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Differentiability of the operator norm
on �p spaces

Sreejith Siju
Abstract. In this paper, we present a characterization of strong subdifferentiability of the norm of
bounded linear operators on �p spaces, 1 ≤ p < ∞. Furthermore, we prove that the set of all bounded
linear operators in B(�p , �q) for which the norm of B(�p , �q) is strongly subdifferentiable is dense
in B(�p , �q). Additionally, we present a characterization of Fréchet differentiability of the norm of
bounded linear operators from �p to �q , where 1 < p, q < ∞. Applying this result, we will show
that the Fréchet differentiability and the Gateaux differentiability of the norm of bounded linear
operators on �p spaces coincide, extending a known theorem regarding the operator norm on Hilbert
spaces.

1 Introduction

The differentiability of the norm is a very useful tool in understanding the geometry
of the underlying Banach space. Various notions of differentiability of the norm of
Banach spaces include Fréchet, Gateaux, and strong subdifferentiability (referred to
as SSD) (see Definitions 2.1 and 3.2). It is well known that a point x in a Banach
space X is a smooth point if and only if the norm of X is Gateaux differentiable at x.
We employ the terms Gateaux differentiability and smoothness interchangeably. The
Fréchet differentiability of the norm of a Banach space at point x is equivalent to
the existence of the unique support functional at x which is strongly exposed by x.
Strong subdifferentiability provides a non-smooth extension of Fréchet differentia-
bility, relating Fréchet and Gateaux differentiability. That is, the norm of a Banach
space is Fréchet differentiable at a point x if and only if it is Gateaux differentiable and
strongly subdifferentiable at x [10]. The monographs [9] and [8] provide a detailed
discussion of the concepts Fréchet and Gateaux differentiability in Banach spaces. For
a detailed study of strong subdifferentiability of the norm, we recommend referring
to the discussions found in [10–12], and the references therein.

This article primarily investigates the strong subdifferentiability of operator norm
over the sequence spaces �p , where 1 < p < ∞. Additionally, we study the Fréchet and
Gateaux differentiability within the realm of operators acting on �p spaces.
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2 S. Siju

The strong subdifferentiability of Banach space norms has been studied extensively
in the literature. We refer the reader [10] for the basic theory of strong subdifferentia-
bility. Strong subdifferentiability has been also studied in the context of dual spaces,
operator norm, and JB∗-triples (see [2, 4, 11, 21]). The connection between strong
subdifferentiability and Bishop–Phelps Bollobas properties has been explored in [6].
To see connections between strong subdifferentiability and other notions in Banach
space theory, we refer [3, 13, 18, 22].

An interesting characterization of the strong subdifferentiability of the dual norm
of a Banach space X at a bounded linear functional f has been obtained in [11] by
G. Godefroy, V. Indumathi, and F. Lust-Piquard. The characterizing condition for
strong subdifferentiability is established in terms of the set of norm-attaining points
of f (see Theorem 2.1). Moreover, in [4], M. Contreras, R. Paya, and W. Werner
characterized the strong subdifferentiability of the operator norm of Hilbert spaces
(see Theorem 2.3), and showed that the collection of all strongly subdifferentiable
points is dense in the space of bounded linear operators on a Hilbert space. Sub-
sequently, J. Guerrero and A. Palacios broadened this characterization of strong
subdifferentiability to encompass JB∗-triples [2].

In Theorem 2.4, we will show that the characterizing conditions of strong subd-
ifferentiability obtained in [11, Theorem 2.1] and [4, Theorem 2.3] are essentially the
same if we view from the perspective of maximizing sequence (see Definition 2.3).
This equivalence gives rise to two natural questions in this context.
Question 1 Is it possible to extend Theorem 2.4 to bounded linear operators on Banach
spaces?
Question 2 Is the set of strongly subdifferentiable points of B(X), the space of bounded
linear operators on X, dense in B(X)?

In Section 2, we will show that Question 1 has an affirmative answer in the case of
�p spaces, 1 < p < ∞. We obtain a characterization for the strong subdifferentiability
of operator norm on �p spaces in terms of the maximizing sequence of an operator,
as observed in the case of dual norm and operator norm on Hilbert space. We also
prove that such operators attain their norm. Our idea here is to first formulate a
condition that is equivalent to the characterization of strong subdifferentiability of
operator norm Hilbert spaces found in [4] (see Theorem 2.4). Then we will prove the
equivalent condition characterizes the strong subdifferentiability of operator norm on
�p spaces. We will also address the borderline cases p = 1,∞ toward the end of this
section.

In Section 3, we will give an affirmative answer to Question 2 in the case of �p
spaces, 1 ≤ p < ∞. We will exhibit that, similar to the case of operator norm on Hilbert
spaces, the set of all strongly subdifferentiable points is norm dense in the space of
bounded linear operators on �p spaces. This will also extend, in �p space situation,
a result of J. Lindenstrauss [17] regarding norm-attaining operators to the class of
strongly subdifferentiable points of the space of bounded linear operator.

In [16], F. Kittaneh and R. Younis presented a characterization of smooth points in
the space of bounded linear operators on a Hilbert space, B(H), using the essential
norm of an operator. Subsequently, W. Deeb and R. Khalil extended this characteri-
zation to include operators on �p spaces [7]. In another work [26] by W. Werner and

Downloaded from https://www.cambridge.org/core. 05 Feb 2025 at 21:29:33, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Differentiability of the operator norm on �p spaces 3

K. F. Taylor, it was exhibited that for a bounded linear operator T on a Hilbert space
H, the assumption made by F. Kittaneh and R. Younis regarding the essential norm
of T goes beyond characterizing smoothness and serves as a characterization for the
Fréchet differentiability of the norm at T. Thereby, proving that Fréchet and Gateaux
differentiability coincide in B(H). Furthermore, it has been independently proved in
[1] that the equivalence between Fréchet and Gateaux differentiability holds in B(H).
So, it is natural to inquire whether the coincidence exists between the Fréchet and
Gateaux differentiability of the norm of the space of bounded linear operators on �p
spaces.

Toward the conclusion of Section 3, we establish, as a consequence of the results
on strong subdifferentiability, the equivalence between Fréchet and Gateaux differen-
tiability of the operator norm on �p spaces. Further, we will show that the assumption
made by F. Kittaneh and R. Younis regarding the essential norm of T serves as a
characterization for the Fréchet differentiability of operator norm on �p spaces (see
Proposition 3.9).

Notations: In this article, we will use X and Y to represent infinite dimensional
Banach spaces, H to denote an infinite dimensional Hilbert space, and the scalar
fields are either real or complex, denoted by F. When referring to a subspace of a
Banach space, we will always assume it to be a closed subspace. The closed unit ball
and the unit sphere of a Banach space X will be denoted by BX and SX , respectively. We
consider every Banach space X as a subspace of its bidual X∗∗ through the canonical
embedding. For a subset Y of a Banach space X, the annihilator of Y in the dual space
X∗ is denoted by Y⊥, defined as Y⊥ = { f ∈ X∗ ∶ f (y) = 0 ∀y ∈ Y}. The convex hull
of a set S is the smallest convex set containing S, denoted by conv(S). The closure
of conv(S) is represented by conv(S). For a Banach space X, the extreme points of
BX will be denoted by ext BX . For a bounded subset S of X, the diameter of S will be
denoted by diam S.

