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Superhydrophobic surfaces dramatically reduce skin friction of overlying liquid flows.
These surfaces are complex and numerical simulations usually rely on models to reduce
this complexity. One of the simplest consists of finding an equivalent boundary condition
through a homogenisation procedure, which in the case of channel flow over oriented
riblets, leads to the presence of a small spanwise component in the homogenised base
flow velocity. This work aims at investigating the influence of such a three-dimensionality
of the base flow on stability and transition in a channel with walls covered by
oriented riblets. Linear stability for this base flow is investigated: a new instability
region, linked to cross-flow effects, is observed. Tollmien–Schlichting waves are also
retrieved but the most unstable are three-dimensional. Transient growth is also affected
as oblique streaks with non-zero streamwise wavenumber become the most amplified
perturbations. When transition is induced by Tollmien–Schlichting waves, after an initial
exponential growth regime, streaky structures with large spanwise wavenumber rapidly
arise. Modal mechanisms appear to play a leading role in the development of these
structures and a secondary stability analysis is performed to retrieve successfully some
of their characteristics. The second scenario, initiated with cross-flow vortices, displays a
strong influence of nonlinearities. The flow develops into large quasi-spanwise-invariant
structures before breaking down to turbulence. Secondary stability on the saturated
cross-flow vortices sheds light on this stage of transition. In both cases, cross-flow effects
dominate the flow dynamics, suggesting the need to consider the anisotropicity of the wall
condition when modelling superhydrophobic surfaces.
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1. Introduction

Drag is the resistance to motion experienced by a fluid flowing on a surface, generated
by the difference in velocity between the solid object and the fluid. The reduction of drag
represents a key factor for a whole range of physical and engineering problems involving
the relative motion of a fluid on a solid surface, for instance the transport of drinkable
water in pipes, of the blood in human vessels, and the motion of aircraft in the air and
of ships in the sea. For all of these applications, one of the main sources of drag is the
skin friction between the molecules of the fluid and the solid surface over which it flows,
whose magnitude depends on the properties of both the surface and the fluid flowing on it.
In the vicinity of a smooth hydrophilic surface, the flow must decelerate until reaching zero
velocity at the wall, self-inducing a strong resistance to motion due to skin friction. This
resistance to motion can be reduced by decreasing the gradient of velocity between the
surface and the flow itself, which can be achieved by using particular surfaces or coatings,
able to assure shear-free or slip wall conditions. One example of this kind of surfaces is
given by superhydrophobic (SH) surfaces (Rothstein 2010). The superhydrophobicity of
a surface is due to its nanostructure, which is composed by a hierarchical structure of
microroughnesses that trap the air underneath them, reducing the surface of contact with
the water droplets and the wetting of the surface. Such a hierarchical, rough nanostructure
can be found on many biological surfaces such as those of lotus leaves, butterfly wings,
duck feathers and water striders legs, and have inspired the engineering of biomimetic
non-wettable materials for applications that range from self-cleaning to anti-icing.

The experimental works of Tretheway & Meinhart (2002) and Choi, Westin & Breuer
(2003) were among the first to observe the drag-reducing effect of a SH surface. These
studies, focusing on laminar flows, demonstrated the existence of large slip velocities
in the vicinity of the gas pockets. In view of these promising results, several other
experimental studies were performed to better understand the underlying mechanisms.
Since drag-reducing properties appeared to depend strongly on the geometry of the SH
surface, one of the first objectives was to quantify (Truesdell et al. 2006; Tsai et al.
2009) or even maximise (Lee & Kim 2009) the slip velocities and associated drag
reduction for a given configuration. For example, using different types of micro-posts and
micro-ridges, Ou, Perot & Rothstein (2004) have been able to show that an increasing
shear-free area induced by carefully engineered micro-roughnesses induces an increased
slip length and a consequent drag reduction for laminar channel flows. Along the air–water
interfaces, the authors measured slip velocities larger than the 60 % of the averaged
velocity, corresponding to a drag reduction larger than 40 %. More experiments have
been performed using SH surfaces characterised by nano-sized structures such as ridges
or needles (Choi & Kim 2006), trying to engineer the nano-structures able to maximise
the attainable drag reduction (Lee & Kim 2009). In particular, Steinberger et al. (2007)
have found that microposts are less effective in reducing drag than ridges, since the
flow has to decelerate and accelerate between different posts resulting in a lower slip
length. Direct numerical simulations (DNS) have followed these experiments; several
levels of complexity were progressively reached. Initially, DNS were performed by
imposing a slip condition using an arbitrary slip length (Min & Kim 2004). Later, in
order to model the interaction between air pockets and water, the air–water interface
was assumed flat and the viscosity of the air trapped in the micro-ridges was neglected
(Ybert et al. 2007). The resulting boundary condition consisted in an alternation between
shear-free and no-slip patches on a flat surface (Martell, Perot & Rothstein 2009;
Martell, Rothstein & Perot 2010). More recent simulations take interface deformation
into account, either modelled through the use of a linearised Young–Laplace equation
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Turbulent transition in a channel with superhydrophobic walls

(Seo, García-Mayoral & Mani 2018), either directly by simulating the trapped lubricant
altogether (Bernardini et al. 2021; Sundin, Zaleski & Bagheri 2021).

Comparisons of these different approaches have shown that, as long as the texture size
remains small, using spatially homogeneous partial slip boundary conditions is a reliable
approach in SH surfaces modelling: it is capable of correctly predict properties for both
laminar (Choi et al. 2003; Ou et al. 2004) and turbulent regimes (Zhang et al. 2015; Zhang,
Yao & Hao 2016). Stability thresholds and instability mechanisms are also accurately
retrieved (Yu, Teo & Khoo 2016). Still, the accurate description of SH surfaces rests on
solving two fundamental difficulties: finding an adequate slip length modelling the effect
of the SH wall and ensuring that this slip length describes a wetting-stable configuration
within the micro-roughnesses (namely, one able to retain the trapped lubricant even in
turbulent conditions). The stability of an air–water interface in the context of SH coatings
is complex and based on several phenomena, as studied parametrically by Seo et al. (2018).
Wetting transition, that causes plastron depletion and ultimately leads to augmented drag,
may be caused by capillarity or stagnation pressure effects. Recently, Seo et al. (2018)
have shown that for limited values of the Weber number and of the roughness size, wetting
stable conditions are maintained, while choosing larger values of these parameters may
lead to destabilisation of the liquid–gas interface. Considering the value of the slip length
required for accurately modelling a SH surface, once a type of roughness and a set of
parameters are chosen ensuring wetting-stable conditions, one can use a homogenisation
approach. The first application of such an approach was proposed in the work of Sarkar
& Prosperetti (1996) for a rough surface. Later, a very general framework, valid for any
type of textured surface, was proposed by Bazant & Vinogradova (2008) in which the
existence of a linear relation between the velocity and the shear stress components at the
virtual interface is supposed, thus generalising the Navier slip boundary condition (Ybert
et al. 2007). A method to explicitly compute the different slip lengths from the roughness
geometry can be found in the article of Kamrin, Bazant & Stone (2010). Further progress
on small-periodicity roughnesses was made in the work of Luchini (2013). Ultimately,
higher-order relations were obtained in the works of Bottaro (2019), Bottaro & Naqvi
(2020) and Sudhakar et al. (2021).

Park, Park & Kim (2013) have found that the potential drag reduction of SH coatings
is much larger in turbulent flows than in laminar flows, and this effect might be due to
the damping of wall turbulence induced by the presence of a slip length. However, the
effect of those kind of surfaces on turbulent transition is a point which has been still not
widely investigated. In general, transition from laminar to turbulent flow induces a strong
increase in skin friction, along with a strong increase of the drag. Thus, in the transitional
regime, the competition between drag decrease due to the surface micro-structure, and
drag increase due to transition to turbulence might provide surprising results. Up to
now, very few studies have been performed on transition to turbulence of a laminar flow
over SH surfaces, focusing at first on the very first phase of transition, namely, linear
instability (Lauga & Cossu 2005; Min & Kim 2005). For a channel flow, it has been
proved by a local instability analysis that, when imposing a simple slip condition, the onset
of two-dimensional (2-D) Tollmien–Schlichting (TS) waves is considerably postponed,
allowing the flow to stay laminar up to larger Reynolds numbers, and further decreasing the
drag. However, shear flows very often experience subcritical transition to turbulence, due
to the transient growth of non-modal disturbances, bypassing the asymptotic growth of TS
waves (Schmid & Henningson 2001; Farano et al. 2016). In particular, it has been shown
in Min & Kim (2005) that slip boundary conditions have a strong influence on the linear
growth of modal disturbances, but a very weak influence on the maximum transient energy
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growth of perturbations at subcritical Reynolds numbers, concluding that slip boundary
conditions are not likely to have a significant effect on the transition to turbulence in
channel flows. By means of global stability analyses, Tomlinson & Papageorgiou (2022)
have shown that in the presence of SH grooves, additional instabilities may arise, with
critical Reynolds numbers small enough to be achievable in applications.

The validity of linear stability results on laminar–turbulent transition itself, which is
an intrinsically nonlinear phenomenon, has been recently assessed by Picella, Robinet
& Cherubini (2019, 2020), who have confirmed that SH surfaces strongly influence
transition induced by wall-close disturbances, such as TS waves, even at subcritical
Reynolds number, but have a weak effect on the subcritical growth of coherent structures
lying farther from the wall, such as streaks and streamwise vortices. Cherubini, Picella
& Robinet (2021) reported a strong effect of boundary slip on the transient growth
of nonlinear optimal perturbations: in particular, while the maximal energy growth is
considerably decreased, the shape of the optimal perturbation barely changes, indicating
the robustness of optimal perturbations with respect to wall slip.

