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Abstract
In the present technological age, where cyber-risk ranks alongside natural and man-made disasters and
catastrophes – in terms of global economic loss – businesses and insurers alike are grappling with
fundamental risk management issues concerning the quantification of cyber-risk, and the dilemma as to
how best to mitigate this risk. To this end, the present research deals with data, analysis, and models with
the aim of quantifying and understanding cyber-risk – often described as “holy grail” territory in the realm
of cyber-insurance and IT security. Nonparametric severity models associated with cyber-related loss
data – identified from several competing sources – and accompanying parametric large-loss components,
are determined, and examined. Ultimately, in the context of analogous cyber-coverage, cyber-risk is
quantified through various types and levels of risk adjustment for (pure-risk) increased limit factors, based
on applications of actuarially founded aggregate loss models in the presence of various forms of correlation.
By doing so, insight is gained into the nature and distribution of volatile severity risk, correlated aggregate
loss, and associated pure-risk limit factors.
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1. Introduction
Cyber-risk, an umbrella term for risks associated with technology and information (CRO Forum,
2014), is a significant threat with an estimated annual cost to the worldwide economy of over
$600bn (McAfee & Center for Strategic and International Studies, 2018). It encompasses a wide
host of events caused by inadvertent activities (e.g. loss of data) and criminal threats (e.g. phishing)
that can lead to various types of loss (e.g. remediation costs) damage and liability.

Uncertainty in the realm of a nascent insurance market has led to conservative underwriting;
premiums are perceived to be large in relation to the level of cover – and thus low product
penetration (UK Government and Industry, 2015) and restricted coverage (high deductibles, low
policy limits) that fails to protect firms against low frequency events with volatile severity. Many of
these obstacles have been attributed to the following characteristics associated with cyber-risk:

1. Lack of reliable (frequency, but mainly severity) data for modelling and quantifying cyber-
risk in an “actuarial pricing” context (Cashell et al., 2004; Böhme & Schwartz, 2010)

2. The correlated nature of cyber-risk (Baldwin et al., 2012) and interdependence (i.e. degree of
“interconnectedness” between networks and systems) – (Ogut et al., 2005) – precipitated by
widespread use of the internet, relatively few Internet Service Providers (ISPs), and reliance
upon common IT software (Böhme, 2005; Laszka et al., 2014)

3. Information asymmetry (Bandyopadhyay et al., 2010)
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In academic circles, these factors have evidently influenced the development of cyber-risk
models in several ways. Due to data related issues, frequency models appear to be more prevalent
than severity (i.e. cost) models; aggregate loss models often assume constant severity leading to
(possibly mixed) binomial distributions. Overall, the level of empirical support is egregiously low.
Correlation and interdependence have led to the consideration of copula (Herath & Herath, 2011),
Markov processes (Barracchini & Addessi, 2014), and Bayesian belief nets (Mukhopadhyay et al.,
2013). Many of these models, having been developed beyond the framework of economics and
computer science, are abstracted from several peculiarities associated with aggregate cyber-risk –
especially in the context of cyber-insurance and risk quantification:

• Aggregate loss distributions, risk measures (e.g. variance and value at risk), tail dependence,
and the effects of correlation and interdependence in terms of different sections of insurance
cover (e.g. business interruption, data breach remediation, etc.) have received little attention

• Loss models are generally underdeveloped in the field of cyber-science – applications
concerning (much required) risk theory and aggregate loss modelling techniques have been
largely neglected in this domain

• There is very little evidence in academic cyber-related research of Increased limit factors
(ILFs: multiples of premiums for different cover limits), which are highly relevant given
concerns regarding “low policy limits” and “accurate pricing”

This work contributes to each of these areas. To begin with, Section 2 summarises implemented
cyber-risk models (and accompanying data, if utilised), in the context of a model taxonomy by
field of study and design. Several sources of data are evaluated, and a primary source is identified
for constructing ILFs – this source is described in Section 3. Section 4 derives several models in the
context of Individual and Collective Risk frameworks. These reflect different types of correlation
and risk adjustments and are used to model ALDs and ILF curves. Section 5 considers various
severity and aggregate loss distributions and explores the impact of correlation and risk
adjustments at the aggregate level. Section 6 closes with conclusions and recommendations.

