.g., by the dark gray dashed diagonal

line added for reference. Unlike the results from the IRDT dataset, the clustering of items measur-
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ing the same factor was less distinct. This difference might be due to the ADHD dataset containing

only two factors, compared to seven in the IRDT dataset. The two ADHD factors would generate

relatively weaker data variations, making themselves less prominent sources of CD. Nevertheless,

the two groups of symptoms remain distinguishable.

In contrast, the items in the latent spaces from the multidimensional models did not exhibit

the same distinction. Specifically, the items measuring the hyperactive symptoms (red) were split

into two groups, one distributed on the above side of the items for the inattentive symptoms and

the other distributed on the below side. This pattern was commonly observed in both multidimen-

sional models. However, when item discrimination parameters were added, persons and items

gathered more closely with each other.

Reduction in the extent of CD: ADHD

As with the IRDT dataset, we performed further analyses to quantify the findings from the

estimated latent spaces and look into the details of the reduction in CD. To this end, the estimated

distance tuning parameter γ̂ and SDs of the estimated latent positions are calculated and pre-

sented in the right section of Table 3. The estimates for γ̂ decreased when the number of factors

was correctly specified, but not as a function of incorporating item discrimination parameters. In-

stead, the SDs of latent positions mostly decreased as more main parameters were employed in

the model, indicating a reduction in CD.

Figure 7 provides a more thorough look at the decreases in the distance effects, person-wisely

(left panel) and item-wisely (right panel). As in Figure 5, each dashed line corresponds to a single

person or a single item. Replicating the findings from the IRDT dataset, persons and items showed

generally decreasing extent of CD as a function of model complexity. The differences between

unidimensional and multidimensional models were relatively small compared to those found in

the IRDT dataset, which can be attributed to the fewer number of factors. However, rise and drop

in the size of distance effects due to the factor dimensionality were consistently observed across

most persons and items. Also, changes due to item discrimination were also consistent. Taking

together, the four models applied to the ADHD dataset produced similar results as observed in
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our first empirical examples, providing similar implications on the relative nature of CD.

4.3. Qualitative Differences in Latent Spaces Across Models

The primary reason we discussed and examined the relative nature of CD was its substan-

tive implications in practical data analysis, particularly in studying unexplained person-item in-

teractions and their implied individual differences, beyond the changes in the extent of CD. To

illustrate these points, we revisit our empirical examples again. With the IRDT dataset, we show

that a largely different item network can emerge on the latent space depending on which person

and item parameters are incorporated in a model. With the ADHD dataset, we demonstrate that

choices of main model parameters can lead to different configurations of latent positions, which

in turn lead to different evaluations and diagnoses for respondents derived from CD.

Changes in Item Networks due to Main Model Parameters

To examine qualitative differences in the configurations of latent spaces and the patterns

due to CD, Figure 8 presents two latent spaces of the IRDT dataset, obtained from ULSRM and

MLS2PLM (left panels). These latent spaces were previously shown in Figure 4. However, un-
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Figure 7: Reduction in the Estimated Distance Effects γ̂ · d(ξ̂p, ζ̂i) as a Function of Model Complexity: The

ADHD Dataset. Left: Person-wise Average Distance Effects. Right: Item-wise Average Distance Effects.
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Figure 8: Estimated latent spaces for the IRDT dataset for the ULSRM and the MLS2PLM and their associ-

ated inter-item distance matrices.

like Figure 4, which uses the same x- and y-axis ranges for all estimated latent spaces to compare

the extent of CD, Figure 8 removes this constraint, allowing each latent space to have its own axis

ranges. As a result, the latent space of the MLS2PLM is zoomed in as its positions are more densely

clustered compared to those in ULSRM. Also presented in Figure 8 are the inter-item distance ma-

trices (right panels). For this matrix-like visualization of item networks, distances between items

in the latent spaces were computed and color-coded according to the legend on the right side of

Figure 8.

As described in Section 4.1, the ULSRM yielded the latent space (the top-left panel of Figure

8) in which item clusters emerged, each of which corresponds to the seven developmental stages
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considered in IRDT. This could be attributed to the unidimensional latent variable employed in

the ULSRM which was not able to sufficiently capture variations due to factor differences. The

inter-item matrix plot (the top-right panel of Figure 8) also confirms this pattern, showing a strong

block-diagonal structure.

