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AXIOMATIZATION AND FORCING IN SET THEORY WITH
URELEMENTS

BOKAI YAO

Abstract. In the first part of this paper, we consider several natural axioms in urelement set
theory, including the Collection Principle, the Reflection Principle, the Dependent Choice scheme and
its generalizations, as well as other axioms specifically concerning urelements. We prove that these axioms
form a hierarchy over ZFCUR (ZFC with urelements formulated with Replacement) in terms of direct
implication. The second part of the paper studies forcing over countable transitive models of ZFUR. We
propose a new definition of P-names to address an issue with the existing approach. We then prove the
fundamental theorem of forcing with urelements regarding axiom preservation. Moreover, we show that
forcing can destroy and recover certain axioms within the previously established hierarchy. Finally, we
demonstrate how ground model definability may fail when the ground model contains a proper class of
urelements.

§1. Introduction. This paper explores two related topics in set theory with
urelements: axiomatization and forcing. One interesting feature of urelement set
theory is that once a proper class of urelements is allowed, many ZF-theorems, such
as the Collection Principle and the Reflection Principle, are no longer provable. In
Section 2, we show that these principles, together with other axioms concerning
urelements, form a hierarchy in terms of direct implication over the theory ZFCUR

(Theorem 2.5). Consequently, the Collection Principle and the Reflection Principle
can be characterized by the arrangement of urelements (Corollary 2.12.1). We apply
these results to show that the Collection Principle is equivalent to the Łoś theorem
for internal ultrapowers (Theorem 2.18).

We turn to forcing with urelements in Section 3. This topic has been studied
in Blass and Ščedrov [1] and Hall [6, 7], yet two main issues remain unexplored
in the literature. The first issue concerns the forcing machinery in the presence of
urelements. Previous studies have treated each urelement as a distinct copy of the
empty set, making it its own P-name. This approach, however, causes the forcing
relations to lack a desired property called fullness. A new forcing machinery is
thus proposed (Definition 3.4). We show that in any countable transitive model
M of ZFCUR, every new forcing relation in M is full if and only if M satisfies
the Collection Principle (Theorem 3.12). This, along with Theorem 2.18, suggests
that a robust axiomatization of ZFC with urelements should include the Collection
Principle.
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2 BOKAI YAO

The second issue is the interaction between forcing and the hierarchy of axioms
isolated in Section 2. Existing studies typically assume that the ground model
contains only a set of urelements, which makes the preservation of many axioms
trivial. We show that forcing with a class of urelements can preserve, destroy,
and recover various axioms within the hierarchy. For instance, forcing preserves
Replacement (Theorem 3.16) but not the DC�1 -scheme (Theorem 3.20); the
Reflection Principle can be recovered by forcing from models of ZFCUR + DC�-
scheme (Theorem 3.22). Finally, we show how ground model definability may fail
when there is a proper class of urelements.

The rest of this section introduces our notations and reviews some basic facts about
urelement set theory. Urelements, which are sometimes also called “atoms”, are
members of sets that are not themselves sets. The language of urelement set theory,
in addition to ∈, contains a unary predicate A for urelements. Set(x) abbreviates
¬A(x). The standard axioms (schemes) of ZFC, modified to allow urelements, are
as follows.

(Axiom A) ∀x(A(x) → ¬∃y(y ∈ x)).
(Extensionality) ∀x, y(Set(x) ∧ Set(y) ∧ ∀z(z ∈ y ↔ z ∈ x) → x = y).
(Foundation) ∀x(∃y(y ∈ x) → ∃z ∈ x (z ∩ x = ∅)).
(Pairing) ∀x, y∃z∀v(v ∈ z ↔ v = x ∨ v = y).
(Union) ∀x∃y∀z(z ∈ y ↔ ∃w ∈ x (z ∈ w)).
(Powerset) ∀x∃y∀z(z ∈ y ↔ Set(z) ∧ z ⊆ x).
(Separation) ∀x, u∃y∀z(z ∈ y ↔ z ∈ x ∧ ϕ(z, u)).
(Infinity) ∃s(∃y ∈ s (Set(y) ∧ ∀z(z /∈ y)) ∧ ∀x ∈ s (x ∪ {x} ∈ s)).
(Replacement) ∀w, u(∀x ∈ w ∃! yϕ(x, y, u) → ∃v∀x ∈ w ∃y ∈ v ϕ(x, y, u)).
(AC) Every set is well-orderable.

Definition 1.1.

ZU = Axiom A + Extensionality + Foundation + Pairing + Union + Powerset
+ Infinity + Separation.

ZFUR = ZU + Replacement.
ZFCUR = ZFUR + AC.

In ZFUR, every object x has a kernel, denoted by ker(x), which is the set of
the urelements in the transitive closure of {x}. The kernel of a urelement is then
its singleton, which is somewhat nonstandard but will be useful for our purpose.
Note that x ⊆ y is simply ∀z ∈ x(z ∈ y), so the power set of a set x is P(x) = {y |
Set(y) ∧ y ⊆ x}. A set is pure if its kernel is empty. V denotes the class of all pure
sets. Ord is the class of all ordinals, which are transitive pure sets well-ordered by
the membership relation. For any given set of urelements A, the Vα(A)-hierarchy is
defined as usual, i.e.,

V0(A) = A;
Vα+1(A) = P(Vα(A)) ∪ A;
V�(A) =

⋃
α<� Vα(A), where � is a limit;

V (A) =
⋃
α∈Ord Vα(A).

Note that at each successor stage we must include A because P(Vα(A)) only
contains sets.
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AXIOMATIZATION AND FORCING IN SET THEORY WITH URELEMENTS 3

We will also let A stand for the class of all urelements. A ⊆ A thus means “A
is a set of urelements”, i.e., Set(A) ∧ ∀x ∈ A (A(x)). For every x and A ⊆ A,
x ∈ V (A) if and only if ker(x) ⊆ A. U denotes the class of all objects, i.e.,
U =

⋃
A⊆A V (A). Every permutation � of a set of urelements can be extended to

a definable permutation of A by letting � be identity elsewhere; by well-founded
recursion, � can be further extended to a permutation of U by letting �x be
{�y : y ∈ x} for every set x. � preserves ∈ and is thus an automorphism of U.
For every x and automorphism �, � point-wise fixes x whenever � point-wise fixes
ker(x).

Let “A is a set” abbreviate the axiom

∃x(Set(x) ∧ ∀y(y ∈ x ↔ A(y))).

It is consistent with ZFCUR that A is a proper class (i.e., ¬(A is a set)). However, in
urelement set theory proper classes can be rather “small”. For example, ZFCUR has
models in which A is a proper class but every set of urelements is finite; consequently,
ZFCUR cannot prove the Collection Principle (this will be discussed in length in
Section 2.5).

(Collection) ∀w, u(∀x ∈ w∃yϕ(x, y, u) → ∃v∀x ∈ w∃y ∈ vϕ(x, y, u)).

Collection is provable in ZF without urelements and sometimes viewed as part
of the axiomatization of ZF, which is why the subscript R is added to ZFCUR.
However, Collection cannot exclude models with small proper classes, e.g., ZFCUR

+ Collection has models where A is a proper class but every set of urelements is
countable (Theorem 2.17(1)). We end this section with a useful fact that ZFUR

proves a restricted version of Collection.

Proposition 1.2 (ZFUR).

∀w, u,A ⊆ A(∀x ∈ w∃y ∈ V (A)ϕ(x, y, u) → ∃v∀x ∈ w∃y ∈ vϕ(x, y, u)).
Hence, A is a set → Collection.

Proof. For every x ∈ w, let αx be the least α such that there is some y ∈ Vα(A)
with ϕ(x, y, u) and let α =

⋃
x∈w αx . Vα(A) is a desired collection set v. 

§2. A hierarchy of axioms.

2.1. Reflection. In ZF set theory, the reflection principle is normally formulated
as the Lévy–Montague reflection. Namely,

∀α∃� > α∀v1, ... , vn ∈ V�(ϕ(v1, ... , vn) ↔ ϕV� (v1, ... , vn)).

This form of reflection, however, cannot hold when there is a proper class of
urelements since no Vα(A) can reflect the statement that A is a proper class. Thus,
with urelements the reflection principle should be formulated in a more general way
as follows:

(RP)∀x∃t(x⊆ t∧ t is transitive ∧ ∀v1, ... , vn ∈ t(ϕ(v1, ... , vn) ↔ ϕt(v1, ... , vn)).

There is also a seemingly weaker version of RP, which asserts that any true statement
is already true in some transitive set containing the parameters.

(RP–) ∀v1, ... vn[ϕ(v1, ... , vn) → ∃t({v1, ... vn} ⊆ t ∧ t is transitive ∧ ϕt(v1,
... , vn))].

Lévy and Vaught [15] showed that over Zermelo set theory, RP– does not imply RP.
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4 BOKAI YAO

2.2. Dependent choice scheme. The Dependent Choice scheme (studied in [4, 5]),
as a class version of the Axiom of Dependent Choice (DC), asserts that if ϕ defines
a class relation without terminal nodes, then there is an infinite sequence threading
this relation.

(DC-scheme) If for every x there is some y such that ϕ(x, y, u), then for every
p there is an infinite sequence s such that s(0) = p and ϕ(s(n), s(n + 1), u) for
every n < �.

DC can be generalized to DCκ for any infinite well-ordered cardinal κ as follows
(first introduced by Lévy in [13]).

(DCκ) For every x and r ⊆ x<κ × x, if for every s ∈ x<κ, there is some w ∈ x
such that 〈s, w〉 ∈ r, then there is an f : κ → x such that 〈f�α,f(α)〉 ∈ r for
all α < κ.

Similarly, we can formulate the class version of DCκ for any κ.

(DCκ-scheme) If for every x there is some y such that ϕ(x, y, u), then there is
some function f on κ such that ϕ(f�α,f(α), u) for every α < κ.

We say that DC<Ord holds if the DCκ-scheme holds for every κ. One can verify
that the DC�-scheme is indeed a reformulation of the DC-scheme; moreover, the
DCκ-scheme is equivalent to the following [18, Proposition 13].

For every definable class X, if for every s ∈ X<κ there is some y ∈ X with
ϕ(x, y, u), then there is some function f : κ → X such that ϕ(f�α,f(α), u)
for every α < κ.

It is observed in [5, p. 397] that over ZF without Powerset, Collection and the
DC�-scheme jointly imply RP. The same argument goes through in ZFUR as well.

Theorem 2.1. ZFUR � Collection ∧ DC�-scheme → RP.

2.3. Urelement axioms and homogeneity.

Definition 2.2. Let A be a set of urelements.

(1) A set x is realized by A if it is equinumerous with A (abbreviated by x ∼ A);
a set is realized if it is realized by some set of urelements.

(2) A set of urelements B duplicates A, if B and A are disjoint and A ∼ B .
(3) A set of urelements B is a tail of A, if B is disjoint from A and for everyC ⊆ A

disjoint from A there is an injection from C to B.

Since A – A is a tail of A whenever A is a set, the notion of tail can be seen as
a generalized notion of complement in terms of equinumerosity. When AC holds,
the tail cardinal of A is the cardinality of a tail of A if it exists. We then have the
following axioms concerning urelements.