Let X and Y be Banach spaces. We denote by B(X , Y), the space of all bounded
linear operators from X to Y endowed with the usual operator norm. The space of
all compact operators from X to Y is denoted by K(X , Y). We denote B(X × Y) to
be the space of all bounded bilinear functional from X × Y to F. When X = Y , we
abbreviate B(X , Y) as B(X), and K(X , Y) as K(X). The essential norm of a bounded
linear operator T ∈ B(X , Y) is defined as the distance from T to the space of compact
operators, denoted by ∥T∥e . For an operator T ∈ B(X , Y), we define the set MT to
be the set MT = {x ∈ SX ∶ ∥Tx∥ = ∥T∥}. We call the set MT , the norm-attaining set
of T. For, 1 ≤ p < ∞, the direct sum of X and Y endowed with the norm ∥(x , y)∥ =
(∥x∥p + ∥y∥p)

1
p is denoted by X ⊕p Y . We denote by X⊗̂πY , and X⊗̌εY , the projective

and injective tensor product of X and Y, respectively.

2 Strong subdifferentiability of operator norm

In this section, we will characterize strong subdifferentiability of the norm of B(�p , �q)
at an operator T ∈ B(�p , �q) in terms of maximizing sequence of T, where 1 < p, q < ∞.
To begin, we will review some definitions. We will first recall the definition of strong
subdifferentiability.
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4 S. Siju

Definition 2.1 The norm of a Banach space X is strongly subdifferentiable at a point
u ∈ X if

lim
t→0+

∥u + tx∥ − ∥u∥
t

= Max{Re f (x) ∶ f ∈ JX∗(u)}(2.1)

uniformly for x ∈ BX , where JX∗(u) = { f ∈ SX∗ ∶ f (u) = ∥u∥}.

If this happens, we say that u is an SSD point of X or simply u is an SSD point
when the Banach space under consideration is already known. It is evident that an
element u ∈ X is an SSD point of X if and only if u

∥u∥ is an SSD point of X. Hence,
in the subsequent discussion, we will consider strong subdifferentiability at points on
the unit sphere of a Banach space.

We need the following two definitions in the sequel.

Definition 2.2 Let X and Y be Banach spaces. A bounded linear operator T ∶ X → Y
is said to attain its norm if there exists an element x ∈ SX such that

∥Tx∥ = ∥T∥.

Definition 2.3 A maximizing sequence for T ∈ B(X , Y) is a sequence {xn} in X with
xn ∈ SX for all n so that {∥Txn∥} converges to ∥T∥ as n →∞.

We know, from [10], an element u is an SSD point of X if and only if the face JX∗(u)
is strongly exposed by u, in the sense that the distance d ( fn , JX∗(u)) tends to zero for
any sequence { fn} in BX∗ satisfying fn(u) → 1. In [11], it is observed that for the dual
norm of a Banach space X to be strongly subdifferentiable at a bounded linear func-
tional f ∈ SX∗ , it is enough to work with the set JX( f ) = {x ∈ BX ∶ ∥ f ∥ = f (x) = 1}
instead of JX∗∗( f ). We will now recall this result from [11].

Theorem 2.1 [11, Proposition 2.2] Let X be a Banach space and f ∈ SX∗ . Then the
following are equivalent.
(i) The norm of X∗ is strongly subdifferentiable at f.

(ii) JX( f ) ≠ ∅, and for every sequence {xn} in BX satisfying f (xn) → 1, there exists a
subsequence {xn i} of {xn} such that d(xn i , JX( f )) → 0.

Remark 2.2 It is easy to see that condition (ii) above is equivalent to the statement,
JX( f ) ≠ ∅, and for each ε > 0 there exists δ > 0 such that whenever x ∈ SX satisfies
f (x) > 1 − δ, we have d(x , JX( f )) < ε. In the subsequent sections of this paper, we
use these two equivalent conditions interchangeably.

Similarly, it is observed in [4, Theorem 1] that an analogous characterization holds
for the norm of C∗-algebra, in particular for the operator norm on Hilbert spaces. We
will now recall this result.

Theorem 2.3 [4, Theorem 1] Let A be a C∗-algebra and a ∈ SA. The following
assertions are equivalent.
(i) The norm of A is strongly subdifferentiable at a.
(ii) 1 is an isolated point in the spectrum of ∣a∣.

Assume that in the above theorem the C∗-algebra under consideration is B(H) and
the element a ∈ SA corresponds to an operator T ∈ SB(H). Then we have the following
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equivalent characterization of strong subdifferentiability of operator norm on Hilbert
spaces in terms of maximizing sequences/norm-attaining set of T.

Theorem 2.4 Let H be a Hilbert space and T ∈ SB(H). Then the following are
equivalent.

(i) The norm of B(H) is strongly subdifferentiable at T.
(ii) MT ≠ ∅ and for every maximizing sequence {xn} of T, there exists a subsequence

{xn i} of {xn} such that d(xn i , MT) → 0.
(iii) T attains its norm and ∥PT ∣MT

⊥∥ < 1, where PT = (T∗T)1/2 .

Proof It is enough to show that (ii) and (iii) are equivalent, since (i) ⇔ (iii)
follows from [4, Theorem 1, proof of (ii) ⇒ (iii)].

Assume that (iii) holds and write M = spanMT , recall that

MT = {x ∈ SH ∶ ∥Tx∥ = ∥T∥ = 1}.

Let {xn} in SH be a maximizing sequence for T, that is, ∥Txn∥ → 1. We can write

xn = zn +wn ,

where zn ∈ M and wn ∈ M⊥ with

1 = ∥xn∥2 = ∥zn∥2 + ∥wn∥2 .(2.2)

We also have ⟨PT zn , PTwn⟩ = 0. Therefore,

∥PT xn∥2 = ∥PT zn∥2 + ∥PTwn∥2 .

Since PT is a positive operator and zn ∈ spanMT = spanMPT , we have

PT zn = zn .(2.3)

Together with Equation (2.2) and the fact that ∥Tx∥ = ∥PT x∥ for all x ∈ H, we get

lim ∥PTwn∥2 = 1 − lim ∥PT zn∥2(2.4)
= 1 − lim ∥zn∥2

= ∥wn∥2 .

Now, if lim ∥wn∥ ≠ 0, then we have lim ∥PT wn∥
2

∥wn∥2 = 1. Since wn ∈ M�, we will then have
∥PT ∣M�∥ = 1.

Observe that, M� = M�T . Therefore, we will have ∥PT ∣M�T ∥ = 1. But, by the assump-
tion, ∥PT ∣M⊥∥ < 1. Therefore, lim ∥wn∥ = 0. That is, lim ∥xn − zn∥ = 0 and ∥zn∥ → 1.

