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Abstract
Experimental evidence shows that human subjects frequently rely on adaptive heuristics to form expec-
tations but their forecasting performance in the lab is not as inadequate as assumed in macroeconomic
theory. In this paper, we use an agent-based model (ABM) to show that the average forecasting error is
indeed close to zero even in a complex environment if we assume that agents augment the canonical adap-
tive algorithm with a Belief Correction term which takes into account the previous trend of the variable of
interest. We investigate the reasons for this result using a streamlined nonlinear macro-dynamic model
that captures the essence of the ABM.
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1. Introduction
It is a well-known fact that expectations drive actions and actions affect expectations. This loop
generates a two-way feedback: from agents’ expectations to the dynamics of a variable of inter-
est (Feedback 1 hereafter) and from the latter to the formation of expectations (Feedback 2). In
standard macroeconomic models, agents hold rational expectations (REs) à laMuth (1961): they
know the “true model” of the economy generating Feedback 1 and the stochastic process govern-
ing the macroeconomic shocks (Hansen and Sargent, 2014) and take the probability distribution
of the variable into account. REs therefore aremodel-consistent and unbiased.1

Agents holding adaptive expectations (AEs) base instead their expectations only on the past
history of the variable of interest. This is due to limited cognitive capabilities or limited capacity
to pay attention to all the information agents have access to (Sims, 1998, 2003). In the presence
of a high degree of “complexity,” agents are likely to rely on simple rules to form expectations
because model-consistent expectations are simply too difficult to implement.

Abundant experimental evidence shows that indeed humans do not fully grasp how the market
or the macroeconomy work. In fact, “the outcomes of many Learning to Forecast (LtF) laboratory
experiments contradict the RE hypothesis” (Anufriev et al. 2019, p. 1540). In these experiments,
participants often adopt simple rules (or heuristics) to form expectations. AE is one of these
heuristics. In the lab, however, adaptive agents do not seem to be prone to systematic errors
(Colasante et al. 2017). This may be due to the fact that subjects in the lab follow a modified adap-
tive rule that mitigates the tendency to repeat errors embedded in the standard adaptive heuristic.
Indeed Anufriev et al. (2019) show that a trend-extrapolating rule fits the subjects’ forecasts better
than the simple adaptive heuristic.
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In this paper, we build a stylized agent-based model (ABM) to explore the forecasting capa-
bilities of adaptive agents in a complex economy. In our ABM firms form heterogeneous AEs of
inflation to determine the (optimal) scale of activity: the higher the expected inflation, the higher
the employment and production. Even in a stationary setting (the Baseline scenario) when firms
use the standard adaptive heuristic (Adaptive regime in the following), Monte Carlo simulations
show that they are indeed inefficient forecasters: they generally overestimate inflation and produce
more than the market can absorb. In the Adaptive regime, the average forecasting error is sizable.

If firms form expectations augmenting the adaptive rule with a Belief Correction term (BCT)
that is based on the past change of inflation (Belief Correction (BC) regime), on the contrary,
simulations show that the average forecasting error is close to zero, as in the unbiased (ratio-
nal) equilibrium. Our adaptive rule augmented with a BCT turns out to be a special case of the
First-Order Heuristic (FOH)—based on “anchoring and adjustment” à la Kahneman and Tversky
(Kahneman, 2011)—that seems to be widely used by participants in LtF experiments (Heemeijer
et al. 2009).

We have also explored a Non-stationary scenario in which the Government charges a tax on
sales to finance fundamental research. In this scenario, total factor productivity (TFP) grows driv-
ing aggregate economic activity. The forecasting performance of the adaptive heuristic is bound
to worsen. According to the output of simulations, in fact, in the Adaptive regime the average
forecast error is even bigger than in the Baseline. In the BC regime, on the contrary, even in a
non-stationary setting the average error goes down approximately to zero.

In order to capture the inner mechanism of the ABM we then present and discuss a two-
dimensional nonlinear macro-dynamic model with homogeneous expectations which can be
thought of as the underlying skeleton of the ABM. The first equation describes the price adjust-
ment process according to which inflation is an increasing function of excess demand (as in the
ABM) and captures the feedback from expected inflation—which indirectly determines excess
demand—to actual inflation (Feedback 1). The second equation is the expectation formation
mechanism which features expected inflation as a nonlinear function of past inflation and cap-
tures the feedback from actual inflation to expected inflation (Feedback 2). This two-dimensional
system is not solvable analytically.We compute numerical solutions using the same parameter val-
ues of the ABM. These solutions replicate the results of the ABM surprisingly well: BC mitigates
forecasting error to a great extent.

The paper is organized as follows. After a brief review of the literature (Section 2), in Section
3, we present and discuss the ABM. The Baseline scenario will be presented in Section 4. In
Section 5, we explore the Non-stationary scenario characterized by the introduction of a sale
tax to finance Government expenditure in fundamental research which affects TFP growth. In
Section 6, we present and discuss the two-dimensional nonlinear macro-dynamic skeleton of the
ABM. Section 7 concludes. In the appendix, we provide numerical approximation of the unbiased
equilibrium.

2. A concise review of the literature
This paper contributes to two strands of literature. The first strand focuses on learning and
forecasting in complex environments. In this context agents resort to simple heuristics to form
expectations, as in Brock and Hommes (1997). Heterogeneous expectations and heuristics switch-
ing are thoroughly surveyed in Hommes (2013). This behavioral approach to expectations
formation has been adopted also in Behavioural New Keynesian Dynamic Stochastic General
Equilibrium (DSGE) models (Branch and McGough, 2018).

Heuristic switching has been put to test in LtF experiments (Assenza et al., 2014). Four robust
facts stand out starkly from the experimental evidence: (i) subjects use very few heuristics to
form expectations (Assenza et al. 2019), (ii) the adaptive rule features prominently among these
heuristics, (iii) if a negative feedback of type 1 is at work—that is, if the current state of the variable
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is a decreasing function of the average expectation—learning leads to fast monotonic conver-
gence of the variable to the RE equilibrium provided the feedback is linear (in nonlinear cases,
the dynamics can be more complicated), and (iv) with positive feedback oscillatory trajectories are
more likely and oscillations may be either dampening (ensuring convergence to the RE solution
in the long run) or permanent (Heemeijer et al. 2009; Anufriev et al. 2019).

When the environment is “simple to understand,” also AEs tend to be unbiased. The environ-
ment is simple to understand when it is stationary.When the state variable is growing or declining,
on the contrary, the environment is difficult to understand and AEs generally fail. Colasante et al.
(2017) test in the lab whether subjects using an adaptive rule learn the presence of a drift and
incorporate this acquired knowledge in expectation formation. It turns out that participants in
the experiment are indeed capable of grasping the drift and this improves their forecasting per-
formance to a large extent. Trend-following in expectations formation makes even a dynamic
environment understandable to the adaptive agent (Palestrini and Gallegati, 2015).

Heemeijer et al. (2009) present an encompassing FOH based on “anchoring and adjustment”
that nests all the heuristics actually used by participants in LtF experiments. The scheme of AEs
augmented by a BCT used in our ABM is a particular case of this heuristic.

The second strand of literature is agent-basedmacroeconomics. A large number of agent-based
macroeconomic frameworks has been developed over the last two decades: Dawid and Delli Gatti
(2018) provide an extensive survey. In these models, agents are generally assumed to form AEs.
Variants and alternatives to the adaptive option to model expectations within this literature are
discussed extensively in Salle (2015). For an application of the heuristics switching mechanism to
an agent-based macroeconomic framework see Dosi et al. (2017). The aim of our ABM is to show
that the bias generated by the adaptive scheme can be mitigated even in complex environments
by a BCT.