In contrast, the MLS2PLM yielded largely different configurations of latent positions. Most of

all, there were seemingly no item clusters associated with the factor structure of IRDT, as judged

by the item positions on the latent space (the bottom-left panel of Figure 8) and their inter-item

distances (the bottom-right panel). This was because the variations across item clusters due to fac-

tor differences were effectively captured by the multidimensional latent variables. However, CD

from the remaining variations still indicated substantial person-item interactions, as detected by

the slab-and-spike prior with PIP > .999. This means that there were other sources of interactions

accounted for by the main model parameters of the MLS2PLM.

The latent space from the MLS2PLM allows more sophisticated analyses of unexplained inter-

actions. Focusing on the inter-item interactions, a new interaction map reveals some heterogeneity

between items measuring the same factor. The most clear pattern can be found from items 17-24

(color-coded as dark-blue), which exhibited two small groups, one on the bottom side (items 17-

20) and the other on the top side of the latent space. The inter-item distance matrix also clearly

showed this pattern, as highlighted by the thick dark-blue square. This represents that, even

though these items were designed to assess the analogy at a specific developmental stage, they

exhibited distinct item characteristics. A similar pattern can be found from items 41-48 (lime) as

items 44-48 were located roughly around (0.5, -1.0), item 43 at the origin, and items 41 and 42 at

the top side of the latent space. Also for items 25-32 (red), items 25 and 26 exhibited a unique

association as they were located far left side of the latent space whereas the other items 27-32 were

distributed roughly around (0.5, 0.5).

This investigation can be extended to person-person and person-item relationships to show

substantive differences between different models due to the relativity in CD. For instance, as can

be seen from the top-left panel of Figure 8, any single person would be judged to have similar

distances to items 25-32 (red) by the ULSRM. In contrast, the bottom-left panel of the same figure

shows that distances from the same person would vary to a large degree between items 25-26 and
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Figure 9: Factor Score Histograms, Latent Space, and Individual Symptom Profiles from the MLS2PLM

applied to the ADHD dataset

the others in the result by the MLS2PLM. In this way, different model structures and the relevant

relativity in CD can produce largely distinct interpretations of CD and interactions between per-

sons and items.

Utilizing CD for Personalized Diagnoses: Dual Importance of Explained and Unexplained Data Variations

We revisit the ADHD dataset to continue our illustration of the relative nature of CD and

its consequent outcomes in substantive interpretations of person-item interactions. This time,

we focus on possible differences in deriving personalized diagnoses and evaluations for different

respondents. To this end, we selected two respondents, with the ID numbers 94 and 120 (hereafter

referred to as P94 and P120), for illustration.

The two histograms on the left side of Figure 9 display the distributions of the estimated

latent traits θ̂1 (inattentiveness) and θ̂2 (hyperactiveness), representing the main systematic person
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effects. Within each histogram, two vertical lines indicate the locations of the latent scores for P94

and P120. As these lines show, the two selected respondents had nearly identical latent scores,

meaning that their overall levels of inattentive and hyperactive symptoms were very similar.

The top-right panel of Figure 9 shows the latent space estimated from the MLS2PLM. This is

the same as the one in Figure 6 but now estimated latent positions of P94 and P120 are highlighted

with the enlarged ID numbers and the greenish dashed circles surrounding them. Below the la-

tent space, two bar charts for P94 (left) and P120 (right) are presented. These bar charts present the

symptom similarity (i.e., the negative exponential transformation of a distance using Equation 4)

profiles of each respondent with different items. An individual bar corresponds to the similarity

of the selected respondents to the item shown on the bar. The nine bluish bars on the top and

the other nine reddish bars on the bottom correspond to inattentive and hyperactive symptoms,

respectively. Also, darker colors indicate higher similarities (closer distances and stronger symp-

toms) while lighter colors represent lower similarities (farther distances and weaker symptoms).

To facilitate comparison, items are ordered according to their distances to P94 on the latent space

estimated from the MLS2PLM.

Despite having nearly identical factor scores, the two respondents were located farther away

from each other on the estimated latent space, particularly along the y-axis with ξ̂2,94 = 0.717

and ξ̂2,120 = −0.707. As a result, they had largely different profiles of person-item distances. For

instance, P94 was closer to hyperactive symptoms on the top side of the latent space, such as inter-

rupt, turn, and talks and accordingly showed higher similarities with them. In contrast, P120 was

generally distant from the items, with the closest items being listen (inattentive) and seat (hyper-

active). As higher similarities (i.e., smaller distances) are associated with higher probabilities of

endorsing items, these differences between the two selected respondents suggest that their specific

ADHD symptoms were notably distinct, despite their similar factor scores. This heterogeneity, un-

captured by estimated factor scores, can be further investigated with the latent space as illustrated

and utilized to provide personalized diagnoses and feedback for different respondents.