2. Review of Models
Taxonomy

A chronological taxonomy that depicts cyber-risk models under the following four broad
headings can be found in Appendix A.2:

• Economic – models that consider the decisions and behaviours of individuals and
organisations in the context of IT security and cyber-insurance. These typically focus on the
“demand-side” (Böhme & Schwartz, 2010) of trade-off decisions (e.g. for allocating resources
between insurance and IT security) using Utility or Decision theory.

• Correlation based – models that include copula and regression techniques, with some
models that straddle the economic sphere (Liu et al., 2001; Böhme, 2005).

• Operational Risk (OR) –models that stem from OR quantification techniques such as those
used to determine regulatory capital requirements, (European Commission, 2017). These
encompass Extreme Value Theory (EVT) and risk theory (Section 4.1).

• Epidemic (and related) – models that utilise Markov processes and regression techniques,
and are analogous to epidemiological compartmental (van Mieghem et al., 2009; Parker &
Farkas, 2011) or health insurance (Barracchini & Addessi, 2014) models.

The search strategy underpinning this literary review of models is described in Appendix A.1.
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Summary of models
Counting processes and related distributions
As Table 1 shows, a variety of stochastic processes have been considered for count (e.g. number

of cyber-related incidents, losses, etc.) and associated interarrival times. The homogeneous
Poisson process (i.e. constant rate of arrival; independent, exponentially distributed interarrival
times) is one common example (Van Mieghem et al., 2009; Herath & Herath, 2011). Variations
(e.g. Pareto) have also been proffered in the context of privacy incidents (Yannacopoulos et al.,
2008). The Bernoulli process is another example (Gordon & Loeb, 2002; Böhme, 2005; Böhme &
Kataria, 2006). Non-homogeneous processes have also been utilised (Edwards et al., 2016).

Severity and aggregate loss distributions
Constant severity has often been assumed (Böhme, 2005; Böhme & Kataria, 2006;

Mukhopadhyay et al., 2013, Section 5.2), which has resulted in several impractical aggregate
loss models (characterised by binomial distributions). In the case of Edwards et al. (2016),
aggregate loss was estimated using an independent regression model (Jacobs (2014), log skew-
normal breach size) and a negative binomial distributed breach count variable. Indeed, few
severity models have been based on genuine cyber-related loss data – in the case of (Biener
et al., 2015), this entailed an extensive classification exercise in respect of OR data SAS (2015).

3. Data
Data is drawn from Ponemon Institute (2012a–2012i, 2013a–2013j, 2014a–2014k, 2015) global
and country-level cost of data breach survey reports (hereafter, 2012–2015 years respectively)

Table 1. Extant cyber-risk models. Distributions, models – green (recognised or plausible in the context of general
insurance), orange (data dependent), red (unrealistic, misrepresentative), grey (out-of-scope, not applicable, unspecified)

Notes: (1) only moments considered. (2a) Homogeneous; non-homogeneous: lognormal, log-Weibull based functions; (b) exponential,
lognormal, Weibull, log-Weibull, Pareto αStable (log, symmetric); (c) compound processes (e.g. Poisson, Cox) described but not applied. (3)
EM – Expectation Maximisation. (4a–c) Per simulation example, RUM (utility – Pareto, random term – Normal). (5) GPD – Generalised Pareto
Distribution. (6) Per simulation example (single claim per period, with certainty). (7) SEIR – Susceptible-Exposed-Infectious-Recovered. (8)
Spliced (exponential, GPD), Weibull, gamma, lognormal. (9a) With parameters for interdependence, disseminated information; (b) direct and
disclosure costs, security investment. 10a) “Daily” and “large” respectively; (b) log-log (Jacobs, 2014). Outputs: non-exhaustive examples.
Exposure (*): conditional (e.g. given breach). Features: Π (considered) ⊆ (otherwise)
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which form part of the PON (2019) data source. These reports feature estimated organisational
costs in respect of publicly disclosed data breaches (loss or theft of personally identifiable records
such as names and account numbers). Relevant information and basic preparation for subsequent
analysis includes:

• Costs are subdivided into four “cost centres” – A: detection and escalation; B: notification;
C: ex-post response; and D: lost business (hereafter, classes A–D respectively, with class
E being the total)

• Years 2012–2014 (country-reports) – organisation-level costs, by class, are collated and US-
dollar converted at prevailing exchange rates

• Year 2015 (global) – class E costs (in US dollars) are depicted in various “one-way” graphs
(e.g. by rank of mean time to discover a breach); R-based image-scraping software,
Webplotdigitiser (Rohatgi, 2013), is used to obtain this data from Ponemon Institute (2015,
Figure 20), before further scrutiny and adjustments (as described shortly)