3. An ABMwith heterogeneous expectations
Since we want to explore how BC affects the agents’ forecasting capability, the model we present
in this section is much simpler than most of the models reviewed in Dawid and Delli Gatti (2018).
We consider a closed economy populated by households and firms. Households (not explicitly
modeled) supply labor, earn wages, and spend on consumption goods their wages entirely (they
are “hand to mouth” consumers).

3.1. The optimal scale of activity
Firms produce a homogeneous consumption good. The production function of the i-th firm (i=
1, 2, . . . , F) is

Qi,t =AtN
1
δ

i,t (1)

where Qi and Ni are output and employment, A is TFP and δ > 1. The growth rate of TFP is a
random variable whose realizations are gA > 0 with probability pA(τ ), zero otherwise. The proba-
bility of TFP growth is increasing with the sale tax rate τ . We assume, in fact, that sale taxes finance
public investment in fundamental research and fundamental research, in turn, affects success in
innovation and TFP growth. For simplicity, we assume pA = γAτ with γA > 0. When τ = 0, there
is no Government expenditure in research and TFP is stationary. We assume A= 1 in this case.
The stationarity of TFP characterizes the Baseline scenario that will be presented in section 4. We
will discuss the consequences of TFP growth in the Non-stationary scenario of section 5.

Due to labor market “frictions,” the real wage wt does not adjust to imbalances between
demand and supply of labor but follows an exogenous AR(1) process with drift:

wt = ρwwt−1 + d + σεεW (2)
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where d> 0 is the drift, ρw ∈ (0, 1) is the autoregressive coefficient and εW ∼N (0, σε) is a
wage shock. We rule out labor shortages. By assumption, labor supply (not modeled) is always
abundant.

At the beginning of period t, the firm decides the quantity to be produced (and the workers to
be employed). Production takes time and output will be available only at the end of the period,
when the market for consumption goods opens and transactions are carried out. At the moment
it takes decisions, therefore, the firm is uncertain on the sale price Pt .

Under risk neutrality and perfect competition, the firm chooses at the beginning of t the
optimal quantity by maximizing expected profits (net of taxes):

max
Qi,t

�e
i,t = π e

i,t(1− τ )Qi,t −wtAt
−δQδi,t

where π e
i,t is the real price expected by the i-th firm for period t, that is, the ratio of the nominal

price at which the firm expects to sell its goods Pei,t to the aggregate price level. Since the firm does
not know Pt at the moment decisions are taken, the expectation of the real price is based on the
aggregate price observed at the end of period t − 1, Pt−1. Hence,

π e
i,t :=

Pei,t
Pt−1

(3)

π e
i,t turns out to be the gross inflation rate expected by the i-th agent. The solution of this

maximization problem yields optimal output:

Qi,t = ηζt
(
π e
i,t

) 1
δ−1 (4)

where

ζt := A
δ
δ−1
t w

− 1
δ−1

t

η :=
(
1− τ

δ

) 1
δ−1

Plugging (4) into (1) and rearranging, we get the demand for labor:

Ni,t = 1
wt
ηδζt

(
π e
i,t

) δ
δ−1 (5)

Since π e
i,t(1− τ ) is the expected marginal revenue, output, and employment are increasing with

inflation expectations. Firms with relatively “high” inflation expectations (high expected marginal
revenue) will produce more than firms holding “low” inflation expectations.

Aggregate demand in real terms is equal to the total wage bill wtNt where Nt := ∑F
i=1 Ni,t

is total employment. Since firms produce a homogeneous consumption good, we assume that a
fraction 1/F of the wage bill is spent at each firm by each household. Actual sales for the i-th
firm (Si,t), therefore, may be different from output planned and brought to the market: Si,t =
min (Qi,t , wtNt

F ).

3.2. Price adjustment
Overall excess demand will be EDt =wtNt −Qt where Qt := ∑F

i=1 Qi,t is aggregate supply. If
excess demand is positive, all the output will be sold (and there may be a fringe of unsatisfied
consumers at some firms). In this case, we assume that the sale price at the end of the period
Pt will be higher than the price carried over from the past. If, on the contrary, excess demand
is negative, the end-of-period price will be lower than Pt−1. However, there is no guarantee of
market clearing as we do not assume the presence of a top-down coordinating mechanism such as
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the auctioneer which brings necessarily demand into equality with supply. On the basis of these
consideration, denoting with πt := Pt

Pt−1
the gross inflation rate, we assume the following market

protocol.

Assumption 1. The market price evolves according to the stochastic adjustment process:

πt = exp
(
γpEDt

)
exp (εP) (6)

where γp > 0, EDt is excess demand:

EDt =wt

F∑
i=1

Ni,t −
F∑
i=1

Qi,t (7)

and εP ∼N (0, σε) is a price shock, E
(
exp (εP)

) ≈ 1.

Excess demand is known in t because all the variables involved (total output and the total wage
bill) are determined in t on the basis of individual inflation expectations. By construction, when
there is market clearing (EDt = 0) the price is stationary (πt = 1).2

Substituting optimal output and employment into excess demand and the latter into the
price adjustment equation (6), we obtain the relationship between expected inflation and actual
inflation (Feedback 1) in the ABM:

πt = exp

{
γpζt

[
ηδ

∑
i

(π e
i,t)

δ
δ−1 − η

∑
i

(π e
i,t)

1
δ−1

]}
exp (εP) (8)

Actual inflation therefore is a nonlinear function of individual inflation expectations.

3.3. Expectations
We consider two regimes of expectation formation. In the standard Adaptive regime, we assume
that agents form expectations of the sale price according to the canonical Cagan–Friedman–
Nerlove adaptive algorithm. In the BC regime, they follow an error mitigation strategy which
consists in augmenting their adaptive algorithm by a BCT equal to the expected first difference
of the price �e

Pt . To encompass both regimes in a general algorithm, we assume the following
expectations formation mechanism:

Assumption 2. The i-th agent forms expectations on the sale price at the end of period t using the
following algorithm:

Pei,t = λiPt−1 + (1− λi)Pei,t−1 + 1P�e
Pt (9)

where 1P is an indicator function that takes value 0 in the Adaptive regime and 1 in the BC regime
and�e

Pt is the expected change of the price level between t-1 and t.

Notice that price expectations are heterogeneous because the expectation updating coefficient λi
is firm specific. In the ABM, λi is drawn from a uniform distribution with support (λ0, 1]; λ0 > 0.
Iterating (9), we get

Pei,t = λi

∞∑
s=0

(1− λi)sPt−s−1 + 1P
∞∑
s=0

(1− λi)s�e
Pt−s (10)

In the simplest setting, the estimated change coincides with the past first difference—that is,
�e

Pt =�Pt−1 := Pt−1 − Pt−2—so that (9) becomes:

Pei,t = λiPt−1 + (1− λi)Pei,t−1 + 1P(Pt−1 − Pt−2) (11)
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When agents adopt a BC strategy (11) may be interpreted as a variant of the so-called FOH put
forward by Heemeijer et al. (2009) to interpret the forecasting behavior of human subjects in LtF
experiments. The FOH of agent i is defined as follows:

Pei,t = λiPt−1 +μiPei,t−1 + (1− λi −μi)P∗ + γi(Pt−1 − Pt−2) (12)

with λi and μi positive and such that λi +μi ≤ 1 and P∗ the long-run value of P. FOH is an
anchoring and adjustment heuristic, that is, a combination of an anchor—consisting of a weighted
average of the lagged value of the variable, the lagged expectation and the long-run value—and a
trend-extrapolating term proportional to the lagged first difference of the variable.

Experimental evidence shows that the trend parameter γi is positive (but smaller than one)
for the majority of participants in LtF experiments in environments with positive feedback. In
the case of negative feedback, subjects generally do not extrapolate the trend (γi = 0) or—in few
cases—act as contrarians (γi < 0). In this setting, agents’ learning behavior does not converge in
general to REs but points in the direction of behavioral learning equilibria as discussed in Hommes
and Zhu (2014).3 The algorithm (11) can be conceived as a special case of FOH characterized by
μi = 1− λi. The anchor is the standard AE algorithm and the trend-extrapolating factor is the BC
term. For simplicity we assume that the trend extrapolating parameter is positive, uniform across
agents and equal to 1 independently of the sign of the feedback.

