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The goodness-of-fit of the unidimensional monotone latent variable model can be assessed using the
empirical conditions of nonnegative correlations (Mokken in A theory and procedure of scale-analysis,
Mouton, The Hague, 1971), manifest monotonicity (Junker in Ann Stat 21:1359–1378, 1993), multivariate
total positivity of order 2 (Bartolucci and Forcina in Ann Stat 28:1206–1218, 2000), and nonnegative
partial correlations (Ellis in Psychometrika 79:303–316, 2014). We show that multidimensional monotone
factor models with independent factors also imply these empirical conditions; therefore, the conditions are
insensitive to multidimensionality. Conditional association (Rosenbaum in Psychometrika 49(3):425–435,
1984) can detect multidimensionality, but tests of it (De Gooijer and Yuan in Comput Stat Data Anal
55:34–44, 2011) are usually not feasible for realistic numbers of items. The only existing feasible test
procedures that can reveal multidimensionality are Rosenbaum’s (Psychometrika 49(3):425–435, 1984)
Case 2 and Case 5, which test the covariance of two items or two subtests conditionally on the unweighted
sum of the other items. We improve this procedure by conditioning on a weighted sum of the other items.
The weights are estimated in a training sample from a linear regression analysis. Simulations show that the
Type I error rate is under control and that, for large samples, the power is higher if one dimension is more
important than the other or if there is a third dimension. In small samples and with two equally important
dimensions, using the unweighted sum yields greater power.

Key words: unidimensional measurement, multidimensional measurement, monotone latent variable
model, monotone homogeneity model, conditional association.

For binary test data satisfying a monotone item response theory (IRT) model, we develop
a statistical test procedure that can detect multidimensionality as opposed to unidimensionality.
Investigating the dimensionality of a psychological test is an important step in test development
and validation. Establishing unidimensionality can contribute to construct validity of the test
because this renders the interpretation of test performance easier, comparable with measurement
in other science areas. Multidimensional item sets are edited by removing or replacing items devi-
ating from the target attribute or splitting the item set in subsets representing better interpretable
test performance. A case in point is the development of Spearman’s (1904) theory of general
intelligence into the current multidimensional Cattell–Horn–Carroll (CHC) theory (Wasserman,
2019), based on psychometric analyses of numerous datasets.

Dimensionality analysis of an item set is usually done using factor analysis or IRT analysis
(e.g., Sijtsma & Van der Ark, 2021). These approaches include parametric assumptions such as
linearity and normality in factor analysis and logistic, normal-ogive, or step functions in IRT.
These assumptions usually have little prior plausibility, which led several authors (Holland, 1981;
Mokken, 1971; Rosenbaum, 1984; Stout, 1987) to study measurement using weaker assumptions,
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for example, replacing logistic and normal-ogive item response functions (IRFs) with monotone
IRFs only subjected to order restrictions without choosing a parametric function.

The absence of restrictive parametric functions rendered the development of goodness-of-
fit tests complex but was replaced with a focus on testable conditions that are the hallmark of
an underlying quantitative variable. An example of a testable condition is that the inter-item
correlations must be nonnegative (Mokken, 1971). The search for testable properties was also
inspired by axiomatic measurement theory (Krantz et al., 1971) and probabilistic developments
in it, such as the relation between simple scalability and strong stochastic transitivity in choice
data (Tversky & Russo, 1969). This article also follows this approach.

We review two classes of monotone nonparametric IRT models and their testable conditions.
Critical to this article, we argue that most conditions for which practical test procedures are
available cannot distinguish multidimensional from unidimensional monotone IRT models. We
target a specific set of covariance inequalities and demonstrate that we can use them to detect
multidimensionality in cases that would previously remain undetected. We develop a practical
test procedure and explore the Type I error rate and power using simulated data.

1. Models and Testable Conditions

1.1. Monotone Homogeneity and Monotone Factor Models

We discuss the definitions of three nonparametric IRT models that will be used throughout
the article. The first model is monotone homogeneity (MH), which contends that the expected
value of each observed binary item score variable increases with a single underlying variable,
called the common factor, the latent variable, or the latent dimension. The second model, the
monotone factor model (MFM), contends basically the same as the MH model with one or more
independent factors to which the items are related in a simple structure. The third model is
the higher-order monotone one-factor (HOMOF) model, which is like the MFM, but allows the
factors to be correlated with the restriction that they depend on a single higher-order factor. The
three models share the assumption of conditional (or local) independence or independent errors,
which are similar assumptions. Thus, MH describes a general form of unidimensionality, MFM
describes a general form of multidimensionality, and HOMOF is somewhere in between. Applied
to intelligence, MH formally resembles Spearman’s theory of a single general intelligence factor,
MFM is like Thurstone’s initial theory of multiple independent primary mental abilities, and
HOMOF parallels the hierarchical factors of CHC, integrating the other two theories.

We assume the item scores are binary manifest variables, denoted X = (X1, . . . , X J ). Vari-
able Xi represents the scores (1 = positive, 0 = negative) subjects obtained on the i-th item.
Factors, latent variables, or dimensions are denoted � = (�1, . . . , �D). The rest of this section
discusses the formal definitions of the three models, which we need to prove the theorems.

We adopt the following assumptions (Holland & Rosenbaum, 1986; Mokken, 1971; Rosen-
baum, 1984):

MH1 (conditional independence): X is conditionally independent given �.
MH2 (monotonicity): P(Xi = 1| �) is an increasing function of � for all i = 1, . . . , J .
MH3 (unidimensionality): D = 1.

We use the term ‘increasing’ synonymous with ‘monotone nondecreasing’. For readers who
do not have the information ready, Appendix A provides formulations of the assumptions having
greater precision. Following Holland and Rosenbaum (1986), we will say that (X, �) is a mono-
tone latent variable (MLV) model if MH1 and MH2 hold. Following Mokken (1971) Mokken
and Lewis (1982) and Ellis and Junker (1997), we will say that X satisfies a unidimensional MLV
model or MH model if there exists a variable � such MH1, MH2, and MH3 hold.
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Ellis (2015) studied a narrower class of monotone models. Slightly rephrasing Ellis, we will
say that X satisfies an MFM if

X = φ (ψ(λ�) + ε) ,

where φ and ψ are component-wise increasing functions, � is a multivariate random vector with
independent components, ε is a multivariate random vector with components that are independent
of each other and of �, the εi s have log-concave densities (Appendix A), and λ is a nonnegative
real matrix with simple structure (i.e., every manifest variable loads positive on one factor and
zero on the other factors). As an example of an MFM for binary manifest variables, consider a
case where the εi s have standard normal distributions, ψ is the identity function, and the φi s are
step functions with φi (x) = 0 if x ≤ βi and φi (x) = 1 if x > βi for some real number βi .

Then, P (Xi = 1 | �) = �
(∑D

d=1 λid�d − βi

)
, where �(.) is the standard normal distribution

function. Hence, every multidimensional normal ogive IRT model with independent factors and
nonnegative loadings with a simple structure is an MFM (also, see Takane & De Leeuw, 1987).

Ellis (2015) also studied amore general class of models, where the components of� need not
be independent but may be the result of a higher-order MFM factor with log-concave disturbances
at each level. We call this class of models, with possibly many levels and one factor at the highest
level, a HOMOF model. In this class of models, the factor loadings at the lowest level (i.e., λ in
X = φ (ψ(λ�) + ε)) do not necessarily have simple structure.

1.2. Testable Conditions of the Models

In this section, we review statistical inequalities that have been used to test whether MH
holds for a given set of manifest variables. These inequalities can be expressed as covariances that
are nonnegative. The general result implied by MH is conditional association (CA; Rosenbaum,
1984). Below, we discuss that CA is the hallmark of MH. Coincidentally, CA fares well with
Spearman’s (Spearman, 1904) idea that intelligence tests have positive correlations and together
measure a single general intelligence factor, and Guttman’s ‘first law of intelligence’, stating that
any two intelligence items have a nonnegative correlation in any population that is “not artificially
selected” (Guttman&Levy, 1991), thus suggesting the items should have nonnegative correlations
in any subgroup defined by the other items. CA is hard to test fully because it involves many
restrictions even for small item sets (De Gooijer & Yuan, 2011; Ligtvoet, 2022; Yuan & Clarke,
2001). Therefore, we will also discuss conditions that are easier to test, such as the condition
that the expected item score increases with the rest score, called marginal monotonicity (MM)
(Junker, 1993). These conditions can be viewed as incomplete tests of CA (Ligtvoet, 2022). We
will now continue this section with the formal definitions.

Following Rosenbaum (1984), we say that X is CA if for every partition X = (Y, Z) and
every function h, for all increasing functions φ and ψ ,

Cov (φ (Y) , ψ(Y)|h(Z)) ≥ 0.