The individual symptom profiles discussed thus far were based on the MLS2PLM. However,

the relative nature of CD suggests that using a different model can considerably alter the results.

To illustrate this, we examined the result from the ULSRM again. Figure 10 presents the relevant
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Figure 10: Individual Symptom Profiles from the ULSRM applied to the ADHD dataset

latent space as well as their individual symptom profiles derived from the ULSRM. The single-

factor scores of these two respondents were still very similar, with -0.157 for P94 and -0.172 for

P120.

Comparing the ULSRM results from those in Figure 9, it can be noticed that the individual

profiles changed considerably. Three key differences emerged: 1) similarities were generally lower

(i.e., larger distances) in the ULSRM results (see the range of the x-axis of the profiles), 2) latent

positions of P94 and P120 were notably closer in the ULSRM results, leading to relatively simi-

lar profiles, and 3) both respondents have very low similarities to hyperactive symptoms, unlike

those in the MLS2PLM results. Additionally, as can be seen by comparing changes in the distance

profiles of P94 and P120, differences between models would also vary across respondents. Other

respondents may show larger or smaller changes across models depending on their estimated

latent positions. All these differences ultimately can lead to different diagnoses and evaluations

based solely on the choice of model.

The individual symptom profiles underscore the value of studying CD, as they provide valu-

able insights into person-item interactions, individual differences, and personalized assessment

of individuals (as well as items, though not shown). Taking this further, comparing the profiles

from the two models (MLS2PLM and ULSRM) leads us back to the importance of considering

the relative nature of CD. Models with varying complexities (due to the main model parameters)

yield different levels of systematic explanations, producing different extents and configurations
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of CD, and consequently, different diagnoses, evaluations, and feedback. Also, some aspects of

CD may reflect systematic variations that can be accounted for by suitable and interpretable main

effect parameters (e.g., specifying factors with an appropriate dimension). Therefore, selecting

a model with appropriate main effect parameters is crucial to simultaneously study the overall

states of individuals (e.g., by factor scores) and person-wise specificities (e.g., by latent positions

and distance effects).

5. Discussion

The proposed MLSIRMs extend the LSIRM with multidimensional factors and item discrim-

ination just as the between-item multidimensional 2PLM does for the standard unidimensional

Rasch model. The MLSIRMs analyze person and item effects underlying the data variations and

quantify them as estimates of multidimensional factor scores, item discrimination parameters, and

item difficulty parameters. Simultaneously, the models capture some of the residual data varia-

tions by means of latent space, representing them as scaled distances between persons and items

mapped onto this space. This dual approach allows the models to account for person-item interac-

tions unexplained by the main person and item effect parameters. The resulting information can

be utilized to produce personalized diagnoses and evaluations for individuals. As described in

our last empirical example section, this approach can uncover individual differences unrevealed

by factor scores.

While proposed as an extension of the LSIRM, the MLSIRMs also served as our framework

to investigate and discuss the relative nature of CD. By imposing constraints on its main model

parameters, the most complex MLS2PLM can be reduced to various simpler latent space models.

This kind of constraint can limit the ability of a model to systematically explain data variations,

leaving more residual variations unexplained. Consequently, a latent space from a simpler model

would be given larger variations to capture. Conversely, when a more complex model with ad-

ditional main parameters is used, fewer residual variations remain unaccounted for, leading to

smaller estimates of distance effects. This pattern was demonstrated with both a simulation study

and empirical examples.

In our illustrations with the IRDT and the ADHD datasets, the factor dimensionality turned
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out to yield relatively large differences in the estimated latent spaces and person-item interactions

both in their sizes and configurations. Particularly for the IRDT dataset (Figure 4), the unidi-

mensional models produced item clusters in the latent spaces corresponding to the misspecified

dimensionality. In contrast, when the correct dimensionality was specified, the distribution of la-

tent positions seemed more residual-like patterns. Looking deeper into the positions of items and

their relative distances, however, it was possible to investigate differences in item-specific charac-

teristics in their interactions with persons, even for the items measuring the same factors (Figure

8). The factor dimensionality was associated with relatively smaller differences in the latent spaces

in the ADHD dataset (Figure 6) as there were only two factors considered. However, this dataset

also revealed that more subtle (but statistically significant judged by the slab-and-spike prior) dif-

ferences within the items measuring the same factors can be captured by the latent space when

the correct dimensionality was specified. Generally, the item discrimination did not produce no-

ticeable differences in the patterns/configurations of latent positions, but captured some of their

variations, shrinking the positions toward the origin of the latent space and making them more

densely gathered. However, the size of changes in CD due to factor dimensionality and item dis-

crimination can vary across datasets, due to correlations of factors, variations in the range of item

discriminations, etc. Whether the current findings are specific to the current examples or can be

generalized to other datasets (i.e., whether these are general properties of item discrimination pa-

rameters in terms of CD) should be further investigated.