(Plenitude) Every ordinal is realized.
(Closure) The supremum of a set of realized ordinals is realized.
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(Duplication) Every set of urelements has a duplicate.
(Tail) Every set of urelements has a tail.

A key notion that will be frequently used is homogeneity over A, which is originally
introduced in [9].

Definition 2.3. Homogeneity holds over a set of urelements A, if whenever
B ∪ C ⊆ A is disjoint from A and B ∼ C , there is an automorphism � such that
�B = C and � point-wise fixes A.

Intuitively, when homogeneity holds over A, all equinumerous sets of urelements
outside A are indistinguishable from the perspective of A.

Lemma 2.4 (ZFCUR).

(1) Homogeneity holds over some A ⊆ A.
(2) If A ⊆ A′ ⊆ A and homogeneity holds over A, then homogeneity holds over A′.
(3) Every A ⊆ A is a subset of some A′ over which homogeneity holds.

Proof. To show that homogeneity holds over some A ⊆ A, it suffices to show
that every infinite D ⊆ A disjoint from A has a duplicate D′ that is also disjoint
from A. To see this, suppose thatD = B ∪ C is disjoint from A andB ∼ C . Then fix
some duplicate D′ of D that is disjoint from A, within which there is a duplicate B ′

of B. We can then let �1 be an automorphism that swaps B and B ′ while point-wise
fixing A and �2 be an automorphism that swaps B ′ and C while point-wise fixing A.
The composition of �1 and �2 is then a desired automorphism.

(1) Suppose Tail holds. Let A be a set of urelements with the least tail cardinal κ.
Suppose that D is disjoint from A, which has size at most κ. Let E be a tail ofD ∪ A.
By the minimality of κ, E must have size κ; so for some E ′ ⊆ E, E ′ ∼ D. E ′ is then
a duplicate of D that is disjoint from A. If Tail does not hold, then A is a proper
class and we can fix anA ⊆ A without tails. Suppose thatD ⊆ A is disjoint from A.
We may assume D is infinite and hence has size κ for some infinite cardinal κ. Then
there must be some E ⊆ A of size κ+ that is disjoint from A, which means E – D
has size κ+. So E has a subset which duplicates D.

(2) Suppose thatA ⊆ A′ ⊆ A and homogeneity holds over A. Let D be an infinite
set of urelements disjoint from A′. Let E = (A′ – A) ∪D. Since E is infinite, by AC
it can be partitioned into a pair of duplicates E1 and E2 such that E ∼ E1 ∼ E2. By
homogeneity over A, there is an automorphism � such that �E1 = E and � point-
wise fixes A. SinceE1 has a duplicate disjoint from A, by applying � it follows that E
has a duplicate disjoint from A. LetE ′ be such a duplicate of E, which is also disjoint
fromA′. SinceD ⊆ E,E ′ has a subset that duplicates D. Hence, homogeneity holds
over A′.

(3) is an immediate consequence of (1) and (2). 
AC cannot be dropped in Lemma 2.4: there are models of ZFUR where

homogeneity holds over no set of urelements [18, Theorem 46].

2.4. Implication diagram.

Theorem 2.5. Over ZFCUR, the following implication diagram holds. The diagram
is complete: if the diagram does not indicate that ϕ implies 	, then ZFCUR + ϕ � 	
if ZFCUR is consistent.
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DC�-scheme

Tail

Plenitude

DC<Ord

DCκ-scheme

Closure

RP

Closure∧Duplication

Collection RP–

...

Duplication

..

.

DC�1 -scheme

A is a set

Figure 1. Implication Diagram in ZFCUR.

The fact that Collection implies DC�-scheme is first proved by Schlutzenberg
in an answer to a question on Mathoverflow [2]; Plenitutde and Tail are implicitly
discussed in Schlutzenberg’s proof. All other non-trivial implications in Figure 1
are new, many of which, such as Tail → Collection, will be useful for the later
discussions of forcing. The proof of Collection → DC�-scheme in this paper also
takes a different route by using Lemma 2.4. The rest of this subsection establishes
all the non-trivial implications in the diagram; the completeness of the diagram will
be proved in 2.5.

We first prove that Plenitude implies DC<Ord . Given a formula ϕ(x, y, u) with
some parameter u, for any ordinals α, α′, κ, κ′ and set of urelements E, we say that
〈κ′α′〉 is a (ϕ,E)-extension of 〈κ, α〉 if (i) α ≤ α′, and (ii) whenever A ⊆ A extends
E by κ-many urelements, there is some B ⊆ A disjoint from A with B ∼ κ′ such
that for every x ∈ Vα(A), there is some y ∈ Vα′(A ∪ B) such that ϕ(x, y, u).

Lemma 2.6 (ZFCUR). Suppose that Plenitude holds and ∀x∃yϕ(x, y, u). Then
every 〈κ, α〉 has a (ϕ, ker(u))-extension.

Proof. By the remark in the proof of Lemma 2.4, Plenitude implies that
homogeneity holds over every set of urelements. Fix some 〈κ, α〉 and some A ⊆ A
extending ker(u) with κ-many urelements. For each x ∈ Vα(A), define 
x to be the
least cardinal such that there is some y with ϕ(x, y, u) and ker(y) ∼ 
x , and let
κ′ = Sup{
x : x ∈ Vα(A)}. Fix some infinite B of size κ′ that is disjoint from A,
which exists by Plenitude. Then for everyx ∈ Vα(A), fix somey′ such thatϕ(x, y′, u)
and ker(y′) ∼ 
x . ker(y′) – A is equinumerous to a subset of B, so by homogeneity
over A, there is an automorphism � that moves ker(y′) into B and point-wise fixes A.
It follows that ϕ(x, �y′, u) and �y′ ∈ V (A ∪ B). Thus, each x ∈ Vα(A) has some
y ∈ V (A ∪ B) with ϕ(x, y, u), so there is some large enough α′ such that every
x ∈ Vα(A) has some y ∈ Vα′(A ∪ B) with ϕ(x, y, u). Furthermore, for every A′

extending ker(u) by κ-many urelements, by homogeneity over ker(u), there is an
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automorphism � with �A = A′ that point-wise fixes ker(u); so �B will be such that
every x ∈ Vα(A′) has some y ∈ Vα′(A′ ∪ �B) with ϕ(x, y, u). Therefore, 〈κ′, α′〉 is
indeed a (ϕ, ker(u))-extension of 〈κ, α〉. 

Theorem 2.7 (ZFCUR). Plenitude → DC<Ord .

Proof. Suppose that Plenitude holds. It suffices to show that the DCκ-scheme
holds for every regular cardinal κ since by a standard argument as in
[10, Theorem 8.1], this will imply the DC�-scheme for every singular � as well.
So suppose that κ is regular and ∀x∃yϕ(x, y, u) with some parameter u. We
will construct a set x̄ that is closed under < κ-sequences (i.e., x̄<κ ⊆ x̄) and the
ϕ-relation (i.e., ∀x ∈ x̄∃y ∈ x̄ϕ(x, y, u)). This will suffice for the DCκ-scheme
because we can apply DCκ to x̄ to get a desired κ-sequence.

We first construct a κ-sequence of pairs of ordinals 〈〈�α, �α〉 : α < κ〉 by recursion
as follows. Let A0 be a set of urelements that extends ker(u) by �0-many urelements
and �0 be an ordinal with cf(�0) = κ. For each ordinal α < κ, we let 〈�α+1, �α+1〉
be the lexicographical-least (ϕ, ker(u))-extension of 〈�α, �α〉 with cf(�α) = κ, which
exists by Lemma 2.6; we take the union at the limit stage. By Plenitude, there exists a
κ-sequence of sets of urelements 〈Aα : α < κ〉, whereAα extends

⋃
�<α A� ∪ ker(u)

by �α-many urelements. Let x̄ =
⋃
α<κ V�α (Aα). For any x ∈ V�α (Aα), there is some

B disjoint from Aα witnessing the fact that 〈�α+1, �α+1〉 is a (ϕ, ker(u))-extension
of 〈�α, �α〉. By homogeneity over Aα , it follows that Aα+1 – Aα is a witness as well,
so there is some y ∈ V�α+1 (Aα+1) with ϕ(x, y, u). This shows that x̄ is closed under
the ϕ-relation. Finally, x̄<κ ⊆ x̄ because cf(�α) = κ for each α < κ and κ is regular.
This completes the proof. 

Theorem 2.8 (ZFCUR).

(1) Closure ∧ Duplication → Collection.
(2) Plenitude → (Closure ∧ Duplication ∧ Collection).

Proof. (1) Assume Closure and Duplication. Suppose that ∀x ∈ w∃yϕ(x, y, u),
where w is a set and u is a parameter. For every x ∈ w, let 
x be the least 
 realized
by the kernel of some y such that ϕ(x, y, u), and define 
 as the supremum of
all such 
x . Let A ⊆ A be such that ker(w) ∪ ker(u) ⊆ A and homogeneity holds
over A, which exists by Lemma 2.4(3). By Closure and Duplication, there is aB ⊆ A
of size 
 that is disjoint from A. Then for every x ∈ w, fix a y′ such that ϕ(x, y′, u)
and ker(y′) ∼ 
x . By homogeneity over A, there is an automorphism that moves
ker(y′) intoA ∪ B while point-wise fixing A. Thus, everyx ∈ w has a y ∈ V (A ∪ B)
such that ϕ(x, y, u). Therefore, Collection holds by applying Proposition 1.2.

(2) Assume Plenitude. Closure immediately follows. By (1), it remains to show
Duplication holds. Given an infinite A ⊆ A, A ∼ κ for some infinite cardinal κ and
we can fix some B that realizes κ+. So B contains a subset that duplicates A. 

Theorem 2.9 (ZFCUR). Tail → Collection

Proof. Assume that every set of urelements has a tail and suppose that ∀x ∈
w∃yϕ(x, y, u). There is anA ⊆ A such that ker(w) ∪ ker(u) ⊆ A and homogeneity
holds over A. Let B be a tail of A. For every x ∈ w and y′ such that ϕ(x, y′, u),
ker(y′) – A can be mapped injectively into B. So by homogeneity over A, there is an

https://doi.org/10.1017/jsl.2024.58 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.58


8 BOKAI YAO

automorphism that moves ker(y′) into A ∪ B while point-wise fixing A. Therefore,
everyx ∈ w has some y ∈ V (A ∪ B) such thatϕ(x, y, u) and hence Collection holds
by Proposition 1.2. 

The next two lemmas demonstrate how the DCκ-scheme is related to urelements.

Lemma 2.10 (ZFCUR). Let κ be an infinite cardinal. Assume that the DCκ-scheme
holds and A is a proper class. Then κ is realized.

Proof. Since A is a proper class, for every x, there is some y with ker(x) �
ker(y). It follows from the DCκ-scheme that there exists a κ-sequence f with
ker(f�α) � ker(f(α)) for every α < κ. Fix a well-ordering ≺ of ker(f). Then
the map

α �→ the ≺ -least element of ker(f(α + 1)) – ker(f�(α + 1))

is an injection from κ to ker(f). Therefore, κ is realized. 

Lemma 2.11 (ZFCUR). Let κ be an infinite cardinal and suppose that every set of
urelements has a tail of size at least κ. Then the DCκ-scheme holds.