Rosenbaum (1984) provides examples. Rosembaum’s result that

MH ⇒ CA

is key to this article, inwhichwedevelop a practically feasible test forCA.Holland andRosenbaum
(1986) generalized Rosenbaum’s (Rosenbaum, 1984) work to non-binary variables. Ellis and
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Junker (1997; also Junker & Ellis, 1997) furthermore suggested that CA is sufficient to detect
multidimensionality in a finite number of items. They studied infinite item sequences and used
the condition of vanishing conditional dependence (VCD), which means that certain conditional
covariances vanish as J → ∞. They showed that CA and VCD are necessary and sufficient for
a unidimensional monotone latent variable model in which the latent variable can be estimated
consistently. Since VCD is defined only in the limit as J → ∞, one would expect that if any
condition can detect multidimensionality in a finite item set, it will be CA.

In addition to the practical infeasibility ofCAdue to large numbers of restrictions onemust test
even for small item sets, a complete test of CA is also impossible because of the sparseness of the
data, because most item-score patterns never occur in the most commonly available sample sizes
of 100 to 10,000 subjects. Maybe for this reason, many authors have studied weaker restrictions
than CA, possibly believing they still capture the gist of CA. Straat et al. (2016) acknowledged
this limitation and proposed an incomplete strategy. Ligtvoet (2022) gives an excellent review of
weaker conditions, which he describes as “incomplete tests of conditional association”.

An important condition discussed by Ligtvoet (2022) is multivariate total positivity of order
2 (MTP2). The ordinary formulation of this condition is given in Appendix A, but for the present
purpose it suffices to note that X being MTP2 implies that

Cov (φ (Y) , ψ(Y)|Z) ≥ 0.

(Note the omission of h() here). Therefore,X beingMTP2 means that Cov (φ (Y) , ψ(Y)|h(Z)) ≥
0 holds for some, but not all, functions h (Ellis, 2015, p. 264–265). For binary variables, the
difference between CA and MTP2 thus lies in the kind of events on which one may condition:
MTP2 involves conditioning on the finest partition of subgroups that can be made with Z, whereas
CA also involves conditioning on combinations of such groups. Holland and Rosenbaum (1986)
show that

CA ⇒ MTP2.

Therefore, a test of MTP2 can be viewed as an incomplete test of CA (Ligtvoet, 2022).
For tests consisting of realistic numbers of items, however,MTP2 still involves a large number

of restrictions (Bartolucci & Forcina, 2005, p. 35; Ligtvoet, 2022). Therefore, one may want to
reduce the number of restrictions to be tested even further by considering properties derived from
MTP2, which include nonnegative partial correlations (NPC; Ellis, 2015; Brusco et al., 2015) and
nonnegative covariances (NNC) (Mokken, 1971).

The important testable property of Manifest Monotonicity (MM) (Junker, 1993; Junker &
Sijtsma, 2000) means that each item regression on the sum of the other items (known as the rest
score) is increasing (Appendix A). Junker (1993, p. 1372), Junker and Sijtsma (2000) showed
that

MH ⇒ MM.

Ligtvoet (2022) showed that CA ⇒ MM, so MM may be viewed as another incomplete test of
CA. MM is an important property because it is conceptually like the idea of a monotone IRF, and
for the reader who is unfamiliar with these concepts it may be hard to see how one can have MM
without MH. Ellis (2014) gave an example where MM holds while NPC fails, and therefore, MH
must fail too.
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1.3. Limitations of Partial Tests of Conditional Association

Ligtvoet (2022) concluded that existing incomplete tests of CA perform poorly detecting
violations of CA. In the data structures he generated, CA was often violated while MTP2 and
MM held. Thus, a researcher who tests MTP2 and/or MM instead of CA misses the violation of
CA. We agree but notice that MTP2 and MM are not sensitive to violations of dimensionality,
necessitating the discussion of the problem from a more theoretical perspective. This discussion
is partially inspired by Van den Wollenberg’s (Van den Wollenberg, 1982) proof that existing test
statistics for the Rasch model were insensitive to violations of unidimensionality.

Ellis (2015; also proposition A1 of Appendix A) showed that for MTP2 the problem is that,

MFM ⇒ MTP2.

Consequently, any test ofMHbased onMTP2 (Bartolucci & Forcina, 2000, 2005) logically cannot
distinguishMH fromMFM. That is, if the test suggests that MTP2 holds, it is also possible that an
MFM that violates MH generated the data. The same conclusion holds for any property derived
from MTP2, which includes NPC (Ellis, 2015; Brusco et al., 2015), and NNC (Mokken, 1971).
Thus, testing MTP2, NPC, and NNC cannot distinguish unidimensional and multidimensional
monotone factor models.

MM is implied by CA but not by MTP2, and therefore, we need to discuss it separately. For
MM, the problem is that

MFM ⇒ MM.

This follows from Theorem 1 in Appendix B. Consequently, no test of MM (Douglas & Cohen,
2001; Junker & Sijtsma, 2000; Molenaar & Sijtsma, 2000; Tijmstra et al., 2013; Tijmstra &
Bolsinova, 2019) can distinguish MH from MFM. That is, if the test suggests that MM holds,
it is also possible that an MFM that violates MH generated the data. Thus, testing MM cannot
distinguish unidimensional from multidimensional monotone factor models.

To summarize, based on data it is impossible to distinguish between MH and an MFM if one
tests CA only partially with MTP2, NNC, NPC, and MM. For example, assume that J = 10,
the first five items satisfying the Rasch model with latent variable �1, and the last five satisfying
the Rasch model with latent variable �2, and �1 and �2 are independent. This is an MFM, thus
satisfying MM and MTP2, which implies NNC and NPC. Hence, it would be impossible to reject
MH if only these conditions are tested. This puts the MH model at a serious disadvantage in
comparison with parametric IRTmodels such as the two-parameter logistic model, where one can
easily identify this situation via the M2-test (Maydeu-Olivares & Joe, 2006).

The argument given includes the somewhat artificial case of independent factors, which
implies that some items have correlation zero. One might argue that such cases would be excluded
with Mokken’s (1971; Mokken & Lewis, 1982) criterion H > .30. However, Ellis (2015) also
showed that

HOMOF ⇒ MTP2.

Although HOMOF models involve a single higher-order factor, there will generally be multiple
first-order factors that are positively correlated with any degree. Consequently, it is possible that
such items also satisfy H > .30.

We conclude that to distinguish unidimensional MFMs from multidimensional MFMs, the
testable conditionsMTP2,NPC,NNC, andMMare logically insufficient. Therefore, wewill target
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specific aspects of CA, which are covariance inequalities that will likely discriminate between
MH and multidimensional MFMs. The next section discusses candidate covariance inequalities.

2. Conditioning on Added Regression Predictions (CARP) Inequalities

2.1. CARP Inequalities, Definition

Assume that all response probabilities of X are known; sample statistics will be discussed
later. For a given pair (Xi , X j ), denote by X−i j the variables of X except Xi and X j . Our proposal
is a generalization of Rosenbaum’s (1984, p. 427) “Case 2” method to test the covariance of each
item pair conditionally on the rest score of the pair. For these covariances, CA implies that

Cov(Xi , X j |
∑J

k �=i, j
Xk) ≥ 0.

We call this the conditioning on rest scores (CRS) inequality, and we call a significance test for the
CRS inequality aCRS test. A limitation of theCRS inequality for testing the dimensionality of a set
of items is that the rest score used for conditioning is not adapted to the possible multidimensional
structure if the item set does not satisfy MH. To obtain greater adaptation, we propose to use
weighted rest scores. We use two linear regression analyses, where Xi and X j serve as dependent
variables and the other items are independent variables. Write X0 := 1, and denote the regression
coefficient of Xk in the prediction of Xi from X−i j as ak.i j , and denote the resulting predicted
scores as X̂i j ; that is,

X̂i j =
∑J

k=0
ak.i j Xk,

where theak.i j are such that theyminimizeE

((
Xi − X̂i j

)2)
, andwithak.i j = 0 if k = i or k = j .

Similarly, X̂ ji = ∑J
k=0 ak. j i Xk where the ak. j i are such that they minimize E

((
X j − X̂ ji

)2)
,

and with ak. j i = 0 if k = i or k = j . In other words, X̂i j is the prediction of Xi if X j is
excluded as predictor, and X̂ ji is the prediction of X j if Xi is excluded as predictor. As the basis
for conditioning, we propose the variable

X̂i j + X̂ ji =
∑J

k=0
(ak.i j + ak. j i )Xk .

This is the sum of the predicted scores of Xi and X j , where both Xi and X j are excluded from the
predictors. It may be noted that we are not assuming linearity or normality here; we are just using
the least squares solution as a heuristic tool, without claiming that this produces a good model.