Most literature studies dealing with the effect of SH surfaces on turbulent transition
consider the case of statistically isotropic micro-roughnesses, therefore allowing for the
use of a single slip length, Ls, acting on both wall-parallel directions. In a turbulent
setting, exceptions include the works of Min & Kim (2004), Aghdam & Ricco (2016) and,
more importantly, Busse & Sandham (2012) who considered anisotropic slip boundary
conditions. Ultimately, the influence of slip lengths, either streamwise or spanwise, on
the overlying turbulence remains limited (Ibrahim et al. 2021). From a transitional point
of view, the influence of the homogenised boundary condition was initially investigated
by Min & Kim (2005) who found that spanwise slip induces earlier transition while
streamwise slip considerably delays it. More recently, Chai & Song (2019), Xiong & Tao
(2020) and Zhai, Chen & Song (2023) demonstrated the link between the presence of
spanwise slip and the instability of a three-dimensional (3-D) TS wave. However, these
studies considered one value of the slip length for both the streamwise and spanwise
directions, which was then nullified on one of the two wall-parallel directions, while
not considering the case of different (non-zero) values of the slip. Conversely, in the
case of oriented (non-isotropic) micro-posts, the slip tensor is no longer aligned with
the main flow direction. Homogenised boundary conditions are then anisotropic and
induce a shear misalignment in the vicinity of the wall. In addition to linear stability,
the effect on turbulent transition of such tensorial slip conditions and the subsequent shear
misalignment, which are representative of non-isotropic SH micro-roughnesses, remains
entirely to be unveiled.

In order to investigate this issue, in the present paper we consider the case of oriented
SH riblet-like micro-roughnesses such as those considered in Pralits, Alinovi & Bottaro
(2017), and investigate their effect on modal transition. We show that the non-isotropicity
of the surface gives origin to a new modal instability, similar to cross-flow instabilities
recovered on the flow over swept wings, and will considerably alter non-modal stability
as well. The transition to turbulence originated by the former instability, as well as by the
slip-modified TS waves, are studied in detail using DNS and secondary stability analyses.

The paper is structured as follows. In § 2 we present the governing equations and the
methods used to implement the SH surface, namely homogenised boundary conditions.
In § 3 we show, using stability and transient growth analysis, how the dynamics of
infinitesimal perturbations is influenced by the anisotropy introduced by the boundary
conditions. DNS are performed to better understand the mechanisms at play: § 4 reports
the numerical configuration of the case. In § 5, the DNS is initialised with a 3-D TS wave
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Figure 1. (a) Sketch of the SH surface covered with riblets oriented at an angle θ with respect to the streamwise
direction. (b) Streamwise (orange) and spanwise (blue) velocity components of the base flow for λ‖ = 0.03 and
θ = 45◦. (c) Angle between the bulk velocity and the pressure gradient.

while a cross-flow like mode is used in § 6. In both sections, secondary stability analyses
are carried out, shedding some light on the influence of cross-flow components in the
transition processes. A final discussion and conclusions are given in § 7.

2. Governing equations

The flow of an incompressible Newtonian fluid in a channel of height 2h with SH walls
is considered. The reference frame is chosen as (x, y, z), with x being aligned with the
pressure gradient, y the wall normal direction and z the direction orthogonal to the pressure
gradient. In the following, for brevity, x and z are respectively denoted as the streamwise
and spanwise directions.

For non-dimensionalising the problem, we should choose reference quantities, such as
the half channel height h for the length, a reference velocity Ur and the kinematic viscosity
of the fluid ν, so that the Reynolds number is defined as Re = Urh/ν. Concerning the
reference velocity, following previous works (Pralits et al. 2017; Chai & Song 2019; Xiong
& Tao 2020; Zhai et al. 2023) we decided to set Ur = 3Ua/2, with Ua being the average
of the base flow velocity (Ua = 1/2h

∫
U dy), so that the Reynolds number remains fixed

at constant flow rate. Note that Ur corresponds to the maximum velocity in the flow
field in the laminar smooth-wall case, whereas in the SH cases it does not represent
any intrinsic property of the flow, so that it is chosen as reference velocity mostly for
comparison issues. After non-dimensionalisation, we obtain the following Navier–Stokes
(NS) equations governing the behaviour of the flow:

∂U
∂t
= −(U · ∇)U −∇p+ 1

Re
∇2U, (2.1)

∇ · U = 0, (2.2)

where U = (U,V,W)T is the velocity vector and p is the pressure. The flow is periodic
in the streamwise and spanwise directions, and different domain sizes will be considered,
as detailed in § 4. The walls of the channel are covered with SH riblet-like roughnesses
oriented with an angle θ , defined with respect to the x direction (see figure 1(a)).

For θ = 0◦, the grooves are longitudinal whereas θ = 90◦ corresponds to transverse
riblets. The effect of longitudinal SH riblet-like roughnesses can be modelled using
equivalent streamwise and spanwise slip lengths λ‖ and λ⊥ (Gogte et al. 2005; Belyaev
& Vinogradova 2010), which lead to the homogenised boundary conditions U = λ‖∂yU,
V = 0 and W = λ⊥∂yW. When the grooves are aligned with the mean pressure gradient,
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the streamwise slip length is twice the spanwise one, i.e. λ‖ = 2λ⊥ (Philip 1972; Asmolov
& Vinogradova 2012). On the other hand, when the riblets are not aligned with the pressure
gradient, the homogenised boundary conditions for the NS equations have the following
more general form (Bazant & Vinogradova 2008),[

U
W

]
= ∓L∂y

[
U
W

]
, V = 0, at y = ±1 (2.3)

where the mobility tensor L depends on λ‖ and on the rotation matrix R(θ), allowing the
rotation of the surface of an angle θ :

L = R
(
λ|| 0
0 λ⊥

)
RT = λ‖

2

(
1+ cos2 θ cos θ sin θ
cos θ sin θ 1+ sin2 θ.

)
(2.4)

Following Pralits et al. (2017), we set λ‖ = 0.03 and θ = 45◦ yielding L11 = L22 = 0.0225
and L12 = L21 = 0.0075. The choice of the slip length is critical and needs to be discussed.
For linear stability analyses, this point has been partially assessed in the study of Yu et al.
(2016) in which two modelling approaches of the SH surface have been used. In the first
case, the SH surface has been replaced by an isotropic slip boundary condition while in
the second configuration, the boundary conditions consist of an alternation of slip and
no-slip patches. Note that the interface dynamics is neglected in this second case. This
may be justified as DNS performed by Picella et al. (2019) showed that, for a supercritical
transition, it played a limited role. Introducing the texture periodicity L and the shear-free
fraction δ of the surface, it was found that, for moderate periodicities (L ≥ 0.1) and almost
all δ, an interfacial mode not captured with the homogenised approach arises and exhibits a
much stronger growth rate than the typical TS waves. For periodicity an order of magnitude
below (L ≈ 0.02), such a mode does not develop no matter the value of the shear-free
fraction and a good agreement between the two modelling approaches is retrieved. From
there, the equivalent slip length of the SH surface can be expressed for small L as a function
of L and δ only (Lauga & Stone 2003):

λ‖ = 2L
π

ln
(

sec
(
δπ

2

))
. (2.5)

Based on the previous discussion, setting L = 0.025 and δ = 0.90 in the previous equation
gives an equivalent slip length λ‖ = 0.03. The configuration chosen in this article thus
corresponds to a reasonable case in which the texture periodicity remains small enough to
ensure the validity of the homogenised approach for a linear stability analysis.

Assuming a constant pressure gradient in the streamwise direction, the laminar steady
base flow takes the form U0 = (U0( y),V0,W0) and is governed by the following
equations:

1
Re

d2U0

dy2 = −
dP
d x
, V0 = 0,

d2W0

dy2 = 0. (2.6a–c)

Solving the system together with the homogenised boundary conditions (2.3), the base
flow velocity components read

U0 = 2L11 + 1− y2

1+ 3L11
, W0 = 2L12

1+ 3L11
. (2.7a,b)

Figure 1(b)–(c) depicts the velocity components of the base flow and, more interestingly,
the angle between the bulk velocity and the pressure gradient for λ‖ = 0.03 and θ = 45◦.
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The effect of the spanwise component of velocity appears quite clearly: in the vicinity
of the walls, the flow has a non-negligible angle with respect to the pressure gradient
whereas, in the centre of the channel, the deviation caused by the presence of W0 is less
than 1◦. The streamwise component of the base flow is similar to that found for a Poiseuille
flow with a partially slippery wall with λ‖ = λ⊥ (Philip 1972; Picella et al. 2019). Note
that U0 has the same mass flux as a plane Poiseuille flow with no slip, since for definition
the Reynolds number remains fixed when the slip length is changed. The presence of a
spanwise base flow component, which remains constant across the wall-normal direction
may seem counterintuitive. However, being one order of magnitude smaller than the
streamwise component, the spanwise one will mostly affect the near-wall regions, while
having negligible effects in the centre of the channel.

