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ON PROJECTIONAL RESOLUTION OF IDENTITY

ON THE DUALS OF CERTAIN BANACH SPACES

M. FABIAN

A consequence of the main proposition includes results of Tacon,

and John and Zizler and says: If a Banach space X possesses a

continuous Gateaux differentiable function with bounded nonempty

support and with norm-weak continuous derivative, then its dual X*

admits a projectional resolution of the identity and a continuous

linear one-to-one mapping into a (T) . The proof is easy and

selfcontained and does not use any complicated geometrical lemma.

If the space X is in addition weakly countably determined, then

X* has an equivalent dual locally uniformly rotund norm. It is

also shown that I admits no continuous Gateaux differentiable
00

function with bounded nonempty support.

1. Notation and introduction.

We start by recalling some concepts and notation. All Banach spaces

are assumed to be real and infinite dimensional. If (X, ||- || ) is a

Banach space, then X* denotes its (topological) dual and X** its

second dual. If V is a subspace of X and / is a function on X ,
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364 M . Fabian

then f\-ir stands for the restriction of f to V . The topo.logical

concepts as "closed", "dense", ..., are always meant in the norm topology,

unless otherwise specified. If S is a subset of X , we use the symbols

S , sp S , card S , and dens S to denote the closure, closed linear

span, cardinality, and density character of S , respectively; dens 5

being defined as the smallest cardinality of a dense subset of 5 .

In this note we propose an easy and selfcontained proof of the

well-known theorem of Tacon [101, which asserts that the dual of a Banach

space possessing some kind of smoothness admits a projectional resolution

of the identity and a continuous linear one-to-one mapping into c (T) .

In fact, we extend this result a little.

PROPOSITION 1. Let X be a Banach space admitting a norm-weak

continuous mapping D defined on an open subset B of X into X*

such that sp {£!r| : x e V n B} = V* for every subspace V of X .

Denote by v the first ordinal of cardinality dens X .

Then there exists a nondecreasing "long sequence" {X : 0 g a g \i}

of subspaces of X such that X = {0} , X = X and for all 0 < a s y

(i) dens X = dens sp D(X n B) < max (a,H ) }

(ii) sp D(X n B) is linearly isometric with X * under the

the restriction mapping f > /| ,
xa

(Hi) u X _ is a dense subset of X ,
Y<a ' a

(iv) u sp D(X j n B) is a dense subset of sp D(X n B) .
Y<a a a

There also exist linear projections {P : 0 < a < \i} on X* such

that P = 0 , P = identity, and for all 0 < a < p

M \\Pj= 1 ,

(vi) PP& = Pfa = PB if 6 < a ,

PaX* = u P X* = sp D(X n B) .(vii)

Thus one can construct by a standard process (see, for example [6

Lemma 2] , [JO]) the announced injection from X* into c (V) . Also,
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combining this proposition with a recent renorming result due to Zizler

[73], we get that X* admits an equivalent (not necessarily dual) locally

uniformly rotund norm.

Let us recall that Tacon [JO] assumed X to have Gateaux different-

iabie norm whose derivative is norm-weak continuous; while John and

Zizler [7] constructed the above projections if X admitted a continuously

Frechet differentiabie function with bounded nonempty support. Both

these results are easily seen to be included in our proposition when one

takes account of the following

LEMMA 0. Let a Banach space X possess a continuous and Gateaux

dif ferentiabie function <)> : X > R such that the set

B = {x e X: §(x) J 0} is nonempty and bounded. Then there exists a

mapping D: B > X* such that the set {Dx\ : x e V n B} is dense in

V* for every subspace V of X . The mapping D can be chosen to be
norm-weak continuous if §' (the derivative of t> ) is.

If, in addition, either <f>' is norm-weak continuous or dens X =
card X, then dens X* = dens X .

Proof. By means of a shift we can ensure that 0 e B . Let us note
that B i s open. We define the function ty: X > (0, + °°] by

_2

\j>(x) = $(x) , x e X . Then IJJ is continuous on X , and from different-

ial calculus we know that it is Gateaux differentiabie on B . Moreover

\\>' is norm-weak continuous if $' is. We define the mapping D by

Dx = \fi' (x), x e B .

Let V be a subspace of X . We must show that the set

{Dx\v: x e V n B} is dense in V* . We fix g e V* and e > 0 . We

shall find x e V n B such that \\g - Dx\y\\ < e . Since B is

bounded and contains 0 , the function ty\v - g is continuous, bounded

from below, and not identically equal to +°°. Thus, by Ekeland's

variational principle [3, Theorem 1 bis], there exists x e V such that

(}j>\v)(x + h) - g(x + h) z OlyJCx) - g(x) - e\\h\\ for all h e V . It

follows that x £ V n B and

Dx(h) ̂  g(h) - z\\h\\ foi all h e. V .
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Hence H^ - Dx\ \\ < e , which shows tha t the set {£te| : x e V n B) i s

dense in V* .