Take the sequence {yn} to be yn = zn
∥zn∥

. Then, by Equation (2.3), yn ∈ MT . Also,
since ∥zn∥ → 1, we get

lim ∥xn − yn∥ = lim ∥xn − zn∥ = 0.

This implies (ii).
Conversely assume that (ii) holds. If possible, assume that ∥PT ∣MT

⊥∥ = ∥T∥. Then
there exists a sequence {wn} in SM⊥T such that lim ∥Twn∥ = lim ∥PTwn∥ = 1. Since
wn ∈ M⊥T , we have d(wn , MT) ≥ ∥wn∥ = 1 for all n, which contradicts (ii). ∎
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From the condition (ii) of Theorems 2.1 and 2.4, it is evident that a shared property
of maximizing sequence of both bounded linear functionals on Banach spaces and
operators on a Hilbert space characterize the strong subdifferentiability of the norm
of respective spaces.

The equivalent characterization (condition (ii)) given in Theorem 2.4 does not rely
on the orthogonality properties specific to Hilbert spaces. Consequently, this property
can be verified for more general Banach spaces. So, it is worth considering whether
this new reformulation characterizes the strong subdifferentiability of the norm of the
space of bounded linear operators on a Banach space which is not necessarily a Hilbert
space.

In the remaining part of this section, we will prove that Theorem 2.4 can be
extended to �p spaces, 1 < p < ∞. To prove the sufficient part, we need the following
lemma, which is similar to [24, Theorem 1].
Lemma 2.5 Let X and Y be Banach spaces. Let B ∈ B(X × Y) with ∥B∥ = 1. Then
the norm of B(X × Y) is strongly subdifferentiable at B if the following condition
holds. For each ε > 0 there exists δ > 0 such that, whenever (x , y) ∈ SX × SY satisfies
B(x , y) > 1 − δ, there exists (x0 , y0) ∈ SX × SY satisfying B(x0 , y0) = 1, ∥x − x0∥ < ε
and ∥y − y0∥ < ε.
Proof The proof of this lemma utilizes a similar idea employed in the proof of
[24, Theorem 1].

Suppose B ∈ B(X × Y) with ∥B∥ = 1 and the given condition holds. Assume that
the norm of B(X × Y) is not strongly subdifferentiable at B. Then, by the definition of
strong subdifferentiability, there exists ε > 0 and bounded bilinear functionals Cn on
X × Y with ∥Cn∥ < 1

n such that

∣∥B + Cn∥ − ∥B∥ − Re ϕ (Cn)∣ ≥ ε ∥Cn∥ for all ϕ ∈ JB(X×Y)∗(B).(2.5)

Using the assumed condition, choose a number δ > 0 which satisfies the following.
If Re B(x , y) > 1 − δ for some (x , y) ∈ SX × SY , then there exists (x0 , y0) ∈ SX × SY

satisfying
(i) B(x0 , y0) = 1,

(ii) ∥x − x0∥ < ε
4 , ∥y − y0∥ < ε

4 .
We can assume, w. l. o. g, that δ < ε

2 . From Equation (2.5), we can find Cn such
that ∥Cn∥ < δ

2+δ which satisfies the Inequality (2.5). Let C = Cn . Choose an element
(x , y) ∈ BX × BY such that

(B + C) (x , y) > ∥B + C∥ − δ ∥C∥ .

Then we have:

∥B∥ ≥ Re B (x , y) = (B + C) (x , y) − Re C (x , y) ≥ (B + C) (x , y) − ∥C∥
≥ ∥B + C∥ − (1 + δ) ∥C∥
≥ ∥B∥ − (2 + δ) ∥C∥
> 1 − δ.

Hence, Re B (x , y) > 1 − δ. By choice of the number δ, there exists (x0 , y0) ∈ SX × SY
such that B(x0 , y0) = 1 and ∥x − x0∥ < ε

4 and ∥y − y0∥ < ε
4 .
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Recall the isometric isomorphism B(X × Y) ≅ (X⊗̃πY)∗. Let c be the bounded
linear functional on X⊗̃πY corresponding to the bilinear functional C. Then

∣C (x , y) − C (x0 , y0)∣ = ∣c (x ⊗ y − x0 ⊗ y0)∣(2.6)
≤ ∥C∥ ∥x ⊗ y − x0 ⊗ y0∥π
≤ ∥C∥ ∥(x − x0) ⊗ y + x0 ⊗ (y − y0)∥π

≤ ∥C∥ ε
2

.

We also have:

∥B + C∥ ≥ Re (B + C) (x0 , y0) = ∥B∥ + Re C (x0 , y0) ,(2.7)

From the Inequalities (2.6) and (2.7), we have

0 ≤ ∥B + C∥ − ∥B∥ − Re C (x0 , y0)
< (B + C) (x , y) + δ ∥C∥ − ∥B∥ − Re C (x0 , y0)
< δ ∥C∥ + Re C(x , y) − Re C(x0 , y0)
≤ δ ∥C∥ + ∣C (x , y) − C (x0 , y0)∣

< ∥C∥ (δ + ε
2
)

< ∥C∥ε,

which is a contradiction to the Inequality (2.5), since (x0 , y0) ∈ JB(X×Y)∗(B). There-
fore, the norm of B(X × Y) is strongly subdifferentiable at B. ∎

We will next recall a theorem from [15].

Theorem 2.6 [15, Corollary 2.2] A reflexive Banach space X is uniformly smooth if
and only if for every ε > 0 there is 0 < η(ε) < 1 such that, for all f ∈ BX∗ and all x ∈ SX
satisfying ∣ f (x)∣ > 1 − η(ε), there exists f0 ∈ SX∗ satisfying ∣ f0(x)∣ = 1 and ∥ f − f0∥ < ε.

We will now give a sufficient condition for strong subdifferentiability of operator
norm on Banach spaces when the range is uniformly smooth.

Proposition 2.7 Let X and Y be Banach spaces and T ∈ SB(X ,Y). Then the norm of
B(X , Y) is strongly subdifferentiable at T if the following conditions hold.
(i) MT ≠ ∅ and for every maximizing sequence {xn} of T, there exists a subsequence

{xn i} of {xn} such that d(xn i , MT) → 0.
(ii) Y is uniformly smooth.

Proof Assume that an operator T ∈ SB(X ,Y) and the conditions (i), (ii) hold. Since
Y is uniformly smooth, we have the isometric isomorphism between the following
Banach spaces.

B(X , Y) ≅ B(X , Y∗∗) ≅ (X⊗̂πY∗)∗ ≅ B(X × Y∗).

So it is enough to prove that the norm of B(X × Y∗) is strongly subdifferentiable
at T when viewed as a bounded bilinear functional on (X × Y∗). Using Lemma 2.5, it
is enough to prove the following property (P).

Downloaded from https://www.cambridge.org/core. 05 Feb 2025 at 21:29:33, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


8 S. Siju

(P): For each ε > 0, there exists δ > 0 such that, whenever (x , y∗) ∈ SX × SY∗

satisfies T(x , y∗) > 1 − δ, there exists x0 ⊗ y∗0 ∈ JB(X×Y∗)∗(T) satisfying ∥x − x0∥ < ε
and ∥y − y∗0∥ < ε.