The variable X̂i j+ X̂ ji can attainmany different values, producing small conditioning groups.
Therefore, we will use deciles or other quantiles of this function. This is like Rosenbaum’s (1984,
p. 428) “Case 5”, which tests the covariance of two subtests conditionally on deciles of the rest
score. If Qm is an operator that divides any variable into m groups of approximately equal size,
that is, P[Qm (X) = k] ≈ m−1, then we obtain

Cov[Xi , X j |Qm

(
X̂i j + X̂ ji

)
] ≥ 0.
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We refer to covariance inequalities of this form (with or without grouping by Qm) as condi-
tioning on added regression predictions (CARP) inequalities. Similarly, we refer to the involved
conditional covariances as CARP covariances, and to the corresponding correlations as CARP
correlations. We call the property that X satisfies all CARP inequalities, simply CARP.

CARP is the special case of CA with (if we use the notation used in the definition of CA)
Y = (Xi , X j ), φ (Y) = Xi , ψ (Y) = X j , Z = X−i j , and h (Z) = ∑J

k=0 (ak.i j + ak. j i )Xk . The
latter weighted sum is a function of X−i j because Xi has weight ai.i j + ai. j i = 0 and X j has
weight a j.i j +a j. j i = 0. We assume in this section that all response probabilities of X are known,
and therefore, the regression coefficients ak.i j are parameters, not sample statistics.

Hence, MH implies CARP. Furthermore, MFMdoes not imply CARP, which is demonstrated
in later simulations, and which can also be seen in theoretical computations of some special cases.
Therefore, testing CARP inequalities can reveal some violations of MH that testingMTP2 or MM
cannot reveal.

Let us now briefly explain why CARP inequalities may be useful in the assessment of mul-
tidimensionality. Suppose that Xi and X j load on different independent latent variables, say, �1
and �2, and that the other items load on either �1 or �2. After a suitable transformation of �1

and �2, we may say that X̂i j estimates �1 and X̂ ji estimates �2 (set �1 := E

(
X̂i j | �1

)
and

�2 := E

(
X̂ ji | �2

)
), so conditioning on X̂i j + X̂ ji tends to create groups with�1+�2 approxi-

mately equal, which induces a negative correlation between�1 and�2 in these groups (in groups
where �1 + �2 is constant, �2 is a decreasing function of �1), which in turn tends to create a
negative correlation between Xi and X j . Theorem 2 of the Appendix states more formally that in
this situation, the mean conditional covariance given the unweighted rest scores will be negative
or zero, and Theorem 3 of the Appendix states that this will also be true for the mean conditional

covariance given the weighted rest score X̂i j + X̂ ji provided that E
(
Xi | X̂i j

)
and E

(
X j | X̂ ji

)

are both increasing (i.e., the items have MM with respect to the partial weighted sum score of
their respective subtest). In the standard two-dimensional case (defined in section 5.1) with ten
items, we computed these correlations using numerical integration, and the outcomes supported
our expectation that such correlations tend to be negative or zero. The simulations to assess the
power of the CARP tests, reported later in this study, also support this result.

When we developed the test, we initially created a slightly different method, which can
produce smaller correlations than the CARP correlations (the computation of the next example
can be found in the SupplementaryMaterial). For example, take two uncorrelated standard normal
dimensions each with five Rasch items, all having βi = 0. Then, using numerical integration,
one can obtain a correlation of -.204 in the union of the two most extreme vigintile groups

of X̂i j − X̂ ji ; that is, ϕ
(
Xi , X j |[Q20

(
X̂i j − X̂ ji

)
= 1] ∪ [Q20

(
X̂i j − X̂ ji

)
= 20]

)
= −.204.

This is not aCARP correlation, because we condition on X̂i j − X̂ ji instead of X̂i j + X̂ ji . Although
this correlation is smaller than the CARP correlations we obtained, a statistical test based on this
conditional correlation of −.204 turns out to be less powerful because the 90% observations with

2 ≤ Q20

(
X̂i j − X̂ ji

)
≤ 19 are discarded. Simulations showed that a CARP test has greater

power in this case. The next section focusses on a test statistic that can be used to test CARP.

Our approach is almost the opposite of the DETECT and DIMTEST procedures for investi-
gating an item set’s dimensionality (Stout et al., 1996; Zhang & Stout, 1999a, 1999b). DETECT
and DIMTEST look for large conditional covariances, averaged over item pairs, as a sign that
unidimensionality is violated. Unlike CARP, these approaches do not use rigorously established
inequalities for the conditional covariances, but rather assume that they are approximately equal
to certain theoretical conditional covariances given �.
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3. A Statistical Test of CARP for a Single Focal Pair

We develop a significance test that we can use to check whether the CARP inequality holds
for a single pair (Xi , X j ), called the focal pair.We discuss computation in six steps. The algorithm
will become available in the R-package mokken (Van der Ark, 2007, 2012). Analyzing 100,000
samples with N = 10000 and J = 10 took less than 6min in total.

Step 1: Select a focal item pair. We propose four strategies:

1. If the researcher suspects different items measure different attributes, pick one item rep-
resentative of one attribute and another item representing another attribute. For example,
some arithmetic items including item i may also measure a verbal attribute and others
including item j a nonverbal attribute. Pick item i and item j .

2. If data are available from previous research, an explorative analysis may be done using
factor analysis or a parametric multidimensional IRT model. If different dimensions
appear, again pick two items each representing another attribute. For example, in a
factor solution, not necessarily from a well-fitting model, items can be selected that
load high on one factor and close to zero on another factor, thus providing a heuristic
tool.

3. The CARP procedure involves splitting the sample into training and test samples. The
training sample can be used to select the focal pair in the same way as in Strategy 2.

4. Let (Xi , X j ) run over all possible pairs (X1, X2), (X1, X3) , . . . , (X2, X3) , (X2, X4) ,

. . . and apply the test to each pair. A later section discusses methods to combine multiple
item pairs.

Step 2: Select a training sample. Split the total sample of N subjects randomly into a training
sample of L subjects and a test sample of M subjects (N = L+M). The proportion of subjects in
the training sample is 	 = L/N . We use the training sample to estimate the regression coefficients
and use these in the test sample to compute the test statistic. Based on simulation work reported
later, for small samples (N ≤ 500), we recommend 	 = .5, and for larger samples 	 = .2 or
	 = .3.

Step 3: Estimate the regression coefficients. Linear regression analysis on the training sample
yields estimates of the coefficients ak.i j and ak. j i , denoted âk.i j and âk. j i (with âi.i j = â j.i j = 0).

Step 4: Estimate quantiles of the predicted scores. Using only the training sample, compute
the estimated predicted scores

ˆ̂Xi j =
∑J

k=0
âk.i j Xk,

and similarly, for ˆ̂X ji . Next, determine the empirical distribution function of ˆ̂Xi j + ˆ̂X ji in the
training sample. The distribution is used to define m quantiles. Here, we propose using deciles
(m = 10). Thus, the outcome of Step 4 is a list of real numbers q̂1 i j < q̂2 i j < . . . < q̂9 i j such
that

P
(
q̂(s−1) i j <

ˆ̂Xi j + ˆ̂X ji ≤ q̂s i j
)

≈ 0.1

for s = 1, . . . , 10, where we write q̂0 i j = −∞ and q̂10 i j = ∞. The precise algorithm used in
the simulations is provided in the Supplementary Material.

Step 5: Compute the conditioning variable in the test sample. Using the estimated regression
coefficients âk.i j and âk. j i , and the estimated quantile separators q̂s i j estimated in the training
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sample, we extend the computation of ˆ̂Xi j + ˆ̂X ji to the test sample. Next, we compute the
conditioning variable Ci j in the test data by

q̂(s−1) i j <
ˆ̂Xi j + ˆ̂X ji ≤ q̂s i j ⇐⇒ Ci j = s

Step 6: Compute the one-sided Mantel–Haenszel Z . Using the test sample, test the null hypothesis
that Cov(Xi , X j |Ci j = s) ≥ 0 for s = 1, 2, . . . , m by means of a one-sided version of the
Mantel–Haenszel statistic. We will use the test proposed by Rosenbaum (1984, p. 429; see Kuritz
et al., 1988, for a discussion of different versions of the Mantel–Haenszel method). The following
description is copied almost verbatim from Rosenbaum: Denote the number of subjects in the
test sample having Xi = a, X j = b, and Ci j = s as nabs for a, b = 0, 1; s = 1, 2, . . . , m and
denote the marginal totals as n+bs = n0bs + n1bs , na+s = na0s + na1s , nab+ = ∑

s nabs , etc.
Compute

e+ =
∑m

s=1

n1+sn+1s

n++s
,

v+ =
∑m

s=1

n1+sn0+sn+1sn+0s

n2++s(n++s − 1)
,

and then the test statistic

Zi j = n11+ − e+ + 0.5√
v+

.