It remains to prove the rest of Lemma 0. Let S be a dense subset

of B with card S = dens B . If D is norm-weak continuous, then D(S)

is weakly dense in D(B) ; hence sp D(S) contains D(B) and so

sp D(S) = X* by the first part of Lemma 0. Thus in this case

dens X £ dens X* = dens D(S) £ card DCS) £ card 5 = dens B = dens X .

On the other hand, if card X = dens X , then

dens X £ dens X* = dens D(B) i card B = card X = dens X .

The lemma just proved can be compared with a result of Leduc [9,

Proposition 3.6], which asserts that, if the above <\> has norm-norm

continuous derivative, then the unit sphere of X has a continuous dense

image in the dual unit sphere, and hence dens X* = dens X .

We cannot help mentioning the following consequence of Lemma 0,

though it departs from our main direction: % does not admit a continuous

Gateaux differentiable function with bounded nonempty support. In fact,

it is easy to check that card I = dens I = 2 . On the other hand i.
CO 00 00

is isometrical with C(8JN) and the Dirac measures {6 : x e QHN } form

a discrete subset of C(SM ' * . Hence dens I * = dens C(8M)* 2. card 6JV .
00 —

2*°
But, according to the theorem of Pospisil ['2, p. 71J, card QJN = 2

Hence dens SL * > dens i. and our lemma applies. It should be noted that
oo oo rr

the non-existence of an equivalent Gateaux differentiable norm on &

was shown by Day [2, pp. 120-126, 229-230].

Now we return to Proposition 1 and say a few words on the method

used in its proof. The rough scheme we follow is, of course, standard.

However, the proof of the starting point (Lemma 1) is simple and

elementary. Unlike [/], [10], [7] we avoid any complicated geometrical

lemma. Also, no argument about compactness is needed.

It should also be noted that our method is different from that of

Gul'ko [4] (see also [S]), who has proved the well-known result of Amir

and Lindenstrauss [7] in a simple topological way. In fact we do not

know if his approach can be adapted to the proof of Proposition 1.
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Finally the following result should be stated.

PROPOSITION 2. If the space X from Proposition 1 is weakly

countably determined, then it has an equivalent norm such that the

corresponding dual norm is locally uniformly rotund.

Thus, taking into account Lemma 0, this proposition covers results

of John and Zizler [6, Theorem 1], Gutman [5, Theorem 2] and Vasak [1/,

Theorem 2]. The proof can proceed almost word for word as in [6], taking

account of [11]. in fact only slight changes in the proofs of [6, Lemma 5,

Lemma 6] need to be made.

2. Proof of Proposition 1.

LEMMA 1. Let X , B , D be as in Proposition 1. Let N be an

infinite cardinal number and let Z be a subset of X with dens Z i N .

Then there exists a subspace C of X such that

dens C = dens C* < K } Z <= C, and that the restriction mapping

Q: f -*-f\c maps s~p D(C n B) onto C* isometrically.

Proof. Without loss of generality we may assume that B contains

the unit ball of X . By induction, we shall construct a nondecreasing

sequence {S : 0 £ n < u} of subsets of X such that card S i N ,

S is linear, Z c S , and

||f | | = sup{/(x;: x e S , ||x|| < 1} for all f e sp D(S n B)

for all n W . Let S be any subset of X

such that card S < N S~ is linear, and contains Z . Such an S
o ~ o o

exists as dens Z ̂  N . Let us assume that we have constructed 5 for

some n i 0 . Let y denote the first ordinal of cardinality X . Let

if : a < y} be a dense subset of s~p DCS n B) . For each a < y we find
ci r n

a sequence {x: m < u} in the unit ball of X (lying in 5) such that

||/J = supifjx^): m < u} . Let now Sn+1 c X be a set of cardinality

at most X which contains 5 and is such that S = s~p [{x : m < us ,

a < y} u S ] . Then S . has all the prescribed properties.

Continuing in this fashion we can construct the sets S for all
n
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n < u . We put 5 = u 5 , C = ~S , Y = sp D(S n B) . Then Z c c .

As card S i N for a l l n < u , we have dens C i card S < X . Also,

C i s linear since 5 c S and the S are linear.
K w+J n

Further fix f e Y and let e > 0 be arbitrary. As S c S

it follows easily that the set u sp~ D(S n BJ is dense in Y . Hence

there exist n < u and g e Ip D(S n Sj such that | | / - g|| < e/2 . Now

< ||<7|| + z/2 = supC^rxh- x e Sn+1 , \\x\\ < 1} + e/2 <

< sup{f(x): x e S j , \\x\\ < 1} + e <

: x £ C, ||x|| < 1} + e = | |«/ | | + e i | | / | | + e .

