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Abstract

We prove two asymptotical estimates for minimizers of a Ginzburg-Landau functional of the form
[ Lvup + L - wpyrwen | dx
Q 2 4g2 '
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1. Introduction

Let M be a smooth Riemann surface with boundary dM, and let g be a smooth
function; g : 3M — S! with a topological degree d. Let

H) (M, R?) = {u € H'*(M, R?) : uloy = g.
For ¢ > 0, consider the Ginzburg-Landau functional

|Vue|? f 1 -
am —A(1 —
7 M+ | (=) M

(L1) E.(u; M) =/
M

where w is a smooth function in M with w > 0in M.
It is well-known that H]>(M, R?) is non-empty and that for & > 0 the functional
E. achieves its minimum in H g"Z(M , R?), giving

(1.2) E.(u,, M) = inifz E;(u; M)

ucHy
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for some u, € H2($2, R?).
In this paper, we only discuss a Riemann surface M having the Riemann metric

ds* = h;jdx' ® dx’

with &;; = h(x)é;; on adomain €2 in R? with 4 > 0. In this case, the energy E, (u, M)
has the new form on Q:

VuP? 1
Eg(u;Q)=/| ul dx+/—(1——|u|2)2W(x)dx
Q 2 o 48

where W (x) is a smooth function in € such that W > 0 in Q.
The minimizer u, then satisfies the Euler-Lagrange equation

(1.3) —Au= glgu(l — uH)W(x) in Q.

If W(x) = 1in(1.1), Bethuel, Brezis and Hélein (see [1, 2 and 3]) recently proved
many beautiful results for the asympotics of minimizers as ¢ — 0. One of the main
results in [3] is the following

THEOREM [BBH]. Assume that M = S is a star-shaped domain in R?. Letd # 0
be the degree of the boundary data g. For each ¢ > 0, let u, be a minimizer for E, .
For this sequence of minimizers u., there exists a subsequence (u.,) and |d| points x;,
I=1,...,|d| such that as ¢, — 0,

ue, — win H2(Q\{xy, ..., x4}, R?)

loc

where u is a harmonic map with values in S'. Moreover u,, converges to u weakly in
HY forq < 2.

An extension to general domains of the above result has been obtained by Struwe
(see [8, 9]). Theorem [BBH] can be extended to the above Riemann surface (see [6]).
In this paper we prove the estimate:

THEOREM A. Let M be a Riemann surface defined before. Let u. be a minimizer
of the functional (1.2). There exists a constant C independent of € such that

1

(1.4) —2/ (1 —|u>)*WdM < C
& UM

uniformly in 0 < ¢ < g.
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If W(x) =1and M = Q is star-shaped, the estimate (1.4) was first proved by
Bethuel, Brezis and Hélein using the Pohozaev identity. Estimate (1.4) is one of the
fundamental estimates in [3] to prove Theorem [BBH]. Srtuwe in [10] and [8] proved
(1.4) for non-star-shaped domain in R2. We modify a method from [10], but our proof
is simpler. Theorem A may allow many of the results in [3] to be extended to the case
W(x) # 1 (see [7]).

Finally, we give a partial answer to a problem of Bethuel, Brezis and Hélein (see
open problem 7 (i) in [3]) in the following:

THEOREM B. Let u, be stated as in Theorem A. Then for any a > 0, the quantity

A, = f(l — ) Vitg[2 dx
Q

remains bounded as € — 0.

2. Some lemmas

Since W (x) is smooth on Q and W(x) > 0 on Q, there exists a constant Q such
that

1 — -
2.1 E <SWkx)<Q onQ, and |[VW(X)| <@ onf.
From [3, 8 and 6] we have
LEMMA 2.1. There exists a constant C; = C,(£2, g, Q) such thatfor 0 < ¢ <1,
E (u,, Q) < Ci(|lng| +1).