The p-value is computed as pi j = �−1(Zi j ), where �−1(.) is the inverse of the standard normal
distribution function. See Rosenbaum (1984, p. 429) for more details and the rationale of Zi j .
The sample covariance of Xi and X j in the layer with Ci j = s is given by

ĉov(Xi , X j |Ci j = s) = n11s
n++s

− n1+s

n++s

n+1s

n++s

and therefore,

n11+ − e+ =
∑m

s=1
n++s ĉov(Xi , X j |Ci j = s).

The numerator of Zi j is therefore a weighted sum of the conditional covariances of Xi and X j ,
given the grouped weighted rest scores, with a continuity correction. Rosenbaum noticed that the
quantities e+ and v+ are the expectation and variance of n11+ in the least favorable case of the
null hypothesis, which is the case where Cov(Xi , X j |Ci j = s) = 0 for s = 1, 2, . . . , m. If the
null hypothesis is true, then Cov(Xi , X j |Ci j = s) ≥ 0 and E (n11+ − e+) ≥ 0, so that Zi j has
an asymptotic normal distribution with E(Zi j ) ≥ 0.

The optimal number (m) of quantile groups in Step 4 is rather arbitrary in the sense that there
is no definitive number. Rosenbaum (1984) suggested deciles (m = 10) in his “Case 5”, but also
used the raw rest score, which has J − 2 levels. We did simulations with both linear and logistic
regression, with m = 10, m = J − 2, and m = √

N . The differences in power between these
versions were small, but linear regression with m = 10 had slightly higher power than the other
options. Therefore, we use linear regression with m = 10 in all simulations below.
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4. Asymptotic Type 1 Error Rate

We provide a formal proof that the Type 1 error rate is under control as N → ∞. Note that
in Step 6 we suggested a one-sided version of a Mantel–Haenszel test, but that multiple versions
of the Mantel–Haenszel test exist (Kuritz et al., 1988), and more versions can be developed in
the future. We want a result that is valid for all these versions, and rather than delving into the
details of each possible version, we will make the general assumption that in Step 6 one applies
a test with the following property: If the test is applied to data of a 2 × 2 × K table to test the
null hypothesis that the covariance is nonnegative in each of the K layers, then the asymptotic
Type 1 error rate is under control in the sense that the p-values stochastically dominate a standard
uniform random variable as the sample size grows to infinity. Now, the question is whether that
remains true in our case, where the layers are partially based on the regression estimated from a
training sample rather than on a fixed variable in the test sample.

Proposition 1. If subjects are drawn randomly and independently and if the test sample grows
infinitely large while the training sample remains fixed, then the asymptotic Type 1 error rate of
the CARP test is under control.

Proof. Denote the data of the L subjects of the training sample X(1) = (X(1)
1 , X(1)

2 , . . . , X(1)
L ) and

the data of the M subjects of the test sample X(2) = (X(2)
1 , X(2)

2 , . . . , X(2)
M ). Subjects are drawn

randomly and independently, therefore we consider the random vectors X(t)
n as independent and

identically distributed (iid) copies of X. The k-th item score in X(t)
n is denoted X (t)

nk . Define g(.) to
be the function such that, for any vectors α∈R2(J+1) and β ∈ R

m−1 with β1 < β2 < . . . < βm−1,
if we write β0 = −∞ and βm = ∞, then

βs−1 <
∑J

k=0
(αk + αk+J+1)Xk ≤ βs ⇐⇒ g (X,α,β) = s,

for s = 1, 2, . . . , m. This definition parallels the definition of the conditioning variable Ci j ,
given in the description of Step 5. We denote the vectors of estimated regression coefficients and
quantile separators âi j

(
X(1)) and q̂i j

(
X(1)), respectively, so that we can write the conditioning

variable for the n-th subject in the test sample as

Ci jn = g
(

X(2)
n , âi j

(
X(1)

)
,q̂i j

(
X(1)

))
.

Now, consider the conditional covariance of the form Cov(Xi , X j |Ci j = s). For the n-th subject

in the test sample, the corresponding covariance is Cov
(
X (2)
ni , X (2)

nj |Ci jn = s
)
. Consider the

latter covariance conditionally on X(1). Given X(1), X(2)
n is conditionally associated (because X is

conditionally associated and X(2)
n is a copy of X that is independent of X(1)). Furthermore, given

X(1), Ci jn depends only on X(2)
n with the two variables X (2)

ni and X (2)
nj excluded (since we required

âi.i j = â j.i j = 0), and therefore, Cov
(
X (2)
ni , X (2)

nj |Ci jn = s, X(1)
)

is implied to be nonnegative

by conditional association of X(2)
n |X(1). Nonnegativity holds for n = 1, 2, . . . , M . It can be

concluded that the data of the test sample can be considered as M independent draws from a
population with Cov(Xi , X j |Ci j , X(1)) ≥ 0. Therefore, the asymptotic distribution of pi j |X(1)

dominates the uniform (0, 1) distribution in the sense that for any α ∈ (0, 1), lim sup
M→∞

P(pi j <

α|X(1)) ≤ α. The decision rule “reject the null hypothesis if pi j < α" will thus lead to asymptotic
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Type 1 error rate lim sup
M→∞

P(pi j < α) = lim sup
M→∞

E(P(pi j < α|X(1))), and with the reverse Fatou

lemma we have that this is ≤ E lim sup
M→∞

P(pi j < α|X(1)) ≤ α �

Proposition 1 holds no matter how poor the estimates â, q̂ are or how much off-target the
heuristic tool is. All that is needed to control the Type 1 error rate is that the subjects are drawn iid,
that the estimates â, q̂ are based on the training sample, that the training sample is independent
of the test sample, and that the weights of the focal variables are fixed to zero in â.

Proposition 1 assumes that the size of the training sample remains fixed while the size of the
test sample increases. If, however, L and M increase simultaneously, we presumably also need
that â and q̂ converge as L → ∞, because Ci jn depends on X(1) and therefore, on L . If â and q̂
converge, then the Ci jns stabilize, and we expect that the proof can be modified to establish that
the Type 1 error rate is under control in this situation as well. However, we see no point in dwelling
on cases with L → ∞, because increasing the training sample has almost no benefits once the
standard errors of â and q̂ become very small. For all practical purposes we can therefore add to
our procedure the prescription to cap L when the estimated standard errors of â and q̂ are below a
certain small threshold. This happens almost surely for large L if these estimates are obtained by
linear regression and the empirical distribution function, as we discussed in the previous section.
Then, the proof suffices to establish asymptotic Type 1 error rate control.

We explored whether the test can be modified such that the training sample and the test
sample both include the whole sample, but simulations showed that this modification causes the
Type I error rate to exceed the nominal significance level in some cases. Hence, we recommend
cross-validation.

5. Simulation Studies

5.1. Method

5.1.1. General Set-Up We used J items and a logistic model, P (Xi = 1|�1,�2,�3) =
(1 + exp (− (αi1�1 + αi2�2 + αi3�3 + βi )))

−1, where (�1,�2,�3) has a trivariate standard
normal distribution with correlations 0. Denote the number of items that load on dimensions 1,
2, and 3 as J1, J2, and J3, respectively, so that J1 + J2 + J3 = J . We distinguish the standard
two-dimensional case as a special case with αid = 1 if item i loads on dimension d, and αid = 0
otherwise, βi = 0, and J1 = J2 and J3 = 0. We call this the ‘standard’, but it represents a failure
if the goal was to create a unidimensional test that satisfies MH.

5.1.2. Optimum Size of Training Sample Training samples in cross-validation often contain at
least 70%of the observations of thewhole sample.We did some simulations to find outwhetherwe
mustmaintain that percentage here.We used the standard two-dimensional casewith J ∈ {12, 24}
and N ∈ {500, 1000, 2000, 5000}, and 	 ∈ {.1, .2, .3, .4, .5, .6, .7, .8, .9}, using 1000 samples
per (J, N , 	) cell. For each combination of J and N , we fitted the power of the CARP method
found in the simulation by a quadratic regression on 	. From the estimated regression coefficients,
we computed the value of 	 for which the quadratic curve has its maximum. Table 1 shows that
for small samples (N = 500), the estimated optimum was close to 	 = .5, and for large samples
the optimum was rather 	 = .2 or 	 = .3.
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Table 1.
Estimated optimum values of training proportion 	 for varying sample size N and test length J .