Proof. Again, we may assume κ is regular. Suppose that ∀x∃yϕ(x, y, u) with
some parameter u. Let A be a set of urelements extending ker(u) over which
homogeneity holds and B be a tail of A. Since B has size at least κ, B can be
partitioned into κ-many pieces {B� : � < κ}, where B� ∼ B for each �. We define a
κ-sequence of ordinals 〈�α : α < κ〉 by recursion, where �α is the least ordinal such
that:

(i) �α >
⋃
�<α �� and cf(�α) = κ;

(ii) for every x in
⋃
�<α V�� (

⋃
�<α B� ∪ A), there is a y ∈ V�α (

⋃
�≤α B� ∪ A) with

ϕ(x, y, u).

Such �α exists, because homogeneity holds over
⋃
�<α B� ∪ A by Lemma 2.4 (2)

and each B� is a tail of A, which allows us to find a sufficiently large �α . Let
x̄ =

⋃
α<κ V�α (

⋃
�≤α B� ∪ A). It follows that x̄ is closed under the ϕ-relation and

x̄<κ ⊆ x̄. We can then apply DCκ to x̄ to get a desired κ-sequence. 

Theorem 2.12 (ZFCUR).

(1) A is a set → DC<Ord .
(2) DC<Ord → Collection.
(3) RP– → Collection.
(4) Collection → Closure.
(5) Collection → (Plenitude ∨ Tail ).
(6) Collection → DC�-scheme.
(7) Collection → RP.

Hence, the implication Figure 1 holds over ZFCUR.

Proof. (1) Assume A is a set and ∀x∃yϕ(x, y, u). Fix some regular κ. Define
〈�α : α < κ〉 by recursion by letting �α be the least ordinal such that cf(α) = κ
and ∀x ∈

⋃
�<α V�� (A)∃y ∈ V�α (A)ϕ(x, y, u). Let x̄ =

⋃
α<κ V�α (A). As before,

we can then apply DCκ to x̄ to get a desired κ-sequence.
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(2) By Lemma 2.10, DC<Ord implies that either Plenitude holds or A is a set. But
(Plenitude ∨ A is a set) implies Collection by Proposition 1.2 and Theorem 2.8, so
DC<Ord implies Collection.

(3) Suppose that RP– holds. Again, by Theorem 2.8 we may assume that Plenitude
fails. Now we show that Tail holds, which suffices by Theorem 2.9. So fix an A ⊆ A
and let κ be the least cardinal that is not realized by any set of urelements disjoint
from A. κ exists because Plenitude fails. Then by RP– there is a transitive set t
extending {κ,A} such that t reflects ∀� < κ∃B(B ∼ � ∧ B ∩ A = ∅). It is not hard
to check C =

⋃
{B ∈ t : B ⊆ A ∧ B ∩ A = ∅} is a tail of A.

Now assume Collection.
(4) Let x be a set of realized cardinals. Then there is a set y such that for every

κ ∈ x, there is some A ∈ y such that A ∼ κ. Let B =
⋃
{A : A ∈ y}. Then the

cardinality of B is at least the supremum of x and hence Closure holds.
(5) Suppose that Plenitude fails. Given a set A of urelements, let w be the set of

cardinals realized by some B ⊆ A disjoint from A. By Collection there is some set
v such that for every � ∈ w, there is some B ∈ v such that B ∼ � and B ∩ A = ∅.
C =

⋃
{B ∈ v : B ⊆ A ∧ B ∩ A = ∅} is a tail of A.

(6) To show the DC�-scheme holds, we may assume that Plenitude fails by
Theorem 2.7 and that A is a proper class by (1). Then by Collection and (5),
every set of urelements must have an infinite tail, so the DC�-scheme holds by
Lemma 2.11.

(7) RP holds by (6) and Theorem 2.1. 

As a consequence, Collection and Reflection can be characterized in terms of
urelements in ZFCUR.

Corollary 2.12.1 (ZFCUR). The following are equivalent.

(1) RP.
(2) RP–.
(3) Collection.
(4) Plenitude ∨ Tail.

Proof. (1) → (2) is immediate. (2) → (3) and (3) → (4) are proved in
Theorem 2.12. (4) → (1) by Theorems 2.8, 2.9, and 2.12 (7). 

Many of the implications in Figure 1 no longer hold without AC. For example,
ZFUR+ Plenitude cannot prove either Duplication or Collection, as shown in [18,
Theorem 36]. Meanwhile, many questions regarding ZFUR are open.

Open Question 2.13. Does ZFUR prove any of the following?

(1) Tail → Collection.
(2) Collection → RP–.
(3) RP– → Collection.

2.5. Completeness of the diagram. We shall prove the completeness of Figure 1
by an easy method of building inner models of ZFCUR, which is implicitly used in
[3, 14].
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Definition 2.14. A class I of sets of urelements is an A-ideal if:

(1) A /∈ I (if A is a set);
(2) if A,B ∈ I, then A ∪ B ∈ I;
(3) if A ∈ I and B ⊆ A, then B ∈ I;
(4) for every a ∈ A, {a} ∈ I.

Given an A-ideal I, U I = {x ∈ U : ker(x) ∈ I}, i.e., the class of objects whose
kernel is in I.

As in ZF, classes are always understood as definable classes. When X is a class
and � is a permutation of A, �X denotes the class {�x | x ∈ X}.

Lemma 2.15. Let I be an A-ideal. Then for every a,A such that a ∈ A ∈ I, there
is a permutation � of A such that (i) �I = I, (ii) �a �= a and (iii) � point-wise fixes
A – {a}.

Proof. Fix some a′ ∈ A – A. Let � be a permutation that only swaps a and a′.
To see that �I = I, let B ∈ I. We may assume a ∈ B and a′ /∈ B . Then �B = (B –
{a}) ∪ {a′}, which is in I. Also, B = �((B – {a}) ∪ {a′}). Therefore, �I = I. 

Theorem 2.16 (ZFCUR). Let I be an A-ideal. Then U I |= ZFCUR + “A is a
proper class”.

Proof. It is clear that U I is transitive and contains all the urelements and pure
sets. Thus, U I satisfies Foundation, Extensionality, Infinity, and A is a proper
class in U I. It is also immediate that U I satisfies Pairing, Union, Powerset, and
Separation.U I |= AC because for any set x inU I, any bijection in U between x and
an ordinal has the same kernel as x and hence also lives in U I. It remains to show
that Replacement holds in U I.

Suppose thatU I |= ∀x ∈ w∃! yϕ(x, y, u) for somew, u ∈ U I. Let v = {y ∈ U I :
∃x ∈ w ϕUI

(x, y, u)}, which is a set in U. It suffices to show that ker(v) ⊆ ker(w) ∪
ker(u). Suppose not. Then there are some y and a such that y ∈ v, a ∈ ker(y)
and a /∈ ker(w) ∪ ker(u). Let A = ker(w) ∪ ker(u) ∪ ker(y), which is in I. By
Lemma 2.15, there is an automorphism � such that (i) �I = I, (ii) �a �= a and
(iii) � point-wise fixes A – {a}. So � point-wise fixes w and u. Since y ∈ v, there
is some x ∈ w with ϕU

I
(x, y, u). It follows that ϕU

I
(x, �y, u), but �y �= y because

�a ∈ ker(�y) but �a /∈ ker(y), which contradicts the uniqueness of y. 

Theorem 2.17. Assume the consistency of ZFCUR. Over ZFCUR,

(1) (Closure ∧ Duplication) � (Plenitude ∨ DC�1-scheme);
(2) Collection � Duplication;
(3) Duplication � (Closure ∨ DC�-scheme);
(4) Closure � DC�-scheme;
(5) DCκ-scheme � Closure, where κ is any infinite cardinal;
(6) (Collection ∧ DCκ-scheme) � DC�-scheme, where κ < � are infinite cardinals.

Hence, Figure 1 is complete.

Proof. In each case, U is a model of ZFCUR. These models exist if we assume
the consistency of ZF (see [18, Theorem 10]), which follows from the consistency of
ZFCUR.
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(1) Assume that in U, A ∼ �1. Let I1 be the ideal of all countable subsets of A. It is
clear that inU I1 , Closure but Duplication hold. Plenitude fails inU I1 because�1 is
not realized; since A is a proper class inU I1 , the DC�1 -scheme fails by Lemma 2.10.

(2) Assume that in U, A ∼ �1. Fix an A ⊆ A such that A ∼ �1 and A – A ∼ �1.
Let I2 = {B ⊆ A : B – A is countable}. For every B ∈ U I2 , there will be a
countable C that is disjoint fromA ∪ B . ThenC ∪ (A – B) is a tail of B, so Collection
holds inU I2 by Theorem 2.9. Duplication fails because A has no duplicates inU I2 .

(3) Assume that in U, A ∼ �. Let I3 be the ideal of finite subsets on A. It is cleat
that in U I3 Duplication holds and Closure fails. The DC�-scheme fails in U I3 by
Lemma 2.10.

(4) Assume that in U, A ∼ � and fix an infinite and co-infinite A ⊆ A. Let
I4 = {B ⊆ A : B – A is finite}. Closure holds in U I4 because � is the greatest
realized cardinal. The DC�-scheme fails inU I4 since every set of urelements can be
properly extended by another set of urelements disjoint from A, yet there cannot be
a corresponding infinite sequence.

(5) Let κ be an infinite cardinal. Assume that in U, A ∼ �κ+. Let I5 be the set
of sets of urelements of size less than �κ+. Closure fails in U I5 because �κ+ is not
realized while every cardinal below �κ+ is. To show that the DCκ-scheme holds,
suppose that for every x ∈ U I5 , there is some y ∈ U I5 such that ϕU

I5 (x, y, u).
Since the DCκ-scheme holds in U by Theorem 2.12(1) and U I5 is closed under
κ-sequences, in U there is a functionf : κ → U I5 such that ϕU

I5 (f�α,f(α), u) for
every α < κ, which also exists in U I5 .

(6) It suffices to show that for any infinite cardinal κ, ZFCUR + Collection +
DCκ-scheme does not prove the DCκ+-scheme. Assume that in U, A ∼ κ+ and let
I6 be the ideal of all sets of urelements of size less than κ+. κ+ is not realized so
by Lemma 2.10, the DCκ+-scheme fails in U I6 . Every set of urelements in U I6 has
tail cardinal κ, so Collection holds by Theorem 2.9 and the DCκ-scheme holds by
Lemma 2.11. 

2.6. What is ZFC with urelements? There is a close analogy between ZFC with
urelements and ZFC without Powerset. For instance, Zarach [19] showed that ZFC
without Powerset formulated with only Replacement (now commonly denoted by
ZFC-) cannot prove Collection. Moreover, it is shown in [5] that ZFC- has various
pathological models, e.g., there are models of ZFC- where the Łoś theorem fails
for some internal ultrapowers [5, Theorem 2.15]. All of these pathological models,
however, can be excluded by Collection, and for this reason it is argued in [5] that
ZFC without Powerset should be formulated with Collection.

This analogy can be strengthened if we consider internal ultrapowers in ZFCUR.
Let U be a model of ZFCUR and F, x ∈ U be such that U |= (F is an ultrafilter
on x). For every f, g ∈ U such that U |= (f, g are functions on x), define:

f =F g if and only if U |= ({y ∈ x : f(y) = g(y)} ∈ F );
[f] = {h ∈ U : (h is a function on x)U ∧ h =F f};
U/F = {[h] : h ∈ U ∧ (h is a function on x)U}.