Let’s now go back to the expectations formation mechanism (10). Dividing both sides of this
equation by Pt−1 we get expected inflation

π e
i,t = π̄i,t + 1Pξ i,t (13)

where

π̄i,t := λi

∞∑
s=0

(1− λi)s
Pt−1−s
Pt−1

= λi

[
1+ 1− λi

πt−1
+ (1− λi)2

πt−2πt−1
. . .

]

ξ i,t :=
∞∑
s=0

(1− λi)s
�e

Pt−s

Pt−1
= �e

Pt
Pt−1

+ (1− λi)
�e

Pt−1

Pt−1
+ . . .

Inflation expectations are heterogeneous because firms use different updating coefficients λi.
In the ABM we assume that agents are relatively sophisticated smoothers so that the estimated

first difference is the mean of the past four first differences:

�e
Pt−s = 1

4

4∑
z=1

�Pt−s−z (14)

Hence the term ξ i,t can be written as follows:

ξ i,t :=
�e

Pt
Pt−1

+ (1− λi)
�e

Pt−1

Pt−1
+ . . .

= 1
4

[(
1− 1

πt−1 . . . πt−4

)
+ (1− λi)

(
1
πt−1

− 1
πt−1πt−2 . . . πt−5

)
+ . . .

]

4. The Baseline scenario
In this section, we present and discuss the simulations of the ABM in the Baseline scenario charac-
terized by stationarity. In this scenario, in fact, τ = 0 so that there is no investment in fundamental
research.4 Hence, TFP is constant: A= 1. The dynamics of the model in the Baseline, therefore, is
driven exclusively by the law of motion of the real wage (2). We assume individual expectations

https://doi.org/10.1017/S1365100524000129 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100524000129


Macroeconomic Dynamics 7

Table 1. Parameter values

Parameter Description Value

F Number of firms 200
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ Reciprocal of Cobb–Douglas exponent 3/2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γp Sensitivity of π to excess demand 0.001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γτ Sensitivity of pA to the tax rate 4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gA Growth rate of TFP with τ > 0 0.02
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρw Autoregressive parameter (law of motion of the real wage) 0.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d Drift (law of motion of the real wage) 0.1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σε Standard deviation of the wage shock and of the price shock 0.01
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ0 Minimum updating coefficient 0.4

are formed adaptively as shown in (13) with the expected change of the price level defined in (14).
Therefore, optimal output and employment will be

Qi,t = ηζt
(
π̄i,t + 1Pξ i,t

) 1
δ−1 (15)

Ni,t = 1
wt
ηδζt

(
π̄i,t + 1Pξ i,t

) δ
δ−1 (16)

In the Baseline, ζt and η boil down to ζt =w
− 1
δ−1

t and η= δ−
1
δ−1 .

There are only 8 parameters in this simple model. The numerical values of the parameters used
in simulations are gathered in Table 1. We have calibrated δ at 3/2 in order to set the elasticity of
output to labor at 2/3. This is in line with the long-run level of the labor share in the USA after the
Great Depression. For simplicity this calibration does not incorporate the tendency of the labor
share to decline after 1980 highlighted by the recent literature on declining business dynamism.
We set the growth rate of the innovation process gA at 0.02 to replicate the average growth rate of
the USA.

We have set the numerical values of the other parameters in order to generate dynamic patterns
of artificial time series that do not show sudden changes or bifurcations near the chosen numerical
values. We performed local sensitivity analysis, given the extreme difficulty of conducting global
analyses in these models.

We have chosen the autoregressive coefficient ρw and the constant d in the law of motion of
the wage in order to get an average wage (across time periods) equal to 1. The support of the
distribution of updating coefficients λi has been limited by setting the lower bound λ0 at 0.4 in
order to ensure that expectations update rapidly enough.

Having set γP = 0.001 and δ = 3/2, we get ζt =w−2
t , η= δ−2 = 4/9 and ηδ = δ−3 = 8/27.

Using these numerical values, we retrieve optimal output and employment from (15) and (16).
Substituting the resulting expressions into excess demand (7) and the latter into (6), we obtain the
following Feedback 1 in the Baseline scenario:

πt = exp

{
0.001
w2
t

[
8
27

∑
i

(
π̄i,t + 1Pξ i,t

)3 − 4
9

∑
i

(
π̄i,t + 1Pξ i,t

)2]}
exp (εP) (17)

Actual inflation is a nonlinear function of individual inflation expectations—that in turn are
functions of past inflation—and of the wage rate, that is determined by the AR(1) stochastic
process.

We run S= 100Monte Carlo simulations of the ABM (with different random seeds). The dura-
tion of each simulation is T = 40 periods. Hence, each individual expectation π e

i,t,s is characterized
by three indices: i= 1, 2, . . . F, t = 1, 2, . . . T, s= 1, 2, . . . S. Simulation s generates in period t
the distribution of F = 200 individual inflation expectations π e

i,t,s, which in turn will generate
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actual inflation πt,s through (17). For each simulation s, we retrieve the “long-run” distribution
of individual inflation expectations, that is, the distribution of expectations in the final period:
π e
i,T,s, i= 1, 2, . . . F. The long-run average expectation (i.e., inflation expected on average by the

population of firms in period T) is the mean of the long-run distribution of expectations:

π e
T,s =

∑F
i=1 π

e
i,T,s

F
(18)

The actual long-run inflation associated to simulation s is inflation of the last period πT,s. The
difference between actual and expected inflation (both referred to period T) is the forecast error
associated to simulation s: εT,s = πT,s − π e

T,s. Finally, the bias is the percent forecast error in the
last period: bT,s = πT,s

π e
T,s

− 1. The bias distribution is the distribution of S= 100 biases (one for each
simulation). We evaluate the performance in forecasting of the population of firms by means of
the first and second moments of the bias distribution, that is, the average bias

b=
∑S

s=1 bT,s
S

(19)

and the variance of the bias:

σ 2
b =

∑S
s=1 (bT,s − b)2

S
(20)

By construction, when expectations are unbiased the bias is zero. In the appendix, we develop
the unbiased benchmark: we consider an economy populated by identical firms that know the
true model of the economy, that is, the equation for Feedback 1 (equation (8)) calibrated with the
same numerical parameters used for the ABM. In this setting, it is straightforward to show that
when expectations are rational, the forecast error is εt = E(πt)[ exp (εP)− 1] and the bias is bt =
exp (εP)− 1 so that the expected value of the bias is zero. In words, model-consistent expectations
are unbiased. This allows to measure the departure of the bias generated by the ABM from the
unbiased solution.

From simulations of the ABM in the Baseline scenario, we get the following fundamental result:

Result 1. In the Adaptive regime, the average bias is significantly different from zero: b= −2.5%,
that is, agents overestimate inflation by a non-negligible margin. Moreover, the standard deviation
of the bias (σb = 0.012) is slightly bigger than the standard deviation of the price shock.5 On the
contrary, in the BC regime, the average bias b′ ≈ 0, while the standard deviation of the bias does not
change.

Let’s now turn to output and employment. Each simulation generates the time series of
total output Qt,s = ∑F

i=1 Qi,t,s = ηζt
∑F

i=1
(
π̄i,t,s + 1Pξ i,t,s

) 1
δ−1 and of total employment Nt,s =∑F

i=1 Ni,t,s = 1
wt
ηδζt

∑F
i=1

(
π̄i,t,s + 1Pξ i,t,s

) δ
δ−1 , t = 1, 2, . . . T.