LEMMA 2.2. Any critical point u € Hg"z(Q) of E, satisfies the estimate |u| < 1 a.e.
on Q2. For each ¢ > 0, let u, be a minimizer of the functional E.. Then there exists a
constant Cy = C5(82, g, Q) such that

[Vi,| < Ce™' ae.on Q.

For p > O let

Vez 1 — 522
[I u| +( lul)W]do

f(p)=f(p9x0’8’u£):p/ 2 4g?

BB,,(XO)QQ

with do denoting the arc-length element on 9 B,..
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LEMMA 2.3. There are constants v = y(G, g, 8) and &y = £0(2, g) > 0 such that
for0 <e < g

1
inf |u£| > 51 Ee (ue, QN Bp(xo)) = 8’

Bﬂ(:o)
whenever €2 < p <g'* p <1/Q%and f(p) < y.
PROOF. If Ju(x)| > 1/2in D, it follows that v(x) := u(x)/|u(x)| € H“*(d D) and

/ [Vv(x)|>do < 4/ [Vu(x))?* do.
aD aD

We extend v to be constant on rays from 0 on B,(x)\2. Also let v = A
B,3(0) — S! be the unique harmonic map such that #(x) = v(px/|x|) for x €
dB,3(0). Then v € H"*(B,;3(0)) and

/ Vol dx < Cpf \Vol2do < Cf (o).
B,3(0) aD

Finally let

v (8/7—8Ix|/Tp)v(px/1x)+@Blx|/Tp—1/Nulpx/1x]), if p/8<|x|=<p,
(x)=14_

v(x), forO0<|x|<p/8
to see that for sufficiently small y > O we have
(2.2) E(u;; DYy <E(V;D)<Cf(p) <$

as desired.

For 0 < ¢ < gy and minimizers u, of E, consider the set
Ye={xe€G:lux)| <1/2, or E, (u;; G N Bar(x) > 8)}

and its cover (B, s(x)),cx, of X,. By Vitali’s covering lemma we can find a disjoint
collection of balls B,s(x;), x; € Z,, 1 < j < J such that &, C |J; B:(x;).
LEMMA 2.4. There exists a number Jy = Jo(2, g) € N such that for any disjoint
collection of balls B,;s(x;), x; € 2,1 < j < J with |u.(x;)| < 1/2 we have J < Jy.
For each ¢ > 0 and any corresponding minimizer », we fix this choice of (x;).

Given o > 0 we denote Q° = Q\ Ujj=l B, (x;).

LEMMA 2.5. There exists a constant C, = C4(R2, g, @) > 0 such that for any
>0
E.(u,: Q) <m|d||Ino|+ C,s

uniformly in 0 < ¢ < &.
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3. Proof of Theorem A

Without loss of generality, we consider a point p € 32 and Bz(p) N 3. Then
after a transformation we can change the problem (1.1) from Bg(p) N 32 into a new
domain B} (0) where

Br(0):={x=(G" ) e R*: (") + o}’ <R, x*>0}.

Then the Ginzburg-Landau equation (1.3) becomes

d [- ou, - .
3.1 Py I:hij(x)@] = —W@u(l - |u|’) in By,
(3.2) u(x;,0) = g(x), onBfN{xeR*:x*=0}
where h; ;(x) and W (x) are smooth functions and there exists a constant A such that

ANEP < i’ijgisj < AE]?, for& = (&, &),
|Vhijl(x) < A, |V2h;|(x) < A, [VW|(x) <A, A>Wx)>A"h

We rescale the variable x by setting #(x) = u.(¢x) and R=c¢"'R, changing equations
(3.1)-(3.2) to the form

(3.3) % [ﬁ,-,.(x)%] = ~W(ex)a(l — i) in B},
(3.4 i(x;,0) = g(ex), on BI’.; N{x € R*: x* =0}.