To see this, let ε > 0. Since Y is uniformly smooth, by Theorem 2.6, we have the
following property.

(P1): We can find δ1 > 0 such that whenever an element (y, y∗) ∈ SY × SY∗ satisfies
∣y∗(y)∣ > 1 − δ1, there exists an element y∗0 ∈ JY∗(y) with ∥y∗ − y∗0∥ < ε

2 .
From (i), we also have the following.
(P2): There exists δ2 > 0 such that whenever an element x ∈ BX satisfies ∥Tx∥ >

1 − δ2, we have d(x , MT) < δ1
2 .

Define

δ = min{δ1

2
, δ2 , ε} .

Choose an element (x , y∗) ∈ SX × SY∗ such that T(x , y∗) > 1 − δ. Then

∥Tx∥ ≥ T(x , y∗) > 1 − δ.

Then, by property (P2), there exists x0 ∈ MT such that

∥x − x0∥ <
δ1

2
.

Therefore,

∣y∗(Tx0)∣ = ∣y∗(Tx0 − Tx + Tx)∣ > Re y∗(Tx0 − Tx + Tx) > −δ1

2
+ 1 − δ > 1 − δ1 .

Since Tx0 ∈ SY , by property (P1), there exists y∗0 ∈ JY∗(Tx0) such that ∥y∗ − y∗0∥ < ε.
Thus, we have (x0 , y∗0) ∈ JB(X×Y∗)∗(T) which satisfies the requirements of prop-

erty (P) above. Therefore, the norm of B(X × Y∗) is strongly subdifferentiable
at T. ∎

We are now in a position to give the main theorem of this section. We will next
obtain a characterization of strong subdifferentiability of the norm of bounded linear
operators on �p spaces, analogous to that of operators on Hilbert space. Toward this,
we recall a few definitions and results.

Definition 2.4 Let X be a Banach space. For f ∈ SX∗ and δ > 0, the slice of BX
corresponding to f and δ is defined to be S( f , δ, BX) = {x ∈ BX ∶ Re f (x) > 1 − δ}.

Remark 2.8 It is easy to see that if X is a uniformly convex Banach space, then for
an f ∈ SX∗ and ε > 0 we have diam S( f , δ(ε), BX) < ε, where δ(ε) is the modulus of
convexity of X corresponding to ε.

We will now recall the definition of M-ideals in Banach spaces.

Definition 2.5 A closed subspace J of a Banach space X is called an M-ideal if
there exists a closed subspace J′ of X∗ such that X∗ = J� ⊕1 J′, where J� = { f ∈ X∗ ∶
f ∣J = 0}.

We need the following property of M-ideals in the proof of our main theorem.
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Lemma 2.9 [14] Let J be an M-ideal in a Banach space X. Then

ext BX∗ = ext BJ� ∪ ext BJ∗ .

We will next recall a theorem that characterizes the extreme points in the duals of
operator spaces.

Theorem 2.10 [23] Let X and Y be Banach spaces. Then we have:

ext BK(X ,Y)∗ = ext BX∗∗ ⊗ ext BY∗ .

We may replace K(X , Y) by any linear subspace containing X∗ ⊗ Y.

The following is the main theorem of this section, in which we give an affirmative
answer, in the case of �p space, to Question 1 proposed in the introduction. This
theorem has many interesting applications including the denseness of strongly subdif-
ferentiable operators and a characterization of Fréchet differentiability, both of which
are discussed in Section 3.

Theorem 2.11 Let 1 < p, q < ∞ and an operator T ∈ B(�p , �q) with ∥T∥ = 1. Then the
following are equivalent.
(i) Norm of B(�p , �q) is strongly subdifferentiable at T.

(ii) MT ≠ ∅ and for every maximizing sequence {xn} of T, there exists a subsequence
{xn i} of {xn} such that d(xn i , MT) → 0.

Proof The implication (ii) ⇒ (i) follows from Proposition 2.7.
We will now prove the implication (i) ⇒ (ii). For, it is enough to prove that, for

each ε > 0, there exists δ > 0 such that

d(x , MT) ≤ ε whenever ∥T(x)∥ > 1 − δ for some x ∈ B�p .(2.8)

To begin, assume that the norm of B(�p , �q) is strongly subdifferentiable at an operator
T ∈ SB(�p ,�q). Observe that, we have the following isometric identification,

B(�p , �q) ≅ (�p⊗̂π�∗q)∗ .

under the map

B(�p , �q) ∋ T → T̃ ∈ (�p⊗̂π�∗q)∗,(2.9)

where the action of T̃ on �p⊗̂π�∗q is given by

T̃ (
n
∑
i=1

x i ⊗ y∗i ) =
n
∑
i=1

y∗i (Tx i).

Therefore, the norm of the dual space (�p⊗̂π�∗q)∗ is strongly subdifferentiable at T̃ .
Fix ε > 0 and let δ1 > 0 be the modulus convexity of the space �p corresponding to

ε. Apply Remark 2.2 to obtain δ > 0 such that

d(v , J�p⊗̂π�∗q
(T̃)) < δ1 whenever T̃(v) > 1 − δ for some v ∈ B�p⊗̂π�∗q

.(2.10)

We will now prove that T satisfies the requirements of (2.8) corresponding to the δ > 0
found in (2.10). For, let x ∈ S�p such that ∥Tx∥ > 1 − δ. Then there exists a bounded
linear functional y∗ ∈ S�∗q such that y∗(Tx) = ∥Tx∥. But
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10 S. Siju

T̃(x ⊗ y∗) = y∗(Tx) = ∥Tx∥ > 1 − δ.

Therefore, from the expression (2.10), it follows that there exists an element
u ∈ J�p⊗̂π�∗q

(T̃) such that

∥x ⊗ y∗ − u∥π < δ1 .

At this stage, we will try to get a representation of u. For, we will look at the set
JB(�p ,�q)∗(T). It is clear that

u ∈ J�p⊗̂π�∗q
(T̃) ⊆ JB(�p ,�q)∗(T).

Observe that JB(�p ,�q)∗(T) is a w∗-closed extremal subset of the closed unit ball of
B(�p , �q)∗, where a subset E of a convex set C is called extremal if x , y ∈ E whenever
x , y ∈ C and tx + (1 − t)y ∈ E, t ∈ (0, 1).

Hence, JB(�p ,�q)∗(T) is the w∗-closed convex hull of its extreme points. In
particular,

u ∈ JB(�p ,�q)∗(T) = convw∗(ext JB(�p ,�q)∗(T)).

That is,

u = w∗ − lim
k→∞

mk

∑
n

tk
n φk

n ,

where ∑mk
n tk

n = 1 for each k, and φk
n ∈ ext JB(�p ,�q)∗(T) for all n, k, consequently,

(φk
n)(T) = 1.
Since JB(�p ,�q)∗(T) is extremal, we have

ext JB(�p ,�q)∗(T) ⊆ ext BB(�p ,�q)∗ .(2.11)

It is well known that K(�p , �q) is an M-ideal in B(�p , �q) [14]. Therefore, by
Lemma 2.9, we have

ext BB(�p ,�q)∗ = ext BK(�p ,�q)⊥ ∪ ext BK(�p ,�q)∗ .