For every [f], [g] ∈ U/F , define:
[g]∈̂[f] if and only if U |= ({y ∈ x : g(y) ∈ f(y)} ∈ F );
Â([f]) if and only if U |= ({y ∈ x : A(f(y))} ∈ F ).
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Then the internal ultrapower is the model
〈
U/F, ∈̂, Â

〉
(denoted by U/F ). The Łoś

theorem holds for U/F if for every ϕ and [f1], ... , [fn] ∈ U/F ,

U/F |= ϕ([f1], ... , [fn]) if and only if {y ∈ x : ϕ(f1(y), ... , fn(y))} ∈ F.
When V |= ZFC, the Łoś theorem holds for all internal ultrapowers of V.

Theorem 2.18. Let U be a model of ZFCUR. The following are equivalent.

(1) U |= Collection.
(2) The Łoś theorem holds for all internal ultrapowers of U.

Proof. The proof of (1) → (2) is standard, and the point here is that the use of
Collection is essential.

(2)→(1). Suppose that Collection fails in U. By Figure 1, it follows that both
Plenitude and Tail fail in U. In U, fix some A ⊆ A that does not have a tail and
let κ be the least cardinal that is not realized by any B ⊆ A disjoint from A, which
is an infinite limit cardinal. Let F ∈ U be an ultrafilter on κ containing all the
unbounded subsets of κ. Suppose for reductio that the Łoś theorem holds for U/F .
Let id be the identity function on κ and cA be the constant function sending every
α < κ to A. Since {α < κ : ∃B ⊆ A (B ∼ α ∧ B ∩ A = ∅)} ∈ F , by the Łoś theorem
U/F |= ∃B ⊆ A(B ∼ [id ] ∧ B ∩ [CA] = ∅). Thus, there is some g ∈ U such that

U/F |= [g] ⊆ A ∧ [g] ∼ [id ] ∧ ([g] ∩ [CA] = ∅).

Let x = {α < κ : g(α) ⊆ A ∧ g(α) ∼ α ∧ (g(α) ∩ A = ∅)}, which is in F by the
Łoś theorem again. Then D =

⋃
α∈x g(α) has size κ and is disjoint from A—

contradiction. 
Later we will see that over ZFCUR, Collection is also equivalent to the principle

that every (properly defined) forcing relation is full (Theorem 3.12). These results
suggest that Collection should be part of a robust axiomatization of ZFC with
urelements.

§3. Forcing with urelements.

3.1. Existing approach. We now turn to forcing over countable transitive models
of ZFCUR. Given a forcing posetP, a natural thought is that each urelement behaves
as a different copy of ∅ and so we may treat every urelement as its own P-name. This
approach has been adopted in all existing studies such as [1, 6, 7].

Definition 3.1. Let P be a forcing poset. ẋ is a P-name# if and only if either ẋ is
a urelement, or ẋ is a set of ordered-pairs 〈ẏ, p〉, where ẏ is a P-name# and p ∈ P.
U P

# = {ẋ : ẋ is a P-name#}.

Definition 3.2. Let M be a countable transitive model of ZFUR, P ∈M be a
forcing poset, and G be an M-generic filter over.

(1) MP

# =M ∩U P

# .
(2) For every ẋ ∈MP

# ,

ẋG =

{
ẋ, if A(ẋ),

{ẏG : ∃p ∈ G〈ẏ, p〉 ∈ ẋ}, otherwise.
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(3) M [G ]# = {ẋG : ẋ ∈MP

# }.
(4) For every ẋ1, ... , ẋn ∈MP

# and p ∈ P, p �# ϕ(ẋ1, ... , ẋn) if and only if for
every M-generic H such that p ∈ H ,M [H ] |= ϕ(ẋ1H , ... , ẋnH ).

With these definitions, one can easily prove the forcing theorems for�# by making
trivial adjustments to the standard argument. And it is clear thatM [G ]# is transitive,
M ⊆M [G ]#, and G ∈M [G ]#. In fact, M [G ]# is a countable transitive model of
ZFUR (see the Appendix).

However, an important feature of forcing is missing in this approach, which is
why the subscript # is added. Given M and P as above, the forcing relation �#

given by P is said to be full if whenever p �# ∃yϕ(y, ẋ1, ... , ẋn) for ẋ1, ... , ẋn ∈MP

# ,
there is a ẏ ∈MP

# such that p �# ϕ(ẏ, ẋ1, ... , ẋn). It is a standard result that if
M |= ZFC, then for every forcing poset in M, its forcing relation is full. Fullness is
important for various forcing constructions such as iterated forcing and Boolean-
valued ultrapowers.

Remark 3.3. Let M be a countable transitive model of ZFUR with urelements.
Then for every P with a maximal antichain with at least two elements, its forcing
relation �# is not full.

Proof. Suppose that P ∈M has a maximal antichain 〈pi : i ∈ I 〉 indexed by
some I (|I | > 1). Let 〈ai : i ∈ I 〉 be some urelements such that at least two of
them are distinct. Consider the P-name# ẋ = {〈ai , pi〉 : i ∈ I }. It follows that 1P �#

∃y(y ∈ ẋ). But if 1P �# ẏ ∈ ẋ for some ẏ ∈MP

# , then ẏ must be some ai , which is
impossible since one can take an M-generic filter containing pj for some j �= i . 

A diagnosis is thatMP

# contains too few names. In pure set theory, whenever f is
a function from an antichain in a forcing poset P to some P-names, we can define
a mixture of f, ẏ, such that p � f(p) = ẏ for every p ∈ dom(f). But as we have
seen,MP

# does not even contain a mixture of two urelements. This motivates a new
definition of P-names with urelements.

3.2. New approach.

Definition 3.4. Let P be a forcing poset. ẋ is a P-name if and only if (i) ẋ is
a set of ordered-pairs 〈y, p〉 where p ∈ P and y is either a P-name or a urelement,
and (ii) whenever 〈a, p〉, 〈y, q〉 ∈ ẋ, where a is a urelement and a �= y, p and q are
incompatible. U P = {ẋ : ẋ is a P-name}.

Definition 3.5. Let M be a countable transitive model of ZFUR, P ∈M be a
forcing poset and G be an M-generic filter over P.

(1) MP = U P ∩M.
(2) For every ẋ ∈MP,

ẋG =

⎧⎪⎨
⎪⎩
a, if A(a) and 〈a, p〉 ∈ ẋ for some p ∈G,
{ẏG : 〈ẏ, p〉 ∈ ẋ for some ẏ ∈MP otherwise.

and p ∈ G},
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(3) M [G ] = {ẋG : ẋ ∈MP}.
(4) For every urelementa ∈M , ǎ = {〈a, 1P〉}; for every setx ∈M , x̌ = {〈y̌, 1P〉 :
y ∈ x}.

For every ẋ1, ... , ẋn ∈MP and p ∈ P, p � ϕ(ẋ1, ... , ẋn) if and only if for every
M-generic G such that p ∈ G ,M [G ] |= ϕ(ẋ1G , ... , ẋnG ).

Let us explain the idea behind this new forcing machinery. First, no urelement
is a P-name in U P, and each urelement a is represented by {〈a, 1P〉} rather than
itself. Second, when 〈a, p〉 ∈ ẋ for some urelement a, this indicates that a will be
identical to, rather than a member of, ẋG for any generic filter G containing p.
This motivates the incompatibility condition (ii) in Definition 3.4 by the following
reasoning. Suppose that a is a urelement and 〈a, p〉 ∈ ẋ. If 〈b, q〉 ∈ ẋ, where b is
a different urelement, then p must be incompatible with q since ẋ must not be
interpreted as two different urelements in any generic extension. Also, if 〈ẏ, q〉 ∈ ẋ,
where ẏ is a P-name, then p must be incompatibie with q as well since otherwise ẏ
would become a member of ẋ in some generic extension where ẋ is interpreted as
a urelement. We note that the two forcing methods we have seen produce the same
forcing extensions (see the Appendix).

Lemma 3.6. Let M be a countable transitive model of ZFUR, P ∈M be a forcing
poset, and G be an M-generic filter over P. Then:

(1) M ⊆M [G ].
(2) G ∈M [G ].
(3) M [G ] is transitive.
(4) Ord ∩M = Ord ∩M [G ].
(5) For every transitive model N of ZFUR such thatG ∈N andM ⊆N ,M [G ]⊆N .
(6) A ∩M = A ∩M [G ].
(7) ker(ẋG) ⊆ ker(ẋ) for every ẋ ∈MP.
(8) For every set of urelementsA ∈M [G ], there is a set of urelementsA′ ∈M such

that A ⊆ A′.
(9) M |= (A is a set) if and only ifM [G ] |= (A is a set).

Proof. (1)–(5) are all proved by standard text-book arguments as in [11,
Chapter VII].

(6) This is clear by the construction ofM [G ] because every urelement inM [G ]
must come from ker(ẋ) for some ẋ ∈MP.

(7) This is proved by induction on the rank of ẋ. We may assume that ẋG is a
set. Since ker(ẋG) ⊆

⋃
{ker(ẏG) : ẏ ∈ dom(ẋ)} and by the induction hypothesis we

have ker(ẏG) ⊆ ker(ẏ) ⊆ ker(ẋ) for every ẏ ∈ dom(ẋ), it follows that ker(ẋG) ⊆
ker(ẋ).

(8) For every A ∈M [G ], A = ẋG for some ẋ ∈MP so by (7) we have A =
ker(ẋG) ⊆ ker(ẋ).

(9) The left-to-right direction follows from (4) and (6). For the other direction,
let A be the set of all urelements inM [G ]. By (8), A ⊆ A′ for some A′ ∈M . So if a
is an urelement in M, it follows from (6) that a ∈ A′. 
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Next we need to prove the forcing theorems for �, i.e., “p � ϕ” is definable in M
for every ϕ, and every truth in a generic extension is forced by some condition in the
corresponding generic filter. The first step is to define an internal forcing relation.

Definition 3.7. Let M and P be as before. The forcing language LM
P

contains

{⊆,=,∈,A, A=} as the non-logical symbols and every P-name inMP as a constant
symbol. For every p ∈ P and ϕ ∈ LM

P
, we define p �∗ ϕ by recursion as follows:

(1) p �∗ A(ẋ1) if and only if {q ∈ P : ∃〈a, r〉 ∈ ẋ1 (A(a) ∧ q ≤ r)} is dense
below p.

(2) p �∗ ẋ1
A= ẋ2 if and only if {q ∈ P : ∃a, r1, r2(A(a) ∧ 〈a, r1〉 ∈ ẋ1 ∧ 〈a, r2〉 ∈

ẋ2 ∧ q ≤ r1, r2)} ∪ {q ∈ P : ∀〈a1, r1〉 ∈ ẋ1 (A(a1) → q⊥r1) ∧ ∀〈a2, r2〉 ∈
ẋ2 (A(a2) → q⊥r2)} is dense below p.

(3) p �∗ ẋ1 ∈ ẋ2 if and only if {q ∈ P : ∃〈ẏ, r〉 ∈ ẋ2(q ≤ r ∧ ẏ ∈MP ∧ q �∗ ẏ =
ẋ1)} is dense below p.