3. Linear stability analysis

The instantaneous flow field is now decomposed as the sum of the previously described
steady base flow and an unsteady disturbance having small amplitude. Introducing the
state vector Q(x, t) = [U,V,W,P]T, we have Q(x, t) = Q0(x)+ εq(x, t), with ε 	 1.
NS equations are then linearised with respect to the base flow Q0 = [U0,P0]T, yielding
the following system of equations:

∂u
∂t
+ (U0 · ∇)u+ (u · ∇)U0 = −∇p+ 1

Re
∇2u, (3.1)

∇ · u = 0 (3.2)

together with the boundary conditions for the velocity perturbations,[
u
w

]
= ∓L

∂

∂y

[
u
w

]
, v = 0 at y = ±1. (3.3)

3.1. Modal stability analysis
The system being periodic in the streamwise and spanwise directions, the perturbation
state vector q can be expanded in normal modes such that

q(x, t) = q̂( y) exp [i(αx+ βz− ωt)]+ c.c. (3.4)

with c.c. denoting the complex conjugate, α, β being the streamwise and spanwise
wavenumbers, respectively, and ω an angular frequency. Temporal stability is investigated,
implying α and β are real whereas ω = ωr + iωi is a complex number whose imaginary
part determines the asymptotic stability of the base flow U0 for a given mode (α, β).
Thus, substituting (3.4) into the linearised NS equations (3.1)–(3.2) results in a generalised
eigenvalue problem which can be solved by means of a spectral collocation code (Trefethen
2000; Schmid & Brandt 2014). The wall-normal direction is discretised with a Chebyshev
grid. A grid constituted by n = 200 points is used, ensuring a good convergence of the
eigenmodes. The code is validated in the case of a smooth channel flow and compared
with results from the book of Schmid & Henningson (2001).

In the present configuration, Squire’s theorem does not hold. The demonstration for the
present case can be seen in the article of Pralits et al. (2017) but is briefly reproduced in
Appendix A for the sake of completeness. Thus, the stability of the flow is investigated
in the full (α, β,Re) domain, for λ‖ = 0.03 and θ = 45◦. For a parametric study over
the influence of λ‖ and θ on the linear stability analysis, the reader is referred to
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Figure 2. Neutral curve in the α–β plane for Re = 12 000 (a) and α–Re plane for β = −0.5 (b). Black
contours correspond to the projection of the neutral isosurface ωi(α, β,Re) = 0 in the respective planes.

Pralits et al. (2017). Mainly, two main unstable zones can be identified: a patch for small
values of α and β /= 0 and a horseshoe region at small α and β closer to zero. Modes with
a large negative spanwise wavenumber have significantly larger growth rates. Note that this
unstable region was also observed in the work of Zhai et al. (2023). A strong asymmetry of
the neutral isosurface is observed: perturbations are most unstable in the opposite direction
of the cross-flow base flow velocity (β < 0). This has already been noted for swept wings
(Mack 1984). Slices of the neutral isosurface in the α–Re and α–β planes, showing the
regions of strongest instability, are provided in figure 2.

For further insight, figure 3 displays representations of the eigenfunctions of the most
unstable mode for both regions. The horseshoe instability region is reminiscent of the
unstable region of both classic and homogeneous slip Poiseuille flows. The usual shape of
a 3-D TS wave (Zang & Krist 1989) is also retrieved. A similar result was found in the
analyses of Chai & Song (2019) and Xiong & Tao (2020) in which the linear stability of
a channel flow with anisotropic slip boundary conditions was investigated. The boundary
conditions that was considered in their works are equivalent, in the present formalism,
to setting θ = 0◦ or θ = 90◦, yielding a non-zero spanwise slip but a zero spanwise
component for the base flow. Thus, the three-dimensionality of the TS wave seems to
stem from the presence of spanwise slip and is not a cross-flow-related effect.

The second region exhibits modes with tilted counter-rotating vortices. These vortices
are quasi-stationary (ωi = 0.022) and propagate almost perpendicularly to the streamwise
direction (φ = arctan(β0/α0) ≈ 88◦). These two characteristics are reminiscent of
unstable modes of swept boundary layers (Mack 1984) or rotating disc flows (Lingwood
1995). However, in the present configuration, and unlike swept flows, the spanwise velocity
component of the base flow does not present an inflection point. This is quite surprising
since cross-flow instability is usually depicted as a mainly inviscid mechanism (Saric,
Reed & White 2003), thus requiring an inflection point in the spanwise velocity W0.
A discussion of the possible role of the spanwise component of the base flow on this
instability is reported in Appendix D.

The competition between these two families of unstable modes may depend on the
configuration (slip length λ‖ and texture orientation θ ) considered: moderate and large
slip lengths decrease the wall-normal velocity gradients, thus hampering the development
of the viscosity-induced TS waves. In turn, the angle θ affects the slip direction and
the magnitude of the spanwise velocity component, inducing cross-flow related effects,
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Figure 3. Eigenfunctions of the most unstable mode for the two identified regions of interest: for (a,b),
α = 0.7, β = −0.6 and ω = 0.0004− 0.1643i (3-D TS wave) and for (c,d), α = 0.2, β = −6 and ω =
0.0033+ 0.02245i (cross-flow vortices). (a,c) Absolute value of the disturbance velocity components. (b,d)
The contour plot represents the streamwise velocity disturbance while quiver plot shows the v–w cross-flow.

leading to the destabilisation of a mode with α ≈ −β. Note that in the present work the
angle θ has been chosen to maximise the magnitude of the spanwise velocity component
and, thus, the cross-flow related effects.

3.2. Non-modal stability analysis
In subcritical conditions, non-modal mechanisms, linked to the non-normality of the
NS equations, can induce a transient growth of the energy of small perturbations.
Such a growth can be several orders of magnitude higher than the initial energy
perturbation (Gustavsson 1991; Reddy & Henningson 1993) thus playing a crucial role
in the transition to turbulence. This behaviour is typically investigated by maximising the
finite-time amplification of an initial velocity perturbation u0 (Butler & Farrell 1992).
Mathematically, the quantity to be optimised can be written as

G(T) = max
u0

E(u(T))
E(u0)

(3.5)

where E(T) is the kinetic energy of a perturbation at target time T , defined as

E(u(t)) = 1
2LxLz

∫
V
|u|2 dV, (3.6)

where V is the volume of the computational domain of streamwise and spanwise length
Lx and Lz, respectively. Following Schmid & Brandt (2014), transient growth is obtained
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Figure 4. (a) Optimal energy gain contours in the α–β plane for Re = 1000. The Reynolds number is chosen
sufficiently low to ensure stability of the flow. The black dot corresponds to the maximum energy gain obtained
for α = 0.1 and β = −2.0. (b) Amplification curves for (α, β) = (0.1,−2) in the slip configuration (◦) and for
(α, β) = (0, 2) in a smooth channel flow (�) for several Reynolds numbers Re.

through a singular value decomposition (SVD) of the linearised NS operator:

G(t) = || exp(J t)||2E = ||V exp (Λt)V−1||2E, (3.7)

where J is the Jacobian of the linearised system and (Λ,V ) are eigenmodes found with
the previous linear stability analysis. The code is validated in the case of a smooth
channel flow (Schmid & Henningson 2001). With n = 200 grid points in the wall-normal
direction, optimal gain and time of the previous reference are recovered with an error of
less than 0.2 %.

Figure 4(a) provides the optimal energy gain G in the α–β plane, which appears to be
strongly affected by the presence of the wall slip. The maximum gain can be obtained for a
small but non-zero α and for β = −2, differently from the channel flow with no-slip walls
(Butler & Farrell 1992). Amplification curves corresponding to a maximum energy growth
in the smooth channel case are retrieved and compared with those found with anisotropic
slip in figure 4(b). The slip setting appears to slightly increase the maximum amplification.
No effect on the time at which the optimal gain is reached, Topt, can be observed. Note
that, for Re = 3000, the flow in the slip configuration becomes linearly unstable. Previous
studies (Min & Kim 2005; Picella et al. 2019) have assessed that isotropic slip conditions
have a marginal effect on transient growth. Thus, we conjecture that transient growth is
mainly affected by cross-flow related effects. Note that the region of maximum energy
growth overlaps with the cross-flow instability region, hinting at the coexistence of both
mechanisms. Similar results were found in the non-modal analysis conducted by Breuer &
Kuraishi (1994) and Corbett & Bottaro (2001) on swept wings.

The optimal perturbation ensuring the maximum transient growth is given in figure 5.
The initial perturbation (left frame) consists of quasi-streamwise tilted counter-rotating
vortices. The vortices are tilted in the opposite direction of the cross-flow component of
the base flow and distorted by the slip conditions in the near-wall regions. The cross-flow
components have an amplitude one order of magnitude higher than the streamwise
component. At the optimal time, the perturbation takes the form of velocity streaks
slightly tilted in the cross-flow direction. Non-modal growth is usually the product of
two mechanisms: the Orr mechanism and the lift-up effect (Brandt 2014). Since the
Orr mechanism is more efficient for short (O(10)) time scales and high streamwise
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Figure 5. Optimal perturbation at time t = 0 (a) and at target time t = T = 82 (b). The contour plot represents
the streamwise component of the perturbed velocity whereas the quiver plot depicts the v–w cross-flow.
Eigenfunctions have been normalised by the maximum of the spanwise velocity at the initial time whereas
the maximum of streamwise velocity is used at the optimal time.

wavenumbers (Butler & Farrell 1992), in the present case the transient growth is most
probably linked to the lift-up effect (Landahl 1980). However, the mechanism is modified
by the presence of the spanwise velocity component of the base flow. This influence is
made clear by following the work of Ellingsen & Palm (1975) who derived a model which
showed algebraic growth for the amplitude of streamwise independent perturbations in
time. A generalisation of this model for 3-D base flows is not trivial, except for small angles
for which the mechanisms remain similar. However, in the specific case of a constant
spanwise component of the base flow, an extension of this model is possible and has been
derived in Appendix B. According to this model, the streamwise perturbation amplitude
can be expressed as follows:

u(t) = u0 cos (βW0t)− v0U′t. (3.8)

While the classical algebraic growth is retrieved, a new term, due to cross-flow effects,
appears. This term induces, for early times, an oscillation of frequency βW0 of the
amplitude of the streamwise velocity of the perturbation.