From the elementary theory of projective tensor products, we know that

K(�p , �q)∗ = �p⊗̂π�∗q .

Hence

ext BB(�p ,�q)∗ = ext BK(�p ,�q)⊥ ∪ ext B�p⊗̂π�∗q
.

From Equation (2.11), we conclude that

ext JB(�p ,�q)∗(T) ⊂ ext BK(�p ,�q)⊥ ∪ ext B�p⊗̂π�∗q
.

Therefore, either φk
n ∈ ext BK(�p ,�q)⊥ or φk

n ∈ ext B�p⊗̂π�∗q
for each n and k. Define the

set,

Lk = {n ∈ N ∶ φk
n ∈ ext BK(�p ,�q)⊥}.
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Define

zk
n = ∑

n∈Lk

tk
n φk

n .

Then, for each k, the element zk
n ∈ K(�p , �q)⊥. Since the net {zk

n} is bounded, passing
onto a subnet if necessary, we assume that {zk

n} converges (w∗-topology) to some x as
k goes to ∞. Thus, x ∈ K(�p , �q)⊥, since K(�p , �q)⊥ is w∗-closed.

We also have,

lim
k→∞

zk
n = u − lim

k→∞
∑

n∉Lk

tk
n φk

n ,

where the above limit is taken in the w∗-topology on B(�p , �q)∗. But then, since the
elements u and ∑n∉Lk tk

n φk
n are in �p⊗̂π�∗q , we must have x ∈ �p⊗̂π�∗q . Therefore, x = 0.

That is, we have

w∗ − lim
k→∞

∑
n∈Lk

tk
n φk

n = 0, and w∗ − lim
k→∞

∑
n∉Lk

tk
n φk

n = u.(2.12)

For each k, let tk = ∑n∈Lk tk
n . Then the net {tk} in R is bounded, passing onto a

subnet if necessary, we assume that {tk} converges to some t ∈ R as k goes to ∞.
Suppose, t ≠ 0. Then we can find ε1 > 0 such that tk > ε1 for all k. This would imply,

∑
n∉Lk

tk
n = 1 − tk < 1 − ε1 .

But then, since the norm is w∗-lower semi-continuous,

∥u∥ ≤ lim inf
k→∞

�����������
∑

n∉Lk

tk
n φk

n

�����������
≤ ∑

n∉Lk

tk
n < 1 − ε1 < 1.

Which is not possible, since ∥u∥ = 1. Therefore, t = 0 and Lk ⊊ {1, 2, . . . , mk} for all
but finitely many k. Therefore,

ext B�p⊗̂π�∗q
∩ JB(�p ,�q)∗(T) ≠ ∅.

From Theorem 2.10, we know that

ext B(�p⊗̂π�∗q )
= ext BK(�p ,�q)∗ = {x ⊗ y ∶ x ∈ S�p , y ∈ S�∗q }.

Now, for each n ∉ Lk , we have φk
n ∈ ext B�p⊗̂π�∗q

and hence

φk
n = uk

n ⊗ v∗k
n , where uk

n ∈ S�p , v∗k
n ∈ S�∗q .

Consequently, by Equation (2.12),

u = w∗ − lim
k→∞

∑
n∉Lk

tk
nuk

n ⊗ v∗k
n .(2.13)

Now, fix φk0
n0
∈ ext B�p⊗̂π�∗q

∩ JB(�p ,�q)∗(T) ≠ ∅. Since (φk0
n0
)(T) = 1, we have

v∗k0
n0

(Tuk0
n0
) = 1. Hence ∥Tuk0

n0
∥ = 1 and thus MT ≠ ∅.

Let elements x∗0 ∈ S�p
∗ and y0 ∈ S�q be such that x∗0 (x) = 1 and y∗(y0) = 1, recall

from the beginning that y∗(Tx) = 1. Then x∗0 ⊗ y0 defines a compact operator from
�p to �q or in other words x∗0 ⊗ y0 ∈ �∗p⊗̌ε�q . Therefore, we can find k such that
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###########
x∗0 ⊗ y0

⎛
⎝

u − ∑
n∉Lk

tk
nuk

n ⊗ v∗k
n
⎞
⎠

###########
< δ1 − ∥x ⊗ y∗ − u∥π .

Thus for the above k, we have
###########
x∗0 ⊗ y0

⎛
⎝

x ⊗ y∗ − ∑
n∉Lk

tk
nuk

n ⊗ v∗k
n
⎞
⎠

###########
< δ1 .(2.14)

It remains to prove that d(x , MT) < ε. If possible, suppose that d(x , MT) > ε.
Recall that the elements x∗0 ∈ S�∗p

and y0 ∈ S�q satisfies x∗0 (x) = 1 and y∗(y0) = 1.
Then, by Remark 2.8, we get

diam S(x∗0 , δ1 , B�p) < ε.

Since we are assuming that d(x , MT) > ε and x ∈ S(x∗0 , δ1 , B�p), we can conclude that

y ∉ S(x∗0 , δ1 , BX) for all y ∈ MT .

Therefore, by the definition of the slice.

Re x∗0 (y) < 1 − δ1 for all y ∈ MT .

Since MT = −MT , we have

∣Re x∗0 (y)∣ < 1 − δ1 for all y ∈ MT .(2.15)

We can assume, w. l. o. g., the elements uk
n in Equation (2.13) satisfies x∗0 (uk

n) ∈ R.
To see this, note that, if x∗0 (uk

n) = rk
n e iθ k

n , where 0 ≤ rk
n ≤ 1 and 0 ≤ θk

n < 2π, then take
φk

n = e−iθ k
n uk

n ⊗ e iθ k
n v∗k

n . Also, note that ∑n∉Lk tk
n ≤ 1.

So, for the same k above, since the elements uk
n are in MT for all n ∉ Lk ,

∣Re x∗0 ⊗ y0(uk
n ⊗ v∗k

n )∣ = ∣Re x∗0 (uk
n)v∗k

n (y0)∣
< 1 − δ1 .

Therefore,
������������
Re x∗0 ⊗ y0

⎛
⎝

x ⊗ y∗ − ∑
n∉Lk

tk
nuk

n ⊗ v∗k
n
⎞
⎠

������������
=
������������
Re x∗0 (x)y∗(y0) − ∑

n∉Lk

tk
n Re x∗0 ⊗ y0(uk

n ⊗ v∗k
n )
������������

≥ 1 −
������������
∑

n∉Lk

tk
n Re x∗0 (uk

n)v∗k
n (y0)

������������
≥ 1 − ∑

n∉Lk

tk
n ∣Re x∗0 (uk

n)v∗k
n (y0)∣

≥ 1 − ∑
n∉Lk

tk
n(1 − δ1)

≥ δ1 .