(4) p �∗ ẋ1 ⊆ ẋ2 if and only if for every ẏ ∈MP and r, q ∈ P, if 〈ẏ, r〉 ∈ ẋ1 and
q ≤ p, r, then q �∗ ẏ ∈ ẋ2.

(5) p �∗ ẋ1 = ẋ2 if and only if p �∗ ẋ1 ⊆ ẋ2, p �∗ ẋ2 ⊆ ẋ1 and p �∗ ẋ1
A= ẋ2.

(6) p �∗ ¬ϕ if and only if there is no q ≤ p such that q �∗ ϕ.
(7) p �∗ ϕ ∧ 	 if and only if p �∗ ϕ and p �∗ 	.
(8) p �∗ ∃xϕ if and only if {q ∈ P : there is some ż ∈MP such that q �∗ ϕ(ż)}

is dense below p.

The idea behind the predicate A= is that if p �∗ ẋ1
A= ẋ2, then in every generic filter

G containing p, either ẋ1G and ẋ2G are the same urelement, or neither of them is a
urelement.

Lemma 3.8. Let M and P be as before. For every p, q ∈ P,

(1) If p �∗ ϕ and q ≤ p, then q �∗ ϕ.
(2) If {r ∈ P : r �∗ ϕ} is dense below p, p �∗ ϕ.

Lemma 3.9. Let M be a countable transitive model of ZFUR, P ∈M be a forcing
poset and G be an M-generic filter over P. For every ẋ1, ... , ẋn ∈MP,

(1) If p ∈ G and p �∗ ϕ(ẋ1, ... , ẋn), thenM [G ] |= ϕ(ẋ1G , ... , ẋnG ).
(2) If M [G ] |= ϕ(ẋ1G , ... , ẋnG ), then there is some p ∈ G such that p �∗

ϕ(ẋ1, ... , ẋn).

Proof. Since the Boolean and quantifier cases can be proved in the same way as
in [11, Chapter VII, Theorem 3.5], we omit their proofs. It remains to show that the
lemma holds for all atomic formulas, which we shall prove by induction on the rank
of the P-names.

Case 1. ϕ is ẋ1 ∈ ẋ2. The argument is the same as in [11, Chapter VII, Theorem 3.5].

Case 2. ϕ is A(ẋ). For (2), suppose that ẋG is some urelement b. Then 〈b, p〉 ∈ ẋ
for some p ∈ G , so {q ∈ P : ∃〈a, r〉 ∈ ẋ (A(a) ∧ q ≤ r)} is dense below p and hence
p �∗ A(ẋ). For (1), suppose that p �∗ A(ẋ) for some p ∈ G . Then there is some
q ∈ G such that 〈b, r〉 ∈ ẋ for some r ≥ q and urelement b. Thus, ẋG = b.

Case 3. ϕ is ẋ1 = ẋ2. For (2), suppose that ẋ1G = ẋ2G .
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Subcase 3.1. ẋ1G = ẋ2G = b for some urelement b. Then 〈b, s1〉 ∈ ẋ1 and 〈b, s2〉 ∈ ẋ2

for some s1, s2 ∈ G . Fix some p ∈ G such that p ≤ s1, s2. Observe first that p �∗

ẋ1 ⊆ ẋ2 and p �∗ ẋ2 ⊆ ẋ1 trivially hold: for any P-name ẏ and r ∈ P such that
〈ẏ, r〉 ∈ ẋ1(or ẋ2), p must be incompatible with r because r is incompatible with

s1(or s2). Moreover, p �∗ ẋ1
A= ẋ2 because {q ∈ P : ∃a, r1, r2(A(a) ∧ 〈a, r1〉 ∈ ẋ1 ∧

〈a, r2〉 ∈ ẋ2 ∧ q ≤ r1, r2)} is clearly dense below p. Hence, p �∗ ẋ1 = ẋ2.

Subcase 3.2. ẋ1G is a set. We first use a standard text-book argument to show that
p �∗ ẋ1 ⊆ ẋ2 and p �∗ ẋ2 ⊆ ẋ1 for some p ∈ G . Define:

D1 = {p ∈ P : p �∗ ẋ1 ⊆ ẋ2 ∧ p �∗ ẋ2 ⊆ ẋ1};
D2 = {p ∈ P : ∃〈ẏ1, q1〉 ∈ ẋ1 (p ≤ q1 ∧ ∀〈ẏ2, q2〉 ∈ ẋ2 ∀r ≤ q2 (r �∗ ẏ1 =
ẏ2 → p⊥r))};
D3 = {p ∈ P : ∃〈ẏ2, q2〉 ∈ ẋ2 (p ≤ q2 ∧ ∀〈ẏ1, q1〉 ∈ ẋ1 ∀r ≤ q1 (r �∗ ẏ2 =
ẏ1 → p⊥r))}.

If p �∗ ẋ1 ⊆ ẋ2, then there are 〈ẏ1, q1〉 ∈ ẋ1 and r ≤ p, q1 such that r �∗ ẏ1 ∈ ẋ2;
so there is an s ≤ r such that for every 〈ẏ2, q2〉 ∈ ẋ2 and s ′ ≤ q2. If s ′ �∗ ẏ1 = ẏ2,
then s⊥s ′. Hence, s ≤ p and s ∈ D2. Similarly, if p �∗ ẋ2 ⊆ ẋ1, then p will have an
extension in D3. This shows that D1 ∪D2 ∪D3 is dense. However, G ∪ (D2 ∪D3)
must be empty. Suppose for reductio that p ∈ G ∩D2. Fix some 〈ẏ1, q1〉 ∈ ẋ1 with
p ≤ q1 that witnesses p ∈ D2. It follows that ẏ1G = ẏ2G for some 〈ẏ2, q2〉 ∈ ẋ2 with
q2 ∈ G . By the induction hypothesis, there is some r ∈ G such that r ≤ q2 and
r �∗ ẏ1 = ẏ2. But p must be incompatible with such r, which is a contradiction. The
same argument shows that G ∩D3 is empty. Therefore, there is some p ∈ G such
that p �∗ ẋ1 ⊆ ẋ2 and p �∗ ẋ2 ⊆ ẋ1.

Now we wish to find some q ∈ G such that q �∗ ẋ1
A= ẋ2. Define:

E1 = {q ∈ P : ∀r ≤ q [∀〈a1, s1〉 ∈ ẋ1 (A(a) → r⊥s1) ∧ ∀〈a2, s2〉 ∈ ẋ2 (A(a2) →
r⊥s2)]};
E2 = {q ∈ P : ∃〈a, r〉 ∈ ẋ1 (A(a) ∧ q ≤ r))};
E3 = {q ∈ P : ∃〈a, r〉 ∈ ẋ2 (A(a) ∧ q ≤ r)}.

E1 ∪ E2 ∪ E3 is dense. But if there is some q ∈ G ∩ (E2 ∪ E3), either ẋ1G or ẋ2G
would be a urelement. Thus there is some q ∈ G ∩ E1 such that the set

{r ∈ P : ∀〈a1, s1〉 ∈ ẋ1 (A(a1) → r⊥s1) ∧ ∀〈a2, s2〉 ∈ ẋ2 (A(a2) → r⊥s2)}

is dense below q. Therefore, q �∗ ẋ1
A= ẋ2. A common extension of p and q in G will

then force ẋ1 = ẋ2.
To show that (1) holds for Case 3, suppose that for some p ∈ G , p �∗ ẋ1 = ẋ2.

Subcase 3.3. ẋ1G = b for some urelement b. Then 〈b, r〉 ∈ ẋ1 for some r ∈ G . Define:

F1 = {q ∈ P : ∃a, s1, s2(A(a) ∧ 〈a, s1〉 ∈ ẋ1 ∧ 〈a, s2〉 ∈ ẋ2 ∧ q ≤ s1, s2)}.
F2 = {q ∈ P : ∀〈a, s1〉 ∈ ẋ1 (A(a) → q⊥s1) ∧ ∀〈a, s2〉 ∈ ẋ2 (A(a) → q⊥s2)}.

Since p �∗ ẋ1
A= ẋ2, F1 ∪ F2 is dense below p. But clearly F2 ∩G is empty as

〈b, r〉 ∈ ẋ1, so there is some q ∈ F1 ∩G . It follows that 〈b, s1〉 ∈ ẋ1 and 〈b, s2〉 ∈ ẋ2

for some s1, s2 ∈ G . Therefore, ẋ2G = b = ẋ2G .
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Subcase 3.4. ẋ1G is a set. Suppose for reductio that ẋ2G is some urelement b and

so 〈b, r〉 ∈ ẋ2 for some r ∈ G . Since p �∗ ẋ1
A= ẋ2, it follows that there are some

urelement a and s ∈ G such that 〈a, s〉 ∈ ẋ1. This implies that ẋ1G = a, which is a
contradiction. Hence, ẋ2G is a set, so it remains to show that ẋ1G and ẋ2G have the
same members. If ẏG ∈ ẋ1G , then 〈ẏ, r〉 ∈ ẋ1 for some r ∈ G . So there is some q ∈ G
with q ≤ p, r, and q �∗ ẏ ∈ ẋ2 because p �∗ ẋ1 ⊆ ẋ2. By the induction hypothesis,
ẏG ∈ ẋ2G . The same argument will show that ẋ2G ⊆ ẋ1G . 

Theorem 3.10. Let M be a countable transitive model of ZFUR and P ∈M be a
forcing poset. Then for every ẋ1, ... , ẋn ∈MP,

(1) p �∗ ϕ(ẋ1, ... , ẋn) if and only if p � ϕ(ẋ1, ... , ẋn).
(2) For every M-generic filter G over P, M [G ] |= ϕ(ẋ1G , ... , ẋnG ) if and only if

∃p ∈ G(p � ϕ(ẋ1, ... , ẋn)).

Proof. By a standard argument as in [11, Chapter VII, Theorem 3.6] using
Lemma 3.9. 

3.3. Fullness is equivalent to Collection. We first verify that MP is closed under
mixtures.

Lemma 3.11. Let M be a countable transitive model of ZFUR and P ∈M be
a forcing poset. For every function f : dom(f) →MP in M, where dom(f) is an
antichain in P, there is a v̇ ∈MP such that p � v̇ = f(p) for every p ∈ dom(f).

Proof. In M, we define v̇ as follows:

v̇ =
⋃

p∈dom(f)

{〈y, r〉 ∈ dom(f(p)) × P : ∃q (〈y, q〉 ∈ f(p) ∧ r ≤ p, q)}.

We first check that v̇ satisfies the incompatibility condition (ii) in Definition 3.4.
Consider any 〈a, r1〉 ∈ v̇ for some urelement a. Then there are p1, q1 such that
p1 ∈ dom(f) and 〈a, q1〉 ∈ f(p1) and r1 ≤ p1, q1. For any 〈x, r2〉 ∈ v̇ with x �= a,
there are p2, q2 such that p2 ∈ dom(f) and 〈x, q2〉 ∈ f(p2) and r2 ≤ p2, q2. If
p1 = p2, then r1 is incompatible with r2 because f(p1) is a P-name. If not, r1 is
incompatible with r2 because dom(f) is an antichain.

Fix a p ∈ dom(f). We show that p � v̇ = f(p). Let G be an M-generic filter over
P that contains p.

