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Summary

Theories on the evolution of recombination in regard to its ability to increase mean fitness require

a consistent source of negative linkage disequilibrium among loci affecting fitness to show an

advantage to recombination. Here we present evidence that, at least theoretically, genetic variation

for recombination can spread in very large populations under a strictly multiplicative-fitness,

deleterious-allele model. The model uses only Mendelian genetics in a multi-locus context to show

that a dominant gene for recombination can spread when rare and resist invasion when common.

In non-equilibrium populations driven by Muller’s ratchet, the gene increases its prob! ability of

fixation by increasing the probability of being associated with the best individuals. This occurs at

an optimal level of recombination. Its action results in both an immediate and a long-term

advantage to recombination amongst the proto-meiotic organisms modelled. The genetic

mechanism lends itself naturally to a model for the evolution of meiosis, where modern-day

gametes are seen as derivative of ancient unicellular organisms.

1. Introduction

Sixty two years ago, Haldane (1937) showed that

under independent gene action the equilibrium load in

an infinite population is e−µ, where µ is the genome-

wide mutation rate. This load is independent of either

recombination or epistasis, but not of their combined

action (Kimura & Maruyama, 1966). In terms of the

benefits of recombination, there is nothing special

about epistasis per se : epistatic selection works

antagonistically with recombination to result in a

consistent, non-zero level of linkage disequilibrium

(Felsenstein, 1965). Because, by definition, epistasis

means that mutations affect fitness as a function of the

rest of the genome, the resultant equilibrium non-

random distribution of mutations means that with

recombination population mean fitness can deviate

from the null expectation of e−µ. Alternatively,

fluctuating selection or finite population size can also

generate linkage disequilibrium, and thus they too can

render an advantage or disadvantage to recombi-

* Corresponding author. Telephone:­1 (909) 787 4416. Fax:­1

(909) 787 4437. e-mail : gessler!evolution.ucr.edu.

nation. Under continual mutation pressure the ad-

vantage or disadvantage follows the sign of the

disequilibrium, negative linkage disequilibrium ren-

dering an advantage to mixis, positive linkage dis-

equilibrium to linkage. This generalization can be

indicative of the evolution of recombination if linkage

is tight, though it does not guarantee the continued

spread of a recombination modifier once linkage is

loose (Barton, 1995; Feldman et al., 1996; Otto &

Feldman, 1997). In contrast to the situation under

epistasis (where recombination can increase mean

fitness), here, recombination helps the population

maintain its determinist expectation of e−µ. The factors

that generate linkage disequilibrium, and thus the

factors that underlie an advantage to recombination,

are sometimes categorized into deterministic or stoch-

astic processes, for example as recently done by

Kondrashov (1993), Barton (1995) and Antezana &

Hudson (1997a).

Yet unfortunately the application of any of these

above processes to the evolution of recombination has

been hampered by the evidence. The evidence for

epistasis in terms of physiological gene interactions is

extensive (e.g. Barker, 1979; Cheverud & Routman,

1995), but evidence for the required nonlinear re-

https://doi.org/10.1017/S001667239800367X Published online by Cambridge University Press

https://doi.org/10.1017/S001667239800367X


D. D. G. Gessler and S. Xu 120

lationship between an organism’s mutational load and

log fitness is at best tentative (Kondrashov, 1988;

Keightley, 1996; Elena & Lenski, 1997). Additionally,

strong synergistic epistasis can decrease the variance

in fitness so much that the decrease is not offset by a

concomitant increase in the mean (Barton, 1995). In

these cases, recombination is selected against – there

being only a window where synergistic epistasis

favours the spread of a recombination modifier (Otto

& Feldman, 1997; Otto & Michalakis, 1998). Thus

models on the evolution of recombination by means

of its interaction with epistasis need not only empirical

support for synergistic epistasis, but epistasis of the

right magnitude.

Alternatively, one can examine finite population

size as a generator of linkage disequilibrium. For

example, in moderately sized populations computer

simulations have shown that drift can generate

sufficient linkage disequilibrium to yield an advantage

to recombination (Felsenstein & Yokoyama, 1976).

This advantage accrues because recombination stops

Muller’s ratchet and mitigates the Hill–Robertson

effect (changes in alleles’ probability of fixation

because of non-random associations amongst selected

loci over time: Hill & Robertson, 1966; Felsenstein,

1974). Yet once populations become large, long-

standing, non-random associations between loci under

multiplicative gene action are, at best, weak and

transitive (Felsenstein, 1965). In the limit as NU¢
there should be no benefit to recombination at all

(Maynard Smith, 1968). Thus classical analyses

predict that all but the smallest of asexual populations

should be in approximate mutation–selection balance

and, for this reason, finite population size alone has

often been thought to be unable to explain an

advantage to recombination. These considerations,

along with difficulties in quantifying Muller’s ratchet

(Charlesworth & Charlesworth, 1997), have hindered

the ratchet’s explanatory role for the evolution of

recombination. This conceptualization has been

perhaps further reinforced by D. Charlesworth et al.

(1993) demonstration that with constant selection co-

efficients even small amounts of recombination can

stop the ratchet.

One caveat on the above is that no matter how large

a population is, new mutations are always rare, and

thus experience stochasticity during their early so-

journ. For beneficial mutations, even in large popu-

lations, this is a critical period (Haldane, 1927;

Barton, 1994). Otto & Barton (1997) asked whether a

modifier increasing recombination could hitch-hike

with a nearby beneficial locus due to the modifier’s

effect in increasing the efficiency of selection. This is

an aspect of the Hill–Robertson effect, where re-

combination acts to reduce not only the beneficial

allele’s initial negative linkage disequilibrium, but that

of other segregating loci also (Fisher, 1930; Muller,

1932; Felsenstein, 1988). While Otto & Barton answer

affirmatively – that is, modifiers that increase recom-

bination can spread – the conditions are restrictive.