In the appendix, we retrieve employment in the unbiased case plugging the RE of inflation
in the equation for optimal employment. We denote employment when expectations are unbi-
ased in the Baseline with NUB. In the Rational Representative Agent setting, agents know the
AR(1) process governing the evolution of the wage rate and can therefore determine the long-
run value of the wage wT . Each Monte Carlo simulation generates a different final period wage
wT,s, s= 1, 2, . . . 100. Therefore, we determine the (long-run) unbiased solution for employment
NUB
T,s for each simulation. We define the employment ratio as the ratio of long-run employment

NT,s generated by the ABM in simulation s to employment when expectations are unbiased in
the same simulation. In this way, we generate the distribution of employment ratios: νs := NT,s

NUB
T,s
,

s= 1, 2, . . . 100. The mean of this distribution ν = ∑S
s=1 νs/S—that is, the average employment
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ratio—is a measure of over- or under-employment relative to the unbiased case. From simulations
we get the following fundamental result:

Result 2. In the Adaptive regime the average employment ratio is ν = 1.08, that is, employment is
8% bigger than in the unbiased case. In the BC regime, on the contrary, the average employment
ratio is ν′ = 0.997, that is, the distribution is centered around 1: employment is approximately the
same as in the unbiased case.

The rationale for Result 2 is the following. In our simulations, given the initial conditions, if firms
do not apply BC, on average inflation expectations converge to a “long-run” level π e

t that signif-
icantly overestimates actual inflation πT (the bias is negative, as stated in Result 1). Therefore,
firms optimally employ a larger number of workers and produce more than in the unbiased case.
If, on the contrary, they apply BC, on average firms do not overestimate actual inflation so that
employment and production are approximately the same as in the unbiased case.

5. Non-stationary scenario
In this section, we explore the Non-stationary scenario generated by active fiscal policy and public
investment in fundamental research. In this scenario, in fact, the Government finances expen-
diture in R&D by charging a proportional tax on sales. The tax rate is τ = 0.05. Given the
parameter values used in simulations (see Table 1), the probability of TFP growth in this sce-
nario is pA = γτ τ = 0.2. We set TFP growth in case of success of the policy at gA = 0.02. In this
scenario, GDP grows over time generating a non-stationary setting in which agents must form
expectations. We run 100 Monte Carlo simulations of the ABM in the Non-stationary scenario.
As in the Baseline, the time span of each simulation is 40 periods. Each simulation generates a
distribution of F = 200 inflation expectations for each period (as shown above). Following the
procedure outlined above for the Baseline scenario, we can compute actual inflation in period
T = 40, average expected inflation and the associated bias. In this way, we generate the distribu-
tion of S= 100 biases, denoted with bNT,s. Hence, the average bias in the Non-stationary scenario

is bN =
∑S

s=1 bNT,s
S .

In Figure 1, we show the bias distribution in the Non-stationary scenario with canonical AEs
andwith BC. In the unbiased benchmark (see appendix), the equation for Feedback 1 is affected by
the TFP shock and therefore also the unbiased solution for inflation will change but, assuming that
the representative agent knows the true model of the economy and the properties of the shocks,
the expected value of the bias is still zero. In words, model-consistent expectations are unbiased
also in the Non-stationary scenario.

We can summarize the results of these simulations as follows:

Result 3. In the Adaptive regime, the mean of the bias distribution is bN = −4% and the standard
deviation is σN = 0.0224. Firms overestimate inflation in the Non-stationary scenario more than in
the Baseline scenario. In the BC regime, the mean of the bias goes down approximately to b′N = 0.5%
and the standard deviation falls to σ ′N = 0.0127.

Also in the Non-stationary scenario we compute the employment ratio νNT,s :=
NN
T,s

NUN
T,s

, s= 1,

2, . . . 100 as the ratio of long-run employment NN
T,s generated by the ABM in simulation s of

the Non-stationary scenario to employment when expectations are unbiased NUN
T,s in the same

simulation. The mean of this distribution νN = ∑S
s=1 νs/S is the average employment ratio in this

scenario. Figure 2 shows the distribution of the employment ratio in the Non-stationary scenario.

Result 4. In the Adaptive regime the average employment ratio is νN = 1.14, that is, employment
is 14% bigger than in the unbiased case. The employment ratio is bigger than in the Baseline. In
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Figure 1. Distribution of the bias bNT,s, s= 1, 2, . . . 100 in the Non-stationary scenario. The probability density function of the
bias is generated by means of kernel density estimation (bandwidth: 0.148). The left (blue in the online version) density is
generated in the Adaptive regime, the right (red online) density is obtained in the Belief Correction regime. For the color
version of the figures, we refer to the online version of this paper.

the BC regime, on the contrary, the average employment ratio is ν′N = 0.990, that is, employment is
approximately the same as in the unbiased case.

We can further assess the effects of BC in a Non-stationary environment by tracking the evolution
over time of the dynamic employment ratio ψt = NN

t
Nt

, that is, the ratio of aggregate employment
in the Non-stationary scenario to aggregate employment in the stationary Baseline (when expec-
tations incorporate the BCT). The numerator of this ratio grows over time while the denominator
is stationary, causing the ratio to increase at the same rate of the numerator. Notice that since
TFP is growing over time, also aggregate employment in the unbiased case is growing in the
Non-stationary scenario while it is stationary in the baseline. Therefore, the employment ratio
ψU
t = NUN

t
NUB
t

grows at the same rate of the numerator. Employment in the unbiased case in the
Non-stationary scenario grows approximately at the rate:

gUN = (1− pA)+ pA(1+ gA)
δ
δ−1 − 1. (21)

Since we have set pA = 0.2;gA = 0.02 and δ = 1.5, the unbiased case implies a growth rate of
employment approximately equal to 1.2% per period.

Figure 3 plots the time series of ψt . The TFP shock generates a jump process. Note that in
the initial interval (until period 6 included) ψ < 1 because the introduction of a sale tax has a
direct negative effect on marginal revenue, employment, and output. From period 7 onward, ψ
becomes greater than one and increases steadily over time due to the increase in TFP and the

https://doi.org/10.1017/S1365100524000129 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100524000129


Macroeconomic Dynamics 11

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
Ratio

0

5

10

15

20

25

30

35

40

45

D
en

si
ty

Model with Pure Research: Gaussian kernel density (bandwith = 0.003)

Figure 2. Distribution of the employment ratio νNT,s in the Non-stationary scenario. The probability density function of the
employment ratio is generated by means of kernel density estimation (bandwidth: 0.003). The left (blue online) density is
generated in the Adaptive regime, the right (red online) density is obtained in the Belief Correction regime.
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Figure 3. Evolution ofψt . The stars representψ at each period of the time interval explored with simulations.
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associated decline of marginal cost. It goes from ψ1 = 0.8576 in period 1 to ψ36 = 1.608 at the
end of the simulation window.6 This implies an average (net) rate of employment growth equal to
(1.608/0.8676)1/36 = 1.0173. The fact that the rate of growth of employment in the ABM is close
to the unbiased solution is robust across simulations. TheMonte Carlo analysis shows a mean rate
of growth equal to 1.2085% with standard deviation 13.5782%. This leads to the final result.

Result 5. The rate of growth in employment generated by the ABM in the Non-stationary scenario
and BC regime has the same order of magnitude of the growth in employment in the unbiased case.

This is an intriguing result. The rationale can be described as follows. Contrary to adaptive agents,
agents holding unbiased expectations correctly anticipate the average profit function. This implies
that initial levels of economic activity may be different in the unbiased case and in the ABM. But
when TFP growth makes the profit function shift, adaptive agents that implement BC tend to
follow the evolution of the distribution of profits more or less in line with rational agents.