4. Direct numerical simulations

To better understand the mechanisms arising during the laminar–turbulent transition,
supercritical transition of the flow in this configuration is investigated. Such a transition
can be triggered by superposing on the base flow (2.6a–c) an unstable wave found from
the linear stability analysis of the previous section, say

U(x, t = 0) = U0(x)+ Au1(x), (4.1)

where u1 is an unstable mode found from the previous linear stability analysis and
A is its initial amplitude. In the following, the amplitude is set such that the initial
energy of the perturbation is equal to 10−5 for ensuring a linear phase of exponential
growth. Two transition scenarios are considered: one initiated with a 3-D TS wave
having (α0, β0) = (0.7,−0.6), presented in § 5, and the other with a cross-flow mode
having (α0, β0) = (0.2,−6), discussed in § 6. This choice of wavenumbers results from
a compromise between their distance to the neutral curve and the numerical cost of the
simulation. For the cross-flow scenario, the selected wavenumber is also chosen not to
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Lx Ly Lz Nx Ny Nz Np

Tollmien–Schlichting case 8.9759 2 10.4720 32 24 26 8
Cross-flow case 31.4159 2 3.1415 90 32 10 8

Table 1. Numerical parameters for the two simulations, where Np denotes the polynomial order of the
elements.

be in the region where transient growth is significant in an attempt to discriminate the
different instability mechanisms. A temporal DNS framework is considered and thus,
for the 3-D TS, the numerical domain is set to fit exactly one spatial wavelength of the
considered perturbation in the streamwise and spanwise directions. As a consequence,
only waves with wavenumbers of the form (nα0,mβ0) with n,m ∈ Z can develop. For the
scenario initiated with the cross-flow mode, the large spanwise wavenumber leads to a
small computational box in the spanwise direction which was deemed too constraining.
Instead, a larger numerical domain is used to avoid restrictions on the wavelengths
of developing modes. Ultimately, the domain sizes are [Lx, Ly, Lz] = [2π/α0, 2, 2π/β0]
and [Lx, Ly, Lz] = [2π/α0, 2, 6π/β0], respectively. In both cases, the Reynolds number
is Re = 12 000 and a constant flow rate in the streamwise direction is imposed. The
numerical parameters employed in these two cases can be retrieved in table 1.

The simulations have been performed with the spectral element incompressible solver
Nek5000 (Nek5000 Version 19.0 2019). The code is based on a splitting method which
leads to solving a set of time-dependent problems and a final correction step together
with a Pn − Pn−2 spatial discretisation. Convective terms are treated with an explicit
extrapolation scheme of order three whereas viscous terms are solved with a backward
differentiation scheme (also of order three). In the standard Nek5000 distribution,
essential (Dirichlet) and natural (Neumann) boundary conditions are implemented. The
homogenised Robin boundary conditions (2.3) must be implemented. The full details
of this implementation can be found in the PhD dissertation of Picella (2019). Spectral
elements in the wall-normal direction have been distributed following a Chebyshev grid to
further increase the spatial resolution near the walls.

For further insight, several indicators are monitored through the simulation such as the
spectral energy associated with Fourier modes defined as (Zang & Krist 1989; Schmid &
Henningson 2001)

Êkx,kz = 1
2

∫ 1

−1
|ûkx,kz( y, t)|2 dy, (4.2)

where ûkx,kz( y, t) is the Fourier mode of the perturbation velocity field with streamwise
and spanwise wavenumbers kx and kz, respectively. Following the formalism of Schmid &
Henningson (2001), the mode denoted as (m, n) corresponds to the (mα0, nβ0) Fourier
mode. Transition to turbulence will also be investigated through the evolution of the
kinetic energy density of the disturbance (as defined previously) and the friction Reynolds
number, which is defined as

Reτ =
√

Re|∂yŪ(x, t)|±1, (4.3)

where the overbar denotes spatial averaging on the x–z plane. This quantity will sharply
increase during the turbulent breakdown while remaining almost constant for both laminar
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Figure 6. Evolution of the disturbance kinetic energy density (a) and Reτ (b) as a function of time for
different texture parameters and transition scenarios.

and turbulent flows. In the laminar case, the friction Reynolds number can be found
analytically and reads

Reτ =
√

2Re
1+ 3L11

≈ 150. (4.4)

In addition to the two supercritical transition scenarios described previously, two other
simulations have been performed: a channel flow with no-slip boundary conditions to serve
as a reference and a channel flow with anisotropic slip but no cross-flow (corresponding to
the θ = 0◦ case). These two simulations have been performed starting from the same initial
energy E0 = 10−5 and with the exact same numerical domain than in the TS scenario.
An overview of the different cases for the kinetic energy and friction Reynolds number
indicators can be seen in figure 6. As expected, slip significantly delays the transition and
reduces friction in the vicinity of the wall. Note that for θ = 0◦, transition could not be
observed, underlining the destabilising effect of the spanwise velocity base flow. These
scenarios are discussed in much more detail in the following two sections.

5. First scenario: 3-D TS waves

5.1. Overview of the transition
The transition scenario initiated by a 3-D TS wave with (α0, β0) = (0.7,−0.6) is
investigated. The time evolution of the kinetic energy evolution and friction Reynolds
number are provided in figure 7, whereas figure 8 depicts the evolution of the spectral
energy for several Fourier spatial modes. In the initial phase, the kinetic energy density
displays an exponential increase, with a growth rate in perfect agreement with the
linear stability analysis. Figure 8 shows that the Fourier mode (1, 1), which is the only
finite-amplitude mode present in the flow at early times, follows this evolution. Figure 9
(top row) shows that at t = 200, the perturbation is still characterised by a TS wave shape.

Meanwhile, at t ≈ 100, the mode (0, 16) starts oscillating with a period T0 = 47. The
period of the oscillations is in good agreement with that analytically predicted from (3.8),
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Figure 7. Evolution of the disturbance kinetic energy density (a) and Reτ (b). The dashed line has a slope 2ωr,
where ωr ≈ 0.00044 is the growth rate of the most unstable mode found by means of linear stability analysis.
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Figure 8. (a) Time evolution of the Fourier modes (1, 1), (0, 16) and (0, 1). The dashed line has a slope
2σ ≈ 0.0406. Note the oscillations in the early evolution of mode (0, 16). (b) Time evolution of the Fourier
modes ranging from (0, 1) to (0, 9): blue, (0, 1); purple, (0, 2); brown, (0, 3); light green, (0, 4); grey, (0, 5);
dark green, (0, 6); red, (0, 7); orange, (0, 8); pink, (0, 9). All these modes appear to experience a significant
energy growth during the second phase of the transition process.

namely 2π/(βW0) = 46.58, hinting at the presence of the modified lift-up described
previously. Note that these oscillations can be observed only on this high-wavenumber
mode, whereas other streamwise-invariant Fourier modes such as (0, 1) (see figure 8) does
not display an initial oscillatory phase. A possible reason for this behaviour is that both
the target time at which maximum transient growth is recovered, Topt, and the oscillation
period, T0, are much larger for small spanwise wavenumbers. Furthermore, for (0, 16), it
can be found that Topt = 100 and T0 = 47 whereas Topt = 615 and T0 = 639 for the (0, 1)
mode, which is too large a period to be observed during the linear phase of the perturbation
evolution.

After t ≈ 280, the (0, 16) mode exhibits exponential growth, characteristic of a
secondary instability. At t ≈ 520, the (0, 16) mode becomes more energetic than the
primary one. At the same time, a sharp increase in the kinetic energy indicates that the first
step of transition to turbulence has initiated. This translates into a change in the topology of
the mode characterised by the onset of near-wall streamwise-elongated coherent structures,
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Figure 9. Snapshots of the flow at different times T . From left to right and top to bottom: T = 200,
400, 600, 800, 900. Isosurfaces of the λ2-criterion, λ2 = −10−5 for the two first rows, −10−4 for the third
and fourth rows and 0.25 for the last row. The contours depict the streamwise velocity at the wall. The flow is
from bottom to top, and left to right. For the sake of clarity, only half the channel is shown.

shown in figure 9 (second and third rows from the top). These streaky structures are
characterised by a large spanwise wavenumber, β = −9.6, corresponding almost exactly
to 16 times the fundamental spanwise wavenumber β0 (namely, β = 16β0 = −9.6).

In this transition phase, energy is taken from the 3-D TS wave and transferred to these
oblique waves (see figure 9, second and third rows from the top) ultimately leading to the
disappearance of the TS wave. As can be seen in figure 10, showing the spatiotemporal
evolution of the streamwise (left) and spanwise (right) components of the velocity, these
streaky structures are not streamwise independent and are oriented with an angle φ = 9◦
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Figure 10. Spatiotemporal evolution of the streamwise (a,c) and spanwise (b,d) components of the velocity at
x = 0 and y = −0.85. For visualisation purposes, the first (second) phase of the transition is depicted separately
in the first (second) row.

with respect to the streamwise direction, almost perpendicular to the initial 3-D TS wave.
Note also how the first phase of the transition leads to the decrease of the spanwise velocity
component, confirming the streaky nature of the structures.

At t = 650, the kinetic energy reaches a plateau for E = 3× 10−3 as the secondary
instability saturates (see figure 7). Ultimately, tertiary instability triggers, at t ≈ 800, a
dramatic increase in the friction Reynolds number, indicating the breakdown into a fully
turbulent state. This final transition can be linked to the (0, 1) mode, as suggested by
its sudden growth at such time. Note that this growth is not specific to the (0, 1) mode
and seems to be shared by all the streaky modes from (0, 1) to (0, 9) (see figure 8),
demonstrating that this behaviour is somewhat general for the streamwise-independent
modes and not strictly linked to the domain size. The nature of this final instability is
quite complex: it is highly nonlinear as indicated by the growth of all these spatial Fourier
modes. It also and appears to be, to some extent, related to streak instability. Figure 10(c,d)
depicts streaky structures which, quite interestingly, have lost their orientation and are
now aligned with the streamwise direction. The streak instability can be observed at time
t ≈ 700 in the two bottom rows of figure 9 and in the bottom left frame of figure 10.