The process works best with tight linkage, weak

modifiers, and simultaneously segregating beneficial

mutations – for example, due to rapidly changing

environments (Otto & Michalakis, 1998). This is

because of an inherent antagonism between hitch-

hiking and recombination. In certain parameter spaces

this can be partly overcome with the additional

assumption that beneficial mutations pleiotropically

alter the recombination rate (Hey, 1998). But, in

general, considerations such as those above have been

used to dismiss simple finite population size in a

stable environment as singularly sufficient for the

evolution of recombination.

The lack of empirical support for epistasis, and the

lack of theoretical support for sufficient finite popu-

lation size-induced linkage disequilibrium, means that

there is currently no line of thought to support the

simplest of hypotheses : the hypothesis that recom-

bination could have evolved in very large populations

of primitive eukaryotes under the null scenario of

directional, multiplicative, steady selection; yet this is

probably the easiest scenario to support evidentially.

There is, though, a way in which finite population

size can render large and consistent levels of negative

linkage disequilibrium in even extremely large popu-

lations. If mutation and selection are not in equi-

librium, such that mutation pressure is stronger than

selection, then disequilibrium is generated. A sub-

sequent restoration of mutation–selection balance, for

example by recombination, would therefore be ad-

vantageous. Classical theory shows no reason why

mutation and selection should not attain equilibrium

– at least in the statistical sense – but later work has

demonstrated how this scenario can happen (Gessler,

1995).

Consider a large, asexual population. One can rank

individuals by their relative fitness (for example, by

the number of mutations they carry) and thereby

create a distribution of the relative frequency of the

number of mutations per individual. At an equilibrium

between mutation and selection, this distribution is

Poisson (Kimura & Maruyama, 1966; Haigh, 1978).

For classes at the extreme ends of the distribution, the

equilibrium number of individuals may be less than

unity. In this case, the presence of even one individual

in these classes exceeds their expectation. This is

always true for classes in the far right-hand tail of the

distribution (i.e. the worst classes). For the worst

classes, any non-zero equilibrium number can be

achieved as time-average, with only a slight generation

of negative linkage disequilibrium (Felsenstein, 1988).

But for the left-hand side of the distribution, any time-

average that includes zero is manifest as the loss of the

best class, and therefore a click of Muller’s ratchet
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Fig. 1. A cartoon representation of a Poisson
distribution, showing the equilibrium size of each class.
The ordinate is marked in terms of the actual number of
individuals, not the relative frequency. (a) If the
equilibrium number (Ne−µ/sa) is less than unity, then the
presence of even one individual in the zero class (the grey
box) is too many. Mutation and selection attempt to
equilibrate to the equilibrium level, in this case due to
mutation being stronger than selection. (b) The attempted
equilibration removes the class. When this happens to the
best class, it simultaneously clicks Muller’s ratchet. The
distribution tries to re-equilibrate and the process repeats
itself. The steady-state shape of the distribution under this
situation can be markedly different from Poisson.

(Muller, 1964; Felsenstein, 1974). When the equi-

librium number of individuals in a class is less than

unity, the reason behind the loss of the class must

include the effect of mutation and selection trying to

equilibrate to that fractional number, the actual loss

itself being a correlated result (Fig. 1). The long-term

effect of such losses creates a chronic instability that is

manifest as a hypodispersed, unstable distribution

and is different from the stochastic loss of the best

class as examined by Haigh (1978). The loss of the

best class under hypodispersion is primarily due to the

evolutionary force of mutation, and is conceptually

distinct from that of drift. The extent of the hypo-

dispersion is proportional to the number of unstable

classes, and this number is extremely sensitive to the

ratio µ}s̀ (where s- is the arithmetic average segregating

selection coefficient at equilibrium, i.e. the average

selection coefficient over all mutant, non-fixed alleles).

Because the steady-state shape of the distribution is

no longer Poisson, the population fails to achieve

mutation–selection balance. The variance in fitness of

the population stabilizes, but it stabilizes at a level less

than that necessary to counter mutation pressure. In

the absence of epistasis, this condition is quantitatively

demarcated by the inequality Ne−µ/sa !1, where N is

the census population size, and µ and s- are defined as

above (Gessler, 1995). The exponential relation

between N and µ}sa means that for biologically relevant

values of µ and s- , even very large values of N can fail

to guarantee Ne−µ/sa & 1. Recombination can re-

generate the best class, and thus can help restore the

population to mutation–selection balance.

In this paper we report on computer simulations

that see whether, and how, a gene for recombination

could spread through such a population. We follow a

full trajectory, from invasion when rare, to ultimate

fixation and resistance to counter-invasion. The

process is demonstrated for the relatively small

population size of 10$, and then analytical arguments

are used to extend its applicability to populations of

billions of individuals. A key appreciation of the

model is that the primary benefit of recombination is

to change a non-equilibrium population into one in

approximate equilibrium. It is thus not inconsistent

with the simultaneous operation of other plausible

benefits of recombination (e.g. Fisher, 1930; Muller,

1932; Kimura & Maruyama, 1966) that operate on

populations in approximate equilibrium. Lastly, we

use this population genetic model and its subsequent

quantification as an underlying model for the evol-

ution of meiosis.

2. The model

The model is an extension of that of Gessler (1995),

where haploid asexual individuals are now allowed to

acquire mutations under the opportunity for the

invasion of an allele conferring an exchange of genetic

information. In computer simulations, individuals go

through a process in discrete generations of (possibly

recombination), reproduction, mutation and selection.