6. Anatomy of the ABM
In the ABM, the feedback from inflation expectations to current inflation (Feedback 1, denoted
with FB1) is described by the price adjustment equation (8) while the feedback from past inflation
to expectations (Feedback 2, denoted with FB2) is described by the expectation formation equation
(13). Hence, in the end, the ABM boils down to the dynamical system

D:

⎧⎨
⎩πt = exp

{
γpζt

[
ηδ

∑
i (π e

i,t)
δ
δ−1 − η

∑
i (π e

i,t)
1
δ−1

]}
exp (εP)

π e
i,t = π̄i,t + 1Pξ i,t i=1,2, . . . F

(22)

where both π̄i,t and ξ i,t are functions of past inflation. In order to bring to the fore the interaction
between expected inflation and actual inflation in the ABM, in this section, we present and discuss
a simplified version of system D which can be conceived as the “skeleton” of the ABM.

6.1. Reinterpreting the price adjustment process
In the price adjustment equation, aggregate demand and supply are proportional to the sum of
(individual) inflation expectations raised to the power of δ

δ−1 and 1
δ−1 , respectively. In our cali-

bration of the ABM (see Table 1), δ = 3/2. Hence, aggregate demand and supply are proportional
to the sum of cubed and squared inflation expectations, respectively.

By definition, the raw moment of order k of the distribution of heterogeneous expectations is

mk,t :=
∑F

i=1 (π e
i,t)

k

F so that π e
t =

∑F
i=1 π

e
i,t

F =m1,t is the mean of the distribution, that is, the average
expectation. Therefore, we can write

∑F
i=1 (π e

i,t)k = Fmk,t and FB1 becomes

πt = exp
{
γpζtF

(
ηδm3,t − ηm2,t

)}
exp (εP) (23)

Let’s denote the central moment of order k of the distribution with σk,t =
∑F

i=1 (π e
i,t−π e

t )
k

F . Thanks
to the algebra of the relationships between raw and central moments, we can rewrite (23) as
follows:7

πt = exp
{
γpζtF

[
ηδ

(
σ3,t + 3σ2,tπ e

t + (π e
t )

3) − η
(
σ2,t + (π e

t )
2)]} exp (εP) (24)

In order to simplify the analysis, in this section, we assume that the updating coefficient λ is
uniform across agents, so that all the agents form the same expectation. Therefore, σ3,t = σ2,t = 0
∀t. To simplify matters further, we shut off the wage shock (so that the real wage goes to w̄= 1)

and the price shock. Therefore, ζt =A
δ
δ−1
t =A3

t . In our calibration (see Table 1), γP = 0.001 and
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Figure 4. Feedback 1 and excess demand in the Baseline scenario. The flat curve (red online)represents FB1. The dashed
curve represents excess demand (per firm). The slope one line is the 45-degree line.

F = 200. Therefore, in this skeletal model, inflation is a cubic function of the expectation held by
the representative agent:

πt = exp
{
0.2 ζt

[
ηδ(π e

t )
3 − η(π e

t )
2]} (25)

The expression in curly braces approximates the inflation rate (i.e., the percent change of the
price level). The expression in brackets multiplied by ζt is excess demand per firm. Since the wage
rate is normalized to unity, the wage bill (and therefore aggregate demand) coincides with employ-
ment. In this section, firms are identical. We will denote with n and q employment and output per
firm. Given the parameter values adopted in our calibration, n= ηδζt(π e

t )3 and q= ηζt(π e
t )2. By

construction, therefore, market clearing occurs when n= q, that is, when expected inflation is
π e
M = η1−δ . The market clearing level of expected inflation is affected by the sale tax but does not

depend on TFP. The levels of optimal output and employment, however, are increasing with TFP.
There will be excess supply whenever n< q, that is, for π e

t <π
e
M .

We consider first the Baseline scenario characterized by τ = 0 (so that A= 1). In the Baseline,
ζ = 1, η= δ−2 = 4/9, and ηδ = δ−3 = 8/27. Therefore, FB1 specializes to

πt = exp
{
0.2

[
8
27

(π e
t )

3 − 4
9
(π e

t )
2
]}

(26)

FB1 is represented by the red line in Figure 4. The dashed red line represents the expression in
brackets, that is, excess demand (per firm). The blue line is the 45-degree line.

Point M is the market clearing solution, which occurs when the excess demand (dashed red)
line cuts the x-axis. Market clearing occurs when π e

M = δ = 1.5 (so that qM = nM = 1), that is,
when agents expect the sale price to be (much) greater than the initial price: expectations in
equilibrium are not correct. In fact,M lies on FB1 but does not lie on the 45-degree line.8

By construction, the unbiased solutions are the intersections between FB1 and the 45-degree
line. In the first quadrant, there are two fixed points, one of which characterized by excess sup-
ply and deflation (UB) and the other by excess demand and inflation (not shown).9 With our
calibration, we get πUB = 0.9708768. In the unbiased solution UB, we get nUB = 0.2711555 and
qUB = 0.4189341. Hence, the unbiased solution is characterized by excess supply and deflation.
The unbiased solutions for inflation and employment are reported in the first and second rows of
Table 2, first column.10

6.2. Reinterpreting the expectations formationmechanism
Let’s consider now the expectation formation mechanism. In order to simplify matters we assume
that the information set available to the representative firm is limited to the price levels in the
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Table 2. Key numerical results

Variable Baseline Non-stationary Non-stationary

A0 = 1 A1 = 1.1 A1 = 2

Unbiased solutions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

πU 0.9708768 0.9621235 0.8138503
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nU 0.2711555 0.3011394 1.10010417
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Adaptive regime
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

π 0.9708816 0.9615292 0.7889624
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

πe 1.0059994 1.0080020 1.0534975
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b −3.5% −4.6% −25.1%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n 0.3016611 0.3463054 2.3762250
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n− q −0.15 −0.20 −1.18
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ν 1.11 1.15 2.16
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Belief Correction regime
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

π ′ 0.9708540 0.96120199 0.8133565
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

π c 0.9759832 0.9684164 0.8164215
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b′ −0.5% −0.7% −0.4%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n′ 0.2754566 0.3070870 1.1059368
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n′ − q′ 0.15 0.20 1.03
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ν′ 1.016 1.02 1.01

previous two periods—that is, �t = (Pt−1, Pt−2)—and we postulate that in the Adaptive regime
the expectation of the price level in t is

Pet = λPt−1 + (1− λ)Pt−2 (27)
We assume, moreover, that the BCT is BCT = Pt−1 − Pt−2. Hence, the expectation of the price
level in t in the BC regime is

Pct = (1+ λ)Pt−1 − λPt−2 (28)

Dividing both sides of these equations by Pt−1 we get π e
t = λ+ 1−λ

πt−1
and π c

t = 1+ λ− λ
πt−1

,
respectively. In the ABM, we set the average updating coefficient in the proximity of λ= 0.8.
Therefore, in the following, we parameterize inflation expectations as follows:

π e
t = 0.8+ 0.2

πt−1
(29)

π c
t = 1.8− 0.8

πt−1
(30)

These equations will be referred to as FB2 and FBc2, respectively, since they describe the feedback
from past inflation to expected inflation in the two regimes. Notice that in the Adaptive regime
expected inflation in t is decreasing with inflation in t-1. In the BC regime, instead, expected
inflation is an increasing function of past inflation.

6.3. Inflation dynamics
Consider first the Baseline scenario. The dynamical skeleton of the ABM consists of FB1 and FB2:

D0:

{
πt = exp

{
0.2

[ 8
27 (π

e
t )3 − 4

9 (π
e
t )2

]}
xet = 0.8+ 0.2

πt−1

(31)
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Figure 5. Baseline: Inflation dynamics in the Adaptive regime. The solid (red online) curve labeled LM is the phase diagramof
(32). The blue (online version) line is again the 45-degree line (when wemeasure πt on the y-axis). The dashed curve labeled
FB2 represents Feedback 2 in the Adaptive regime (when we measure πet on the y-axis). The length of the black vertical
segment measures the magnitude of the forecasting mistake.