Next we derive a Bochner-type formula for & by assuming that 1/2 < |#} < 1. For
simplicities, we still denote &;; by &;;.
A simple calculation gives
2)

a
ﬁ(q( )

0% 0% on 3l o ou

= 2h; —_— 42— — |~ = | h;,—
i EX) STox ax'ax dx'ax] | ax o [Bxf ( ! 3x’>]
2 ou 8 h,‘j ou 8h,~j ol 8212

- . £ ———
Ix! dxidxt oxJ ox! 9x! 9x'9x/
Z=11+12—13—I4.

o
ax!

It is obvious that

.2
3%i

ax'oxt

I, > 2A7!
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and

ol
dx!

ou
axi|’

2
ou ou 0d°h;; <262
3x! 3x 3x'dx)

\h| = 2¢?

From equation (3.3) we obtain

o o "
b:zﬁa - [W(exya(al - 1]
3 AW i |? alal? |?
=26 C il — 1) +2 o | Wex)(lal2 = 1) + W '”'
ax! axi ax!
R it
> A || (A - 1) — 207" | = —1).
0x
Note that
=2 dh; da 0% i | | 8% |’ % |° 9%
=26 T — .
4 Ax! dx' dxidx/i| — ax! 92x! dx19x? 92x2
By equation (3.3) we get
a1 3 , dii 1 ahzzau
722 hp o\ 2ox2 ) " hy ox? ox2
1 ) it ) i dhy B
Wil =i — — {hj— | — — [ hy— ) —e—=—|.
h22|: (1] )u ax! (hU 8xl) 8x2( & 8x1) Cox? 8x2]
Then
i | | dii oi || 9%
2 — —
Ll = €&\ 3 a7 | T €8 |30 | | anianr | T €8 l“ 2.
On the other hand, applying equation (3.3) we obtain
dii dit ali)? )i

[h,l(x) - (1 _l l ) ] =(1- lul )hua 3 7 + ijW Py

A
z - la*y? — C|vil*.

From the above argument, we obtain the following Bochner-type inequality

d
(3.5 W[ (X5 (
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where the constant C is independent of £ and R. Moreover we have

3 9
=g 2<Cs® onBinixeR:x*=0).

(3.6) | ax! ax;

Similarly we have

0 d
3.7 g [hij(x)@ (

Using equation (3.3), we have

ou

ax?

2
+ %(1 - |a|2)2)] > —C (¢’ + |Val?) Vil

o |aaff_ 2, ¥ e 2\ dh; 0a \ i
axz [ax?| — hp \ 0% A=t 0xi 0] | x2
dil 32*
— —(hp+h
( 2+ 21)a 2 3rlax2

on B;iL N{x € R? : x2 = 0}. Thus we have an oblique derivative condition for
|0 /8x2|? on the flat boundary; that is,

aa ?

> | < C(e?IVi) + el Val)
X

(3.8) [i_l_ (h12+h21)i]

ox? hyn ax!

on B N{x e R?: x> = 0}.
THEOREM 3.1. (go-regularity) Let i be a solution of equation (3.3) in Bg with

boundary condition (3.4). Assume that 1/2 < |a| < lin B; ande3* < R < ce™1/2,
Then there exists n > 0 such that if E (i, B;.;) < 1, then

1 C
12 ~12\2 +
where C is a constant independent of R.

PROOF. Set e(i1) = |Vi|? + (1 — |ii|2)2/4. Choose ry < R such that

(R — rp)? supB+e(u) = max {(R — 1)’sup. (i)}
0<r<R

and let x € B;: be determined so that

ey :=e()(xg) = sup%e(ﬁ).
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Next we are going to prove ¢y < 4R — ry)™2 Let py = ey 2 We suppose
Po < (R —ro)/2.
We rescale: v(x) = u{xy + pox), Vv = pyVii. Denote

={x € R? : xo + pox € B}},
"D, ={x e R? :xo+ pox € By andxé + pox' = 0},

2
en(W)(X) = Vo2 + %(1 — ) = ple(@)(xo + Pox).