Each individual has a genome of one chromosome,

upon which deleterious mutations are introduced at

random positions. The number of new mutations

is drawn from a Poisson distribution. Selection

coefficients are drawn from an approximate negative

exponential distribution of mean 0±02 (Ohta, 1977;

Gillespie, 1991 ; Lynch et al., 1995). Selection is

multiplicative ; as mutations accrue, the strength of

selection (as measured by the number of individuals

before selection to the number after) is kept constant
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at its expectation of eµ. As mutations accrue, the

simulations neither require an increasing number of

individuals to be chosen before selection, nor do they

allow population extinction via mutational meltdown

(Lynch & Gabriel, 1990). As such, the analysis can be

seen as conditional for a given strength of selection.

Once the population reaches its steady-state relation-

ship between mutation and selection, a random

individual is chosen, and a neutral locus at a random

position is allowed to mutate to a dominant allele for

recombination. Individuals with this allele can re-

combine their genomes with another randomly picked

individual. The allele codes for a mean number of

chiasmata (the actual number being drawn from a

Poisson distribution at each recombination event) and

thus crossing-over is not mandated solely by the

presence of the allele. This ‘conjugation phase’, where

individuals may conjugate and recombine their

genomes, is separate from, and precedes, repro-

duction. After conjugation, individuals separate and

resume their place in the population. If the allele is

lost from the population (a very likely occurrence),

each successive generation has a probability of 0±1 of

reintroducing the allele. The allele is only reintroduced

if it is lost ; the probability of 0±1 merely allowing

some time (on average 10 generations) to elapse before

a new introduction. On introduction, the allele is

introduced as a single copy in a random individual.

To control for the reintroduction rate, separate runs

with an invading neutral, non-recombining allele are

used to establish a control. Each of 25 independent

simulations is continued for 50000 generations or

until the allele is fixed. If the allele does not fix within

50000 generations, the run is discarded. With the

exception of invading asexual mutants reported later,

this is a rare occurrence and is reported in the

accompanying tables. For each run that does fix the

allele, all generations from the last introduction of the

allele (the one that led to fixation) are used to generate

the reported statistics. Theory predicts that the benefit

of recombination should increase as Ne−µ/sa falls below

unity. Drake (1991) estimated the mutation rate for

DNA microbes as µ¯ 0±0033 per genome per gen-

eration: approximately 300-fold less than the mutation

rate for some current-day metazoans (Crow, 1993a,

b). This is used to establish a range of mutation rates

from µ¯ 0±0033 to 0±033 to 0±1. Because s- (the

average selection coefficient of a mutation segregating

in the population) is approximately 0±005 (verified

from the simulations and analytically estimated in the

Appendix), these rates correspond to Ne−µ/sa F 517,

1±36 and 2±06¬10−' respectively for N¯10$. This

represents a range in the expected strength of selection

for recombination from null to weak to moderate.

3. Results

Fig. 2 shows the behaviour of a randomly chosen

population as an invading recombination allele fixes.

It shows how the decrease in the rate of decay is

correlated with the spread and fixation of the

recombination allele. Before the spread of the re-

combination allele the rate of Muller’s ratchet can be

predicted. The observed rate of 0±0278 (³8±77¬10−$

SD) mutations per genome per generation is not

significantly different from the predicted rate of 0±0260

(P¯ 0±3; prediction uses s# from the Appendix and

equations (8) and (10) from Gessler (1995)). Fig. 3

shows the rate of decrease in log mean fitness per

generation as a function of the amount of recom-

bination across all three genome-wide deleterious

mutation rates. As expected, if Ne−µ/sa (1 there is no

advantage to recombination, while the advantage
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Fig. 2. (a) A sample simulation showing the linear rate of
decline in log mean fitness (continuous line) as successive
recombination alleles are introduced (dotted line). Most
introductions are lost rapidly and play little role in
population dynamics. (b) Exploded view of (a) during the
final rise to fixation. When an allele does rise to fixation
it mitigates the population’s decline in fitness (see
supporting figures and tables for significance tests). (N¯
10$, µ¯ 0±1, 0±2 chiasma).
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Fig. 3. Mean rate of decay in log fitness for µ¯ 0±0033,
0±033 and 0±1 for various mean numbers of chiasmata as
the upper two, middle two and lower two lines
respectively. For each population, the rate of decay is
measured from when the invading allele first appeared to
when it fixed. In the graph, the rate is partitioned into
that experienced by those individuals carrying the gene
(continuous lines and filled circles) and those wild-type
individuals without the gene (dotted lines and triangles).
The non-recombining controls are plotted on the
ordinate ; standard deviations are included for µ¯ 0±1.
Each data point is the mean from a set of independent
simulations for a specific mutation rate and mean number
of chiasmata. (N¯10$, mean incoming s¯ 0±02).

Table 1. Performance of genes for different le�els of recombination. Ne−µ/s- '1 (µ¯ 0±1)

Mean
No. of

No. of
introductions until a

No. of
generations until

Mean ratio
in mean Fitness

chiasmata µ# ¬10$ successful invasion fixation wa
with

}w
w/o

*** (SD)¬10$ n

0 1±07 932NS (766±53) 329 (99±47) 1±01357 (5±853) 25
0±002 1±37 732NS (755±05) 358 (121±20) 1±01312 (5±953) 24
0±02 1±49 670NS (773±90) 399 (156±32) 1±01143 (5±766) 25
0±2 3±33 300*** (339±17) 706 (392±93) 1±00670 (3±288) 25
0±5 2±65 378** (404±76) 1033 (461±92) 1±00258 (2±233) 25
1 1±39 717NS (519±97) 1405 (711±32) 1±00154 (1±510) 25
2 1±54 651NS (651±63) 1529 (655±04) 1±00081 (1±286) 23