Quite notably, this transition scenario is fundamentally different from the usual
transition scenario in channel flows. Indeed, supercritical transition to turbulence in
channel flow is well documented in the no-slip case (Zang & Krist 1989; Schmid &
Henningson 2001): after an initial exponential growth phase, secondary instability of a
subharmonic mode appears. The interaction between the TS wave and the secondary

980 A49-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.3


Turbulent transition in a channel with superhydrophobic walls

modes leads to a peak–valley structure (Herbert 1985; Asai & Nishioka 1989), which,
in turn, results in the formation of a staggered pattern of λ-vortices. Then, λ-vortices
subsequently develop into hairpin vortices that will ultimately breakdown into turbulence.
In the slip case, with a homogeneous Navier slip boundary condition, Picella et al. (2019)
have shown that a delay of the laminar–turbulent transition is possible, but the nature of
the instability mechanisms remains virtually the same.

In the present case, the shear misalignment of the base flow appears to have a dramatic
effect on the transition scenario. Similarly to what we have reported concerning the
primary instability, it might originate a new secondary instability mechanism, which
would be investigated in the next subsection. If these cross-flow-related secondary modes
have higher growth rates than the subharmonic modes leading to λ2 vortices (Herbert
1985), the secondary phase of transition would be dominated by cross-flow-related
mechanisms.

As observed in swept flows (Serpieri 2018), during this secondary phase, oblique waves
appear and eventually, through nonlinearities, saturate. The saturated cross-flow vortices
contain several strong shear layers, which can, under certain circumstances, further
destabilise. The most common instability mechanism observed in such flows (Bippes 1990,
1999) involves the shear layer at the bottom of the vortex, created from the circulation of
high-speed fluid towards lower velocities region near the wall.

In the present case, the slip boundary conditions reduce the efficiency of this mechanism
by lowering the wall-normal velocity gradients near the walls. Instead, the flow keeps
accelerating in the spanwise direction until it reaches a neighbouring vortex, thus creating
stagnation points and strong shear layers in the spanwise direction. Transient growth in
this region leads to the formation of streaks (Guegan, Huerre & Schmid 2007) aligned
with the streamwise direction. Streak instability concludes the transition to turbulence.

This scenario of transition will be corroborated in the next subsection, by means of
secondary stability analysis and comparison with DNS.

5.2. Floquet stability analysis
In an effort to provide a more qualitative description of the secondary phase of the
transition, a secondary stability analysis, based on Floquet theory, is carried out. This
method has been applied to both channel flows (Herbert 1983) and 2-D boundary layers
(Herbert 1985) for which it has successfully predicted the secondary instability of a 2-D
TS wave. An extension to 3-D base flows was proposed and applied most notably to swept
wings (Fischer & Dallmann 1991; Janke & Balakumar 2000; Liu, Zaki & Durbin 2008).
Secondary stability equations in a velocity-vorticity formulation can be found in Fischer &
Dallmann (1991). A primitive variables formulation for 2-D base flows only, can be found
in Schmid & Henningson (2001).

In this work, due to the three-dimensionality of the problem under consideration, we use
a formulation of Floquet theory and subsequent modal expansion somewhat different (but
nevertheless equivalent) from those used in these articles. In the study of Herbert (1983),
the Squire theorem ensures a 2-D initial perturbation while, for swept flows cases, an initial
3-D perturbation should be considered. For this reason, Floquet theory for swept flows is
usually applied in a rotated frame aligned with the 3-D wave direction of propagation,
thus effectively reducing the base flow to two dimensions. Precisely, the base flow for
secondary stability analysis is constructed as a superposition of an unstable mode and the
laminar flow profile such as

U1(x, y, t) = U0( y)+ AûTS
( y) exp(iα0x+ iβ0z− iω0t) (5.1)
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with A the amplitude of the unstable 3-D TS wave obtained from linear stability analysis.
Considering that the TS wave moves at the velocity cx and cz in the x′ and z′ directions,
respectively, the time dependence of the base flow is removed when the moving frame
(x′, z′) = (x− cxt, z− czt) is considered. Linearising the NS equations around this new
base flow in the co-moving frame leads to a system of ordinary differential equations
(see Appendix C) with 2π/α0-periodic and 2π/β0-periodic coefficients in the x- and
z-directions, respectively. Thus, the Floquet theorem is applied in both the streamwise
and spanwise directions:

q1(x′, y, z′, t) = q̃(x′, y, z′) eγ x′ eμz′ eσ t (5.2)

with γ = γr + iγi and μ = μr + iμi the Floquet parameters in the streamwise and
spanwise directions. Then, q̃(x′, y, z′) is Fourier transformed in both the x′- and
z′-directions and introducing the detuning factors ε = γi/α0, δ = μi/β0, the general form
of the solution can be expressed as

q1(x′, y, z′, t) = exp(σ t) exp(γrx′) exp(μrz′)
+∞∑

m,n=−∞
q̃m,n( y) exp(iα0(m+ ε)x′

+ iβ0(n+ δ)z′). (5.3)

When a numerical solution is sought, the modal expansion (5.3) needs to be truncated,
usually with the lowest possible number of modes. Unfortunately, reaching the spanwise
wavenumbers observed in the DNS would require a large number of modes in the
z′-direction, which make the problem too computationally expensive. In order to relax this
constraint, the modal expansion in the spanwise direction is reduced to only one mode by
fixing n and δ and introducing β1 = β0(n+ δ), which represents the effective secondary
spanwise wavenumber. Since n ∈ Z and−1/2 < δ ≤ 1/2, the quantity n+ δ spans all real
numbers bijectively such that every spanwise wavelength is accessible through a unique
choice of n and δ.

Temporal stability is investigated, thus γr = μr = 0 and the real part of σ indicates the
growth rate of the secondary instability. Finally, the modal decomposition (5.3) reduces to

q1(x′, y, z′, t) = exp(σ t) exp(iβ1z′)
+∞∑

m=−∞
q̃m( y) exp(iα0(m+ ε)x′). (5.4)

Introducing (5.4) into the linearised NS equations leads to an infinite set of equations
which, once truncated, can be recast in an eigenvalue problem likewise the primary
stability problem.

All the results given here are obtained with the lowest possible truncation that is
m = 0, 1 in the subharmonic (ε = 1/2) cases and m = −1, 0, 1 for the fundamental
(ε = 0) and detuned (0 < ε < 1/2) modes. For the sake of clarity, the derivation of the
secondary stability equations and the eigenvalue problem is fully detailed in Appendix C.

In both classic channel and boundary layer flows, fundamental and detuned waves play
a limited role in the transition process (Herbert 1983, 1985) as subharmonic instabilities
have stronger growth rates. However, this might not be true in our configuration, due to the
strong asymmetry present in the base flow.

The dependence of the growth rate of the most unstable mode on the detuning factor is
investigated in figure 11, for Re = 12 000. A strong secondary growth rate can be reached
for detuned modes and large spanwise wavenumbers, in the range of those recovered for
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Figure 11. (a) Growth rate σr of the most unstable mode as a function of the spanwise wavenumber β1 for
ε = 0 (fundamental), ε = 0.22 (detuned) and ε = 1/2 (subharmonic). (b) Contour plot of the growth rate
σr of the most unstable mode for Re = 12 000 as a function of both the detuning factor ε and the spanwise
wavenumber β1. Black dot corresponds to the maximum growth rate obtained for ε = 0.23 and α = −8
whereas the black line denotes the σr = 0.02 isocontour (corresponding to the growth rate found from the
DNS). The broken line denotes the σr = 0.015 isocontour and allows the identification of secondary maxima.
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Figure 12. Secondary instability spectra for Re = 12 000, β1 = −9.6, A = 10−5 and ε = 0.23. Eigenvalues
are coloured according to their respective Fourier mode. The values of the frequency and growth rate of the
four most unstable modes are given in table 2.

the primary cross-flow instability. The maximum secondary growth rate is σr = 0.0230
for ε = 0.23 and β1 = −8 but the instability region is quite large and similar growth rates
can be reached for larger β1. Precisely, the growth rate corresponding to the spanwise
wavelength observed in the DNS (namely, β = −9.6), is equal to σr = 0.020.