Which is a contradiction to the Inequality (2.14). Hence d(x , MT) < ε. ∎
Remark 2.12 In the proof of Theorem 2.11, we have utilized the uniform convexity
and uniform smoothness of �p spaces. By employing analogous arguments to those
used in the proof of Theorem 2.11, it can be shown that if Banach spaces X and
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Y satisfies the following properties: X is uniformly convex, Y is uniformly smooth,
K(X , Y) is an M-ideal in B(X , Y), X∗ has Radon–Nikodym property, and either
X∗ or Y∗ has approximation property, then the condition (ii) of Theorem 2.11
characterizes the strong subdifferentiability of the norm of B(X , Y).

The following is an example of an operator at which the norm of B(�p) is strongly
subdifferentiable.

Example 2.13 Let U ∈ B(�p), 1 < p < ∞, be an isometry. Then MU = S�p . Therefore,
by Theorem 2.11, U is an SSD point of B(�p).

We will next show that for certain Banach spaces X and Y, condition (ii) of Theo-
rem 2.11 is necessary for the operator norm on B(X , Y) to be strongly subdifferentiable
at a bounded linear operator T ∈ SB(X ,Y). Consequently, we will address the borderline
case p = ∞ in Corollary 2.15.

Observe that for all Banach spaces Y, the pair (Y , �1) has the property that every
element u of Y⊗̂π�1 has a representation u = ∑∞n=1 λnun ⊗ vn , where λn ≥ 0,∑∞n=1 λn =
∥u∥, ∥un∥ = ∥vn∥ = 1 [25].

Motivated by the above property of �1, we define the following for our current
purpose.

Definition 2.6 A pair of Banach spaces (X , Y) is said to have property (N) if the
following hold. Whenever f ∈ (X⊗̂πY)∗ is an SSD point and satisfies f (u) = ∥ f ∥ for
some u ∈ BX⊗̂π Y , then u has the form, u = ∑∞i=1 λ i u i ⊗ v i with ∥u i∥ = 1, ∥v i∥ = 1, and
∑∞i=1 λ i = 1.

Examples of Banach spaces satisfying the property (N) include (Y , �1) for every
Banach space Y, the pair (H, H) where H is a Hilbert space, and the pair (X , Y) for
finite-dimensional Banach spaces X and Y. Besides these examples, we do not know
a pair of Banach spaces satisfying property (N). We refer the reader [5], where a
stronger notion of property (N) has been studied.

We will next prove a result wherein the condition (ii) of Theorem 2.11 is necessary
for the operator norm to be strongly subdifferentiable.

Theorem 2.14 Let X and Y be Banach spaces such that X is uniformly convex and the
pair (X , Y∗) has property (N). If the norm of B(X , Y∗∗) is strongly subdifferentiable at
T ∈ SB(X ,Y∗∗), then MT ≠ ∅ and for every maximizing sequence {xn} of T, there exists
a subsequence {xn i} of {xn} such that d(xn i , MT) → 0.

Proof Suppose the norm of B(X , Y∗∗) is strongly subdifferentiable at T. We have
(X⊗̂πY∗)∗ ≅ B(X , Y∗∗). Hence the norm of (X⊗̂πY∗)∗ is strongly subdifferentiable
at T̃ (see Expression (2.9) in Theorem 2.11). Let ε > 0 and δ1 be the modulus convexity
of X corresponding to ε. Using Theorem 2.1, choose δ > 0 such that whenever an
element u ∈ BX⊗̂π Y∗ satisfies T̃(u) > 1 − δ, we have d(u, JX⊗̂π Y∗(T)) < δ1.

Let x ∈ SX such that 1 − δ < ∥Tx∥. Then there exists a bounded linear functional
y∗ ∈ SY∗ such that y∗(Tx) = ∥Tx∥.

Since the element x ⊗ y∗ ∈ BX⊗̂π Y∗ satisfies T̃(x ⊗ y∗) > 1 − δ, there exists
u ∈ JX⊗̂π Y∗(T) such that ∥x ⊗ y∗ − u∥π < δ1.
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By our assumption, the pair has (X , Y∗) has the property (N). Therefore, we can
write

u =
∞

∑
i=1

λ i x i ⊗ y∗i , where
∞

∑
i=1

λ i = 1, x i ∈ SX , and y∗i ∈ SY∗ .

Since T̃(u) = 1, we get T̃(x i ⊗ y∗i ) = 1. Consequently, ∥T(x i)∥ = ∥y∗i ∥ = 1 for all i and
thus MT ≠ ∅. Moreover,

∥x ⊗ y∗ −
∞

∑
i=1

λ i x i ⊗ y∗i ∥
X⊗̂π Y∗

< δ1 .(2.16)

We will now prove that d(x , MT) < ε. If possible, suppose that d(x , MT) > ε. Let the
element x∗0 ∈ SX∗ be such that x∗0 (x) = 1. An argument, as in the proof of Theorem
2.11, using the slice of BX corresponding to the above δ > 0 and x∗0 will obtain that

∥x∗0 (x)y∗ −
∞

∑
i=1

λ i Re x∗0 (x i)y∗i ∥
Y∗

> δ1 .(2.17)

Since the projective tensor norm is larger than the injective tensor norm, we get, using
Inequality (2.17)

∥x ⊗ y∗ −
∞

∑
i=1

λ i x i ⊗ y∗i ∥
X⊗̂π Y∗

≥ ∥x ⊗ y∗ −
∞

∑
i=1

λ i x i ⊗ y∗i ∥
X⊗̌ε Y∗

= ∥x ⊗ y∗ −
∞

∑
i=1

λ i x i ⊗ y∗i ∥
B(X∗ ,Y∗)

≥ ∥x∗0 (x)y∗ −
∞

∑
i=1

λ i Re x∗0 (x i)y∗i ∥
Y∗

> δ1 .

Which is a contradiction to Inequality (2.16). Hence d(x , MT) < ε. ∎

In the following corollary, we will give a necessary condition for the operator norm
to be strongly subdifferentiable in the borderline case p = ∞.

Corollary 2.15 Let X be a uniformly convex Banach space and T ∈ B(X , �∞) such that
∥T∥ = 1. If the norm of B(X , �∞) is strongly subdifferentiable at T, then MT ≠ ∅ and for
every maximizing sequence {xn} of T, there exists a subsequence {xn i} of {xn} such
that d(xn i , MT) → 0.

Proof We have B(X , �∞) = B(X , c∗∗0 ). Since the pair (X , c∗0) = (X , �1) has property
(N), the result follows from Theorem 2.14. ∎

We will next consider the other extreme value p = 1. The strong subdifferentiability
of the operator norm �1 can be deduced from [10, Theorem 2.5] and Theorem 2.1, for
completeness, we will recall it here.