‘u# ’ is the probability of fixation estimated from the mean number of introductions. Because the number of introductions until
fixation is a geometric random variate, the reciprocal of the mean is not the mean of the reciprocals (the mean of the
reciprocal of geometric variates is E[X−"]¯ p[1®p]−" ln[p−"]¯ 0±00691E[u]). For this and other reasons, statistical tests are
simpler if done directly on the raw number of introductions and then converted into a probability of fixation via the
maximum likelihood estimator u# ¯xa −"¯ p¯N−"¯ 0±001. The number of introductions for the neutral control is not
significantly different from the expectation of 1000, while it is highly significantly different for both 0±2 and 0±5 chiasma
(P¯ 0±0007 and P¯ 0±003 respectively, denoted by *** and **. ‘ ’ denotes ‘not significant ’). No. of generations until
fixation’ applies to the final successful invasion. Conditional on fixation, mean fitness amongst non-fixed alleles (w-

seg
) is

partitioned according to those individuals with an invading gene (with) and those without (w}o). All entries in the column
are significantly different from 1±0 at P! 0±001. See text for why these ratios decrease monotonically. ‘n ’ is the number of
runs included in the averages out of 25 attempted for each treatment. Statistical tests adjust for unequal variances. Standard
deviations are in parentheses.

grows with the degree to which Ne−µ/sa is less than unity

and the amount of recombination increases.

Table 1 reports results for the treatment where the

benefit to recombination is predicted to be manifest

(Ne−µ/sa '1). Under these parameters, an allele for

recombination is 3 times as likely to fix as its non-

recombining control : 0±00333 versus 0±00107 (Table

1, probability of fixation for 0±2 chiasma vs non-

recombining control ; P¯ 6±12¬10−% using Behrens–

Fisher t-test). The benefit to recombination is reflected

by the fact that the allele for 0±2 chiasma is more likely

to fix than the non-recombining control, whether the

control is invading an asexual population or a sexual

population fixed for that level of recombination

(neutral control from Table 3, P¯ 5±1¬10−(). There

is statistical support for an optimal amount of

recombination by noting that the probability of

fixation for 0±2 chiasma is significantly greater than

for either 0±02 chiasma (P¯ 0±038) or 1 chiasma (P¯
0±0026). There is no significant difference between the

probability of fixation for 0±2 chiasma and 0±5 chiasma

(P¯ 0±47). To simplify reporting the results, from

here on we concentrate on the 0±2 chiasma runs as

exemplary of an optimal amount of recombination,

without inferring any prejudicial difference between

0±2 chiasma and 0±5 chiasma.

In asexual populations, the probability of fixation

for an allele is strongly dependent on its association

with the best class, since by expectation the best

individuals leave the most descendents (Fisher, 1930).

In the limit (with no mutation), the entire probability

mass function for fixation is concentrated near uU 1
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Table 2. Mean percentage of the best class with the in�ading allele.

Ne−µ/s# '1 (µ¯ 0±1)

Mean
no. of
chiasmata

Amongst
introductions
that did not fix n

Amongst
introductions that
did fix n

0 0±252 (2±86) 132719 55±9 (26±8) 200
0±2 0±783 (5±31) 57119 65±1*** (14±4) 200
Free 2±37 (8±16) 135705 53±1 (10±0) 200

Additional 3¬200 simulations that specifically measured the percentage of the
best class each generation that had individuals with the invading allele. Free
recombination controls segregated an allele that acted as though chiasmata were
between every mutation. Amongst introductions that fixed, the 0±2 chiasma alleles
were significantly more associated with the best class than either the non-
recombining or freely recombing controls (P¯ 2±26¬10−& and 9±62¬10−"'

respectively). Simulations were run for up to 100000 generations; introductions
were performed after selection. Standard deviations are in parentheses.

for the best class and uU 0 for all other classes, where

u is the probability of fixation. If an allele is already in

the best class it should suppress recombination, since

it is already amongst the most fit individuals. But for

alleles in the less fit classes of a hypodispersed

population, recombination can help them not only

escape into the best class, but create an even better

‘best ’ class. Recombination into worse classes is not

symmetrically as deleterious, since the allele was

essentially destined for extinction anyway. For the

optimal recombination allele to increase its probability

of fixation its needs to generate positive linkage

disequilibrium with the best class. Additional simu-

lations were performed specifically to measure the

time-average percentage of individuals in the best

class with the invading allele. Table 2 shows that,

amongst those alleles that fix, on average 65% of the

best class has the optimal recombination allele,

compared with approximately 55% for non-recom-

bining and freely recombining controls. These dif-

ferences are highly significant (P! 0±001).

The role of background trapping (that is, the

dependency of an allele’s fate on the genome of its

origin (Fisher, 1930; Peck 1994)) can be further

monitored by comparing the mean fitness of each

population’s ancestral individual (the original in-

dividual with the allele that went to fixation) with the

population average. For 0±2 chiasma the mean fitness

of ancestral individuals across all populations at the

time of introduction is significantly higher than the

population average (0±927 [³3±23¬10−# SD] vs e−µ ¯
0±901 corrected for mutation accumulation; P¯
8±9¬10−'), while it is significantly lower than the

non-recombining control (0±949 [³3±53¬10−# SD];

P¯ 0±030). Thus at the optimal recombination rate

the role of background trapping is decreased (alleles

sometimes escape their ancestral genomes) though not

eliminated (they maintain some positive linkage

disequilibrium). For two chiasmata there is no dif-

ference between the mean fitness of the ancestral

individuals and the population expectation – there

being little correlation between alleles that fix and the

fitness of their ancestral individuals. Thus, non-

recombining alleles, which are heavily influenced by

background trapping, show the highest wa
with

}wa
w/o

ratio when conditioned on fixation having occurred

(Table 1), while recombining alleles, which find

themselves in varied backgrounds and occasionally

less fit individuals, show a reduced statistic.