Consequently, letting e tend to zero, and using the linearity of Y ,

we conclude that Q is an isometry from Y into C* .

It remains to show that Q is surjective and that dens C* = dens C.

To prove it we shall use the norm-weak continuity of the mapping D .

Thus D(S n B) is weakly dense in D(C n B) and so ~sp D(C n B) =

sp D(S n B) = Y . Now

fiW = Ql sp D(C nSj] = sp QlD(C n Bj] = C*

by the other property of D . Thus the surjectivity of Q is verified.

Finally, let C be a dense subset of C with card C = dens C . Then
o o

Up D(C n B) = sp D(CQ n B) }

C* = Qlsp D(C n B)l = QLsp D(CQ n B)l ,

and consequently

dens C < dens C* = dens OCC n B) <. card C = dens C .
o ~ o

LEMMA 2. Le t # £e a Banach space and C c X _, y c AT* two

subspaaes such that the restriction mapping Q: f > / L maps Y onto

C* isometrically.

Then the mapping P: X* + X* defined by Pf = Q~2(f\c), f e X* , is

a norm one projection onto Y and the canonical image of C in X** is

weakly dense in P*X** .

Moreover, if C' c c and Y' <= y have the same properties as
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C, Y, and V is the corresponding projection, then PP' = P'P = P' .

Proof. Clearly Pf = f for a l l f e Y , and PX* = Y . Also,

since Q is an isometry,

HP/II = Hf l^rjVII = l l / l c l l 4 H/ll
for all f e X* . Hence P is a norm one projection onto Y .

Next we shall prove that C considered as a subset of X** is

weakly* dense in P*X**. Let it be false. Then, by the Hahn Banach

theorem, there are x** e X** and f e X* such that f\r=0 and

P*x**(f) JO. But P*x**(f) = x**(Pf) = x**(Q~1(f\c)) = 0 , a

contradiction. Thus C is weakly* dense in P*X** .

It remains to prove the statement concerning C and P' . Since

1" c J , we have PP' = P' . Let now fix f e X and x e X . As C"

is weakly* dense in P'*X** } there is a net {c } c C" converging

weakly* to P'*x . Consequently

P'Pf(x) = P'*x(Pf) = lim Pffc ; = lim Q~1(f\J(o ) =
T T ° T

= lim r/l Jfc j = lim f(c ) = P'*x(f) = P'f(x)
T 10 T T T

because C c C . It follows that P'P = P" .

Proof of Proposition 1. Let ix .: 0 5 a < y} be a dense subset of

f̂ . The subspaces Xa will be constructed by transfinite induction. Put

X = (0} . Fix cij 0 < a < p and let us assume that we have found

{Af : Y < a} with the properties announced in Proposition 1 and such that

X. e X whenever 0 £ & < y < 'a . If a = y + 1 for some y } take as

X the C from Lemma 1 corresponding to Z = X U {x } . By the

induction assumption we know that dens Z £ max ( a,K ) . Hence, by
O

Lemma 1, (i) and (ii) are satisfied for our a . The statements (iii) ,

(iv) are satisfied trivially. Secondly, let a be a limit ordinal. Then

putting X = U X , (iii) is satisfied. Since the X are linear and
a y < a Y Y

X~ c X for 3 < y < a , it follows that X is linear, too. The
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norm-weak cont inui ty of D then ensures tha t U D(X n B) i s weakly
Y < a Y

dense in D(X n B) . Hence (iv) holds. The remaining properties (i) and

(ii) can be easily verfied in a way similar to that from the last two

paragraphs of the proof of Lemma 1 (or otherwise, when carefully reading

the proof of Lemma 1 for Z = u X , we see that we can take
Y < o Y

S = S.=...= any dense subset of Z with cardinality at most a ; so

We can thus find subspaces X for all 0 £ a ̂  y with the

properties (i) - (iv) . And applying Lemma 2 we can immediately construct

the projections P satisfying (v) - (vii) . Finally P = 0 as

X = {0} , and we know that X contains the set {x : 0 < a. < p} ,
o v a —

which is dense in X . Hence X = X , ip" D(X n B) = X* . and P =
y y v

identity.

Remark. Propositions 1 and 2 remain valid when the mapping D is

replaced by a norm-weak lower semicontinuous multivalued mapping with

separable values at each x e B . Thus, especially, the results hold also

for those singlevalued mappings D which are a pointwise limit of a

sequence of norm-weak continuous mappings D : B > X* . A similar

remark applies to Lemma 0.
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