J
N 12 24

500 .45 .48
1000 .38 .43
2000 .31 .36
5000 .19 .31

6. Results

6.1. Type I Error Rate

For large samples, the Type I error rate is under control because of the asymptotic properties
of the Mantel–Haenszel test. It suffices to study the error rate for small samples, and we focused
first on N = 500 with 	 = .3 for this purpose. In unidimensional cases, we chose αi2 = αi3 = 0
for i = 1, . . . , J . We focused on cases with αi1 = αi2 = αi3 = 0, which we refer to as zero-
dimensional. (One can also describe this case as J -dimensional, but the number of common
dimensions would still be 0.) These cases are interesting because all CARP covariances are zero,
whereas they are positive in the unidimensional case with positive loadings. Consequently, the
rejection rates were generally higher in zero-dimensional cases than in other unidimensional
cases. Parameters that were not fixed to 0 were randomly drawn from the following distributions:
βi ∼ Uni f orm(−1.5, 1.5) and αi1 ∼ Uni f orm(0.5, 2.5).We studied the effect of the number
of items, J , varying between 10 and 50. For each J , we simulated 100 parameter sets S, each
consisting of (αi1, βi ), i = 1, . . . , J . Next, for each of the 100 parameter sets we simulated 1000
samples of N subjects responding to the J items and applied the CARP test procedure to this
sample with nominal significance level α = .05. Thus, for each J we have 100 parameter sets,
and for each parameter set, we obtained a rejection rate based on 1000 samples.

Table 2 shows the quartiles of the rejection rates with 	 = .3 for some selected values of
J . The maximum rejection rate over all 4100 zero-dimensional cases (41 values of J , each with
100 cases of 1000 samples) was .065, which is not significantly larger than .05 according to a
binomial test with multiple testing correction (for a single case of 1000 samples, the p-value
would be 1 − pbinom (65, 1000, .05) = .0149, but for the maximum of 100 cases the p-value
is 1 − pbinom (65, 1000, .05)4100 = 1). The mean rejection rate was .038. Figure1 shows
the cumulative percentages of the rejection rates along with the expected cumulative percentages
derived fromabinomial distributionwith success probability .05. The expected distribution clearly
dominates the distribution of rejection rates. Therefore, we conclude that the Type I error rate of
the CARP test is under control in these cases.

We also did simulations where 	, N , and J were randomly drawn from a uniform distri-
bution, with 	 ∈ (.2, .5), N∈ [500, 1000], and J∈ [10, 50]. We simulated zero-dimensional
parameter cases with 1000 samples each. The maximum rejection rate was .062, which is
not significant according to a binomial test with multiple testing correction (p = 1 −
pbinom (62, 1000, 0.05)1000 = 1). The mean rejection rate was .040. Figure1 shows the cumu-
lative frequencies of the rejection rates along with the expected cumulative frequencies derived
from a binomial distribution with success probability .05. The binomial distribution clearly dom-
inates the distribution of the rejection rates. Therefore, we conclude that the Type I error rate is
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Table 2.
Type I error rates in zero-dimensional cases.

J
Quartile 10 20 30 40 50

0 (minimum) .018 .024 .019 .025 .022
1 .032 .034 .034 .032 .033
2 .038 .038 .038 .037 .038
3 .041 .040 .043 .041 .041
4 (maximum) .052 .052 .055 .051 .051

Each column is based on 100 cases with 1000 samples each, with 	 = .3 and N= 500.

Note. Le�: Based on 4,100 cases with = 500 and = .3 and = 10,...,50. Right: Based on 1,000  
cases with ∈ [500, 1,000], ∈ (.2, .5) and ∈ [10,50]. In all cases = .05.

Figure 1.
Cumulative Percentages of Type I Error Rates in Zero-Dimensional Cases.

under control. The simulations with random 	, N , and J were also conducted for unidimensional
cases with αi1 ∼ Uni f orm(0.5, 2.5). These rejection rates were all well below .05.

Finally, we did some simulations with N � 500 and small J . Both zero-dimensional and uni-
dimensional cases were simulated with 	 ∈ (.2, .5), N∈ {5000, 10000, 20000}, and J∈ {5, 10}
with 10 parameter cases per cell and 1000 samples per parameter case. The rejection rates were
again around .05 in the zero-dimensional cases, and close to 0 in the unidimensional cases.

6.2. Power: Single Focal Pair, Effect of Dimensionality, and Item Distribution

We chose αid = 1 if item i loads on dimension d, and αid = 0 otherwise. We used βi = 0.
Consider the standard two-dimensional case where J1 = J2 and J3 = 0. For large N , if linear
regression is used, X̂i j + X̂ ji converges to a linear transform of the rest score (

∑
k Xk)− Xi − X j .

Therefore, the power of the CARP test will approach that of a CRS test. However, for finite N ,
the power of the CARP test will remain below that of the CRS test, because part of the sample is
used for training and not for testing, and because X̂i j + X̂ ji is not exactly equal to the rest score
yet. This was indeed what we found in simulations. Therefore, one may consider the standard

Downloaded from https://www.cambridge.org/core. 06 Jan 2025 at 09:36:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


400 PSYCHOMETRIKA

Table 3.
Rejection Rates of CARP and CRS Tests in Two-Dimensional Cases with N = 5000.

J J1 J2 J3 CARP CRS

12 2 10 0 .363 .231
12 3 9 0 .601 .533
12 4 8 0 .727 .797
12 5 7 0 .792 .929
12 6 6 0 .791 .949
24 2 22 0 .320 .118
24 3 21 0 .627 .234
24 4 20 0 .753 .450
24 5 19 0 .836 .680
24 6 18 0 .889 .839
24 7 17 0 .892 .913
24 8 16 0 .937 .970
24 9 15 0 .929 .989
24 10 14 0 .950 .995
24 11 13 0 .945 .995
24 12 12 0 .954 .998

Values in bold are the largest power in the row
Each row is based on 1000 samples.

two-dimensional case as the ideal case for Rosenbaum’s CRS test. Next, we will compare the
power of the CARP test and the CRS test in various deviations from this standard case. The first
kind of deviations is that J1 �= J2. The second kind of deviation is that J3 > 0, introducing items
that load on a third dimension that we assume uncorrelated with the other two dimensions. These
simulations were conducted with all J between 9 and 39 that are multiples of 3, but we report
results in detail only for J = 12 and J = 24.

Table 3 shows the CARP test’s power with N = 5000, and 	 = .2 for cases with J = 12 or
J = 24, and J3 = 0. The CARP test had significantly greater power than the CRS test in the seven
cases with J1/J < .27 or J1/J > .73 and in some of these cases, the power of the CARP test
was considerably larger. In the other nine cases, the CRS test had more power, but the power of
the CARP test was rather close to it. In general, the CARP test had greater power. The results for
other values of J were similar: For J1/J < .27 or J1/J > .73, the CARP test had significantly
greater power than the CRS test. For J1/J between .30 and .70, the CARP test had significantly
smaller power than the CRS test. For values of J1/J between .27 and .30, or between .70 and .73,
the difference in power between the CARP and CRS tests was usually not significant.

Table 4 shows the power with N = 5000, and 	 = .2 for cases with J = 12 or J = 24,
J1 = J2, and J3 > 0. The CARP test had greater power than the CRS test in the ten cases with
J1 = J2 ≤ J3, and in some of these cases the power of the CARP test was considerably greater.
In the other four cases with J1 = J2 > J3, the CRS test had greater power, but the power of
the CARP test was still substantial. In general, the CARP test had greater power. Results for
other values of J were similar. For small N , the CARP test lost power compared to the CRS test,
because the training sample was excluded from the test. Thus, the results for smaller N were more
favorable for the CRS test.

6.3. Power: Single Focal Pair, Effect of Item Parameters and Sample Size

Westudied two-dimensional testswith J1 = J2 and J3 = 0,with N = 500, 1000, 2000, 5000,
	 = .3, and J = 12 or J = 24. We chose αi2 = 0 for i = 1, . . . , J1 and αi1 = 0 for
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Table 4.
Rejection rates of CARP and CRS tests in three-dimensional cases with N = 5,000.

J J1 J2 J3 CARP CRS

12 2 2 8 .154 .064
12 3 3 6 .373 .148
12 4 4 4 .541 .398
12 5 5 2 .684 .767
24 2 2 20 .130 .061
24 3 3 18 .285 .060
24 4 4 16 .476 .092
24 5 5 14 .622 .171
24 6 6 12 .732 .240
24 7 7 10 .801 .493
24 8 8 8 .855 .729
24 9 9 6 .899 .915
24 10 10 4 .914 .982
24 11 11 2 .945 .995

Values in bold are the largest power in the row
Each row is based on 1000 samples.

Note. Le�: J = 12; Right: J = 24. Each boxplot is based on 100 cases, each case has 1000 samples.

