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Abstract

We prove two asymptotical estimates for minimizers of a Ginzburg-Landau functional of the form

1991 Mathematics subject classification (Amer. Math. Soc): 35B25, 35J20, 35K65, 58F2O.

1. Introduction

Let M be a smooth Riemann surface with boundary dM, and let g be a smooth
function; g : dM -> Sl with a topological degree d. Let

Hl'\M, R2) = {ue Hl-2(M, K2) : u\3M = g).

For s > 0, consider the Ginzburg-Landau functional

f IVMI2 f 1
(1.1) E£(u;M)= !—LdM+ — (1 - \u\2)2w(x) dM

JM 2 JM As2

where w is a smooth function in M with w > 0 in M.
It is well-known that H^2{M, R2) is non-empty and that for e > 0 the functional

Et achieves its minimum in //1>2(M, R2), giving

(1.2) Es(us,M)= inf Ee(u; M)
'2
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[2] The Ginzburg-Landau functional 129

for some ue e Hl2(n, R2).
In this paper, we only discuss a Riemann surface M having the Riemann metric

ds2 = hijdx' <g> dxJ

with hij = h(x)8ij on a domain £2 in R2 with h > 0. In this case, the energy Es(u, M)
has the new form on £2:

C IVwl2 f 1
u;n)= / L-zLdx+ / — (l-\u

Jn 2 Jn Ae2
2)2)2W(x)dx

where W(^) is a smooth function in £2 such that W > 0 in £2.
The minimizer w£ then satisfies the Euler-Lagrange equation

(1.3) - AM = — M(1 - \u\2)W(x) inS2.
£2

If W(x) = 1 in (1.1), Bethuel, Brezis and Helein (see [1,2 and 3]) recently proved
many beautiful results for the asympotics of minimizers as s ->• 0. One of the main
results in [3] is the following

THEOREM [BBH]. Assume that M = Q is a star-shaped domain in R2. Let d ^ 0
be the degree of the boundary data g. For each s > 0, let u£ be a minimizer for Ee .
For this sequence of minimizers ue, there exists a subsequence (uet) and \d\ points Xi,
I = 1 , . . . , |d\ such that as sk —> 0,

uek -^ u in Hlo
2{Q.\{xu ... , xw), R2)

where u is a harmonic map with values in Sl. Moreover uSt converges to u weakly in
Hh"forq < 2 .

An extension to general domains of the above result has been obtained by Struwe
(see [8, 9]). Theorem [BBH] can be extended to the above Riemann surface (see [6]).

In this paper we prove the estimate:

THEOREM A. Let M be a Riemann surface defined before. Let ue be a minimizer
of the functional (1.2). There exists a constant C independent of e such that

(1.4) - I(\-\us\
2)2WdM <C

£ JM

uniformly in 0 < s < EQ.
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130 Min-Chun Hong [3]

If W(x) = 1 and M = Q is star-shaped, the estimate (1.4) was first proved by
Bethuel, Brezis and Helein using the Pohozaev identity. Estimate (1.4) is one of the
fundamental estimates in [3] to prove Theorem [BBH]. Srtuwe in [10] and [8] proved
(1.4) for non-star-shaped domain in E.2. We modify a method from [10], but our proof
is simpler. Theorem A may allow many of the results in [3] to be extended to the case
W{x) & 1 (see [7]).

Finally, we give a partial answer to a problem of Bethuel, Brezis and Hdlein (see
open problem 7 (i) in [3]) in the following:

THEOREM B. Let ue be stated as in Theorem A. Then for any a > 0, the quantity

Ae= f(l-\u£\)
a\Vue\

2dx

remains bounded as s —> 0.

2. Some lemmas

Since W(x) is smooth on Q and W(x) > 0 on £2, there exists a constant Q such
that

(2.1) -!- < W(x) < Q onS2, and |VW(JC)| < Q on?2.

From [3, 8 and 6] we have

LEMMA 2.1. There exists a constant C\ = Ci(Q, g, Q) such that for 0 < e < 1,

EE(ue,Q)<Cl(\lns\ + l).

LEMMA 2.2. Any critical point u e H*2(Q) ofEe satisfies the estimate \u\ < 1 a.e.
on Q. For each E > 0, let ue be a minimizer of the functional EE. Then there exists a
constant C2 = C2{Q,, g, Q) such that

\Vu£\ < C2e"' a.e. onH.