Substituting the second equation in the first one we get the law of motion of inflation:

πt = exp

{
0.2

[
8
27

(
0.8+ 0.2

πt−1

)3
− 4

9

(
0.8+ 0.2

πt−1

)2
]}

(32)

The phase diagram of the nonlinear first-order difference equation (32) is represented by the red
curve (labeled LM) in Figure 5 (when we measure πt on the y-axis).

The blue (online version) line is the 45-degree line. Point S0 is the steady state characterized by
π0 = 0.9708816< 1: in the steady state the price level declines exponentially. In the same figure,
we have also plotted pointM. All the points of LM belowM are characterized by excess supply. The
dashed red curve represents FB2 when we measure π e

t on the y-axis. The coordinate on the y-axis
of point E0—that is, π e

0 = 1.0059983—is expected inflation when the economy is in the steady
state (long-run expected inflation). Agents overestimate inflation: they expect the price level to
rise while it is actually declining. The forecasting mistake is negative, and its absolute value is the
length of the E0 − S0 segment. The bias is b= −0.035.

Consider now the Baseline scenario in the BC regime. The dynamical model consists of FB1
and FBc2.

D1:

{
πt = exp

{
0.2

[ 8
27 (π

c
t )3 − 4

9 (π
c
t )2

]}
xct = 1.8− 0.8

πt−1

(33)

Substituting the second equation in the first one we get

πt = exp

{
0.2

[
8
27

(
1.8− 0.8

πt−1

)3
− 4

9

(
1.8− 0.8

πt−1

)2
]}

(34)

The phase diagram of (34) is represented by the LM′ curve in Figure 6. Notice that the axes are
scaled exactly as in Figure 5.

Point S′
0 is the steady state, characterized by π ′

0 = 0.9708540< 1. The dashed red line that
represents FBc2 (when we measure π e

t on the y-axis) is almost undistinguishable from the 45-
degree line in the portion of the domain considered in the figure. A closer look shows that expected
inflation in the steady state is still higher than current inflation but very close to it: π c

0 = 0.9759832.
In the BC regime, the bias is b′ = −0.005.

We summarize these numerical solutions in the following result.

Result 6. In the Adaptive regime, agents overestimate inflation and the bias is significantly different
from zero: b= −3.5%. In the BC regime, the bias shrinks remarkably and is close to zero: b′ = −0.5%
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Figure 6. Baseline: Inflation dynamics in the BC regime. The solid (red online) curve labeled LM′ is the phase diagram of (34).
The blue line is the 45-degree line (when wemeasure πt on the y-axis). The dashed (red online) curve labeled FBc2 represents
Feedback 2 in the presence of BC (when wemeasure πet on the y-axis).

Agents still overestimate inflation but, thanks to BC, they (i) are correctly expecting the price level to
decline and (ii) they are “almost” correct.

This result is in line with result 1 obtained from simulations of the ABM. In the ABM, the average
bias (mean of the distribution of individual biases) is −2.5% in the Adaptive regime and is very
close to zero in the BC regime. The skeletal model of this section replicates the tendency of the
bias to shrink dramatically when agents adopt BC, but the magnitude of the bias is slightly bigger
than in the ABM.11

Let’s now turn to employment and output. From the numerical solutions, we infer that, in the
Adaptive regime (system D0), in the steady state, employment at each firm is n0 = 0.3015895 and
the employment ratio is ν = 1.1122. In the BC regime (systemD1), in the steady state employment
is n′

0 = 0.2754566 and the employment ratio is ν′ = 1.0158.

Result 7. In the Adaptive regime employment in the long run is 11.2% greater than in the unbiased
solution. Therefore, (i) firms produce more than they would if they correctly anticipated actual infla-
tion, (ii) production is greater than the wage bill so that supply exceeds demand. In the BC regime,
instead, employment in the long run is only 1.6% greater than in the unbiased solution. Firms are
still overproducing but much less than in the Adaptive regime.

This result aligns with result 2 obtained from simulations of the ABM. In the ABM, in the Adaptive
regime employment is 8% bigger than in the unbiased case; in the BC regime, employment is
slightly smaller but very close to employment in the unbiased case. The skeletal model replicates
fairly well the tendency of the employment ratio to shrink when agents adopt BC, but the magni-
tude of the employment ratio is slightly bigger than in the ABM. The long-run levels of inflation,
expected inflation, the bias, employment, excess demand and the employment rate in the Baseline
scenario are reported in the first column of Table 2, starting from the third row.

6.4. Non-stationary scenario
In this section, we consider a Non-stationary scenario characterized by the following assumption:
the Government imposes a 5% tax on sales (τ = 0.05) and uses the tax revenue to finance R&D
that makes TFP jump with certainty and permanently from A0 = 1 (Baseline) to A1 = 1.1.12 The
TFP shock therefore makes ζ increase from ζ0 = 1 (Baseline) to ζ1 = 1.331. In the Non-stationary
scenario, η= 0.952 × (4/9) and ηδ = 0.953 × 8/27 so that FB1 specializes to

πt = exp
{
0.2× 1.331

[
0.953

8
27

(π e
t )

3 − 0.952
4
9
(π e

t )
2
]}

(35)
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Figure 7. Feedback 1: effects of a TFP shock. The red line (online version) is FB1 in the Baseline (i.e., when TFP is A0 = 1)
while the black line is FB1 when TFP is A1 = 1.1. In blue, again, the 45-degree line.

Market clearing occurs when expected inflation is π e
M = δ

1−τ = 1.5789. There will be excess supply
for any π e

t <π
e
M .

FB1 in the Baseline (i.e., when TFP is A0 = 1) is represented by the red line in Figure 7 while
FB1 when TFP is A1 = 1.1—denoted with FB1(A1)—is represented by the black line. In blue the
45-degree line.

Points UB and UN are the unbiased solutions in the Baseline and in the Non-stationary sce-
nario. With our calibration, we get πUB = 0.9708768 and πUN = 0.9621235. The increase in TFP
therefore makes inflation go down in the unbiased case. This is confirmed by the numerical solu-
tion for the case of a Non-stationary scenario characterized by the same sale tax but a bigger TFP
increase (A1 = 2), as shown by the first row of Table 2.

The dynamical model in the Non-stationary scenario in the Adaptive regime consists of
FB1(A1) and FB2:

D2:

{
πt = exp

{
0.2× 1.331

[
0.953 8

27 (π
e
t )3 − 0.952 49 (π

e
t )2

]}
xet = 0.8+ 0.2

πt−1

(36)

Therefore, the law of motion of inflation becomes

πt = exp

{
0.2× 1.331

[
0.953

8
27

(
0.8+ 0.2

πt−1

)3
− 0.952

4
9

(
0.8+ 0.2

πt−1

)2
]}

(37)

The phase diagram of (37) is represented by the black curve in Figure 8 (when we measure πt on
the y-axis). To facilitate comparison, the red line is the phase diagram of the law of motion in the
Baseline, that is, equation (32).

The blue line is the 45-degree line. Points S0 and S1 are the steady states in the Baseline and
the Non-stationary scenario, respectively. In the Non-stationary scenario, long-run inflation is
slightly smaller than in the Baseline. The increase in TFP therefore exacerbates the deflationary
trend. This is confirmed by the numerical solution for the case of a bigger TFP shock (A1 = 2), as
shown by the third row of Table 2.