Figure 2.
Rejection rates in two-dimensional cases with different item parameters.

i = J1 + 1, . . . , J . Parameters that were not fixed to 0 were randomly drawn from the following
distributions:βi ∼ Uni f orm(−1.5, 1.5) andαi1, αi2 ∼ Uni f orm(0.5, 2.5). For J = 12, 24,
we simulated 100 parameter sets S, each consisting of (αi1, αi2, βi ), i = 1, . . . , J . Next, for each
of the 100 parameter sets we simulated 1000 samples of N subjects responding to the J items
and applied the CARP test procedure to this sample with nominal significance level α = .05.
Figure2 shows modified boxplots of the rejection rates. As expected, the power increased with
N , but variation was large due to the parameter sets. For N = 5000, most parameter sets would
have had power greater than .80.
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7. Additional Results for the CARP Tests

7.1. Aggregation of CARP Tests across Item Pairs

We discuss how one can combine tests of multiple item pairs without prior selection. If one
applies aCARP test to all item pairs of a scale, this produces a sequence of J (J−1)/2 p-values. To
keep the family-wise Type I error rate (FWER) under control, a multiple testing correction may be
in order. Alternatively, one could choose to control the false discovery rate (FDR), which generally
leads to tests with higher power (Benjamini & Hochberg, 1995; Benjamini & Yekutieli, 2001).
However, applying either correction method to all J (J − 1)/2 p-values results in unnecessary
loss of power if many of the involved covariances are positive. Instead, one may consider only
the item pairs that have a negative conditional covariance in the training sample and test their
conditional covariances in the test sample. We collect the set of item pairs (i, j) , i > j with a
negative conditional covariance in the training sample in set S, and let S := |S| denote its size.
Since this statistic is independent of the data in the test sample, one may apply the Bonferroni
correction with this number; that is, reject the null hypothesis for pair (i, j) iff (i, j) ∈ S and
pi j ≤ α/S. To check that this correction with S controls the FWER, assume that under the null
hypothesis the distribution of each pi j dominates theUni f orm(0, 1) distribution in the sense that
P

(
pi j ≤ x

) ≤ x for all x ∈ Rwhere P denotes the probability measure of the pi j . This condition
is called supra-uniformity by Ellis et al. (2020). The condition is satisfied if pi j dominates the
Uni f orm(0, 1) distribution in likelihood ratio order (Whitt, 1980), and it is equivalent to pi j
having a density that is increasing on the interval (0, 1). This is true if the test is conducted with
pi j = �−1

(
Zi j

)
with Zi j ∼ N(μi j , 1) and μi j ≥ 0. Let Ri j denote the event that the null

hypothesis is rejected for pair (i, j), then, for a fixed pair (i, j) we have P
(
Ri j |(i, j) ∈ S

) ≤ α/S
and P

(
Ri j | (i, j) /∈ S

) = 0; therefore, the FWER is

P

⎛
⎝⋃

i, j

Ri j

⎞
⎠ = E

⎛
⎝P

⎛
⎝⋃

i, j

Ri j |S
⎞
⎠

⎞
⎠ ≤ E

(
�i, jP

(
Ri j |S

)) ≤ E

(
S
α

S

)
= α.

(In P
(⋃

i, j Ri j |S
)
and P

(
Ri j |S

)
, S is treated as a random variable with outcomes that enumerate

the power set of {1, . . . , J }2.)
Alternatively, one could try to compound the Z -statistics in the formula

Ztotal =
∑

(i, j)∈T Zi j√
v

,

where T ⊆ S is some further restricted subset of item pairs, and v is an estimate of the variance
of the numerator. The Zi j s are correlated, and to obtain v one should somehow estimate their
average correlation; see Efron (2010), who discusses methods for this purpose. An advantage is
that compounding can increase the power, as was concluded by Straat et al. (2016) for the CA
tests of Rosenbaum (1984). We encourage future researchers to develop improved compounding
rules.

7.2. Comparison with Other Methods

So far, we compared CARP mathematically with other incomplete tests of CA, such as
testing MTP2, and we compared it in simulations with Rosenbaum’s (1984) CRS test, which
also assesses CA. Next, we briefly touch upon the topics of parametric goodness-of-fit tests and
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discuss the difference of the CARPmethod and existing approaches to dimensionality assessment
in nonparametric IRT. We notice that the CARP test has been developed for a single focal pair, so
that aggregation over multiple item pairs is a topic for future research. The alternatives that we
discuss typically aggregate over all item pairs. This is true for Chi-square and RMSEA in factor
analysis, the statistics Q2 (Van denWollenberg, 1982), R2 (Glas, 1988), andM2 (Maydeu-Olivares
& Joe, 2006) in logistic IRT models, and DETECT (Zhang & Stout, 1999b) in nonparametric
IRT. Our discussion can therefore not include a quantitative comparison with respect to statistical
power.

7.2.1. Comparison with Parametric Goodness-of-Fit Tests Two reviewers suggested to com-
pare the CARP procedure with a method where a parametric multidimensional model is fitted
first and then a parametric unidimensional model is compared with it, using a goodness-of-fit test
such as a likelihood-ratio test.Wewill call this method the parametric goodness-of-fit comparison
(PGC). Examples of this are (1) testingmultiple linear factor models and compare their chi-square
statistics, assuming normal distributions, or compare their Chi-squares, RMSEAs or eigenvalues.
We mention this possibility because of its popularity in psychology; (2) similar but using logistic
IRT models instead of linear factor models (e.g., Bartolucci, 2007; Christensen et al. 2002); (3)
testing different latent class models (e.g., Bartolucci et al. 2017; Ligtvoet & Vermunt 2012; Van
Onna, 2002; Vermunt, 2001). The idea is that a latent class model can approximate nonparametric
multidimensional and unidimensional models if the number of latent classes is large enough;
and (4) testing monotonic polynomial models (Falk & Cai, 2016). These models can be used to
approximate multidimensional and unidimensional models if the number of polynomial terms is
large enough, and therefore a similar strategy can be used.

We find this approach interesting, but we are not yet convinced that in the long run it is more
helpful than our approach, which is focussed on critical data patterns such as negative covariances
rather than comparing goodness-of-fit statistics. Our restraints concerning the PGC methods are
the following. First, it is generally difficult to know how many dimensions the multidimensional
model should have, and how this influences the decision on the unidimensional model. Second,
it is unclear to which extent the auxiliary assumptions (linearity, logistic response function, nor-
mality, number of latent classes, number of polynomial terms) influence the goodness-of-fit of the
unidimensional model. Third, if a goodness-of-fit test indicates that the unidimensional model is
wrong, it might not be clear which items are causing the problem. For somemodels, item-fit statis-
tics have been proposed (e.g., Sijtsma&Van der Ark, 2021) that must be used in combination with
statistics assessing the fit of sets of items. Another variant is that an alternative unidimensional
model must be chosen, but then the large array of possibilities provides a new choice problem
(which model is the most obvious choice?) and corresponding analysis problem (how to avoid
endless trial and error?). We conclude that the application of methodologies other than the one
we study in this article comes with complexities hindering their straightforward use as well as a
simple comparison with our CARP methodology.

7.2.2. Comparison with Item Selection Procedures in Nonparametric IRT In the context of
nonparametric IRT, several procedures have been proposed to assess the dimensionality of an item
set. The automated item selection procedure (AISP; Mokken, 1971; Sijtsma & Molenaar, 2002)
uses a bottom-up algorithm to select items in unidimensional subsets based on a definition of a
scale that uses non-negative inter-item covariances and positive scalability coefficients. Straat et
al. (2013) proposed a genetic algorithm to replace and remedy some of the peculiarities of the
AISP. The goal of both procedures is to have asmany items possible in the first scale, asmany from
the remaining items—if available—in the second scale, and so on. Zhang & Stout (1999b, p. 239)
defined the “bias-corrected estimator for the theoretical DETECT index” as a weighted average of
covariances of the form Cov

(
Xi , X j | T

)
, with sum score T = ∑

i Xi , and Cov
(
Xi , X j | Ri j

)
,
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with rest score Ri j = ∑
k �=i, j Xk , where the DETECT weights are such that the pair (i, j)

contributes if and only if both items are in the same cluster. Next, Zhang and Stout try to find the
partition thatmaximizes this index using a heuristic procedure. Roussos, Stout, andMarden (1998)
proposed an agglomerative hierarchical cluster analysis for finding subsets of items, using the
software package HCA/CCPROX. The procedure provided the choice between different statistics,
including covariances conditional on rest scores not including items known to be in already formed
clusters, for assessing the relationship between items, and different agglomerative hierarchical
clustering methods. They did not use a formal criterion for identifying a final solution but rather
left this to the researcher to decide, for example, based on theoretical expectations of the item set’s
dimensionality. The DIMTEST procedure assesses the hypothesized unidimensionality of a user-
specified item set (Nandakumar & Stout, 1993; Stout, 1987). Thus, unlike the other procedures,
DIMTEST is confirmatory and cannot directly be used to partition items in different clusters in an
exploratory analysis. Several variations on the original procedure have been proposed; see Stout
et al. (2001) and Kieftenbeld & Nandakumar (2015). Van Abswoude, Van der Ark, and Sijtsma
(2004) systematically compared the methods.

