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Abstract

We prove that the Bartlett spectrum of a stationary, infinitely divisible (ID) random
measure determines ergodicity, weak mixing, and mixing. In this context, the Bartlett
spectrum plays the same role as the spectral measure of a stationary Gaussian process.
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1. Introduction

Random measures, and particularly point processes, are widely used in stochastic geometry
and applied mathematics. ID point processes are surely the most commonly found point
processes in the applications; see [5] and [7]. Poisson point processes, cluster Poisson processes,
Cox processes with ID directing measure, Hawkes processes without ancestors (see [2]) among
others, are ID point processes.

When stationarity, with respect to time (or to space in higher dimensions), is taken as
an assumption, one is interested in the asymptotic independence properties known as mixing
properties, which can be very difficult to determine. These properties are well characterised
in terms of the KLM measure associated to any ID random measure (see [7]), however, this
measure is rarely available. One quantity we often get access to, if a random measure N is
square integrable, is the Bartlett spectrum, which is the σ -finite measure � defined by

cov[N(f ), N(g)] =
∫

Rd

f̂ ¯̂g d� (1.1)

for all f and g in the Schwartz space, where f̂ and ĝ are the Fourier transforms of f and g

(see [4, Chapter 11] for details and examples). The Bartlett spectrum is a useful tool to study
second-order properties of a random measure. The aim of this paper is to show that a square
integrable stationary ID random measure is:

• ergodic (and weakly mixing) if and only if �{0} = 0,

• mixing if and only if �′ is Rajchman, that is, if and only if
∫

Rd eitx�′(dx) → 0 as
‖t‖ → ∞,

where �′ denotes any finite measure equivalent to � (the result does not depend on the choice
of �′).
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A stationary ID random measure is, thus, mixing as soon as its Bartlett spectrum is
absolutely continuous with respect to the Lebesgue measure, which is the commonest situation
in the applications. This also leads to a new proof of the mixing property for Hawkes processes
without ancestors; see [2]. This result can be compared to the following well-known fact
(see [3, p. 192]). A stationary Gaussian process {Xt }t∈R is:

• ergodic (and weakly mixing) if and only if σX is continuous,

• mixing if and only if σX is Rajchman,

where σX is defined by

cov[X0, Xt ] =
∫

R

eitxσX(dx).

The commonality between Gaussian processes and ID random measures is their infinite
divisibility.

2. The proof

2.1. Spectral preliminaries

We recall some basic facts about spectral theory of unitary operators. If (H, 〈·, ·〉) is a
complex, separable Hilbert space and {�t }t∈Rd is a continuous group of unitary operators, the
spectral measure of a vector f ∈ H is the measure σf on R

d uniquely defined by

〈�tf , f 〉 =
∫

Rd

eitsσf (ds).

There exists a vector fM such that, for any f ∈ H , σf 	 σfM , where (the equivalence class of)
σfM is called the maximal spectral type of {�t }t∈Rd on H .

If (X, A, m, {Tt }t∈Rd ) is a σ -finite measure-preserving dynamical system, we consider the
Hilbert space L2(m) and the group of unitary operators {Wt }t∈Rd defined by Wtf = f ◦ Tt .

If m is a probability measure, the reduced maximal spectral type of {Tt }t∈Rd is the maximal
spectral type σred of {Wt }t∈Rd on L2

0(m) := L2(m) � C (the subspace of zero-mean vectors).
Weak mixing and mixing are spectral properties; see [3].

Theorem 2.1. The probability-preserving dynamical system (X, A, m, {Tt }t∈Rd ) is weakly
mixing if and only if σred is continuous, and mixing if and only if σred is Rajchman.

2.2. The proof itself

We first treat the case of point processes. The technique consists of obtaining our ID point
process as a functional of a ‘bigger’ point process which is a Poisson measure (in this ergodic
context, it is called Poisson suspension) with a well-chosen intensity. The Poisson suspension
has a transparent spectral structure and is, thus, much more easier to study. Finally, we remark
that the ergodic properties deduced at the level of the Poisson suspension are inherited by the
initial ID point process.