Although we restricted the scope of our investigation to the dimensionality of factors and the

item discrimination parameters in model extension as well as an examination of the relative prop-

erty of CD, other model parameters used in psychometric models can be incorporated to further

advance this line of research. For instance, random response, random guessing, and ability-based

guessing can be other sources of CD (Bolsinova, Tijmstra, Molenaar, & De Boeck, 2017). If this is

the case for a certain dataset, extending the current MLSIRMs with the pseudo-guessing parame-

ters (also known as the lower asymptote parameters) in a three-parameter IRT model (Hambleton,

Swaminathan, Cook, Eignor, & Gifford, 1978; Lord, 1980) and the upper asymptote in a four-

parameter model (Barton & Lord, 1981; Hambleton & Swaminathan, 1985) could potentially par-

tial out CD, explaining as data variations due to corresponding item effects. As a result, CD
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detected by the latent space can be reduced and accordingly, the configuration of the estimated

interaction map can change. Similarly, if a test item of concern requires multiple problem-solving

processes, a latent space model incorporating the concept of item complexity (Bolt & Liao, 2022;

Samejima, 2000) could find a better balance between the systematic and the distance-based expla-

nations of data variations rather than solely relying on what emerges on a latent space. However,

this depends on whether at least some part of CD detected by the current model can be accounted

for simply by main effects (not interactions) and whether the added parameters are suitable for

capturing a subset of variations implied by CD.

The relative nature of CD implies that there could be potentially good alternative explanations

when an interesting regularity is observed from CD. Variations attributed to CD in one model may,

with appropriate modifications, turn out to be regular person or item effects. Most previous ap-

plications of the LSIRM and its variations have used the slab-and-spike prior to avoid greedily

exploiting variations in item responses. However, even when this prior detects substantial CD,

it is possible that some unexplained person-item interactions could be reinterpreted as system-

atic variations related to person and item characteristics. Certainly, a requisite for this possibility

would be to find and incorporate appropriate main model parameters that offer reasonable and

useful interpretations. Hence, it is crucial to balance model complexity due to person and item

parameters in a model and examination of CD with relevant statistical integration. Although we

focused on latent space modeling for this integration, the implication would apply to other statisti-

cal methods that attempt to move beyond the CI assumption and utilize CD to study unexplained

person-item interactions and individual differences.

Future research can be dedicated not only to the issues of the relative nature of CD discussed

above but also to some general topics of the latent space models in psychometrics. First, previous

methods of examining CD and residual variations can be compared with the proposed approach.

For instance, differential item functioning (DIF; Magis, Sébastien, Francis, & Paul, 2010) and mea-

surement (in)variance (Meredith, 1993) can be examined as interactions between items and groups

of persons on the latent space. Unlike the traditional DIF and invariance testing methods, the la-

tent space does not require to prespecify a group variable of interest. Also, latent positions can

be linked to continuous variables so that invariance can be examined across degrees on such vari-
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ables, in the sense of (Molenaar, 2021). As the latent space is employed to examine residual data

variations and underlying unexplained person-item interactions, latent positions and their dis-

tances can be associated with traditional person fit and item fit indices (Emons, Sijtsma, & Meijer,

2005; Reise, 1990; Sinharay, 2006). Furthermore, regarding the issue of the number of factors,

patterns detected by the residual principal component analysis (Chou & Wang, 2010) can be com-

pared with latent positions. Another important topic is the selection of K, the dimension of latent

space. Most previous latent space modeling (both in network analysis and psychometrics) imple-

mented K = 2 for easy visualization. However, to better account for CD and quantify unexplained

person-item interactions, detecting the optimal dimension is necessary. Widely used Bayesian

model selection criteria such as Deviance Information Criterion (Spiegelhalter, Best, Carlin, & Van

Der Linde, 2002), Watanabe-Akaike Information Criterion (Watanabe, 2010), Watanabe Bayesian

Information Criterion (Watanabe, 2013), Leave-One-Out cross-validation (LOO; Vehtari, Gelman,

& Gabry, 2017) can be examined to see if they can accurately detect the optimal dimension of la-

tent space. We hope that all these topics will be addressed soon, helping researchers easily utilize

the proposed approach and better understand its relationship with traditional models.
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