Proposition 2.16 Let T ∈ B(�1) be an operator such that ∥T∥ = 1 and {e j} denotes the
canonical basis of �1. Then T is an SSD point if and only if the following two conditions
hold.
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Differentiability of the operator norm on �p spaces 15

(i) The set, { j ∈ N ∶ ∥Te j∥ = ∥T∥} ≠ ∅ and sup{∥Te j∥ ∶ ∥Te j∥ < 1} < 1.
(ii) Te j ∈ c00 whenever ∥Te j∥ = 1.
Proof We have B(�1) = (⊕∞n=1 �1)∞ under the isometric identification
T ↦ (Te1 , Te2 , . . .) with ∥T∥ = sup j{∥Te j∥}.

Therefore, T is an SSD point of B(�1) if and only if (Te1 , Te2 , . . .) is an SSD point
of (⊕∞n=1 �1)∞.

From [10, Theorem 2.5], the element (Te1 , Te2 , . . .) is an SSD point of (⊕∞n=1 �1)∞
if and only if Te j is an SSD point of �1 for all j satisfying ∥Te j∥ = 1 and the element
(∥Te j∥) ∈ �∞ is an SSD point of �∞.

Since �1 = c∗0 , it can be easily verified using Theorem 2.1 that Te j is an SSD point
of �1 if and only if Te j ∈ c00. Since �∞ = (⊕∞n=1F)∞, using [10, Theorem 2.5] again, we
get that (∥Te j∥) ∈ �∞ is an SSD point of �∞ if and only if { j ∈ N ∶ ∥Te j∥ = 1} ≠ ∅ and
sup{∥Te j∥ ∶ ∥Te j∥ < 1} < 1. ∎

3 Denseness of SSD points of B(�p , �q)

We know that the set of all SSD points in B(H) is dense in B(H) [4]. In this section,
we will extend this result to the operator norm on �p spaces. Additionally, we will
show that the set of SSD points of B(�p , �q) contains an important class of operators,
namely, those operators with essential norm strictly less than its operator norm.
Toward the end of this section, we prove that the Fréchet and Gateaux differentiability
coincide in B(�p , �q). We will also show that the assumption made by F. Kittaneh and
R. Younis in [16] regarding the smoothness of operator norm characterizes Fréchet
differentiability in B(�p , �q).

For 1 < p, q < ∞, let SSD{B(�p , �q)} denotes the set of all operators in B(�p , �q) at
which the norm of B(�p , �q) is strongly subdifferentiable.

We will next provide a theorem which has very interesting consequences.
Theorem 3.1 The following inclusion holds for 1 < p, q < ∞.

{T ∈ B(�p , �q) ∶ ∥T∥e < ∥T∥} ⊂ SSD{B(�p , �q)}.(3.1)

In particular, SSD{B(�p , �q)} is a dense subset of B(�p , �q).
To establish Theorem 3.1, we have to integrate Theorem 2.11 with a few findings

from [14] and Lemma 3.4. We will first recall the required results.
Lemma 3.2 [14, Proposition 4.8, Proof of (b)] Let 1 < p, q < ∞. Then the set
Kθ(�p , �q) = {T ∈ B(�p , �q) ∶ ∥T∥ = ∥T∥e} is nowhere dense in B(�p , �q).

We will next recall a formula for computing the essential norm of an operator.
Lemma 3.3 [27, Lemma 5] Suppose that K(X , Y) is an M-ideal in B(X , Y) and an
operator T ∈ B(X , Y). Then

∥T∥e = max{w(T), w∗(T)} ,

where

w(T) ∶= sup{lim sup
α

∥Txα∥ ∶ ∥xα∥ = 1, xα
w1→ 0}
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and, in the same way,

w∗(T) ∶= sup{lim sup
α

∥T∗xα∥ ∶ ∥xα∥ = 1, xα
w∗1→ 0}

and at least one of the involved suprema is achieved.

We will now recall the definition of (Mp)-space.

Definition 3.1 [19] Let 1 ≤ p < ∞. We say that a Banach space X has property (Mp)
or is an (Mp)-space if K (X ⊕p X) is an M-ideal of B (X ⊕p X).

We refer the reader [14, 19] for more details on (Mp)-spaces. Note that the space
�p belongs to the class of (Mp)-space for 1 < p < ∞. From [19], we know that if X is
an (Mp)-space, then X is reflexive and K(X) is an M-ideal in B(X). Moreover, from
[14, chapter VI, Theorem 6.6] we get, if X is an (Mp)-space, then for any weakly null
sequence {un} in X, the following equality holds

lim ∥u + un∥p = ∥u∥p + lim ∥un∥p (u ∈ X).(3.2)

The following lemma is an extension of [20, Theorem 1, 2] to the broader class
of Banach spaces known as (Mp)-spaces, under the additional assumption that
∥T∥e < ∥T∥.

Lemma 3.4 Let X and Y be separable Banach spaces which belongs to the classes (Mp)
and (Mq), respectively, 1 < p, q < ∞. Suppose T ∈ B(X , Y) such that ∥T∥e < ∥T∥ and
the sequence {xn} in BX is a maximizing sequence for T. If a subsequence {xn i} of {xn}
converges weakly to x ≠ 0, then ∥Tx∥ = ∥T∥ and ∥x∥ = 1.

Proof For q < p, we have K(X , Y) = B(X , Y) [14, Chapter VI, Corollary 5.14].
Therefore, the results hold since compact operators are weak-to-norm sequentially
continuous.

Therefore, we can assume that 1 < p ≤ q < ∞. Let T ∈ B(X , Y), we can take ∥T∥ = 1.
Let the sequence {xn} be a maximizing sequence for T and {xn} converges weakly to
x ≠ 0 (we are denoting subsequence of {xn} by {xn} itself). Since X is (Mp) and Y is
(Mq), it follows from Equation (3.2) that

1 − ∥x∥p = lim ∥xn − x∥p(3.3)

and

1 = lim ∥Txn∥q = ∥Tx∥q + lim ∥Txn − Tx∥q .(3.4)

Note that ∥Tx∥ ≤ 1 and lim ∥Txn − Tx∥ ≤ 1, consequently, since q ≥ p ≥ 1,

1 = lim ∥Txn∥q = ∥Tx∥q + lim ∥Txn − Tx∥q

≤ ∥Tx∥p + lim ∥Txn − Tx∥p

≤ ∥Tx∥p + lim ∥xn − x∥p

= ∥Tx∥p + 1 − ∥x∥p .

Therefore,

∥Tx∥ = ∥x∥.(3.5)
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Since ∥x∥ ≤ 1, using Equations (3.3) and (3.4) together with the fact that q ≥ p > 1, we
get

1 − ∥x∥q ≥ 1 − ∥x∥p .(3.6)

and

lim ∥xn − x∥q = lim(∥xn − x∥p)q/p = (1 − ∥x∥p)q/p ≤ 1 − ∥x∥p .(3.7)

If possible, assume that the sequence {∥xn − x∥} does not converge to 0. Then there
exists ε > 0 and a subsequence {xnk} of {xn} such that ∥xnk − x∥ > ε for all k. Then,
by Equations (3.6) and (3.7),

lim∥T ( xnk − x
∥xnk − x∥)∥

q

= 1 − ∥Tx∥q

lim ∥xnk − x∥q

= 1 − ∥x∥q

lim ∥xnk − x∥q

≥ 1 − ∥x∥p

1 − ∥x∥p

= 1.