The spectrum obtained for Re = 12 000, β1 = −9.6, ε = 0.23 and A = 10−5, shown
in figure 12, exhibits three unstable and one marginally unstable mode. All the modes
share a similar structure: the m = 0 mode, yielding an effective streamwise wavenumber
α = εα0 = 0.16, is dominant in comparison with the m = −1 and m = 1 modes. The
wavenumber in the streamwise direction is too small to be retrieved in the computational
domain thus explaining, to some extent, the onset of streaky structures. The eigenvalues
associated to these modes are summarised in table 2. Considering the dominant m = 0
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σr σ TS
i σ 0

i

Mode 1 0.0205 1.1835 0.0449
Mode 2 0.0115 1.2245 0.0849
Mode 3 0.0070 1.1729 0.0349
Mode 4 0.0004 1.2118 0.0749

Table 2. Most unstable eigenvalues of the secondary stability analysis for Re = 12 000, β1 = −9.6, ε = 0.23
and A = 10−5. For a single mode, two frequencies, σ TS

i and σ 0
i , are given: the former is the frequency of the

mode in the frame moving with the TS wave whereas the latter corresponds to the frequency in the laboratory
frame.

mode, frequencies in the laboratory frame are retrieved through the following equation:

σ 0
i = σ TS

i − β1cz − α0εcx. (5.5)

For the four most unstable modes, secondary perturbations are reconstructed based on
(5.3). A slice of these modes in the y–z plane is provided in figure 13, showing that they
share a rather similar structure. In the spanwise direction, one can see alternated high
and low streamwise-velocity patches. The streamwise velocity component is one order of
magnitude higher than the cross-flow components, and is strongly localised in the region
where the amplitude of the TS wave reaches a maximum. Cross-flow components form
vortical structures concentrated near the walls and similar to those found for cross-flow
instabilities. More precisely, mode 1 consists of oblique vortices together with oblique
streaky structures for the streamwise velocity component. Modes 2 and 4 are almost
identical besides a phase shift. One can also observe a stagnation point near the wall
at z = 0.58 for mode 2. Mode 3 appears peculiar as its vortices sit on top of a region
of low velocity. For all these modes, the vortices push high-momentum fluid towards
the wall where, due to the slip boundary conditions, it is strongly accelerated in the
spanwise direction. When this high-momentum flow reaches the neighbouring vortices,
it is re-ejected upwards back in the flow, creating stagnation points and strong spanwise
shear layers in the process.

The main features of the most unstable modes recovered by Floquet analysis are
compared with those observed in the DNS in table 3. For the DNS, the secondary growth
rate is extracted from figure 8. A good agreement can be found between the values.
A comparison of the spatial structure of the secondary perturbations obtained from
the DNS and some of the modes obtained by secondary stability analysis is provided
in figure 14. Snapshots of the flow are taken at x = Lx/2 and t = 500. Both the base
flow and the initial TS wave are subtracted from the snapshot to retrieve the secondary
perturbations. The snapshot is then divided into portions of size 2π/β1 to isolate vortical
structures.

The spatial structures compare rather well, although for mode 1 (top row), one can
observe that in the DNS the counter-rotating vortices are located rather farther from the
wall. Regarding mode 3, its location in the wall-normal direction can be retrieved despite
the size of the vortex is slightly smaller. These discrepancies could be explained from
different factors: as can be seen, secondary stability analysis yields a range of unstable
spanwise wavenumbers which includes the main wavenumber observed in the DNS.
The growth rates are in perfect agreement. The small discrepancy found between the
frequencies could arise from the fact that the shape assumption is likely not completely
valid and the mean flow is slightly distorted during the transition. In addition, only the
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Figure 13. Slice at x = Lx/2 of the reconstructed secondary perturbations of the four most unstable modes
for Re = 12 000, β1 = −9.6, ε = 0.23 and A = 10−5. From top to bottom and left to right, modes are ordered
from the most unstable to the least unstable. The contour plot represents the streamwise velocity disturbance
whereas the quiver plot shows the v–w cross-flow.

β1 σ o
r

DNS −9.6 0.0203
Floquet [−6,−10] 0.0230

Table 3. Comparison between spanwise wavenumbers and growth rates obtained from the DNS and from
secondary stability analysis.

frequency of the dominant mode m = 0 was considered whereas, formally, each mode of
the Floquet expansion has its own frequency in the laboratory frame.

6. Second scenario: cross-flow modes

6.1. Overview of the transition
The second transition scenario is initiated injecting on the base flow the cross-flow
unstable mode with (α0, β0) = (0.2,−6). The time evolution of the kinetic energy
evolution and friction Reynolds number is provided in figure 15, whereas figure 16
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Figure 14. Comparison between snapshots extracted from the DNS (a,c) and secondary stability modes (b,d):
mode 1 (a,b) and mode 3 (c,d). Secondary perturbations from the DNS are extracted from snapshots taken
at t = 500, by subtracting the base flow and the primary disturbance. The contour plot represents the total
streamwise velocity disturbance whereas the quiver plot shows the v–w cross-flow.

depicts the evolution of the spectral energy for several Fourier spatial modes along with
spatiotemporal plots.

At first, exponential growth of the disturbance kinetic energy is observed in figure 15.
Note that the slope of the curve corresponds to twice the growth rate ωr = 0.0033 retrieved
from linear stability analysis. After t = 600, the kinetic energy starts saturating at E ≈
1.8× 10−3. This saturation most likely arises from stabilising nonlinear effects and is also
observed in a cross-flow-induced transition for swept flows. As shown in the first snapshot
of figure 17, apart from slight deformations near the walls due to the boundary conditions,
the shape of the quasi-stationary (ωi = 0.0225) cross-flow vortices does not evolve much
during this phase.
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Figure 15. Evolution of the disturbance kinetic energy density (a) and Reτ (b) for the cross-flow transition
scenario. The dashed line has a slope 2ωr where ωr ≈ 0.003267 is the growth rate of the most unstable
perturbation found with the linear stability analysis.
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Figure 16. (a) Time evolution of the Fourier modes (1, 1), (2, 0), (7, 0) and (0, 1) for the cross-flow transition
scenario. The dashed line corresponds to the exponential primary growth rate. (b) Spatiotemporal evolution of
the streamwise component of the velocity at x = 0 and y = −0.85.

In the meantime, it can be seen from figure 16(a) that the mode (2, 0) also experiences
strong energy growth. Since the mode is linearly stable and is not expected to undergo
strong transient growth, only nonlinear mechanisms could explain this growth. Nonlinear
forcing of the mode (2, 0) by the initial perturbation is possible as it can be observed in an
oblique waves transition scenario for a boundary layer (Schmid & Brandt 2014). Usually,
the (2, 0) mode is damped and not very receptive to forcing, meaning it is not relevant in
the transition scenario. For 3-D flows, El-Hady (1989) demonstrated that resonant wave
triads play an important role in the stability due to the large number of interaction between
the possible instabilities.

At t = 1000, the top of the vortices start oscillating in the streamwise direction (see
figure 17b,c). This can also be seen on the spatiotemporal plot of figure 16(b), where one
can note the much higher frequency of the secondary instability. This secondary instability
can be traced back to the Fourier mode (7, 0) in figure 16(a). Secondary growth rate can
be extracted from the slope of its time evolution and is equal to σr ≈ 0.084.
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Figure 17. Snapshots of the flow at T = 900, 1010, 1030, 1060, 1080, 1150 (from top to bottom and left
to right). Isosurfaces of the λ2-criterion, λ2 = −10−5 (a,b), λ2 = −10−4 (c,d) and λ2 = −10−1 (e, f ),
respectively, and contours of the streamwise velocity at the wall. For the sake of clarity, only half the channel
is shown.

At t ≈ 1050 (see figure 17d,e), spanwise-independent coherent structures appear as
shown in figure 18. These structures appear on top of the cross-flow vortices and seem
to be tilted. The bottom snapshot of figure 18 is particularly interesting: on top of the
wave-like pattern of the initial disturbance, secondary vortices can be observed. These
also appear in the near-wall region between two cross-flow vortices. These vortices are
most likely a consequence of the slip boundary conditions: as the fluid is accelerated in
the spanwise direction near the walls, strong spanwise shear layers, which are susceptible
to further destabilise, are created. Energy is transferred from the cross-flow vortices to
the secondary perturbation. Distortion of the base flow, in both streamwise and spanwise
directions, is also highly likely.
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Figure 18. Cross-flow dynamics at different time T . From top to bottom: T = 900, 1000, 1050, 1060, 1080.
The cross-section is taken at the streamwise position xs = 15.71 and only y ∈ [−1,−0.7] is represented.
Isocontours of the λ2-criterion [−1× 10−4 ←→−1× 10−2]. Contour plot of the u-component of the
disturbance velocity. Quiver plot depicts the (v–w) cross-flow of the perturbation. White contours represent
the magnitude of the velocity [−5× 10−2,−3× 10−1;−5× 10−2].

The remaining part of the laminar–turbulent transition is rather complex as several
instability mechanisms get intertwined. In the last two snapshots of figure 17, streaks
can be seen developing in the near-wall region, causing the energy growth of the (0, 1)
Fourier mode in the left frame of figure 16. In figure 18, the vortices described previously
have combined to form vortex quadrupoles which create strong recirculation in the flow.
Ultimately, the breakdown to turbulence seems to be related to the displacement of
high-velocity fluid in the upper part of the channel (fourth snapshot of figure 18) towards
lower-velocity regions near the wall (last snapshot of figure 18). In the vicinity of these
regions turbulent wedges originate (see figure 16b) which quickly propagate to the whole
channel.

6.2. Secondary stability analysis of cross-flow vortices
Due to the presence of several strong shear layers in the primary cross-flow vortices, these
are highly likely to destabilise. The observation of the transition scenario also strongly
hints at the presence of modal secondary instability mechanisms. In the case of swept
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flows, numerous efforts on the secondary instability of cross-flow vortices have been
performed, albeit, to the best of the authors’ knowledge, always for boundary flows with
no-slip boundary conditions. While a short introduction to secondary instability of cross
flow vortices is produced in the following, the reader is referred to Saric et al. (2003) for a
full review.

One of the first key contribution to this issue has been the work of Malik et al. (1999)
which classified the secondary modes into two main families. Precisely, type-I unstable
modes are linked to the velocity gradient of the streamwise component of the velocity in
the spanwise direction, whereas type-II modes originate from gradients in the wall-normal
direction. Type-I modes are located in the outer part of the primary vortices whereas
type-II are situated on top of them. Type-II also tend to have a higher frequency than
type-I modes. A third type of mode was identified in studies by Fischer & Dallmann (1991)
and Janke & Balakumar (2000) through Floquet analysis of the cross-flow vortices. This
low-frequency type-III mode is linked to nonlinear interactions between stationary and
travelling primary modes. These three families of modes have been also experimentally
retrieved by Kawakami, Kohama & Okutsu (1999) and White & Saric (2005). Later, using
DNS, Wassermann & Kloker (2002, 2003) showed that co-rotating helicoidal structures
superimposed on the upwelling region of the primary vortices were characteristics of the
type-I mode. These structures would be convected downwards if the unsteady forcing was
switched off, thus confirming the convective nature of the secondary instability as already
suggested by Kawakami et al. (1999) and Koch (2002).