For p > 0 let

f(p) = f(p,xo,e,ue) = p \—Z— + 71 W\do
JaB^ral 2 4e2 J

with do denoting the arc-length element on dBp.
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LEMMA 2.3. There are constants y = y(G, g, 8) and e0 = eo(£2, g) > 0 such that
for 0 < e < £0

i n f | w £ | > - , EE (ue, fi n Bp(x0)) < 8,

whenever s1'2 < p < e1/4, p < l/Q2 and f(p) < y.

PROOF. If |M(JC)| > 1/2 in D, it follows that v(x) := u(x)/\u(x)\ e Hl2(dD) and

f \Vv(x)\2do < 4 I \Vu(x)\2do.
JdD JBD

We extend v to be constant on rays from 0 on Bp(x0)\£l. Also let v = e'* :
#P/8(0) -*• Sl be the unique harmonic map such that v(x) = v(px/\x\) for x e
3flp/8(0). Then w € HU2(Bp/s(0)) and

< Cp [ \Vv\2do < Cf(p).
P/ JdD

Finally let

i \), if p/8< \x\ <p,y i(S
\v(x), forO<|jc|<p/8

to see that for sufficiently small y > 0 we have

(2.2) E£{ue\ D) < Ee(V; D) < Cf(p) < 8

as desired.

For 0 < e < e0 and minimizers us of Ee, consider the set

££ = [x e G : |M(JC)| < 1/2, or Ee (ue; G D Bew(x) > 8)}

and its cover (Be/5(x))xeTc of Y,e. By Vitali's covering lemma we can find a disjoint
collection of balls Be/5(xj), x} z E£, 1 < j < J such that Ee c U ; Be(Xj).

LEMMA 2.4. 7/iere exists a number Jo = Jo(£2, g) € N ^MC/I that for any disjoint
collection of balls Bep(Xj), Xj e S2, 1 < j < J with \ue(Xj)\ < 1/2 we have J < Jo.

For each s > 0 and any corresponding minimizer ue we fix this choice of (XJ).
Given a > 0 we denote fiCT = £2\ | j / = 1 fiCT(xy).

LEMMA 2.5. There exists a constant C4 = C4(fi ,g, O > 0 ^uc/i that for any
CT > 0

uniformly inO < s < s0.
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3. Proof of Theorem A

[5]

Without loss of generality, we consider a point p e 3£2 and BK(p) n 3£2. Then
after a transformation we can change the problem (1.1) from BR{p) n 3 £2 into a new
domain B^ (0) where

fi+(0) := {* = (x\x2) € K2 : (JC1)2 + (x2)2 < /?, x2 > 0}.

Then the Ginzburg-Landau equation (1.3) becomes

(3.1) —jlij(x)

(3.2) M(^i,0) = g(x), onfi+n{x e R2 : x2 = 0},

where /i,-,•(.*) and l^(x) are smooth functions and there exists a constant A such that

A"1!*|2 < M/f; < A|||2, fort = &,&),
\Vhu\(x)<A, < A, \VW\(x)<A, A>W(x)>A~1.

We rescale the variablex by setting u(x) = us{ex) and /? = e"1/?, changing equations
(3.1)-(3.2)totheform

(3.3)

(3.4)

Next we derive a Bochner-type formula for u by assuming that 1/2 < \u \ < 1. For
simplicities, we still denote A,-y- by htj.

A simple calculation gives

3
Jx1

du

32« 32«2« du

-2s-
2 du d2hij die

dx1 dxJ

dhu dit 32M

dx1 dx1 dx'dxi

It is obvious that

/, >2A - l d2u
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= 2e2 da da d2h(j

9xi"3x7
<2s2A

dii
'dx1

dii

From equation (3.3) we obtain

dii dW .
= 2£——fiflfif _

ox1 9x'
du

>

Note that

2s-

9 M

9JC7

jj du 92M

xT~dx1 dx'dxi

9a

W(ex)(\u\2-l)

2

d\ur.\2

dx1

- 2\

<2eA
9M

9X1

92M

92x'

2

+ 2
92M

dxldx2
1

92M

9 2 J C 2

By equation (3.3) we get

d2a l 9

92x2

Then

_ 1 9 / 9M \ 1 9/j22 du

~ ~h^dx~2 V 2 2 9 ^ V ~ ~h^S~dx~2~dx~2

dii

dx1

du

dxJ
+ Cs

dii
dx1

92M

dxldxj
+ Ce

dii

dx1

On the other hand, applying equation (3.3) we obtain

9 f 9 , ,1 7 dii du 9|M|29|M|
— hijix) — (1 - |M|2)2 = (1 - |«|2)Ay — — , + A y J - L J _
9x' |_ dx1 J 3x' ax-' 9x' 9x^

From the above argument, we obtain the following Bochner-type inequality

(3.5) —
ax'

du
i2)2)! > -c 7 - |2
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where the constant C is independent of e and R. Moreover we have

du 2 2 dg 2 2 + 22

dxl dx\ ~ *

[7]

Similarly we have

\J I f
(3.7) — *y(jc) —

dx' dx'

8u_

Jx1
I ~|2x2 > - C (e2 + |VM|2) |VM|2.