The CARP procedure is different from these and other item selection procedures proposed
in the nonparametric IRT context (e.g., Brusco, Köhn, & Steinley, 2015). It shares with several of
these procedures a certain open-endedness caused by the complexities typical of a fine-grained
analysis of the data involving many item pairs or item subsets and subdivisions of the sample
into score groups, dealing with finite sample sizes and empty or near-empty cells in contingency
tables, and combining many detailed results into one useful conclusion about the dimensionality
of an item set. Because so many arbitrary researcher decisions are needed to obtain a result, not
only for the CARP procedure but also for other procedures many precautions are needed to be
able to compare them thoroughly. This is a project requiring a separate study.

8. Discussion

We developed the CARP test, which often distinguishes data generated by a two-dimensional
model from data generated by a unidimensional monotone model, even if the data are MTP2 and
haveMM.The test usesCAand can be viewed as a generalization ofRosenbaum’s (1984) proposal
to test the covariance of each item pair conditionally on their unweighted rest score (the CRS test).
The CARP test conditions on a weighted rest score, where the weights are based on regression
analyses in a training sample consisting of 20% to 50% of the total sample. Each of the items in
a focal pair (i, j) is used as dependent variable in a linear regression analysis that predicts them
from the remaining items. The sum of the two predicted scores is computed in the test sample and
is used as the weighted rest score. The weighted rest score divides the test sample into deciles and
a directional Mantel–Haenszel test tests whether the covariance of (i, j) is nonnegative in each
decile group.

Data generated by means of unidimensional logistic models showed that the Type I error
rate is under control, even if the overall inter-item correlations are 0. Simulations with two-
dimensional logistic models showed the power of the CARP test exceeds the power of the CRS
test if one dimension has three times more items than the other dimension. Simulations with
three-dimensional logistic models showed the power of the CARP test exceeds the power of the
CRS test if the third dimension has at least a third of the items. In the extreme two-dimensional
case, where both dimensions have the same number of items with equal loadings and difficulty
parameters for all items, the CARP test converges to the CRS test as the sample size increases.
Thus, in comparison with Rosenbaum’s (1984) CRS test, our CARP test gains power in a variety
of multidimensional cases at the cost of losing some power in extreme two-dimensional cases with
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equally important dimensions. Because tests are usually aimed at being unidimensional, most of
the items indeed resulting in targeting this dimension, the results for the CARP test are positive.

We explored for multiple focal items that compounding their test statistics can increase the
power. The CARP method looks promising, but as with any newly developed method it also
raises questions for future research. First, what are the optimal values of 	 (the size of the training
sample) and m (the number of groups in conditioning), and how do these values depend on N
and J? Second, in the cross-validation, rather than drawing one training sample one might repeat
drawing and then aggregate the results over draws, thus reducing the variability of the outcomes.
Which aggregation rules are suitable? Third, how can one compound test results for multiple item
pairs? Fourth, a more elaborate study of the dependence of the power on the number of items,
the number of dimensions, the shape of the response function (logistic or other), and the item
parameters could be done. Fifth, the CARP inequalities also hold for polytomous items. Which
test procedures are most useful? Rosenbaum (1984, p. 429) provides suggestions. Sixth, how does
the power profile of the CARP test compare to the semiparametric methods of Bartolucci (2007)
and Falk and Cai (2016)?.

In our analysis, we assumed a priori that conditional independence holds, which is consistent
with the fact that for a finite number of binary items, without other restrictions, conditional inde-
pendence is a “vacuous assumption” (Holland&Rosenbaum, 1986, p. 1525).Moreover, assuming
monotonicity, we developed the CARP test as a test of unidimensionality versus multidimension-
ality. However, if the CARP test points to a violation of MH, this cannot be attributed to a single
assumption. An alternative model may thus assume local dependence or correlated errors instead
of multidimensionality.

The CARP method can be a useful addition to the existing methods for testing MH and
detecting multidimensionality in monotone models. It may help answer a fundamental empirical
question without relying on features of parametric models that are irrelevant to the research ques-
tion. We already mentioned the present CHC intelligence representation using multiple factors
(Wasserman, 2019) that is based on parametric—mostly linear—models. This choice is mathe-
matically convenient but may be irrelevant for distinguishing the factors and damaging when it
dominates the data analysis. A significant negative covariance obtained in a CARP test would
demonstrate that the distinction between intelligence factors is not an artifact of the parametric
assumptions, and it would rule out every unidimensional monotone model for intelligence. This
is another topic for future research.
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Appendix A

In this appendix, we state the precise definitions of the various models and conditions that are
relevant here. Consider a vector of binary manifest variables, X = (X1, . . . , X J ). Variable Xi

represents the scores (1 = correct, 0 = incorrect) subjects obtained on the i-th item. Suppose that
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in the probability space of X there is some random vector, � = (�1, . . . , �D), which represents
the latent variables. We will use the following conditions (Holland & Rosenbaum, 1986; Mokken,
1971; Rosenbaum, 1984), adapted to binary manifest variables:

MH1. (conditional independence). X is conditionally independent given � if
P(X = x| �) = ∏J

i=1 P(Xi = xi | �) for all x ∈ {0, 1}J .
MH2. (monotonicity). X is monotone with � if

P(Xi = 1| �) is monotonically increasing in each coordinate of� for all i = 1, . . . , J .
MH3. (unidimensionality). � is unidimensional if D = 1.

Definition 1. (monotone latent variable model;Holland&Rosenbaum, 1986). (X, �) is amono-
tone latent variable (MLV) model if X is conditionally independent given � and X is monotone
with �. If, additionally, � is unidimensional, then (X, �) is a unidimensional monotone latent
variable model.

Mokken (1971), Mokken and Lewis (1982) introduced the unidimensional monotone latent
variable model for binary items as the monotone homogeneity (MH) model. Ellis and Junker
(1997) reformulated Definition 1 such that it is a property of X rather than (X, �):

Definition 2. (monotone homogeneity). X satisfies a unidimensional monotone latent variable
model or monotone homogeneity (MH) if there exists a unidimensional variable � such that X is
conditionally independent given � and X is monotone with �.

Ellis (2015) studied a narrower formulation ofmonotonemodels thatwill be called ‘monotone
factor models’ here. His assumptions can be rephrased as follows:

MF1 Xi = φi (ηi + εi ) for i = 1, . . . , J , where each φi is an increasing function (henceforth,
called a response function), andηi and εi are latent variables.Wewrite η = (η1, . . . , ηJ ).

MF2 η = ψ(λ�), where � is a multivariate vector with independent components, λ is a real
matrix, and ψ is an increasing function.

MF3 The latent variables ε1, ε2, . . . are independent from each other and independent of �.
MF4 The εi have densities that are Pólya frequency functions of order 2 (PF2; Efron, 1965).
MF5 λ has a simple structure where every manifest variable loads positive on one factor and

zero on the other factors.

AssumptionMF1means that the item responses are a dichotomization of underlying item-specific
latent variables ηi + εi that one may view as latent responses. This has been discussed earlier in
the context of the normal ogive model (Takane & de Leeuw, 1987), but normality is not assumed
here. AssumptionMF2 specifies that the common parts ηi of the latent responses have amonotone
relationship with the same underlying, more fundamental factors in �. These underlying factors
should be independent. MF3 states that the unique factors or error variables εi are independent,
which is comparable to conditional independence. Assumption MF4 is equivalent to the assump-
tion that the distributions of εi are log-concave (e.g., Saumard & Wellner, proposition 2.3) or
strongly unimodal (Walther, 2009, p. 320). This assumption is satisfied in many models, as this
includes normal, uniform, gamma, beta, and logistic densities. AssumptionMF5 requires a simple
structure of the factor loadings.

Definition 3. (monotone factor model). X satisfies a monotone factor model (MFM) if there are
λ, �, and ε1, ε2, . . . such that MF1 – MF5 hold.

In other words, anMFM has factors that are independent, nonnegative loadings with a simple
structure, strongly unimodal latent errors, and increasing response functions.

We will now define the concept of multivariate positivity of order 2 (MTP2) and related
concepts. Let χ := ×m

i=1χm be a product lattice in Rm . Let the lattice operators be defined as, for
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all x, y∈χ :

x ∨ y := (max {x1, y1} , . . . ,max {xm, ym})
x ∧ y := (min {x1, y1} , . . . ,min {xm, ym})

Definition 4. (MTP2; Karlin and Rinott (1980)). A random vectorX on product lattice χ isMTP2
if it has density f , and for all x, y∈χ ,

f (x ∨ y) f (x∧y) ≥ f (x) f (y)

MTP2 generalizes the idea of a positive correlation and is also known as supermodularity, the
FKG condition (Denuit et al. 2005) or affiliation (Milgrom&Weber, 1982). Denote the correlation
between variables X and Y by ρXY .