Bonfigli & Kloker (2007) also studied the development of the secondary instabilities
of cross-flow vortices through the combined use of a spatial DNS and secondary linear
stability theory (SLST) based on Floquet theory applied on a saturated primary flow
(Malik, Li & Chang 1994; Janke & Balakumar 2000; Koch et al. 2000; Koch 2002).
Growth rates and structures of the type-I and type-III modes were retrieved and good
agreement was shown between the two techniques. SLST predicted the instability of
type-II modes but these were not observed in the DNS. In the particular case of travelling
vortices, type-III modes were not reported as unstable, which was expected since this
mode arises from the generation of spanwise modulation induced by the stationary primary
vortices. Another key conclusion of this study is the nature of the mechanism behind the
secondary instability: both type-I and type-II are found to be related to Kelvin–Helmoltz
instabilities. In all cases, the primary flow on which SLST is carried out is paramount and
its acquisition is not straightforward as nonlinearities lead to an important distortion of the
base flow. The shape assumption no longer holds and Herbert’s secondary stability theory
cannot be applied directly.

The primary flow can be retrieved by using parabolised stability equations as in Malik
et al. (1999) and Janke & Balakumar (2000), or extracted directly from a saturated DNS
(Messing & Kloker 2004; Bonfigli & Kloker 2007). Recently, Groot et al. (2018) based
their secondary stability analysis on an experimentally acquired primary flow. In any case,
the extraction process is quite complex and several issues arise. In swept boundary layers,
the orientation of the vortex axis of the cross-flow vortices evolves with the streamwise
direction. Consequently, secondary linear stability depends on the position x = xSLST
where the primary flow is extracted. This is not the case in our configuration, as a
consequence of the choice of a temporal DNS.

As in Bonfigli & Kloker (2007) and several others, we introduce a vortex-oriented
system (xv, y, zv) aligned with the vortex axis of the primary disturbance and moving
with it. In this frame, the primary flow Q0

v( y, zv) is streamwise independent and periodic
in the spanwise direction. In the framework of Floquet theory, it is Fourier expanded in the
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spanwise direction and takes the following modal form:

Q0
v( y, zv) =

+∞∑
n=−∞

q̂0
v,n( y) exp(inβvzv) (6.1)

with βv =
√
α2

0 + β2
0 ≈ β0 the effective wavelength in the spanwise direction zv . In this

framework, the continuity equation reduces to

∂yv
0
v,n + inβvw0

v,n = 0, ∀n, (6.2)

directly relating the two cross-flow components of the velocity. Thus, a choice must
be made between enforcing continuity and extracting both components from the DNS.
Ultimately, this might have a non-negligible effect on the secondary growth rates found
from the SLST (Malik et al. 1994; Bonfigli & Kloker 2007).

To overcome this and other issues of Floquet analysis, here we use a local 2-D stability
(Tatsumi & Yoshimura 1990) approach. Several reasons motivate this choice: first and
foremost, 2-D local stability theory encompasses Floquet stability theory. In addition,
as shown previously, Fourier decomposition in the spanwise direction of the primary
flow leads to some difficulties with the continuity equation. In a 2-D framework, this
decomposition is not necessary and these issues do not arise. Ultimately, 2-D stability
analysis allows to take into account also instabilities spanning multiple cross-flow vortices,
whereas other studies only considered a single pattern of the primary flow for their
secondary stability analyses.

For carrying out the 2-D secondary stability analysis, the flow is decomposed into the
primary state Q0

v( y, zv) and a secondary perturbation q1(xv, y, zv, t). Furthermore, the
secondary perturbation can be expanded in the following way:

q1(xv, y, zv, t) = q̃( y, zv) exp(iαvxv − σ t), (6.3)

where αv and σ are complex numbers representing the streamwise wavelength and the
pulsation in the vortex-oriented reference frame, respectively. Both temporal (Malik et al.
1999; Koch et al. 2000; Wassermann & Kloker 2002) and spatial (Janke & Balakumar
2000; Bonfigli & Kloker 2007) approaches have been considered previously. Koch et al.
(2000) found a set of equations relating both frameworks through a generalisation of the
Gaster transformation to 3-D flows. For channel flows, a natural choice is to consider a
temporal framework. As previously, NS are linearised around this new base flow. Stability
equations for 2-D problems can be found, for example, in Loiseau (2014).

The primary flow in the vortex-oriented reference frame is shown in figure 19. It
was extracted from the DNS at time t = 900 and xSLST = 15.71. This flow field can
be compared with the flow visualisations from the experiments of Serpieri (2018) (see
figure 4.14) and with the primary flow resulting from the DNS of Bonfigli & Kloker (2007)
(see figure 7). The water-wave shape of the streamwise velocity component, characteristic
of the cross-flow vortices, is clearly visible. However, the spatial extension of the tip of
the wave is smaller than that observed for swept boundary flows, likely because the initial
spanwise velocity W0 is weaker. The instability mechanism is similar to that described in
Serpieri & Kotsonis (2016): cross-flow vortices generate the circulation of low-momentum
flow towards high-momentum regions higher up in the channel and conversely. In the
present case, the wall-normal shear is maximum near the walls and not in the vortex core
due to the slip boundary conditions. The spanwise velocity gradient reaches a maximum
in the low-momentum upwelling region on the outer part of the vortex.
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Figure 19. Secondary base flow for the secondary stability analysis. The snapshot is extracted from the DNS
at time t ≈ 900, position xSLST = 15.71 and is shown in the vortex-oriented reference frame. (a) Contour plot
of the velocity component U. Quiver plot of the cross-flow perturbation (v–w). (b) Growth rate σr of the
secondary most-unstable modes of cross-flow vortices as a function of the effective streamwise wavenumber
αv in the vortex-oriented frame.

αv σr

DNS 1.4 0.082
2-D SLST 1.39 0.087

Table 4. Comparison between secondary instability characteristics obtained from the DNS and from the
most-unstable mode of the secondary stability analysis.

Two-dimensional stability analysis of the previously described primary flow is
performed. The evolution of the temporal secondary amplification rates in the
vortex-oriented frame as a function of the effective streamwise wavelength is shown in
figure 19. The maximum growth rate is equal to σr = 0.084 for αv = 1.4. Both the growth
rate and the effective streamwise wavenumber are in good agreement with those observed
in the DNS. A direct comparison between the characteristics of the secondary instability
obtained from the SLST and those extracted from the DNS is provided in table 4.

All the results from the SLST are obtained in the moving vortex-oriented frame. Values
of streamwise wavelengths and frequencies in the laboratory frame can be retrieved by
expanding (6.3):

σ 0
i = σi,v − αvc, (6.4)

α0
1 = −

αvβ0

k
, (6.5)

β0
1 =

αvα0

k
, (6.6)

where k =
√
α2

0 + β2
0 and c is the velocity of the cross-flow vortices.

For Re = 12 000 and αv = 1.4, two families of eigenmodes could be distinguished
and are displayed in figure 20. The first, in the left part of the figure, appears strongly
localised on the upwelling of the vortex, a representative feature of type-I modes. Among
the several unstable modes, no type-II nor type-III structures could be found. This is
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Figure 20. Most unstable secondary modes found for Re = 12 000, αv = 1.4 (a,b) corresponding respectively
to σ = 0.0827− 0.5319i (a) and σ = 0.0815− 0.4439i (b) and for αv = 1 (c). Slice in the ( y–z) plane. The
contour plots depict the streamwise velocity perturbation whereas the quiver plots represent the cross-flow
dynamics.

not unexpected: type-III modes require interactions with unstable stationary cross-flow
vortices. Type-II modes stem from the instability of wall-normal velocity gradients but
these are sensibly weaker than their counterparts in swept flows. This could be explained
by the combined effect of the absence of an inflection point in the spanwise velocity
profile W0 and of the slip boundary conditions. Regarding the second mode, it is slightly
less unstable (σr = 0.0815 against σr = 0.0827 for the previous mode) and has a smaller
frequency (σi = 0.4439 against σi = 0.5319) but presents a strong resemblance with
the left snapshot, second row of figure 17 from the DNS (see also figure 18b,c). The
corresponding contour plot in figure 20 also displays the existence of a shear layer in
the spanwise direction at the top of the cross-flow vortices, right at the location where the
spanwise independent structures will develop. Also of interest is the fact that these two
perturbations are fundamental: they have the same spatial periodicity than the secondary
base flow.

The most-unstable mode for αv = 1 is shown in figure 20(c) and is similar to the first
mode for αv = 1.4. It is also a type-I mode but, in the present case, a phase shift appears
between each cross-flow vortex. The periodicity of the secondary mode is now three times
the periodicity of the primary cross-flow vortices, indicating the existence of detuned
modes.