Denote by (MRd , MBd ) the canonical space of point processes on (Rd , Bd). In the sequel
P is always assumed to be stationary with respect to the natural flow of translations {θt }t∈Rd .
For any A ∈ Bd and ν ∈ MRd , N(A) is defined by N(A)(ν) = ν(A). Take a bounded
set A ∈ Bd , P is said to be square integrable if E[N(A)2] < ∞ and the Bartlett spectrum
is well defined by (1.1). Thanks to the classical theory for ID point processes (see [7]), for
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any ID probability measure P on (MRd , MBd ), there exists a uniquely determined σ -finite
{θt }t∈Rd -invariant measure Q on (MRd , MBd ), called the KLM measure of P, such that
Q(µ0) = 0, where µ0 is the null measure on (Rd , Bd), and such that, for all positive functions f ,

E[e−N(f )] = exp
∫

M
Rd

(1 − e−µ(f )) Q(dµ).

Now we form a new point process, the Poisson suspension over the system (MRd ,

MBd , Q, {θt }t∈Rd ), that is, the system consisting of (MM
Rd

, MMBd
, PQ, {θ̃t }t∈Rd ), where

(MM
Rd

, MMBd
) is the canonical space of point processes on (MRd , MBd ), PQ is the distribution

of the Poisson measure of intensity Q, and, for all t ∈ R
d and θ̃t , the map γ → γ ◦ θ−1

t . It
is easily checked that PQ is invariant under the action of {θ̃t }t∈Rd . Here N(A) denotes the
mapping N(A)(γ ) = γ (A) for A ∈ MBd and γ ∈ MM

Rd
.

It is well known that L2(PQ) can be identified with the Fock space F [L2(Q)] over L2(Q):

F [L2(Q)] = C ⊕ L2(Q) ⊕ · · · ⊕ [L2(Q)]
n ⊕ · · · ,

where [L2(Q)]
n is the nth symmetric tensor power of L2(Q) and is called the nth chaos.
The identification is made through multiple stochastic integrals; we only need to know what
happens in the first chaos: if f ∈ L1(Q) ∩ L2(Q) then (

∫
M

Rd
f dN − ∫

M
Rd

f dQ) in L2(PQ)

corresponds to f in L2(Q) ↪→ F [L2(Q)].
Let {Ut }t∈Rd be the unitary operator associated to {θ̃t }t∈Rd on L2(PQ) defined by Utf =

f ◦ θ̃t ; let {Vt }t∈Rd be the unitary operator associated to {θt }t∈Rd on L2(Q) defined by Vtf =
f ◦ θt . It is easy to see that Ut acts as the nth tensor product of Vt on the nth chaos. Thus, if σ

is the maximal spectral type of {Vt }t∈R,
∑∞

k=1(1/k!)σ ∗k is the reduced maximal spectral type
of {Ut }t∈R.

The crucial point here is that, thanks to an easy computation, we have a semiconjugation
between (MM

Rd
, MMBd

, PQ, {θ̃t }t∈Rd ) and (MRd , MBd , P, {θt }t∈Rd ), implemented by the map
ϕ from MM

Rd
to MRd :

γ �→
∫

M
Rd

ν(·)γ (dν),

that is, P = PQ ◦ ϕ−1 and, for all t ∈ R
d , ϕ ◦ θ̃t = θt ◦ ϕ. In terms of random variables, this

means that we recover our ID point process N of distribution P as a functional of the Poisson
measure N: for any A ∈ Bd , N(A) has the same distribution under P as

∫
M

Rd
ν(A)N(dν)

under PQ.
Now assume that �{0} = 0 and assume that there exists a {θt }t∈Rd -invariant set B such that