Since the sequence { xnk−x
∥xnk−x∥} converges weakly to 0, by Lemma 3.3,

∥T∥e ≥ lim∥T ( xnk − x
∥xnk − x∥)∥ ≥ 1 = ∥T∥.

Which is not possible by our assumption. Therefore, the sequence (∥xn − x∥) con-
verges to 0. Hence, by Equations (3.5) and (3.3), ∥Tx∥ = ∥x∥ = 1 = ∥T∥. ∎

We will next give a proof of Theorem 3.1.

Proof of Theorem 3.1 Let T ∈ B(�p , �q) such that ∥T∥e < ∥T∥. To see that the opera-
tor T ∈ SSD{B(�p , �q)}, it is enough to verify, by Theorem 2.11, lim inf d(xn , MT) = 0
for every maximizing sequence {xn} of T.

Let the sequence {xn} be a maximizing sequence for T, then there exists a
subsequence of {xn} (we will denote the subsequence by {xn} itself) converges weakly
to some x ∈ �p by the reflexivity of �p .

If x = 0, then by Lemma 3.3, ∥T∥ = ∥T∥e , which is not possible.
Therefore, x ≠ 0, by Lemma 3.4, ∥Tx∥ = ∥T∥, and ∥x∥ = 1. Thus x ∈ MT .
Since the sequence {xn} is a maximizing sequence for T, from the proof of

Lemma 3.4, the sequence {∥xn − x∥} converges to 0. Thus d(xn , MT) → 0. Hence,
by Theorem 2.11, the operator T ∈ SSD{B(�p , �q)}.

The denseness of the set SSD{B(�p , �q)} is now follows from Lemma 3.2. ∎
We know that, for a Hilbert space H, the norm of B(H) is strongly subdifferentiable

at every compact operator on H [3]. We will next obtain a corollary which extends this
result to �p spaces.

Corollary 3.5 Suppose 1 < p, q < ∞ and K ∈ B(�p , �q) be a compact operator. Then
the norm of B(�p , �q) is strongly subdifferentiable at K.
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Proof The proof follows directly from the inclusion, {T ∈ B(�p , �q) ∶ ∥T∥e < ∥T∥} ⊆
SSD{B(�p , �q)}. ∎

Observe from Theorem 2.11 that if an operator T ∈ SSD{B(�p , �q)}, then T attains
its norm, the converse is not true as the following example suggest.

Example 3.6 Let 1 < p, q < ∞ and {en} denotes the canonical basis of �p . Let
T ∈ B(�p , �q) be an operator defined as follows, for each x = (ζ1 , ζ2 , . . .) ∈ �p

T (
∞

∑
i=1

ζn en) = ζ1e1 +
∞

∑
i=2

(1 − 1
n
) ζn en .

Clearly, MT = {αe1 ∶ α ∈ F, ∣α∣ = 1}. Let the sequence {xn} be a maximizing sequence
for T. Then, for some subsequence {xn i}, d(xn i , MT) → 0 if and only if xn i → e1.
But the sequence {en} is a maximizing sequence for T and does not contain any
subsequence converging to e1. Hence (ii) of Theorem 2.11 fails to hold. Therefore,
T ∉ SSD{B(�p , �q)}.

Remark 3.7 It is well known that the set of all norm-attaining bounded linear
operators on a reflexive Banach space X is dense in B(X) [17]. From Example 3.6 and
Theorem 2.11 we get SSD{B(�p)} is a proper subset of norm-attaining bounded linear
operators on �p . Moreover, from Theorem 3.1, SSD{B(�p)} is dense in B(�p).

As an application of Theorem 3.1, we will next obtain a characterization of Fréchet
differentiability. Consequently, we will show the equivalence between Fréchet differ-
entiability and Gateaux differentiability of the norm of B(�p , �q) (see Theorem 3.9),
just as observed in the case of operator norm on Hilbert spaces (see [1, Theorem 3.1]
and [26, Theorem]). We begin by recalling a few definitions and results.

Definition 3.2 The norm of a Banach space X is Fréchet differentiable at a point u in
the unit sphere SX if and only if there is a bounded linear functional f ∈ X∗ (unique)
such that

lim
t→0

∥u + tx∥ − 1
t

= Re f (x)(3.8)

uniformly on BX .

If we drop the uniformity assumption for x in the above definition, we have the def-
inition of Gateaux differentiability of the norm at u. That is, Gateaux differentiability
demands only the existence of the limit in Equation (3.8) at each point x ∈ BX . When
x = u, we see that the unique bounded linear functional f in Definition 3.2 satisfies
∥ f ∥ = f (u) = 1. Indeed, the functional f, which we call the gradient of the norm at u,
is then uniquely determined by the condition

∥ f ∥ = f (u) = 1.

If the norm of a Banach space X is Gateaux differentiable at a point u ∈ SX , then it is
usually said that u is a smooth point of SX .

We will next recall a theorem from [7], which combined with Theorem 3.1 of the
present paper will give a characterization for Fréchet differentiability in B (�p , �q) in
terms of the essential norm of an operator.
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Theorem 3.8 [7, Theorem 2.1] and [27, Theorem 1] Let T ∈ B (�p , �q) , 1 < p, q < ∞,
and ∥T∥ = 1. Then the following are equivalent:
(i) T is smooth.

(ii) ∥T∥e < 1 and if ∥Tx1∥ = ∥Tx2∥ = 1 for x1 , x2 ∈ B�p then x1 = αx2, where α ∈ F and
∣α∣ = 1.

In the following theorem, we will see that the condition (ii) of Theorem 3.8 char-
acterizes Fréchet differentiability rather than smoothness. Moreover, the following
theorem is an extension of [1, Theorem 3.1] and [26, Theorem] to the class of �p spaces.
At this stage, the proof of the following corollary looks simple, but Theorem 3.1 and
consequently Theorem 2.11 are very crucial in the proof.

Proposition 3.9 Let T ∈ B (�p , �q) , 1 < p < ∞, and ∥T∥ = 1. Then the following are
equivalent:
(i) The norm of B (�p) is Fréchet differentiable at T.

(ii) ∥T∥e < 1 and if ∥Tx1∥ = ∥Tx2∥ = 1 for x1 , x2 ∈ B�p then x1 = αx2, where α ∈ F and
∣α∣ = 1.

Consequently, the norm of B(�p , �q) is Fréchet differentiable at T if and only if norm of
B(�p , �q) is Gateaux differentiable at T.

Proof Fréchet differentiability implies Gateaux differentiability (smoothness).
Hence, by Theorem 3.8, (i) ⇒ (ii).

Conversely, if (ii) holds, then by Theorem 3.8, T is smooth. Also, by Theorem 3.1,
T is an SSD point of B(�p , �q). Since Gateaux differentiability together with strong
subdifferentiability implies Fréchet differentiability, the norm of B(�p , �q) is Fréchet
differentiable at T. ∎
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