Definition 5. (nonnegative partial correlations, NPC; Ellis (2014)). X has nonnegative partial
correlations (NPC) if for every triplet (X,Y, Z) of variables in X, ρXY ≥ ρXZρZY .

Definition 6. (nonnegative covariances, NNC; Mokken (1971)). X has nonnegative covariance
(NNC) if Cov(Xi , X j ) ≥ 0 for every pair (Xi , X j ) of variables in X.

For any item i , we define the rest score as X−i =
(∑J

j=1 X j

)
− Xi ; that is, the sum score

with the score of item i omitted.

Definition 7. (manifest monotonicity, MM; Junker (1993)). X has manifest monotonicity (MM)
if E(Xi |X−i ) is increasing in X−i for each i = 1, . . . , J .

The following proposition is mostly implied by Corollary 3 of Ellis (2015), except that we
do not require � to be PF2 here.

Proposition A1. If X satisfies a MFM, then X is MTP2.

Proof. This can be derived from three elementary facts about MTP2 and PF2 variables: (1)
independent variables are MTP2 (Karlin & Rinott, 1980, proposition 3.5), (2) MTP2 is preserved
by increasing transformations (Karlin & Rinott, 1980, proposition 3.6; Ellis, 2015, proposition
8), and (3) the sum of MTP2 and independent PF2 variables is MTP2 (Karlin & Rinott, 1980,
proposition 3.7). Consequently, assuming MF1-MF5, we obtain that � is MTP2 because it has
independent components, η is MTP2 because it is an increasing function of �, and η+ε is MTP2
because it is a sum ofMTP2 and independent PF2 variables. X is MTP2 because it is an increasing
transformation of η + ε. �

Appendix B

In this appendix, we will prove Theorem 1, which implies that MFMs satisfy MM. For
ease of notation, we will first extend the definition of conditional expectations such as

E

(
Xi | ∑J

j=1, j �=i X j = r
)
. Suppose R is a bounded nonnegative integer valued variable and

X is a binary variable. If P (R = r) = 0, then E (X |R = r) is not uniquely defined, and we
extend the definition of E (X |R = r) to all r ∈ Z, including cases with P (R = r) = 0, such that
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it remains increasing in r ∈ Z, provided that it is increasing to begin with. The precise values are
not relevant, and one possibility is defining

E (X |R = r) := 0 if P (R ≤ r) = 0,

E (X |R = r) := 1 if P (R ≥ r) = 0, and

E (X |R = r) := E(X |R=r−)+E(X |R=r+)
2 if P (R = r) = 0, P (R ≤ r) > 0, and P (R ≥ r) >

0

where r− = sup{s ∈ Z|s < r, P (R = s) > 0} and r+ = inf{s ∈ Z|s > r, P (R = s) > 0}.
In other words, if E (X |R = r) is undefined for some value of r , then we set it equal to 0 if
r < min(R), equal to 1 if r > max(R), and equal to the average of the two surrounding values oth-
erwise. Similarly, if S is another random variable, we can define E (X |R = r, S) := E (X |R = r)
in cases with P (R = r) = 0, and E (X |R + S = t, S = s) can be defined accordingly.

Lemma 1. Let R and S be bounded nonnegative integer valued variables and let X be a variable
with finite expectation. If E (X |R = r) is increasing in r = 0, 1, . . . and (X, R) is independent
of S, then E (X |R + S = t) is increasing in t = 0, 1, . . ..

Proof. Since S is independent of X and R, we have for every s = 0, 1, . . . ,max(S),

E (X |R + S = t + 1, S = s) = E (X |R = t + 1 − s, S = s) = E (X |R = t + 1 − s) ≥
E (X |R = t − s) = E (X |R = t − s, S = s) = E (X |R + S = t, S = s)

Therefore,

E (X |R + S = t + 1) =
max(S)∑
s=0

E (X |R + S = t + 1, S = s)P (S = s) ≥
∑max(S)

s=0
E (X |R + S = t, S = s) P (S = s) = E (X |R + S = t)

�
Theorem 1. Suppose that the set of test items {X1, . . . , X J } can be divided into disjoint subtests
such that different subtests are independent while items within the same subtest satisfy MH. Then,

MM holds for the entire set of test items, that is, E
(
Xi | ∑J

j=1, j �=i X j = t
)
is increasing in t for

each i = 1, . . . , J .

Proof. Consider an arbitrary item forwhichMMshould be established.Without loss of generality,
we may assume that this item is X1 and that the first subtest is (X1, . . . , Xk). With R := ∑k

i=2 Xi

and S := ∑J
i=k+1 Xi we can write E

(
X1| ∑J

i=2 Xi = t
)

= E (X1|R + S = t), where X1 and

R are independent of S. Since (X1, . . . , Xk) satisfies MH, it must also satisfy MM, that is,
E (X1|R = r) is increasing in r . Using Lemma 1, we obtain that E (X1|R + S = t) is increasing
in t . �
Theorem 2. Suppose that the set of test items {X1, . . . , X J } can be divided into two disjoint
subtests such that different subtests are independentwhile itemswithin the same subtest satisfyMH.

If two items Xi and X j belong to different subtests, then E

(
Cov

(
Xi , X j | ∑J

k �=i, j Xk

))
≤ 0.
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Proof. Without loss of generality, we can assume, for notational convenience, that the first
subtest is

{
X1, . . . , X J1

}
and the second subtest is

{
X J1+1, . . . , X J

}
, and that i = 1

and j = J . As a consequence of MM, E

(
X1| ∑J1

k=2 Xk = t
)

is increasing in t . Now,

apply Lemma 1 with X = X1, R = ∑J1
k=2 Xk and S = ∑J−1

k=J1+1 Xk . It follows that

E

(
X1| ∑J−1

k=2 Xk = t
)
is increasing in t . Similarly, E

(
X J | ∑J−1

k=2 Xk = t
)
is increasing in t

too. Therefore, Cov
(
E

(
X1| ∑J−1

k=2 Xk

)
,E

(
X J | ∑J−1

k=2 Xk

))
≥ 0. Since Cov (X1, X J ) = 0

and, by the law of total covariance,

Cov (X1, X J ) = E

(
Cov

(
X1, X J |

∑J−1

k=2
Xk

))

+ Cov

(
E

(
X1 |

∑J−1

k=2
Xk

)
,E

(
X J |

∑J−1

k=2
Xk

))
,

it follows that E
(
Cov

(
X1, X J | ∑J−1

k=2 Xk

))
≤ 0. �

This can be generalized to weighted sum scores, provided that MM still holds with respect
to the weighted sum scores of the subtests, as stated in the following lemma and theorem.

Lemma 2. Let R and S be real valued random variables with finite range and let X be a variable
with finite expectation. If E (X |R = r) is increasing in r, ∀r ∈ R, and (X, R) is independent of
S, then E (X |R + S = t) is increasing in t,∀t ∈ R.

Proof. Extend the definition of E (X |R = r) and E (X |R = r, S) to all r ∈ R, just as we did prior
to Lemma 1. Since S is independent of X and R, we have for every s ∈ R, δ > 0:

E (X |R + S = t + δ, S = s) = E (X |R = t + δ − s, S = s) = E (X |R = t + δ − s) ≥
E (X |R = t − s) = E (X |R = t − s, S = s) = E (X |R + S = t, S = s)

Therefore,

E (X |R + S = t + δ) =
∑

s ∈ range(S)

E (X |R + S = t + δ, S = s)P (S = s) ≥
∑

s ∈ range(S)
E (X |R + S = t, S = s) P (S = s) = E (X |R + S = t)

�
Theorem 3. Suppose that the set of test items {X1, . . . , X J } can be divided into two disjoint
subtests

{
X1, . . . , X J1

}
and

{
X J1+1, . . . , X J

}
, such that different subtests are independent. Let

a1, . . . , aJ ∈ R be such that both E
(
Xi | ∑J1

k=2 ak Xk = t
)
and E

(
X j | ∑J−1

k=J1+1 ak Xk = t
)
are

increasing in t. Then, E
(
Cov

(
X1, X J | ∑J−1

k=2 ak Xk

))
≤ 0.

Proof. By Lemma 2,
(
X1|∑J−1

k=2 ak Xk = t
)
and E

(
X J |∑J−1

k=2 ak Xk = t
)
are both increasing in

t . Therefore, their covariance is nonnegative, i.e.,Cov
(
E

(
X1| ∑J−1

k=2 ak Xk

)
,E

(
X J | ∑J−1

k=2 ak Xk

))

≥ 0. The hypothesis of the theorem implies that Cov (X1, X J ) = 0, and the conclusion follows
by the law of total covariance. �
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