0 < Q(B) < ∞. The spectral measure of 1B on L2(Q) is Q(B)δ{0}. Consider the map

E : x → exp

(
−

d∑
k=1

|xk|
)

on R
d ,

and let λ be the Lebesgue measure.
The spectral measure of

∫
Rd E dN − ∫

Rd E dλ on L2(P) is (1/(1 + ‖x‖2)) d�, and thanks
to the previous semiconjugation, is also the spectral measure of∫

M
Rd

(∫
Rd

E dν

)
N(dν) −

∫
Rd

(∫
Rd

E dν

)
dQ

on L2(PQ) and, thus, also the spectral measure of
∫

Rd E dN on L2(Q).

https://doi.org/10.1239/aap/1198177231 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1198177231


896 • SGSA E. ROY

Since (1/(1 + ‖x‖2)) d� and Q(B)δ{0} are mutually singular,
∫

Rd E dN and 1B are
orthogonal, that is, ∫

M
Rd

(
1B

∫
Rd

E dN

)
dQ = 0,

and this implies, since 1B

∫
Rd E dN ≥ 0, that

1B

∫
Rd

E dN = 0 Q -almost everywhere (Q -a.e.).

But
∫

Rd E dN is strictly positive, thus, 1B = 0 Q-a.e. and Q(B) = 0, which is a contradiction.
Then, there exists no {θt }t∈Rd -invariant set of finite positive measure for (MRd , MBd , Q,

{θt }t∈Rd ). As in [1, p. 74], the absence of such a set implies that {Vt }t∈Rd has no eigenvalue,
which means that σ is continuous.

We deduce that
∑∞

k=1(1/k!)σ ∗k is also continuous and this proves that (MM
Rd

, MMBd
, PQ,

{θ̃t }t∈Rd ) is weakly mixing by Theorem 2.1, a property which is inherited by (MRd , MBd , P,

{θt }t∈Rd ) through the semiconjugation.
Now assume that �′ is Rajchman, where �′ denotes a finite measure equivalent to �. As

in the first part of the proof, we note that, for all bounded A ∈ Bd , the spectral measure of
N(A) − λ(A) on L2(P) is also the spectral measure of N(A) on L2(Q), and this measure is
absolutely continuous with respect to �′ and, thus, is also Rajchman. We can then observe that

Q({N(A) > 0} ∩ θ−1
t {N(A) > 0}) ≤

∫
M

Rd

ν(A)ν(A) ◦ θt Q(dν) → 0 as ‖t‖ → ∞.

But, by applying the exhaustion lemma, as in [6], we can form the measurable union of the
hereditary family of those sets B ∈ MBd such that 0 < Q(B) < ∞ and Q(B ∩ θ−1

t B) → 0
as ‖t‖ → ∞. And since the union of sets of the kind {N(A) > 0} for all bounded sets
A ∈ Bd is the whole space MRd , we deduce that, for all sets B ∈ MBd of finite Q-measure,
Q(B ∩ θ−1

t B) → 0 as ‖t‖ → ∞. This implies that σ and then
∑∞

k=1(1/k!)σ ∗k are Rajchman,
which proves that (MM

Rd
, MMBd

, PQ, {θ̃t }t∈Rd ) is mixing, thanks to Theorem 2.1. Once again,
the semiconjugation with (MRd , MBd , P, {θt }t∈Rd ) implies that this last system is also mixing,
and this completes the proof.

Remark. The results also apply to general ID random measures, thanks to the following
arguments. An ID random measure gives birth to a point process, the associated Cox process,
which is also ID (see [4] for a precise definition and properties of Cox processes). The random
measure and the Cox processes share the same ergodic behaviour (ergodicity, weak mixing, or
mixing) and are simultaneously square integrable, and if � is the Bartlett spectrum of the random
measure, the Bartlett spectrum of the Cox process is equivalent to �+λ. The conclusions easily
follow.
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