If there is an advantage to recombination then a

population with non-zero recombination should show

resistance to invasion by alleles coding for zero

recombination. Table 3 shows that the ability of

asexual mutants to reinvade is strongly dependent on

their underlying genetics. Recessive mutants, where

the invading allele acts as a null mutation at the

recombination locus, can drift into the population.

This is because recombination can still be forced upon

them by conjugating wild-types, so selection against

them is weak (Table 3). Despite this, once invaded

these populations decay at a significantly higher rate

than their neutral control (mean rate of decay in log

fitness amongst those with the invading allele : ®6±20

[³5±08¬10−& SD] vs ®3±86 [³4±07¬10−& SD]; P¯
0±001). Dominant asexual alleles fare worse. A domi-

nant allele acts to unilaterally prohibit recombination

in its lineage and thus causes permanent genetic

isolation. Table 3 shows that genetic isolation is

strongly selected against : of 100 attempts, only 63

resulted in fixation for the dominant mutant vs 92 for

the neutral control. This is highly significant (P!10−%)

using a conditional binomial exact test (Rice, 1988).

Because only 63 of 100 runs showed fixation, the

means in Table 3 are biased against rare events.

Including runs that took more than 50000 generations

would decrease the mean probability of fixation; thus
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Table 3. Performance of genes for asexuality as they in�ade sexual populations. Ne−µ/s- '1 (µ¯ 0±1,

0±2 chiasma)

Asexual
No. of
introductions until a

No. of
generations until

mean ratio
in mean fitness

mutant u#¬10$ successful invasion fixation wa
with

}wa
w/o

*** (SD)¬10$ n

Neutral 1±17 856NS (747±91) 814 (406±47) 1±00423 (2±634) 92
Recessive 1±08 929NS (730±92) 834 (420±32) 1±00427 (3±124) 87
Dominant 0±745 1341*** (841±88) 313 (102±41) 1±01560 (5±811) 63

All individuals are haploid. ‘Recessive ’ mutants can not conjugate with each other, but can have recombination forced upon
them by non-mutant wild-types; ‘Dominant’ mutants are immune to recombination. Recombination is the default wild-type
state. Because the dominant gene is unlikely to fix, 100 instead of 25 runs were attempted for each treatment. The number
of introductions until a successful invasion is conditional on fixation occurring within 50000 generations, and thus is biased
low when compared with the unconditional expectation. Neither the neutral control nor the recessive treatment is
significantly different from each other or the expectation of 1000. The dominant mutant is significantly less likely to fix than
the neutral control (P¯ 4±61¬10−%). Both recessive and dominant alleles are significantly less likely to fix than the
recombination gene when it was invading (number of introductions vs 300 from Table 1 ; P¯ 2±41¬10−) and P¯ 4±61¬10−"#

respectively). Note that although the dominant gene is unlikely to fix, when it does, it does so with comparative rapidity. This
is because its likelihood of fixation is strongly dependent on it originating in a superior genetic background; these individuals
cause rapid selective sweeps. Standard deviations are in parentheses.

re-invasion is even less likely than reported in the

table.

4. Discussion

(i) Mechanism of e�olution

What is the mechanism of evolution responsible for

the fixation of the recombination allele? When the

amount of recombination is low, an allele’s probability

of fixation is strongly dependent on the individual it

arose in: if it arises in any but the best individuals it

is invariably destined for extinction (Fisher, 1930;

Peck, 1994). The actual probability of such an event is

a function of just how beneficial or deleterious the

allele is (Barton, 1995). As the amount of recom-

bination increases, the allele fares a better chance of

recombining into other backgrounds before it is lost,

and thus its fate is less dependent on its origin. For

recombination alleles the process works antagonis-

tically : the allele reduces negative linkage dis-

equilibrium among its descendants (and thereby

confers upon them a selective advantage (Maynard

Smith, 1988)) but also helps any recipient conjugates

that may not themselves carry the allele. This is

exacerbated with high recombination, where a domi-

nant recombination allele moves rapidly amongst

genomes, and thereby distributes the benefit of sex

promiscuously. To restrict its benefit to primarily its

own offspring, the allele must maintain itself in

positive linkage disequilibrium in these individuals

long enough for selection to capitalize on their reduced

load. Thus an allele that destroys linkage disequil-

ibrium needs linkage disequilibrium to have any

realized selective advantage. It is in part because of

these considerations that Felsenstein & Yokoyama

(1976) thought that intuition on this process was

‘unduly risky’.

The results in Tables 1, 2 and Fig. 3 lead us beyond

intuition and uncover some of the dynamics of the

process. The optimal recombination rate reflects the

ability of the allele to reduce the effect of background

trapping, without entirely destroying the chance

beneficial positive linkage disequilibrium of either its

origin or is sojourn through its descendents. From the

population’s perspective, the spread of recombination

reduces the strength of the Hill–Robertson effect as it

reduces the mean and variance in the amount of

negative linkage disequilibrium. Before the allele’s

invasion, even the mean was non-zero because Ne−µ/sa

'1. Negative linkage disequilibrium is reduced

because regeneration of rare types builds a more

random distribution of associations. This generation

of rare types slows the ratchet. From the population’s

perspective the more recombination the better, until

the attainment of approximate equilibrium. From the

allele’s perspective the mitigation, though non-elim-

ination, of background trapping is equivalent to a

differential reduction in the Hill–Robertson effect

among its descendents, in contrast to a smaller

reduction experienced by its wild-type counterpart.