The dashed red curve represents FB2 when we measure π e
t on the y-axis. The coordinate on

the y-axis of point E0 (resp: E1) is expected inflation when the economy is in the steady state S0
(S1). Expected inflation is increasing with TFP (see fourth row of Table 2). The forecasting mistake
is negative and its absolute value is the length of the E0 − S0 segment in the Baseline and of the
E1 − S1 segment in the Non-stationary scenario. The bias is negative and increasing with TFP (see
fifth row of Table 2).
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Figure 8. Inflation dynamics in the Adaptive regime: Effects of a TFP shock. The solid black curve is the phase diagram of
(37). The solid above red curve (online version) is the phase diagram of (32). The blue straight line is the 45-degree line (when
we measure πt on the y-axis). The dashed red curve is FB2 in the Adaptive regime (when we measure πet on the y-axis). The
length of the red vertical segment E0 − S0 represents the forecasting mistake before the TFP shock. The length of the black
vertical segment E1 − S1 represents the forecasting mistake after the TFP shock.

Figure 9. Inflation dynamics in the Belief Correction regime: Effects of a TFP shock. The solid black curve is the phase
diagram of (39). The above solid red curve is the phase diagram of (34). In blue the 45-degree line. The dashed red line is
FBc2.

Consider now the Non-stationary scenario in the BC regime. The dynamical model consists of
FB1(A1) and FBc2:

D3:

{
πt = exp

{
0.2× 1.331

[
0.953 8

27 (π
e
t )3 − 0.952 49 (π

e
t )2

]}
xet = 1.8− 0.8

πt−1

(38)

The law of motion of inflation is

πt = exp

{
0.2× 1.331

[
0.953

8
27

(
1.8− 0.8

πt−1

)3
− 0.952

4
9

(
1.8− 0.8

πt−1

)2
]}

(39)

The phase diagram of (39) is represented by the black curve in Figure 9. The red line is the phase
diagram of the law of motion in the BC regime in the Baseline (i.e., equation (34)). In blue, the
45-degree line.

Points S′
0 and S′

1 are the steady states in the Baseline and the Non-stationary scenario, respec-
tively. In the Non-stationary scenario, steady state inflation is slightly smaller than inflation in the
Baseline. Also with BC, therefore, the increase in TFP exacerbates the deflationary trend (see the
ninth row of Table 2). The dashed red line represents FBc2 (when we measure π e

t on the y-axis).
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In the Non-stationary scenario (as in the Baseline), expected inflation is still higher than current
inflation but very close so that the bias is very close to zero. This is true also for a much bigger TFP
shock as shown by row 11 of Table 2.

Given our parameterization, the increase in TFP makes inflation decrease in both regimes. In
fact, TFP (one of the determinants of ζ ) acts as a magnifier of excess demand in the price adjust-
ment equation. Starting from a long-run situation of excess supply such as S0 or S′

0, a positive
TFP shock amplifies excess supply and therefore contributes to depress the dynamics of the price
level.

In the Adaptive regime, the TFP shock magnifies the forecasting mistake because (i) a positive
TFP shock makes actual inflation go down and (ii) the decline of actual inflation makes expected
inflation go up. On the contrary, in the BC regime, the forecasting mistake shrinks remarkably. In
fact, with BC, expected inflation is increasing with actual inflation so that expected inflation fall
more or less in line with actual inflation.

We summarize these numerical solutions in the following result:

Result 8. In the Adaptive regime, the magnitude of the bias is increasing with TFP; it goes from
b= −3.5% when A0 = 1 (Baseline scenario) to bN = −4.6% when TFP is A1 = 1.1 (Non-stationary
scenario).

On the contrary, in the BC regime, the bias in the Non-stationary scenario is b′N = −0.7%, close
to that observed in the Baseline (b= −0.5%) (row 11 of Table 2) and close to zero.

This result is in line with result 3 obtained from simulations of the ABM. In the ABM, the average
bias in the Non-stationary scenario is b= −4% (as against −2.5% in the Baseline) in the Adaptive
regime and b′ = −0.5% (as against zero in the Baseline) in the BC regime.

Let’s now turn to employment and output. The increase in TFP pushes output up more than
employment and the wage bill (hence, the increase in excess supply and the increased deflationary
pressure) in both regimes.

Result 9. In the Adaptive regime, in the Baseline, employment associated to the steady state is 11%
higher than in the unbiased case while in the Non-stationary scenario employment is 15% higher
than in the unbiased case. The employment ratio is high and increasing with TFP (row 8 of Table 2).

In the BC regime, both in the Baseline and in the Non-stationary scenario employment associated
to the steady state is still higher but much closer to employment in the unbiased case and there is no
clear relationship between TFP and the employment ratio.

This result is in line with result 4 obtained from simulations of the ABM. As in the ABM, in
the skeletal model with AEs and Non-stationarity, employment is remarkably bigger than in the
unbiased case and increasing with TFP. In the BC regime, on the contrary, the employment ratio
declines substantially both in the Baseline and in the Non-stationary scenario. The long-run levels
of inflation, expected inflation, the bias, employment, excess demand, and the employment rate
in the Non-stationary scenario are reported in the second and third columns of Table 2, starting
from the third row.

In our view, the skeletal model captures the essence of the interactions between expected and
actual inflation in the ABM surprisingly well, especially taking into account the departures from
the original agent-based setting due to the simplifications and shortcuts we have introduced to
make the model tractable.

7. Conclusions
In macroeconomic theory, agents adopting an adaptive algorithm to form expectations are bound
to make systematic errors. This characterization is patently unrealistic: real world agents are
not generally and collectively incapable of recognizing and amending forecast mistakes. LtF
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experiments show that human subjects indeed use the adaptive heuristic to form expectations but
they are not prone to systematic mistakes as suggested by the theory. In this paper, we investigate
the reasons for this apparent paradox.

First of all we build a (simple) ABM populated by agents holding heterogeneous expectations
to generate a complex environment. In such an environment agents rely on simple heuristics to
form expectations because model-consistent expectations are simply too difficult to implement.
Simulations show that, absent BC, the mean forecast error is negative and significant: purely
adaptive firms significantly overestimate inflation. Since optimal production and employment are
increasing with expected inflation, production and employment are significantly bigger than they
would be if agents had unbiased expectations. With a standard adaptive rule, the average forecast
error is sizable.

We have then assumed that adaptive agents augment their expectation updating rule with a
BCT proportional to the drift of inflation. Simulations show that the adoption of such a rule can
substantially reduce the average forecast error bringing the bias close to zero.

Moreover, we have explored the consequences of the introduction of a sale tax to finance fun-
damental research. This policy move affects TFP that in turn is driving GDP. Without BC, in the
presence of a technological drift, the average forecast error is even bigger than in the absence of
the policy. With BC, however, the average error goes down approximately to zero.

We have also presented and discussed a 2-equation nonlinear macro-dynamic model with
homogeneous expectations which captures the inner mechanism of the ABM. The first equation
(Feedback 1) describes the price adjustment process and captures the feedback from expected
inflation to actual inflation. The second equation (Feedback 2) is the expectation formationmech-
anism and captures the feedback from actual inflation to expected inflation. This 2-equation
system replicates the results of the ABM surprisingly well.