Using equation (3.3), we have

du

2

d2ii ij dii \ du

I'•.7 = 1

3M

on fit n {x e K2 : x2 = 0}. Thus we have an oblique derivative condition for
\8u/dx2\2 on the flat boundary; that is,

(3.8)
+ h21) 3 1

22 dxl\

i - 2

on BJ n {* e K2 : JC2 = 0}.

THEOREM 3.1. (so-regularity) Let u be a solution of equation (3.3) in B^ with
boundary condition (3.4). Assume that 1/2 < \u\ < 1 w fit ands~3/4 < R < ce"1/2.
T/zc« ^/iere exwfs ?j > 0 such that if E(u, B^) < rj, then

|VH|2 + - (1 - |M|2)2 < -̂ r- onBt
4 /?2

w/zere C is a constant independent of R.

PROOF. Set e{u) = |V«|2 + (1 - | M | 2 ) 2 / 4 . Choose r0 < R such that

(R —
0<r<R

— l)2supB+ e{u)}

and let x0 e B^ be determined so that

e0 := e(u)(x0) = sup8r+c(«).

https://doi.org/10.1017/S1446788700000598 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000598


[8] The Ginzburg-Landau functional 135

Next we are going to prove e0 < 4(/? — r0)
 2. Let p0 = eQ

 1/2. We suppose
Po<(R- ro)/2.

We rescale: v(x) = u(x0 + PQX), Vu = A)VM. Denote

d+DPo = {x e R2 : x0 + Pox e B+ a n d ^ + pox
l = 0},

f + ^ ( 1 - M2)2 = ple(uHxQ + pox).

Then

Set

and

1 = = sup e^iv) = /02sup^(w) < pi sup e(«) < 4.
B,\R+ro)/2

^ ( i - \v\y =

dv

Then from equations (3.5)-(3.6), we have

du

du
Jx2

J(. - m]

io-w

k,(u)|<Cp0V
in Bi n D^,
on B, n d+DP0,

whereof := d(hjj(xo+Poex)d/dxJ)/dx' is a uniform elliptic operator. UsingMoser's
subsolution-estimate (see [5, Theorems 8.17 and 9.20]) we then have

J Bx\
< / e{u

JB+
)dx + CRe.

Similarly we have from equations (3.7) - (3.8)

\dye
{2)(v)\<CRs

where y is a oblique vector on Bx fl d
+DPo, x is a tangent of B\ D 9D+ and there

exists a constant c such that c"1 < \y • x\ < c. Then using a variation of Moser's
sup-estimate (see [10]) we have

(*) e(u)dx\ +CRe,
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for some p > 2. For completeness, we repeat a proof of the estimate (*) from
[10]. We may assume that the oblique vector y is the outer unit normal vector n of
B, n d+DP0 by changing the variable x. Let / solve J/ff = -Ce™ + Ce2p%, with
/ = 0 on dBi n D^, dnf = dne™ on B, n d+DPo and suitatble boundary conditions
on the remaining parts of the boundary. Then applying Sobolev inequality, we obtain

I I / l i t - < C\\f\\w,P/> < C(\\e%\\LPn + p i e 2 ) < C \ ( f e n ( u ) d x ) " + p 0
|_VB,nz)p /

Moreover, the function / = e® — f solves

J2?/>0 in BiHD^,
dnf = O onBind+Dfi0.

Extending / to Bt by reflection in the flat boundary d+Dp n Bx, and applying Moser's
estimate to / , we obtain

/(0) <C I fdx<C I e%dx + C f \f\dx

(f
[
\jB

\2/p

e(u)dx) +CRe.

Hence the desired estimate (*) follows.
Therefore for s < e0, and choosing e0 and r) small enough,

1 = eW(0) + ee)(0) = epo(O) <CU e{u)dx\ + CRe < Cr]Vp + Csl/2 < 1.

This proves eQ < 4(R - r0)'
2. Then we have |VM|2 + (1 - |M|2)2/4 < 16^~2. This

proves Theorem 3.1.

REMARK. Theorem 3.1 holds true also for interior points of £2£.