Thus from the allele’s perspective an optimal amount

of recombination is better. The process circumvents

the group selection aspect of the Fisher–Muller

hypothesis discussed by Felsenstein (1974) and is

subtly distinct from the benefit associated with

recombination �is-a[ -�is Muller’s ratchet identified in

that paper. In that paper and its sequel (Felsenstein &

Yokoyama, 1976) the identified benefit of recom-

bination is due to the effect of recombination

mitigating the Hill–Robertson effect in an otherwise

approximate equilibrium population. While the Hill–
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Ne–µ/ŝ < 1
(Ratchet will turn)

Fig. 4. The minimum mutation rate (µ) needed to ensure
a deterministic drive to Muller’s ratchet as a function of
the population size (N ). The dotted and continuous lines
use s# from the Appendix and demarcate Ne−µ/sW ¯1 and
Ne−µ/sW ¯ 25 for a mean incoming s of 0±02, 0±01 and 0±005
respectively. Since s# is a function of N, s and µ, this
requires iterative root finding. For each mean incoming s
the region above the triangles will have a drive to the
ratchet. The region above the squares is where this drive
will be due to the loss of mutation–selection balance
(Ne−µ/sW !1).

Robertson effect is still operational here – and is

fundamental to the presence of the ratchet and the

spread of the allele – it is the specific differential

abatement of the hypodispersed, unstable distribution

in this model that yields the largest benefit to

recombination. This situation means that it is sig-

nificantly more likely for an allele coding for the

optimal recombination rate to invade an asexual

population than it is for asexual mutants to counter-

invade (Tables 1, 3). This results in a net directional

pressure towards recombination. This directional

pressure means that initially deleterious effects could

have been associated with recombination as long as

the net effect remained positive.

(ii) The e�olution of recombination

A population size of 10$ is too small to be evolu-

tionarily interesting, while a mutation rate of 0±1 is too

large to be deemed relevant for the initial evolution of

recombination. But as N increases, s- decreases, and

thus Ne−µ/sa !1 will be satisfied for a lower and lower

µ. We need, then, a quantitative estimate of s- in order

to assess the model’s relevance to the evolution of

recombination. This is presented in the Appendix.

Fig. 4 uses s# from the Appendix to estimate s- and

demarcate values of µ that satisfy the equalities Ne−µ/sW

¯1 andNe−µ/sW ¯ 25. Ne−µ/sa ¯1 is the critical condition

for the mutational drive to Muller’s ratchet, and

Ne−µ/sa ¯ 25 is an oft-accepted standard above which

there will be virtually no ratchet at all (Haigh, 1978).

Note that in Fig. 4 the critical mutation rate is largely

independent of population size, but that the slight

right-hand skew means that populations grow into the

ratchet : a qualitative result opposite of that derived

from a constant s analysis. The figure shows large

populations needing a mutation rate only slightly

larger than the mean incoming s to ensure a drive to

the ratchet. As the mutation rate increases further,

increasingly strong conditions are created for the

spread of recombination. The threshold character of

Fig. 4 means that while strong arguments can be made

for the process if µ is high, equally strong arguments

exclude it as a reasonable hypothesis if it is found that

µ is low.

One can envision early eukaryotic organisms as

being under pressure to incorporate more and more

genes as they fine-tuned their eukaryotic machinery.

This creates an upward pressure on the genome-wide

mutation rate and an antagonism between physio-

logical constraints on error correction efficiency and

selection for load-reducing mechanisms. While most

error correction mechanisms were probably in place

by the time early eukaryotes evolved, questions on

their efficacy still leave us uncertain as to estimates of

µ and s- . Current techniques tend to underestimate µ

and overestimate s- , so organisms may have experi-

enced a higher E(µ}sa) than we expect from current

estimates of E(µ)}E(sa) (Deng & Fu, 1998).

As an example of the relationship between N, sa and

µ, consider a conservatively small population of 10*

(estimates of current-day marine microbes are about

10' bacteria ml−" and 10$ protozoa ml−" : Fenchel,

1987, p. 109). With a mean incoming selection

coefficient of 0±02 and µ¯ 0±03, s# is equal to 1±2¬10−$.

This leaves Ne−µ/sW ¯1±8¬10−# individuals in the zero

class. Because this is less than unity, the ratchet will

turn under the force of mutation pressure at a rate of

RF1±2¬10−$ (equation 8, Gessler, 1995). This rate

may seem slow, but it translates into 1±2 million new

mutations per generation for the population as a

whole, and, assuming a generation time of 1 day, a

click of the ratchet every 2"

%
years. For individuals with

genomes of even thousands of genes this drive will

devastate the population. Yet µ¯ 0±03 is still an order

of magnitude higher than estimates for many current-

day DNA microbes (Drake, 1991 ; Drake et al., 1998).

Drake (1991) estimated µ¯ 0±0033 for seven DNA

microbes, four of which were bacteriophages. Re-

stricted to eukaryotes, the mean mutation rate from

his table 1 is 0±024. This is large enough to drive the

above process with an incoming s of about 0±01. It

must be noted, though, that this estimate includes two

outliers that Drake claims are unrepresentative by

‘both biological and statistical criteria ’. Remove the

outliers and eukaryotic and non-eukaryotic microbes

have similar mutation rates. A re-analysis of the data
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(excluding the outliers), along with other data, yields

consistent estimates of 0±0034 mutations per genome

per replication across a broad range of eukaryotes

(Drake et al., 1998). Drake et al.’s table 5 supports a

slightly higher rate for higher eukaryotes (mean µ
eg

¯
0±00675), with both numbers probably being under-

estimates. Underestimation of µ is concomitant with

an overestimation of s (in part because we are failing

to detect mutations of small effect), so estimates for

proto-meiotic organisms of µ¯ 0±005 and s¯ 0±01

may be reasonable ; that is, µ may lie within a factor

of 2 of s.