Further experimentation is required to assess the applicability of these ideas to larger and
more complex macroeconomic ABMs. The wide range of variables over which agents must form
expectations in larger models adds layers of complexity to the design of the BC (and bias miti-
gation) mechanism. We are convinced, however, that this terrain is worth exploring to provide a
convincing benchmark for this class of models.
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Notes
1 In other words, individual agents may make forecasting mistakes but the average error is zero. RE are characterized also by
minimal variance of the distribution of errors since the information set the agents use incorporates all the relevant informa-
tion. The aggregation of expectations may underweight private information but public information is correctly accounted for
(Satopää, 2017; Clements, 2019).
2 The specific functional form of the price adjustment process (6) guarantees that the gross inflation rate generated by the
simulations never falls in the negative domain. With exponential price adjustment, even with negative excess demand, we will
get positive gross inflation rates.
3 See, in particular, the extensive discussion of simple misspecified expectational rules in Hommes and Zhu (2014). For an
interesting application of this approach to a macroeconomic ABM with high forecasting performance, see Poledna et al.
(2023).
4 See Palestrini and Gallegati (2015) and Palestrini (2017).
5 This result is in line with the literature that compares AEs to REs. Evans and Honkapohja (2001) make a similar point in the
case of constant gain expectation scheme.
6 We have excluded the initial four observations essential for the lag-4 autoregressive BC term.
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7 By definition
∑F

i=1 (π e
i,t)

2 = Fm2,t and m2,t = σ2,t + (π e
t )2 where σ2,t is the variance. Therefore,

∑
i (π e

i,t)
2 = F[σ2,t +

(π e
t )2]. With a similar line of reasoning we conclude that

∑
i (π e

i,t)
3 = Fm3,t = F[σ3,t + 3σ2,tπ e

t + (π e
t )3] where σ3,t is the

third central moment, that is, a measure of the asymmetry of the distribution.
8 To be precise, as shown by the intercept of FB1, excess demand is zero also when π e = 0, so that employment and output
are also equal to zero, a scenario devoid of any interest.
9 We present and discuss the unbiased solutions in the appendix.
10 Table 2 reports the numerical values of the variables of interest in the different scenarios: Baseline in column 1, Non-
stationary scenarios with 10% increase in TFP in column 2 and with 100% increase in TFP in column 3. The first and second
rows show inflation and employment in the unbiased case. Rows 3 to 8 show numerical long-run or steady state solutions in
the Adaptive regime, rows 9 to 14 report numerical solutions in the BC regime.
11 By construction, the skeletal model, characterized by uniform expectations, cannot capture the change in the dispersion
of the individual biases generated by the application of BC.
12 For simplicity, in this section, we depart from the setting of the ABM by assuming that (i) the probability of a TFP change
is pA = 1 if the Government carries out tax financed R&D and (ii) the change of TFP is a permanent discrete jump instead of
a growth process.
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A. The unbiased solution
Consider a population of identical firms. The production function of the representative firm is
qt =Atn

1
δ
t . At the beginning of t, (sub-period t0) the firm has to form expectations on the sale

price Pt which will be revealed only at the end of the period (sub-period t1) when transactions will
be carried out. By assumption Pt /∈�t0 where�t0 is the information set in t0. We also assume, for
simplicity, that the real wage, TFP, and the exponent of the production function are contained in
the information set. We will denote the RE of the sale price with E(Pt) := Et0 (Pt|�t0 ). The firm
chooses at the beginning of t the optimal quantity by maximizing expected profits:

E(�t)= (1− τ )E(πt)qt −wtAt
−δqδt

where πt := Pt
Pt−1

is the (gross) inflation rate and E(πt) := Et0 (Pt |�t0 )
Pt−1

is the expected inflation rate.
From the FOC, we determine optimal output and employment:

qt = ηζtE(πt)
1
δ−1 (40)

nt = 1
wt
ηδζtE(πt)

δ
δ−1 (41)

ζt := A
δ
δ−1
t w

− 1
δ−1

t (42)

η :=
(
1− τ

δ

) 1
δ−1

The determinants of ζt—that is, the wage rate and TFP—are governed by stochastic processes
spelled out in the text (see section 3). The demand accruing to each firm is 1/F of the aggregate
real wage bill wtFnt . Hence, excess demand will be EDt = F(wtnt − qt). Using the equations for
optimal output and employment, we can rewrite excess demand as follows:

EDt = F

[
wt

(
qt
At

)δ
− qt

]
= ζtF

[
ηδE(πt)

δ
δ−1 − ηE(πt)

1
δ−1

]
(43)

Substituting (43) into the price adjustment process (6) we obtain FB1

πt = exp
{
γpζtF

[
ηδE(πt)

δ
δ−1 − ηE(πt)

1
δ−1

]}
exp (εP) (44)

Suppose that firms know the “true model” of the economy (i.e., FB1). Suppose, moreover, that
they know the law of motion of the wage rate and therefore they know the wage wt in each perio.
In order to determine model-consistent expectations, we must take the expected value of (44).
We get

E(πt)= exp
{
γpζtF

[
ηδE(πt)

δ
δ−1 − ηE(πt)

1
δ−1

]}
(45)

The RE E(πt)RE is the solution for E(πt) of (45).
When expectations are rational, by construction the forecast error is εt = E(πt)[ exp

(εP)− 1] so that E(εt)≈ 0. In words, REs are unbiased. Once expected inflation is determined,
we can plug the solution into (40) and (41) to obtain output and employment and into (44) to
get actual inflation. Market clearing occurs when the expression in brackets is zero, that is, when
expected inflation is E(πt)M = η1−δ . In this case, by construction the price level is stationary, that
is, πM = 1. In our calibration, δ = 3/2 so that E(πt)M = η1−δ = δ = 3/2.

Since FB1 is nonlinear, there could be multiple rational solutions for any combination of
parameter values. To illustrate the determination of rational solutions, let’s consider the Baseline
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Figure 10. Model-consistent expectations andunbiased solutions. The convex (red online) curve represents FB1 when expec-
tations are homogeneous and the representative agent knows the true model of the economy. The (blue) straight line is the
45-degree line.

characterized by τ = 0 so that A0 = 1. Recall that the real wage follows an exogenous AR(1) pro-
cess. We want to compute the unbiased solution in the final period of the time window used for
simulation (T = 40). We therefore assume that the real wage (known to the firms) is given, say
wT = 1. At this point, we can pin down the numerical value of ζ which turns out to be ζ0 = 1.
Since δ = 3/2, η= 4

9 and η
δ = 8

27 . Moreover, γP = 0.001 and F = 200 (see Table 1). Therefore, FB1
specializes to

πt = exp
{
0.2

[
8
27

E(πt)3 − 4
9
E(πt)2

]}
exp (εP) (46)

In Figure 10, we represent FB1. Point M = (1.5, 1) is the market clearing solution. All the points
of FB1 between the intercept and M are characterized by E(πt)< 1.5 and excess supply so that
πt < 1. Of course, the opposite occurs for points of FB1 to the right of M. Point M does not lie on
the 45-degree line; hence, it is not an unbiased solution.

The rational or unbiased solutions in the Baseline scenario are the fixed pointsUB andVB. Point
UB is characterized by excess supply and deflation, while VB features excess demand and infla-
tion. With the chosen parameterization, the unbiased solutions are πUB = 0.9708768 (reported
in the first row of Table 2) and πVB = 3.3304102. Given the initial conditions, in our simula-
tions the unbiased solution is the smaller one, which is less than but very close to 1. Plugging this
unbiased solution in the definition of output and employment, in the Baseline scenario, we get
qUB = 0.4189341 and nUB = 0.2711555 (reported in the second row of Table 2) so that total GDP
and employment are QUB = 83.7868 and NUB = 54.2311.

In section 6, we consider a Non-stationary scenario characterized by a sale tax rate τ = 0.05 that
generates a permanent TFP jump from A0 = 1 (Baseline) to A1 = 1.1. For ease of comparison,
suppose that the wage is still wT = 1. Hence, the numerical value of ζ increases from ζ0 = 1 to
ζ1 = 1.331. Therefore, FB1 becomes

πt = exp
{
0.2× 1.331

[
0.953

8
27

E(πt)3 − 0.952
4
9
E(πt)2

]}
exp (εP) (47)
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The unbiased (smaller) solution after the TFP shock is πUN = 0.9621235 (see first row of Table 2)
so that qUN = 0.4942019 and nUN = 0.3011394. Total GDP and employment in the unbiased case
are QUN = 98.84038 and NUN = 60.22788.

Notice that the unbiased solution changes with the wage. In each simulation, we get a differ-
ent final period wage and therefore a different unbiased solution for inflation, employment, and
output.
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