Then
1 =e,(O0) = Bsr?g e, (V) = p0 supe(u) < p0 Bsup e(u) < 4.
! 2
Set ) )
e (x) = |33x”~1 + Py = g [ 2 +3a- WY]
and , o
e2(x) = l% + B0y = o} [ 2ol v ga- WY] .

Then from equations (3.5)—3.6), we have

Lel) > —C(e) + pge?) in By N Dy,

le) (v)] < Cpge? on B,N3*D,,
where & := 3(h;;(xo+poex)3/dx7)/dx" is a uniform elliptic operator. Using Moser’s
subsolution-estimate (see [5, Theorems 8.17 and 9.20]) we then have

eg)(O) < / en(V)dx + Cppe < / e()dx + CRe.
BiND, B;O
Similarly we have from equations (3.7) — (3.8)
LeQ > —C(e2 + pye’) in By N Dy,
19,¢2 (v)| < CRe on BN 3*D,,

where y is a oblique vector on By N 3*D,,, t is a tangent of B; N 3D} and there
exists a constant ¢ such that ¢! < |y - 7| < ¢. Then using a variation of Moser’s
sup-estimate (see [10]) we have

() eQ0) <C ( /
Bt

0

2/p
e(it) dx) + CRe,

https://doi.org/10.1017/51446788700000598 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700000598

136 Min-Chun Hong [9]

for some p > 2. For completeness, we repeat a proof of the estimate (x) from
[10]. We may assume that the oblique vector y is the outer unit normal vector n of
B; N 3* D, by changing the variable x. Let f solve £ f = —Ce? + Ce?p}, with
f=00ndB,ND,,df =3, on B N3*D,, and suitatble boundary conditions
on the remaining parts of the boundary. Then applying Sobolev inequality, we obtain

\ND,

2/p
1£ e < Cll fliwarn < C(le@ o + 02 < C [( f e,,ow)dx) + pg&} .
B

Moreover, the function f = e® — f solves

ZLf>0 inBND,,
3f=0 onB N3 D,.

Extending f to B, by reflection in the flat boundary 3*D, N By, and applying Moser’s
estimate to f, we obtain

f'(0)gcf fdxgc/ eff}dx+c/ If|dx
B BiNDy, BiNDy,

2/p
<C </ e(ﬁ)dx) + CRe.
B+

0

Hence the desired estimate (x) follows.
Therefore for ¢ < &y, and choosing &, and 1 small enough,

2/p
1= eg))(()) +eg)(0) =e, () <C (/ e(i) dx> + CRe < Cn?? + Ce'? < 1.
s

This proves ey < 4(R — ro)~2. Then we have |Vii|* + (1 — |#]*)?/4 < 16R~2. This
proves Theorem 3.1.

REMARK. Theorem 3.1 holds true also for interior points of €2,.
PROOF OF THEOREM A. Denote
QW = Q\ UL, Bon_on(x); k=1,2.
Applying Lemma 2.3 and Theorem 3.1, we obtain

(3.9 — |u.(x)* < Ce'?
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uniformly for x € Q{ and ¢ < g where C is a constant independent of ¢. By
equation (1.3), we have

_ 2
G100 A (1—;‘—') + Vi = —12-|u£|2<1 W)

(1—|u,}*>) onQ®.

z 3 Q v
Let ¢ € C*(RQ) be a cut-off function satisfying0 < ¢ < 1,¢ =10onQ", ¢ =0on
Q\QP, |Vk¢| < 26742k = 1, 2. Multiplying (3.10) by (1 — |u.|*)¢? and integrating
by parts gives

(3.11)

T [(l—lul)¢dx+1f|V(1—IueI)I¢dx

fIVuel (1= )¢ dx + l/(l—luel Y A ¢ dx

< sup(l — |u€|2)/ |Vu,|*dx +4a-1f(1 — |u D dx.
Q Q

922)

Applying Lemma 2.1 and the estimate (3.9) yields
_ 2 ol 12V)2
i [ - wraxe s [ 90— wpyar <

for e < &,
From [10, Lemma 3.1] or [6, Lemma 4] we obtain

/ —(1 — luH*dx < C.
Bm(x,)ﬂﬂ

Combining this estimate with (3.11) gives ¢ 2 [, (1 — |u;|*)*W dx < C uniformly in
0 < ¢ < g, as desired.