Case 1. v̇G is some urelement a. Then 〈a, r〉 ∈ v̇ for some r ∈ G . So for some
p′ ∈ dom(f) and q, 〈a, q〉 ∈ f(p′) and r ≤ p′, q. So p′, q ∈ G and p′ = p.
Therefore, v̇G = f(p)G .

Case 2. v̇G is a set. Then f(p)G must be a set. Otherwise, f(p)G is some urelement
a and there will be some q ∈ G such that 〈a, q〉 ∈ f(p); then there is some s ∈ G
such that s ≤ q, p so 〈a, s〉 ∈ v̇, which means v̇G is a urelement—contradiction. For
every ẋG ∈ v̇G with 〈ẋ, r〉 ∈ v̇ and r ∈ G , 〈ẋ, q〉 ∈ f(p′) and r ≤ p′, q for some
p′ ∈ dom(f) and q; so p′ = p and ẋG ∈ f(p)G . This shows that v̇G ⊆ f(p)G .
Consider any ẋG ∈ f(p)G such that 〈ẋ, q〉 ∈ f(p) for some q ∈ G . Let r ∈ G be a
common extension of p and q. It follows that 〈ẋ, r〉 ∈ v̇ and so ẋG ∈ v̇G . This shows
that f(p)G ⊆ v̇G and the proof is completed. 
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Theorem 3.12. Let M be a countable transitive model of ZFCUR. The following
are equivalent.

(1) M |= Collection.
(2) For every forcing notion P ∈M , its forcing relation � is full.

Proof. (1) → (2). This is proved by a standard argument, and the point here is
that we can now mixP-names using the new definition. Assume thatM |= Collection
and we now work in M. Fix someP and suppose thatp � ∃yϕ(y) for somep ∈ P. By
AC there exists a maximal antichain X in the subposet Q = {q ∈ P : q ≤ p ∧ ∃ẏ ∈
MPq � ϕ(ẏ)}. It follows from Collection that there is some v such that for every
q ∈ X , there is some name ẇ ∈ v with q � ϕ(ẇ). By well-ordering v we can pick
a ẇq ∈MP such that q � ϕ(ẇq) for every q ∈ X . Then by Lemma 3.11, there is a
v̇ ∈MP such that q � ẇq = v̇ for every q ∈ X . Suppose that p � ϕ(v̇) for reductio.
Then there will be some r ∈ Q such that r � ¬ϕ(v̇), which means r is incompatible
with every q ∈ X , but this contradicts the maximality of X.

(2) → (1). Suppose that M |= ∀x ∈ w∃yϕ(x, y, u). Let P be the forcing poset
w ∪ {w} such that for every p, q ∈ P, p ≤ q if and only if p = q or q = w.
That is, w is 1P, while the members of w constitute the only maximal antichain.
Thus, M [G ] =M for every generic filter G over P. Define ẋ ∈MP to be
{〈ž, x〉 : z ∈ x ∧ x ∈ w}. For every x ∈ w and generic filter G containing x, since
ẋG = x it follows that M [G ] |= ∃yϕ(ẋG , y, u). Thus, 1P � ∃yϕ(ẋ, y, ǔ) and by
(2), 1P � ϕ(ẋ, ẏ, ǔ) for some ẏ ∈MP. For every x ∈ w, let G be the generic
filter containing x. ThenM [G ] |= ϕ(x, ẏG , u); soM |= ϕ(x, ẏG , u) and ker(ẏG) ⊆
ker(ẏ) by Lemma 3.6(7). It follows thatM |= ∀x ∈ w ∃y ∈ V (ker(ẏ)) ϕ(x, y, u),
which suffices for Collection by Proposition 1.2. 

While the argument for (2)→ (1) in Theorem 3.12 does not rely on the assumption
thatM |= AC, the use of AC in (1) → (2) is essential (see [18, Corollary 62.1]).

3.4. Axiom preservation.

Lemma 3.13. Let M be a countable transitive model of ZFUR, P ∈M be a forcing
poset, and G be an M-generic filter over P. Then:

(1) M [G ] is a countable transitive model of ZU (Definition 1.1).
(2) M [G ] |= AC ifM |= AC.
(3) M [G ] |= Collection ifM |= Collection.

Proof. The proofs of (1) and (2) are standard text-book arguments as in Kunen
[11, Chapter VII]. For (3), suppose thatM [G ] |= ∀v ∈ ẇG ∃yϕ(v, y, u̇G) for some
ẇG and u̇G . In M, define

x = {〈ẋ, p〉 ∈ (dom(ẇ) ∩MP) × P : ∃ẏ ∈MPp � ϕ(ẋ, ẏ, u̇)}.

By Collection in M, there is a set of P-names v such that for every 〈ẋ, p〉 ∈ x, there
is a ẏ ∈ v with p � ϕ(ẋ, ẏ, u̇). Define v̇ to be v × {1P}. It’s routine to check that
M [G ] |= ∀x ∈ ẇG ∃y ∈ v̇G ϕ(x, y, u̇G). 

A more difficult question is whether forcing preserves Replacement. When M is a
model of ZF, the standard argument forM [G ] |= Replacement appeals to Collection
in M, which is not available for us here. A new argument is thus needed.
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Definition 3.14. Let M andP be as before andA ∈M be a set of urelements. For

every urelement a ∈M , let
A
a = a. For every ẋ ∈MP, we define

A

ẋ (the A-purification
of ẋ) as follows:

A

ẋ = {〈Ay, p〉 : 〈y, p〉 ∈ ẋ ∧ (y ∈MP ∨ y ∈ A)}.

That is,
A

ẋ is obtained by hereditarily throwing out the urelements used to build ẋ
that are not in A.

Proposition 3.15. Let A ∈M be a set of urelements such that ker(P) ⊆ A. For

every ẋ ∈MP,
A

ẋ ∈MP and ker(
A

ẋ) ⊆ A.

Proof. By induction on the rank of ẋ. To show that
A

ẋ is always a P-name, we
only need to check the incompatibility condition in Definition 3.4 holds. Suppose

that 〈a, p〉, 〈y, q〉 ∈
A

ẋ, where a is a urelement and y �= a. If y is another urelement

in dom(ẋ), then p and q are incompatible; otherwise y is some
A

ż, where 〈ż, q〉 ∈ ẋ
and ż is a P-name, then p and q are incompatible because no urelement is a P-name.

ker(
A

ẋ) ⊆ A because ker(
A

ẋ) is contained in
⋃
y∈dom(ẋ) ker(

A
y) ∪ ker(P), which is a

subset of A by the induction hypothesis. 
Theorem 3.16. Let M be a countable transitive model of ZFUR,P ∈M be a forcing

poset and G be M-generic over P. ThenM [G ] |= Replacement.

Proof. Suppose that M [G ] |= ∀v ∈ ẇG∃! yϕ(v, y, u̇G). Let A = ker(ẇ) ∪
ker(P) ∪ ker(u̇). By Lemma 3.13, we may assume M does not satisfy Collection so
it has a proper class of urelements by Proposition 1.2.

Lemma 3.17. For every v̇G ∈ ẇG , there exist p ∈ G and ′ ∈MP such that
p � ϕ(v̇, ′, u̇) and ker(′) ⊆ A.

Proof. Fix a v̇G ∈ ẇG for some v̇ ∈ dom(ẇ) ∩MP. There is a P-name  and a
p ∈ G such that p � ϕ(v̇, , u̇) ∧ ∀z(ϕ(v̇, z, u̇) →  = z).

Claim 3.17.1. For every M-generic filter H over P such that p ∈ H , ker(H ) ⊆ A.

Proof of the Claim. Suppose not. Then there is some b ∈ ker(H ) – A. Since
M has a proper class of urelements, there is some urelement c ∈M such that
c /∈ A ∪ ker(). In M, let � be an automorphism that only swaps b and c. Since �
point-wise fixes A, it follows that

p � ϕ(v̇, �, u̇) ∧ ∀z(ϕ(v̇, z, u̇) → � = z).

Thus, M [H ] |= H = (�)H . Since b ∈ ker(H ), �b ∈ ker(�H ); but �b = c /∈
ker() and ker(H ) ⊆ ker(), so �b /∈ ker(H ), which is a contradiction.

Note that we cannot hope to show that ker() ⊆ A in general. For if ∗ is some
P-name such that ∗ =  ∪ {〈{〈b, 1P〉}, q〉}, where b is a urelement not in A and q
is incompatible with p, we would still have p �  = ∗.

Claim 3.17.2. Let H be an M-generic filter over P such that p ∈ H . For every

ẋ, ẏ ∈MP, if ẋH , ẏH ∈ TC ({H}), then ẋH = ẏH if and only if (
A

ẋ)H = (
A

ẏ)H .
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Proof of the Claim. If ẋH = ẏH = a for some urelement a, then by Claim 3.17.1

a ∈ A. It is easy to check that (
A

ẏ)H = (
A

ẋ)H = a. If (
A

ẏ)H = (
A

ẋ)H = b for some
urelement b, then b ∈ A and it follows that ẋH = ẏH = b.

So suppose ẋH = ẏH are sets in TC ({H}) and the claim holds for every

ż ∈ dom(ẋ) ∪ dom(ẏ). Clearly, (
A

ẋ)H and (
A

ẏ)H must also be sets. If
A

żH ∈
A

ẋH
for some ż ∈MP ∩ dom(ẋ), we have żH ∈ ẏH = ẋH . So there is some
ẇ ∈MP ∩ dom(ẏ) such that ẇH = żH . żH ∈ TC ({H}) so by the induction

hypothesis
A

żH =
A

ẇH ∈ (
A

ẏ)H . This shows that
A

ẋH ⊆
A

ẏH , and we will have
A

ẋH =
A

ẏH
by the same argument.

Now suppose that ẋH , ẏH ∈ TC ({H}) and
A

ẋH =
A

ẏH are sets. Then ẋH and ẏH
must be sets. For if, say, ẋH = a for some urelement a, then a ∈ A by Claim 3.17.1,

which would yield
A

ẋH = a. Let żH ∈ ẋH for some ż ∈MP ∩ dom(ẋ). Then
A

żH ∈
A

ẏH

and so
A

żH =
A

ẇH for some ẇH ∈ ẏH . By the induction hypothesis, it follows that
żH = ẇH . This shows that ẋH ⊆ ẏH and consequently, ẋH = ẏH .

Claim 3.17.3. p � A
 = .

Proof of the Claim. Let H be an M-generic filter on P that contains p. We show

that
A
H = H . Let f be the function on TC ({H}) that sends every ẏH to

A

ẏH ,
which is well-defined by Claim 3.17.2. Note that every ∈- isomorphism of transitive
sets that fixes the urelements can only be the identity map. So it suffices to show that

f maps TC ({H}) onto TC ({AH}), preserves ∈ and fixes all the urelements.
f preserves ∈. Consider any ẏH , ẋH ∈ TC ({H}). Suppose that ẏH ∈ ẋH . Then

ẏH = żH for some ż ∈MP ∩ dom(ẋ) so
A

żH ∈
A

ẋH ; by Claim 3.17.2, it follows

that
A

ẏH =
A

żH ∈
A

ẋH . Suppose that
A

ẏH ∈
A

ẋH . Then
A

ẏH =
A

żH for some żH ∈ ẋH so
ẏH = żH ∈ ẋH by Claim 3.17.2 again.

f maps TC ({H}) onto TC ({AH}). If ẏH ∈ TC ({H}), then ẏH ∈ ẏ1H ∈ ··· ∈

ẏnH ∈ H for some n. Since f is∈-preserving, it follows that
A

ẏH ∈
A

ẏ1H ∈ ··· ∈
A

ẏnH ∈
A
H and hence

A

ẏH ∈ TC ({AH}). To see it is onto, let x ∈ x1 ∈ ··· ∈ xn ∈
A
H . Then

x =
A

ẏH ∈
A

ẏ1H ∈ ··· ∈
A

ẏnH ∈ A
H , but then ẏH ∈ ẏ1H ∈ ··· ∈ ẏnH ∈ H and hence

ẏH ∈ TC ({H}).
f fixes all the urelements in TC ({H}). Suppose ẋH = a ∈ TC ({H}) for some

urelement a. Then by Claim 3.17.1, a ∈ A and hence
A

ẋH = a.