7. Conclusions and outlook

In this paper, the influence of slip anisotropy and shear misalignment on the
laminar–turbulent transitions of SH surfaces. Following Pralits et al. (2017), anisotropy of
the surface is taken into account through the use of a mobility tensor (Kamrin et al. 2010)
generalising the Navier slip condition. This set of homogenised boundary conditions leads
to the presence of a cross-flow component in the base flow. The presence of an anisotropic
slip deeply affects the linear stability of the flow: a new instability region appears for small
streamwise and large spanwise wavenumbers. The underlying instability mechanism was
found to be similar to the cross-flow instability observed in swept flows. TS waves could
also be retrieved but the most unstable modes are 3-D due to the asymmetry of the neutral
curve, induced by the cross-flow. The outcome of this competition between these two
types of modes depends on the texture parameters (slip length λ‖ and angle θ ) considered:
an orientation angle close to 45◦ and large slip lengths promote the development of the
cross-flow modes. In the present case, the critical Reynolds number is reached for a
cross-flow mode with a large negative spanwise wavenumber. Transient growth has been
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also considered, showing that the optimal perturbation has the form of oblique streaks with
non-zero streamwise wavenumber.

DNS have been performed in two distinct flow cases showing different unstable modes.
In the TS-wave-initiated transition, instead of the usual subharmonic bifurcation, streaky
structures with large spanwise wavenumber have been found, which ultimately destabilise
and break down into turbulence, resulting in a two-phase transition. These streaky
structures could also be found for anisotropic slip length without the cross-flow component
but did not undergo the second phase of transition. The second phase is characterised
by a mechanism which promotes the development of small wavenumbers. The second
scenario, initiated with a cross-flow-related unstable mode, depicts a highly nonlinear
transition, with the flow saturating towards ‘half-mushroom’ structures as seen in Malik
et al. (1994), before transitioning to turbulence. In both transition scenarios, secondary
stability analysis has been performed. In particular, Floquet analysis has been used for
the TS-wave primary instability, whereas a 2-D stability analysis has been used for the
cross-flow mode transition. In both cases, the oriented slip and, to a much lesser extent, the
cross-flow due to the anisotropy of the roughnesses, strongly change the transition process
with respect to that reported in the case of isotropic slip. This underlines the importance of
taking into account anisotropy when studying SH surfaces through homogenised boundary
conditions. It has been also shown that coherent structures such as the streamwise vortices
or the Kelvin–Helmholtz rollers are retrieved by means of secondary stability analysis, and
they have a non-negligible influence on the transition scenarios.

Overall, in the DNS, a similar competition between modes than that found using linear
stability analysis, is observed: cross-flow modes tend to have the fastest initial energy
growth due to a combination of strong transient growth and nonlinear effects. In contrast,
the growth of primary and secondary perturbations in the 3-D TS case is much slower.
Yet, transition to turbulence in the 3-D TS case occurs more quickly, as the energy in the
cross-flow modes tend to saturate for a large period of time preventing a quick breakdown
to turbulence. Interestingly, significant delay of the laminar–turbulent transition could be
achieved by engineering the textured surface in such a way that it promotes some more
favourable transition scenarios. This would still require numerous other DNS for tackling
other canonical transition scenarios such as the K-type or O-type.
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Appendix A. A note on the Squire theorem

The velocity vector (u, v,w)T is decomposed into a parallel and an orthogonal component
with respect to the wave vector k = (α, β), respectively u‖ and u⊥. The new state vector

980 A49-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://orcid.org/0000-0001-8771-8100
https://orcid.org/0000-0001-8771-8100
https://orcid.org/0000-0003-4843-4927
https://orcid.org/0000-0003-4843-4927
https://orcid.org/0000-0002-3529-6003
https://orcid.org/0000-0002-3529-6003
https://doi.org/10.1017/jfm.2024.3


Turbulent transition in a channel with superhydrophobic walls

of the disturbance q = [u‖, v2D, p2D]T is governed by the following equations:

iku‖ + dv2D

dy
= 0

−iω2Du‖ + ikU1u‖ + dU1

dy
v2D = −ikp2D + 1

Re2D

(
d2

dy2 − k2
)

u‖

−iω2Dv2D + ikU1v2D = −dp2D

dy
+ 1

Re2D

(
d2

dy2 − k2
)
v2D

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A1)

with k = ||k||. The base flow U2D = U0 + (β/α)W0 is different from U0. In addition, it is
not possible to obtain a boundary condition involving only u‖.

Appendix B. Lift-up in a 3-D flow

The lift-up effect has initially been described by Ellingsen & Palm (1975). Its
generalisation from 3-D flows remains unclear. Thus, following Ellingsen & Palm
(1975) and Brandt (2014), we consider a flow in a channel between two SH walls. The
resulting velocity profile (U0( y), 0,W0( y)) is parallel and 3-D. The fluid is inviscid,
incompressible and non-stratified. Perturbations are assumed with the following modal
form u( y) exp (iβz), with a streamwise invariance and a spanwise wavelength β. Thus, the
linearised momentum equations yield

∂u
∂t
+ iβW0u+ vU′0 = 0, (B1)

∂v

∂t
+ iβW0v = 0, (B2)

∂w
∂t
+ iβW0w+ vW ′0 = 0. (B3)

Introducing a streamfunction ψ for the cross-stream components,

v = ∂zψ; w = −∂yψ (B4a,b)

it is possible to obtain an equation on ∇2
sψ with ∇2

s the 2-D Laplacian in the y−z plane:

∂

∂t
∇2

sψ = −iβW0∇2
sψ + iβW ′0w+ ∂yvW ′0 + vW ′′0 . (B5)

In the special case of a channel with two SH walls, the spanwise component of the base
flow W0 becomes constant, and (B5) reduces to

∂t∇2
sψ = −iβW0∇2

sψ. (B6)

Now, unlike the usual lift-up effect, cross-stream components are now dependant on
time: they oscillate with frequency βW0. Since v(t) ∝ exp(−iβW0t) as suggested by (B6),
the linearised streamwise momentum equation can be integrated in time to obtain

u(t) = u0 cos (βW0t)− v0U′t. (B7)

The modified lift-up effect induces, for early times, an oscillation of frequency βW0 in
time of the streamwise velocity of the perturbation. The classic algebraic growth is also
retrieved.
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Appendix C. Secondary stability equations

Secondary stability equations in their primitive variable formulation are briefly presented.
Assuming a small perturbation q1(x, t) from the base flow U1, linearised NS equations
read

∂tu1 + (U0 − cx)∂xu1 + (W0 − cz)∂zu1 + U′0v1 = −∂xp1 + Re−1∇2u1

− A[uTS
j ∂ju1 + u1∂xuTS + v1∂yuTS] (C1)

∂tv1 + (U0 − cx)∂xv1 + (W0 − cz)∂zv1 = −∂yp1 + Re−1∇2v1

− A[uTS
j ∂jv1 + u1∂xv

TS + v1∂yv
TS] (C2)

∂tw1 + (U0 − cx)∂xw1 + (W0 − cz)∂zw1 = −∂zp1 + Re−1∇2w1

− A[uTS
j ∂jw1 + u1∂xwTS + v1∂ywTS] (C3)

∂xu1 + ∂yv1 + ∂zw1 = 0. (C4)

Introducing (5.4) in (C1)–(C4) and rearranging sums, the perturbation equations for the
mth mode can be found:

σ ũm + iαm(U0 − cx)ũm + iβ1(W0 − cz)ũm + U′0ṽm

= −iαmp̃m + Re−1(D2 − k2
m)ũm

− A{[iαm−1uTS + vTSD + iβ1wTS]ũm−1 + ikuTSũm−1 +DuTSṽm−1}
− A{[iαm+1(uTS)∗ + (vTS)∗D + iβ1(wTS)∗]ũm+1 − ik(uTS)∗ũm+1 +D(uTS)∗ṽm+1}

(C5)

σ ṽm + iαm(U0 − cx)ṽm + iβ1(W0 − cz)ṽm

= −Dp̃m + Re−1(D2 − k2
m)ṽm

− A{[iαm−1uTS + vTSD + iβ1wTS]ṽm−1 + ikvTSũm−1 +DvTSṽm−1}
− A{[iαm+1(uTS)∗ + (vTS)∗D + iβ1(wTS)∗]ṽm+1 − ik(vTS)∗ũm+1 +D(vTS)∗ṽm+1}

(C6)

σ w̃m + iαm(U0 − cx)w̃m + iβ1(W0 − cz)w̃m

= −iβ1p̃m + Re−1(D2 − k2
m)w̃m

− A{[iαm−1uTS + vTSD + iβ1wTS]w̃m−1 + ikwTSũm−1 +DwTSṽm−1}
− A{[iαm+1(uTS)∗ + (vTS)∗D + iβ1(wTS)∗]w̃m+1 − ik(wTS)∗ũm+1 +D(wTS)∗ṽm+1}

(C7)

iαmṽm +Dṽm + iβ1w̃m = 0 (C8)

with αm = (m+ ε)k, k2
m = α2

m + β2
1 , D = ∂y1 the partial derivative in the y1 direction and

u∗ denoting the complex conjugate of u. The boundary conditions being already linear,
they are left unchanged and (3.3) also applies to the perturbation problem.
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Figure 21. Neutral curves in the α−β plane for Re = 12 000: black, neutral curve of the considered base
flow; red, neutral curve with W0 = 0 (the boundary condition remaining the same).

Appendix D. Role of the spanwise component of the base flow

In order to investigate whether the spanwise component of the base flow may be the
primary cause of the cross-flow instability despite not displaying any inflection point,
we have performed the instability analysis on an artificially modified base flow in which
W0 has been set to zero, while maintaining the boundary conditions (2.3). Figure 21
provides the neutral curve of this artificially modified base flow (red circles), together with
that of the base flow (2.6a–c) (black circles). One can see that the cross-flow instability
persists when W0 is suppressed, indicating that the spanwise slip is the primary cause
of the instability. However, the neutral curve shrinks when W0 is artificially suppressed,
indicating that the cross-flow component of the base flow has a (small, but non-zero)
destabilising effect on the cross-flow mode.
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