4. Proof of Theorem B

Letx; (i =1,...,J) be singularties as stated in Lemma 2.5. By Lemmas 2.3 and
2.5, and Theorem 1.2, we have the following properties:

@.1) 0<1/2<ul<1 in Q\U. B.(x)),

1
@.2) = f (- lu?dx < K
&% Ja
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where K is a uniform constant for ¢ < gy and J < J;. Moreover, by Lemma 2.7 we
have

4.3) |Vu,|?dx < 2m|d||In R| + Cs.
QR

Using Lemma 2.2, we have |Vu,| < Cy/¢e. Then
J
(4.4) > / |Vue |2 dx < Jom C2.
j=1 v Be(xj)
For a fixed R > 0, denote
J
QF = |_J Br(x))\B:(x;).
j=t

Using (4.1), (4.3) and (4.4), it suffices to prove that the quantity fgf (1—|u D% Vu,)* dx
remains bounded as ¢ — 0.

As in [3], the estimate (4.1) implies that d; = deg(u,, 0 B, (x;)) is well-defined and
we consider a reference map

dy dy dy
z—p z—p z—py
|z — p1l |z — pal |z — pyl

where z = x' +ix?, p; =xjl +ixj2,j =1,...,J.

Set p = |u.|; we may write, locally in QF, u, = pe’®. Similarly, we may write,
locally in QF, up = €'®, with |Vu| = |Vey| and Vy(z) = 3, d;Vj(2)/lz — pl,
where V;(z) is the unit vector tangent to the circle of radius |z — p;|, centred at p;:

Vo = (-2=2, ).
|z — p;l |z — pjl

There is a well-defined function ¢ : QF — R such that u, = puee’” in Q.. Then
we have |Vu,|? = |Vp|? + 0% V¢ + Vi |2 From [4] and [3], we obtain

1
|Vue|2dxz[ Vol + [ (Va2 [ VP -c
af Qf 8 Jor

Qf

1
>2n|d|InR/e +/ (IVp|* + ng¢|2) dx —C.
aF
Combining this with Lemma 2.1 gives

4.5) f (IVol* +|Vy[))dx < Cs
Qf
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where C; is a constant depending on d and J,. Therefore

/(1—|u|s|)“|wg|2dx
QF
=f (1 = e )* (IVpP + 02Vl + 202Vy - Vi + PV ) dx
ar

s/ (1= [ (Vo[ + 41V + 4]Vl dx.
QF

Since [Vgo| = |Vuol < |14l 3, 1/1z = p;

1/q 1/q
|Viuo|™ dx) < Cld| (f dx)
( QF ° Z or 12 — Pz|2q
< |id|| Z (
j=1 \Je

1/q9
dr) < C(e™4*?)\ e

for any g > 1 where L := max,, y,ec dist(yi, y2).

Choose p and ¢ such that p = 2/¢ and 1/p + 1/¢ = 1. Then by Holder’s
inequality, we get
(4.6)

1/p 1/q
f(1—|u|2>“|wo|2dx<(/ (1 Jul )“de) (/ |Vu0|2qu)
Qf QR

/p
( / (1 — |uef?)? dx) (52‘1/118—24+2)1/q

Combining (4.5) with (4.6) we obtain [, (1 — |u|*)*|Vu,|*dx < C; where C; is a
uniform constant for ¢ < &,. This proves Theorem B.
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