Lemma 3.17 is now proved by letting ′ be
A
. 

Now in M, we define

x̄ = {〈v̇, p〉 ∈ (dom(ẇ) ∩MP) × P : ∃ ∈MP(ker() ⊆ A ∧ p � ϕ(v̇, , u̇))}.

For every 〈v̇, p〉 ∈ x̄, let αv̇,p be the least α such that there is some  ∈
Vα(A) ∩MP such thatp � ϕ(v̇, , u̇). Let� = Sup〈v̇,p〉∈x̄αv̇,p and set� = (V�(A) ∩
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MP) × {1P}. It remains to show that M [G ] |= ∀x ∈ ẇG ∃y ∈ �G ϕ(x, y, u̇G). Let
v̇G ∈ ẇG . By Lemma 3.17, there is some p ∈ G such that 〈v̇, p〉 ∈ x̄. So there is
some P-name  ∈ dom(�) such that p � ϕ(v̇, , u̇). Thus,M [G ] |= ϕ(v̇G , G, u̇G)
and G ∈ �G . 

Theorem 3.18. Let M be a countable transitive model of ZFUR,P ∈M be a forcing
poset and G be an M-generic filter over P. Then:

(1) M [G ] |= ZFUR.
(2) M [G ] |= AC ifM |= AC.
(3) M [G ] |= Collection ifM |= Collection.
(4) M [G ] |= Plenitude ifM |= Plenitude.
(5) M [G ] |= Duplication ifM |= Duplication.
(6) M [G ] |= Tail ifM |= Tail.
(7) M [G ] |= DC<Ord ifM |= DC<Ord .
(8) M [G ] |= RP– ifM |= RP–.
(9) M [G ] |= RP ifM |= RP.

(10) M [G ] |= Closure ifM |= Closure + AC.

Proof. (1), (2), and (3) are proved in Lemma 3.13 and Theorem 3.16. (4) is clear
since if Plenitude holds in M, then every ordinal α inM [G ] is realized by some set
of urelements in M.

(5) Suppose thatM |= Duplication. Let A ⊆ A be inM [G ]. By Lemma 3.6(8),
A ⊆ A′ for some set A′ of urelements in M. A′ will have a duplicate in M, which has
a subset that duplicates A inM [G ].

(6) Suppose thatM |= Tail. Let A ⊆ A be inM [G ]. Fix some A′ ∈M such that
A ⊆ A′, and let B ′ be a tail of A′ in M. We check thatD = (A′ – A) ∪ B ′ is a tail of
A inM [G ]. Suppose that C ∈M [G ] is disjoint from A. Fix C ′ ∈M with C ⊆ C ′.
SinceC ′ – A′ injects into B, it follows thatC ′ – A and hence C injects into D. Thus,
D is a tail of A.

(7) Suppose thatM |= DC<Ord . It is a standard result that ∀κDCκ implies AC, so
M |= AC. Then by Lemma 2.10, (A is a set ∨ Plenitude) holds in M and thus holds
inM [G ] by (4). By (2),M [G ] |= AC so we can apply Theorem 2.5 to conclude that
M [G ] |= DC<Ord .

(8) Suppose that M |= RP– and M [G ] |= ϕ(ẋ1G , ... , ẋnG ). Fix any u̇G ∈
M [G ]. Let p ∈ G be such that p � ϕ(ẋ1, ... , ẋn). By RP– in M, there is a
transitive set m extending {P, u̇, ẋ1, ... , ẋn} such that (p �∗ ϕ(ẋ1, ... , ẋn))m and
m satisfies some finite fragment of ZFUR that suffices for the construction of
P-names inside m and for the forcing theorem to hold for ϕ. Then m[G ] |=
ϕ(ẋ1G , ... , ẋnG ). m[G ] is a set in M [G ] because ṁ = {〈ẏ, 1P〉 : ẏ ∈ m ∩MP} is
a P-name for m[G ]; m[G ] is transitive because m is. Consequently, M [G ] |=
∃t(t transitive ∧ u̇G ⊆ t ∧ ϕt(ẋ1G , ... , ẋnG )). This shows that RP– holds inM [G ].

(9) Suppose thatM |=RP. Given a formula ϕ(v1, ... , vn) and some u̇G ∈M [G ],
let 	(p,P, v1, ... , vn) be the formula asserting that p �∗ ϕ(v1, ... , vn) for P-names
v1, ... , vn. By RP in M, there will a transitive set m extending {P, u̇} that fully reflects
	 and satisfies some finite fragment of ZFUR sufficient for the construction of P-
names and for the forcing theorem to hold for ϕ. Then as in the last paragraph,
m[G ] is a transitive set containing u̇G inM [G ]. IfM [G ] |= ϕ(ẋ1G , ... , ẋnG ) for some
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ẋ1G , ... , ẋnG in m[G ], then there will be a p ∈ G such that (p �∗ ϕ(ẋ1, ... , ẋn))m

by reflection, and so m[G ] |= ϕ(ẋ1G , ... , ẋnG ). And ifM [G ] |= ϕ(ẋ1G , ... , ẋnG )m[G ],
then there is some p ∈ G such that (p �∗ ϕ(ẋ1, ... , ẋn))m, so p �∗ ϕ(ẋ1, ... , ẋn)
and henceM [G ] |= ϕ(ẋ1G , ... , ẋnG ). This shows thatM [G ] |= RP.

(10) Suppose thatM |= Closure∧AC. LetX ∈M [G ] be a set of realized cardinals
whose supremum is some limit cardinal �. For every cardinal κ < � in M, there is
a cardinal κ′ inM [G ] such that κ < κ′ < � and κ′ is realized by some A ∈M [G ];
so in M it follows from AC that any A′ that extends A will have size at least κ. This
shows that every κ < � in M is realized, so � is realized in M and hence inM [G ]. 

It is not known whether forcing over ZFUR preserves Closure.

3.5. Axiom destruction and recovery. We now turn to how forcing may destroy
the DCκ-scheme. It is known that forcing over ZF does not preserve DCκ for any κ
[16], so we will focus on whether forcing preserves the DCκ-scheme over ZFCUR.
A forcing poset P is κ-closed if in P every infinite descending chain of length less
than κ has a lower bound.

Theorem 3.19. Let M be a countable transitive model of ZFCUR + DCκ-scheme,
P ∈M be such that (P is κ+-closed)M and G be an M-generic filter over P. Then
M [G ] |= ZFCUR + DCκ-scheme.

Proof. For every α-sequence s of P-names, let ṡ (α) denote the canonical P-name
such that ṡ (α)

G is an α-sequence inM [G ] with ṡ (α)
G (�) = s(�)G for all � < α. Given a

p ∈ P and a suitable formula ϕ, a κ-sequence of the form 〈〈pα, ẋα〉 : α < κ〉, where
〈pα, ẋα〉 ∈ P×MP, is said to be a ϕ-chain below p if 〈pα : α < κ〉 is a descending
chain below p and for every α < κ, pα � ϕ(ṡ (α), ẋα+1) where s = 〈ẋ� : � < α〉.

Suppose that M [G ] |= ∀x∃yϕ(x, y, u). There is some p ∈ G such that p �
∀x∃yϕ(x, y, u̇). Let D be the set of forcing conditions that are a lower bound
of some ϕ-chain below p.

Claim 3.19.1. D is dense below p.

Proof of the Claim. Fix some r ≤ p. Let 	(x, y) be the following formula (with
parameters r,P, κ and u̇).

	(x, y) =df if x is some 〈〈p�, ẋ�〉 : � < α〉 ∈ (P×MP)α , where 〈p� : � < α〉
is a descending chain and α < κ, then y is some 〈q, ẋ〉 ∈ P×MP such that q
bounds 〈p� : � < α〉 and q � ϕ(ṡ (α), ẋ, u̇), where s = 〈ẋ� : � < α〉.

Let P ↓ r denote the set of conditions in P below r. In M, for every x ∈ (P ↓ r ×
MP)<κ, there is some y ∈ P ↓ r ×MP such that 	(x, y) since P is κ-closed. By the
DCκ-scheme in M, there exists a ϕ-chain 〈〈pα, ẋα >: α < κ〉〉, where 〈pα : α < κ〉
is below r and hence below p. P is κ+-closed, so there is some q that bounds this
ϕ-chain below p. Thus, D is dense below p.

So there is some q ∈ G that bounds a ϕ-chain, 〈〈pα, ẋα >: α < κ〉〉, below p.
Let s = 〈ẋα : α < κ〉 and f = ṡ (κ)

G . f is then a κ-sequence in M [G ] and κ is not
collapsed in M [G ] as P is κ-closed. Moreover, M [G ] |= ϕ(f�α,f(α), u) for all
α < κ because q � ϕ(ṡ (α), ẋα, u̇). 
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For any infinite cardinals κ and � with κ < �, Col(κ, �) is the forcing poset
consisting of all partial functions from κ to � whose domain has size less than κ
(ordered by reverse inclusion).

Theorem 3.20. Forcing over countable transitive models of ZFCUR + Collection
does not preserve the DC�1 -scheme.

Proof. Let M be a countable transitive model that satisfies ZFCUR + “Every
A ⊆ A has a tail of size �1”. To have a model of this sort, we can start with a
countable transitive model N of ZFCUR in which A ∼ �2. In N, let I be the A-ideal
of all sets of urelements of size �1, and let M be N I as in Definition 2.14.

By Theorem 2.9 and Lemma 2.11, both Collection and the DC�1 -scheme hold
in M. Let P = Col(�,�M1 ) and G be M-generic over P. In M [G ], every set of
urelements is countable, because by Lemma 3.6(8) every A ∈M [G ] is a subset of
some A′ ∈M such that |A′| ≤ �M1 but �M1 is collapsed to � in M [G ]. M [G ]
still has a proper class of urelements, so the DC�1 -scheme fails in M [G ] by
Lemma 2.10. 

Since ZFCUR + Collection proves the DC�-scheme, forcing over ZFCUR +
Collection preserves DC�-scheme as it preserves Collection.

Open Question 3.21. Does forcing over ZFCUR preserve the DC�-scheme?

Forcing can also recover axioms. Next, we show that Collection and RP are
necessarily forceable when the ground model satisfies ZFCUR + DC�-scheme (note
that the DC�-scheme does not imply Collection or RP by Theorem 2.5).