PROOF OF THEOREM A. Denote

n<4) := fl\ U,/=1 B^Mxi); k = 1, 2.

Applying Lemma 2.3 and Theorem 3.1, we obtain

(3.9) 1 - |«£(x)|2 < Csl/2
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uniformly for x e Q^ and s < e0 where C is a constant independent of s. By
equation (1.3), we have

(3.10) A (l~l
2"

A ) + |V«£|
2 = ^ |«£ | 2d - \ue\

2W(x)

Let 0 e C°°(?2) be a cut-off function satisfying O < 0 < 1,0 = 1 on Q<!), 0 = 0 on
n\Q?\ |V*0| < 2e~k/2,4 = 1,2. Multiplying (3.10) by (1 - \ue\

2)<p2 and integrating
by parts gives

(3.11)

(I - \uc\
2)2<p2dx + \ I |V(1 - \uE\2)\24>2dx

2 Jn

2 ( l - | M £ | 2 ) 0 2 ^ + ^ f(l-\u£\
2)2A(l>2dx

< sup(l - |«e|
2) f \Vue\

2dx+4e-1 f (I - | M , | 2 ) 2 ^ .

Applying Lemma 2.1 and the estimate (3.9) yields

±-\ (l-\us\
2)2dx + \ f | V ( 1 - | M £ | 2 ) | 2 ^ < C

4e2 Jrt" 2 Jn«>

for e < e0.
From [10, Lemma 3.1] or [6, Lemma 4] we obtain

-2(\-\ue\
2)2dx<C.

Combining this estimate with (3.11) gives s~2 fn(l — \uB\2)2Wdx < C uniformly in
0 < s < e0, as desired.

4. Proof of TheoremB

Let x, {i — 1 , . . . , / ) be singularties as stated in Lemma 2.5. By Lemmas 2.3 and
2.5, and Theorem 1.2, we have the following properties:

(4.1) 0 < 1/2 < \u£\ < 1 in fi\ U/=1 Be(Xj),

(4.2) - f (I - \ue\
2)2dx < K

e2 Jn
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where K is a uniform constant for e < e0 and J < Jo. Moreover, by Lemma 2.7 we
have

(4.3) / \Vus\
2dx <

Using Lemma 2.2, we have | V«e| < C2/e. Then

(4.4) J2 \Vue\
2dx<JonC2

2.

For a fixed R > 0, denote

j

n«:=\jBR(Xj)\B£(Xj).

Using (4.1), (4.3) and (4.4), it suffices to prove that the quantity faR (1 - \uE\)a\Vue \2 dx
remains bounded as £ —> 0.

As in [3], the estimate (4.1) implies that dj = deg(«e, dB£(Xj)) is well-defined and
we consider a reference map

where z = x1 + JJC2, p ; = xj + ixj, j = 1 , . . . , / .
Set p = |K£|; we may write, locally in fif, M£ = pe'*. Similarly, we may write,

locally in «f, M0 = e'*1, with |V«| = | V ^ | and V0o(z) = ^ . ^ V;(z)/|z - p ; | ,
where V}(z) is the unit vector tangent to the circle of radius \z — pj\, centred at pf.

- Pj

\z-Pj\

There is a well-defined function iff : £2f —• U. such that ue = puoe"1' in £2e. Then
we have |Vwe|

2 = |Vp|2 + p2|V</»0 + V^|2 . From [4] and [3], we obtain

/ |VHJ2rfjt> I |Vp | 2 + I |V«0|2 + - / |ViA-|2 — C
• i c i M i l t m X f

> 27r|d|ln/?/£+ / (|Vp|2 + -\Vf\2)dx -C.

Combining this with Lemma 2.1 gives

(4.5) f
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where C6 is a constant depending on d and JQ. Therefore

/

< [ ( l - | « £ i r
Jo;

Since |V0o| = |V«0| < \W\ £,- l/|z - Pj\,

Or '̂  J

J / i>L

for any <? > 1 where L := maxy,^eC dist(jt, y2).
Choose p and q such that p = 2/a and l/p + \/q = 1. Then by Holder's

inequality, we get

(4.6)
l/P / /• \ 1/9

[ {l-\u\2T\Vu0\
2dx<( [ (l-liil2)-"^) " ( f \VuoFdx)

J-2 Jjl - \u/-> I * I /i i.. l2\2 J-. 1 /-2o/D--2a+2\1/i

Combining (4.5) with (4.6) we obtain fnR(l - \ue\
2)a\WuE\2dx < C7 where C7 is a

uniform constant for £ < s0. This proves Theorem B.
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