Numerical work with s# shows that as N becomes

large, Ne−µ/sW ¯1 is satisfied near µF s (the mean

incoming s), while s# (the estimated average segregating

s) decreases slowly to zero. Thus the relation between

theory and data is within a factor of 2, and less than

our ability to resolve the issue using current empirical

estimates of µ and s. A strict reading of the data shows

that while the ratchet may be implicated, it is not

proven. The resolution is somewhat complicated by

the fact that the model predicts that current-day, non-

obligatory sexual, unicellular organisms will have

mutation rates close to the range where parameter

values render the process weak. If mutation rates of

proto-meiotic eukaryotes were actually closer to 0±01,

or if the incoming s were closer to 0±005 (e.g. µF sF
0±0075), then a consequence of an increasing number

of genes in eukaryotic genomes could have been a

drive to the ratchet and an opportunity for the

evolution of recombination as outlined here.

(iii) Ca�eats concerning the analysis

The analysis relies on the theoretical prediction that

large, asexual populations can fail to attain mutation–

selection balance. This relies on N, sa and µ and the

basic assumptions of the Fisher–Wright model.

The analysis presupposes an absence of epistasis

since we specifically wanted to demonstrate the process

under a minimum of preconditions. Natural popu-

lations will most likely have some epistasis. Epistasis

will mitigate the ratchet, but will not stop it (Butcher,

1995). It is unclear how an epistatically depressed

ratchet will be offset by an advantage to recombination

afforded by synergistic epistasis. This is further

complicated by the fact that variance in epistatic

effects tends to reduce its role re an advantage to

recombination (Otto & Feldman, 1997).

In a similar fashion, caveats also apply to

assumptions on the relationship between N and N
e
,

and this model’s exclusion of beneficial mutations

(Otto & Barton, 1997). s- will be affected by back-

ground selection (the process where strongly selected

alleles affect the diversity, or effective population size,

of weakly or non-selected, linked sites (B.

Charlesworth et al., 1993)). But since the process

predominantly affects only weakly selected alleles

(Barton, 1994), their contribution to s- will be small.

The combination of beneficial mutations decreasing s-
and background selection increasing it means that

there will be some variance in the conditions under

whichNe−µ/sa !1will be satisfied. Perhaps importantly,

if the mean incoming s is comprised of mildly beneficial

and mildly deleterious mutations (even though the

empirical mean is still 0±02), then the above relation

between µ and s may become more favourable for the

model.

Essentially, if the data show that Ne−µ/sa $ 25 then

there exists no current theory to implicate the ratchet.

If 1%Ne−µ/sa # 25 then the ratchet may play a role, but

for the classic reasons of why recombination halts the

ratchet (Felsenstein, 1974), not for the reasons

outlined here. This characterization may be too

generous in support of the status quo, since we do not

fully understand mutation accumulation in when 1%
Ne−µ/sa (Charlesworth & Charlesworth, 1997). But if

Ne−µ/sa !1 then strong conditions favourable for

recombination are generated as small increases in µ

exponentially decrease Ne−µ/sa . These conditions are

operating in the models of Antezana & Hudson

(1997a, b), though Antezana & Hudson use a Poisson

approximation to derive the number of individuals in

the best class. We expect, though, that their qualitative

conclusions, including the modelling of achiasmatic

instead of chiasmatic recombination, could be robust

to this assumption.

(iv) The e�olution of meiosis

The feasibility of the foregoing must rest on data, not

computer simulations: the use of a single gene for

recombination is a computational motif, not a strict

biological model. For the model to be biologically

feasible it presupposes both an opportunity for

recombination and its initial genetic variation. There

is extensive evidence that both the former (Margulis,

1970; Margulis & Sagan, 1986; Maynard Smith &

Szathma! ry, 1995) and latter (White, 1973; Baker et

al., 1976; Lichten & Goldman, 1995; Camerini-Otero

& Hsieh, 1995) may have been present during the

evolution of early eukaryotes.

The biological scenario of the modelling done here

is shown in Fig. 5. The upper panels show the simple

process of two primitive eukaryotic cells undergoing

fission, i.e. mitosis. The lower panel shows the

intermediate step of conjugation, followed by crossing-

over and then a resolution of the conjugate. Note that

after a renaming of the constitutive elements, the

inclusion of the recombination step makes the whole

process a canonical example of meiosis. Individual

cells in the upper panel can be seen as ancestral to

modern-day gametes. The shift in emphasis from the

evolution of recombination to the evolution of meiosis

https://doi.org/10.1017/S001667239800367X Published online by Cambridge University Press

https://doi.org/10.1017/S001667239800367X


D. D. G. Gessler and S. Xu 128

(a)

(b)

DNA
replication

Prophase
(condensation)

Metaphase
(alignment)

Anaphase
(separation)

Telophase
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Fission as reproduction
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(recombination)
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CytokinesisSyngamy

Fission as conjugate resolution

Fig. 5. Schematic diagram of meiosis similar to the computational model simulated. The upper panel shows two
individuals (a and b) independently undergoing mitosis. The lower panel shows an earlier process of conjugation,
recombination and fission hypothesized to take place between the diamond and the triangle. If one now considers the
prototypal individuals (a) and (b) as current-day sperm and egg, the flow of genetic information is identical to meiosis.
The figure makes the clear prediction that meiosis II is ancestral to meiosis I. As multicellularity evolved, the
predominant stage of selection could shift, for example towards an extended diploid stage (marked ‘syngamy’) for most
metazoa. The simulations differed slightly from the diagram in how they performed selection and conjugation. First,
they used discrete parthenogenic generations; the products of the mitotic divisions in the upper panel being distinguished
as ‘parent‘ and ‘offspring’ generations. Second, the conjugation in the lower panel occurred in the parent generation as
a process separate and independent from reproduction. As such it was done without chromosomal replication: two
haploids recombined their genomes and then separated as haploids again. At a later phase they then underwent
reproduction.

is contextual : the genetic mechanism is virtually

unchanged. While Fig. 5 is devoid of any relation

between N, s and µ the primary causative mechanism

behind its evolution is not. We show that a realistic

quantification of the model can yield its non-

recombining component chronically unstable, and

this creates selection for recombination that is far

stronger than that experienced in approximate-equi-

librium models.

The biological model assumes that the machinery

for mitosis is already functional, and this is in accord

with evidence that mitosis evolved before meiosis

(Cleveland, 1947; Margulis & Sagan, 1986, p. 149;

Maguire, 1992). The recruitment of the existing mitotic

machinery for meiosis has been advanced by many

authors with varying emphases (see, for example,

Stack & Brown, 1969; Halvorson & Monroy, 1985;

Penny, 1985; Margulis & Sagan, 1986; Dyer & Obar,

1994; Maynard Smith & Szathma! ry, 1995). For

example, considerations such as DNA repair

(Bernstein et al., 1988) and gene conversion

(Bengtsson, 1985) presumably could have played roles

in allowing pressure on reducing the mutational load

to exploit the existing mitotic machinery. Maguire

(1992) summarizes evidence of how bound sister

chromatids in meiosis I may be controlled by the

inhibition of topoiosmerase II activity ; that is, even

key distinguishing properties between meiosis and

mitosis could have arisen by simple changes in the

timing and target of existing gene products. The

evolutionary history of meiosis I and meiosis II may

be further revealed by noting that in some organisms
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the nuclear membrane redevelops in telephase I only

to dissolve again in prophase II. This is expected if the

first fission event was to restore individuality – and

thus can now be considered as a vestigial clue – yet

remains curious if meiosis I and II are seen in the

classical view of evolving as a mechanism to make

gametes.

Some models have hypothesized that meiosis

evolved as a way to rescue a cell from the diploidy

resulting from fusion (Cleveland, 1947; Margulis &

Sagan, 1986). This model neither confirms nor denies

this, and does not mandate a causal explanation for

recombination. Thus while diploids could have been

under strong selective pressure to resolve their

hetarokaryotic state, it is also feasible that an

advantage to recombination itself – that is, purely

the consequences of the loss of mutation-selection

balance on genetic variation for recombination in

non-equilibrium populations – could have initiated a

mitotic cascade, with the resulting fission proceeding

relatively easily. The model of this paper differs from

its predecessors by being essentially void of requiring

an indi�idual adaptionist explanation on the biological

constituents of meiosis : the whole process proceeds

under the simple laws of Mendelian inheritance in a

finite population. It does so in the complete absence of

epistasis, pleiotropy or fluctuating environments.

From the organismal level, a shift in emphasis to

the dominant diploid component of the life cycle (the

shaded step in fig. 5) creates a long, extended diploid

phase – a phase that for some organisms would

eventually include multicellularity, alternating gener-

ations or a sequestered germ line. This would in turn

lead to the more difficult problem of the maintenance

of sex, one that must address both the twofold cost of

meiosis and the twofold cost of males. But the

separation of conjugation and reproduction in this

model yields these costs absent at this stage, and thus

the origination and the maintenance of eukaryotic sex

are considered as fundamentally different problems.

This conceptual interpretation, and the distinction

between the origin of fission in meiosis I and meiosis

II, posits current two-step meiosis as being indicative,

rather than enigmatic, of its history, and explains the

‘absurdity ’ of a meiosis that doubles its DNA only to

later halve it twice. This leads to the somewhat

Dawkinesque (Dawkins, 1982) interpretation that

meiosis reveals diploids as elaborate chemostats that

are manipulated by, and have evolved entirely to

maximize the fitness of, the haploid ‘organisms’ they

carry: their gametes.

Appendix

We seek an estimate, s# , of s- (the arithmetic mean

selection coefficient of alleles segregating in the

population at equilibrium). One can show that in an

infinite population, s# ¯E(S(x)−")−", where S(x) is the

probability density function of selection coefficients of

incoming mutations; i.e. s# equals the harmonic mean

of the incoming distribution. For distributions on

support [s
min

, 1], such as the negative exponential or

even the uniform, as s
min

U 0, s# also goes to zero.

For finite populations, one can follow Kimura

(1969, 1983) and Ewens (1979) to solve for the

equilibrium mean number of mutations per individual,

n# ¯ 2S®H, where S is the mean number of segregating

sites and H is the mean number of heterozygous sites.

Using

S¯ 2θ(α−"®(eα®1)−"),

H¯
θ

®x 0
1®eα/#N

1®eα
®

1

2N1 ,
where θ¯ 4Nµ

haploid
and

α¯ 4N
e
x, we get

nW ¯&"

smin

(2S®H )S(x) dx

and

sW ¯
&"

smin

x(2S®H )S(x) dx

&"

smin

(2S®H )S(x) dx

¯
1

nW &
"

smin

x(2S®H )S(x) dx.

Amongst deleterious alleles, this expression is

unlikely to fall below C 5¬10−% for biologically

reasonable values of N, the average incoming s, and µ.

The above expression applies to diploid populations

of size N or haploid populations of size 2N.
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