Theorem 3.22. Every forcing extension of a countable transitive model M of
ZFCUR + DC�-scheme has a forcing extension that satisfies the Collection and
Reflection Principle.

Proof. LetM [G ] be an arbitrary forcing extension of M. We may assume that
M [G ] |= “A is a proper class” + ¬ Plenitude, since otherwise Collection holds in
every forcing extension of M [G ] by Figure 1 and Lemma 3.13. So M |= “A is a
proper class” by Lemma 3.6(8) and inM [G ] there is a least infinite cardinal κ that
is not realized. Let H be an M [G ]-generic filter over Col(�, κ). As κ is collapsed
to � in M [G ][H ], every set of urelements in M [G ][H ] is countable. In M, by the
DC�-scheme, for every A ⊆ A there is an infinite B ⊆ A that is disjoint from A; by
Lemma 3.6(8), this fact is preserved by forcing so it holds inM [G ][H ]. This shows
thatM [G ][H ] |= Tail. Therefore,M [G ][H ] |= Collection ∧ RP by Figure 1. 

The assumption thatM |= DC�-scheme in Theorem 3.22 cannot be dropped: if
M has a proper class of urelements but every set of them is finite, by Lemma 3.6(8)
and (9) this will remain the case in every forcing extension of M.

3.6. Ground model definability. Laver [12] and Woodin [17] proved independently
the ground model definability for ZFC: every transitive model of ZFC is definable
with parameters in all of its generic extensions. Laver’s argument (which is also
attributed to Hamkins [8]) can be easily modified to show that every transitive
model of ZFCUR with only a set of urelements is definable in all of its generic
extensions with parameters [18, Theorem 85]. And as a corollary, if M is a transitive
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model of ZFCUR in which some cardinal κ is not realized, then M is definable in all
of its generic extensions produced by κ-closed forcing notions [18, Corollary 85.1].
Here we show how the ground model definability may fail if the ground model has
a proper class of urelements.

For any infinite set of x, Fn(x, 2) is the forcing poset consisting of all finite partial
functions from x to 2 ordered by reversed inclusion, which adds a new subset to
every set that is equinumerous with x.

Theorem 3.23. Let M be a countable transitive model of ZFCUR.

(1) IfM |= DC�-scheme + “A is a proper class”, then M has a forcing extension
in which M is not definable with parameters.

(2) If M |= Plentitude, then M is not definable in any of its non-trivial forcing
extensions.

Proof. (1) Suppose thatM |= DC�-scheme + “A is a proper class”. Let P ∈M
be Fn(�, 2) and G be an M-generic filter over P. Suppose for reductio that M
is definable in M [G ] with a parameter u̇G ∈M [G ] such that M = {x ∈M [G ] :
M [G ] |= ϕ(x, u̇G )}.LetB ′ ∈M be an infinite set of urelements disjoint fromker(u̇),
which exists by the DC�-scheme. Then M [G ] contains a new countable subset B
of B ′ which is not in M. Fix another countable set of urelements C ∈M that is
disjoint fromker(u̇) ∪ B ′. InM [G ], there will be an automorphism that swaps C and
B while point-wise fixing ker(u̇). SinceM [G ] |= ¬ϕ(B, u̇G) and ker(u̇G) ⊆ ker(u̇),
it follows thatM [G ] |= ¬ϕ(C, u̇G ) and hence C /∈M , which is a contradiction.

(2) Suppose thatM |= Plentitude and consider anyM [G ] such thatM �M [G ].
First observe that there must be some set of urelements B such thatB ∈M [G ] –M .
Fix some ẋG ∈M [G ] –M of the least rank so that ẋG ⊆M . Let A = ker(ẋ). It
follows that ẋG ⊆ Vα(A)M for someα. By Plenitude and AC in M, there is a bijection
f fromVα(A)M to a set of urelements, sof�ẋG will produce a new set of urelements
inM [G ].

For reductio, suppose that M = {x ∈M [G ] :M [G ] |= ϕ(x, u̇G )} for some
formula ϕ with parameter u̇G . Fix some set of urelements B ∈M [G ] –M and
B ′ ∈M such that B ⊆ B ′. In M, by Plenitude B ′ has a duplicate E that is disjoint
from ker(u̇). Then E has a new subset D inM [G ] that is disjoint from ker(u̇). By AC
and Plenitude in M, we can again find a duplicate C ∈M of D that is disjoint from
ker(u̇). So there will be an automorphism inM [G ] that swaps C and D while point-
wise fixing ker(u̇). AsM [G ] |= ¬ϕ(D, u̇G), it follows thatM [G ] |= ¬ϕ(C, u̇G ) and
hence C /∈M , which is a contradiction. 

§4. Appendix. In this appendix, we prove that the two forcing methods produce
the same generic extensions. One can prove directly thatM [G ]# satisfies ZFUR and
then use the minimality of M [G ] and M [G ]# to conclude that they are the same
model. Here, we take a different approach by analyzing the relationship between
the names in MP

# and MP. In the following, M is a countable transitive model of
ZFUR, P ∈M a forcing poset, and G an M-generic filter over P.

To start with, there is a natural embedding fromMP

# toMP defined as follows.

Definition 4.1. Define j :MP

# →MP by recursion as follows. For every � ∈MP

# ,
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j(�) =

{
{〈�, 1P〉}, if A(�),

{〈j(�), p〉 : 〈�, p〉 ∈ �}, otherwise.

We shall use Greek letters �, �, ... to denote the names in MP

# (Definition 3.1).
A straightforward induction will show that j is a 1–1 function from MP

# to MP;
in particular, the incompatibility condition in Definition 3.4 is trivially satisfied
because each j(�) is inMP.

Lemma 4.2. For every �, � ∈MP

# , �G = �G if and only if j(�)G = j(�)G .

Proof. Note that the G-valuation is defined differently for names inMP

# andMP,
but this should not cause any confusion. The proof is by a straightforward induction
on the rank of � and �, so we omit it. 

Therefore, the map �G �→ j(�)G is a well-defined embedding from M [G ]# into
M [G ]. Next, we show that this embedding is elementary. The key observation here
is that every name ẋ inMP has a set-counterpart, ẋSet, such that ẋG = ẋSet

G whenever
ẋG is a set.

Definition 4.3. For every ẋ ∈MP, define by recursion

ẋ
Set ={

〈
ẏ

Set
, s

〉
| ẏ ∈ MP ∧ ∃p ∈ P(〈ẏ, p〉 ∈ ẋ ∧ s ≤ p) ∧ ∀r ∈ P, a ∈ A(〈a, r〉 ∈ ẏ → s⊥r)}

∪ {〈ǎ, s〉 | ∃p, r ∈ P, ẏ ∈ MP
, a ∈ A(〈ẏ, p〉 ∈ ẋ ∧ 〈a, r〉 ∈ ẏ ∧ s ≤ p ∧ s ≤ r)}.

The idea is that we forget about the urelements in the domain of ẋ and then for
each P-name ẏ in dom(ẋ), we pair ẏSet with some suitable conditions depending on
whether ẏ is treated as a urelement or a set.

Lemma 4.4. For each ẋ ∈MP, ẋSet = j(�) for some � ∈MP

# .

Proof. By an induction on the rank of ẋ. If dom(ẋ) ⊆ A, then ẋSet = j(∅). Note
that for every urelement a, ǎ = j(a). So suppose that the lemma holds for every
ẏ ∈MP ∩ ẋ. Define

� = {
〈
j–1(ẏ), s

〉
| 〈ẏ, s〉 ∈ ẋSet}.

Then ẋSet = j(�). 

Lemma 4.5. For every ẋ ∈MP, ẋSet
G ⊆ ẋG and ẋG ⊆ ẋSet

G .

Proof. Suppose that the lemma holds for every ẏ ∈MP ∩ ẋ.
We first show that ẋSet

G ⊆ ẋG . Let z ∈ ẋSet
G .

Case 1. z is a set. Then z = ẏSet
G , where

〈
ẏSet, s

〉
∈ ẋSet with some s ∈ G . This

means that 〈ẏ, p〉 ∈ ẋ for some p ≥ s , and so ẏG ∈ ẋG . Moreover, if 〈a, r〉 ∈ ẏ
for any urelement a, then s and r are incompatible, which means ẏG must be a set.
By the induction hypothesis, we have ẏSet

G and ẏG are co-extensional. Therefore,
z = ẏG ∈ ẋG .

Case 2. z = a for some urelement a. Note that ẏSet
G is always a set for every ẏ.

So 〈ǎ, s〉 ∈ ẋSet and s ∈ G . By the construction of ẋSet, it follows that a ∈ ẋG .
Therefore, ẋSet

G ⊆ ẋG .
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Next, we show that ẋSet
G ⊆ ẋG . Let ẏG ∈ ẋG , where 〈ẏ, p〉 for some p ∈ G .

Case 1. ẏG = a for some urelement a. Then 〈a, r〉 ∈ ẏ for some r ∈ G . So there is
some s ∈ G with s ≤ p, r. Thus, 〈ǎ, s〉 ∈ ẋSet and hence a ∈ ẋSet

G .

Case 2. ẏG is a set. By the induction hypothesis, we have ẏG = ẏSet
G . So it remains to

show that ẏSet
G ∈ ẋSet

G . Define:

D1 ={s ∈ P | ∃a ∈ A, r ∈ P(〈a, r〉 ∈ ẏ ∧ s ≤ r)};

D2 ={s | ∀a ∈ A, r ∈ P(〈a, r〉 ∈ ẏ → r⊥s)}.

D1 ∪D2 is dense below p: if q ≤ p and q /∈ D2, then q is compatible with some r such
that 〈a, r〉 ∈ ẏ and so there will be some s ∈ D1 with s ≤ q. Thus, (D1 ∪D2) ∩G
is nonempty. But D1 ∩G must be empty, otherwise ẏG will be a urelement, which
contradicts our case assumption. It follows that there is some s ∈ D2 ∩G such that
s ≤ p, making

〈
ẏSet, s

〉
∈ ẋSet. So we have ẏSet

G ∈ ẋSet
G . Therefore, ẋG ⊆ ẋSet

G . This
completes the proof. 

Theorem 4.6. M [G ] =M [G ]#.

Proof. If M [G ]# |= ZFUR, then M [G ]# will be the least transitive model of
ZFUR which extends M and contains G so we will have M [G ]# =M [G ] by
Theorem 3.18 and Lemma 3.6. Thus, it suffices to show that the map �G �→ j(�)G
is an elementary embedding fromM [G ]# toM [G ], and we prove this by induction
on formulas. Atomic and Boolean cases are immediate, so it remains to show that
for every �1, ... , �n ∈MP

# ,

M [G ]# |= ∃xϕ(x, �1G , ... , �nG ) ⇔M [G ] |= ∃xϕ(x, j(�1)G, ... , j(�n)G).

⇒ holds by the induction hypothesis. Suppose that M [G ] |= ϕ(ẋG , j(�1)G, ... ,
j(�n)G) for some ẋ ∈MP. If ẋG is some urelement a, then ẋG = j(a)G ; otherwise,
ẋG = ẋSet

G by Lemma 4.5 and by Lemma 4.4 ẋSet = j(�) for some � ∈MP

# .
Therefore, ẋG = j(�)G for some � ∈MP

# and so M [G ]# |= ∃xϕ(x, �1G , ... , �nG )
by the induction hypothesis. 
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