• Mean and extrema (with respect to costs) are given, by class and year
• In terms of the 2015 year, extracted costs appear to resemble the corresponding data points
reasonably well (partly due to the ordering represented, which results in volatile and easily
identifiable costs). A graphical comparison reveals 8 discrepancies (<2.5% of the data points)

These are manually corrected; after doing so, the mean cost falls within 0.2% of the given value
and extrema are exact. Table 2 summarises classes A–D in terms of underlying activities and
reputational damage associated with breaches, alongside examples of first-party coverage (i.e.
which protect the insured’s assets).

Costs, by class, are inflation-adjusted to make them comparable for analysis, whilst ensuring
associated distributions are not overly distorted as a result. It is worth noting, that, despite having
the most desirable characteristics out of 19 other potentially useful sources, the data in hand is
arguably of questionable veracity as far as an accurate, representative, experienced-based actuarial
pricing exercise is concerned.

Table 2. Costs (classes A–E) and possible coverage. Descriptions for classes A–E are based on “global” cost of data breach
reports (Ponemon Institute, 2012i, 2013j, 2014f, 2013j); specimen products are purely illustrative examples of first-party
coverage in respect of associated costs: AIG – Illinois (Murphy, 2013); ACE –(Cresenzi & Alibrio, 2016); Federal Insurance –
(Daigle & Cresenzi, 2018)

Class Associated costs

A : Detection and 
___escalation

Detect and report breach (e.g. forensics, crisis 
management, internal communications, audit and 
assessment)

PortfolioSelect  (CyberEdge, 
Event Management) –
AIG, Illinois National

B : Notification
Notify data subjects (e.g. create contact database, 
determine regulatory requirements, external experts)

C : Ex-post 
___response

Assist data subjects in aftermath of privacy event (e.g. 
help desk, inbound communications, investigations, 
remediation, legal, product discounts, credit monitoring 
and identity protection, regulatory fines and penalties)

D : Lost business
Abnormal churn,  reputational damage, and diminished 
goodwill

Forefront portfolio 
(CyberSecurity, Business 
Interruption) – Federal

E : Overall Sum of class A–D  costs

Composition of severity data Plausible cyber-insurance

Chubb Cyber Enterprise Risk 
Management policy (Cyber 
Incident Response Fund) – ACE
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4. Loss Models
This section develops six variants (Models 4.1–4.6) to explore the impact of correlation and risk at
the aggregate level. Variants of the theory is well-founded – only key definitions and equations
shall be provided here – references are provided for the interested reader. Figure 1 illustrates how
this theory relates to the each of the six models.

4.1. Risk Theory

Aggregate loss, S, represents the total amount for a given period and group of risks,

S � X1 � X2�; . . . ;�XN ; (1)

where N and Xi can be defined from two perspectives of risk theory, namely:

• Collective Risk (CR): loss count, N , and (non-negative) severities, X1; . . . ;XN , are random
variables with independence assumptions as follows: N does not depend on the severity of
loss; given N , Xis are i.i.d., independently with respect to count

• Individual Risk (IR): here, N denotes a fixed number of risks with respective losses, Xis that
are independently distributed (as opposed to i.i.d.) random variables with mixed CDFs that
may have mass at point zero (i.e. for the probability of no loss)

In terms of (1) – IR, CR models – determining the ALD is one of the classical problems in the
realm of risk theory. As there is generally no closed-form solution (Shevchenko, 2010, Section 1)
various techniques have been deployed: Fast Fourier Transform (FFT) can be used to reconstruct
the density with the aid of the transforms (e.g. characteristic function, CF; moment or probability
generating functions, MGF, PGF respectively – provided these exist) – (Kaas et al., 2008,
Section 2.1).

4.2. Increased Limit Factors

An ILF is a multiplicative factor that is applied to the premium at a basic limit to determine the
premium at an increased limit. Basic limits typically refer to the lowest levels of coverage provided,
(Werner & Modlin, 2010). However, in principle, any non-negative limit can be contemplated for
this purpose (hereafter, the term base limit is used instead of basic limit).

Figure 1. Outline of theory and model links. Theory 1–4 (blue, in addition to risk theory which introduces 1 and 3); Models
4.1–4.6 (green; all models rely upon 1 and 2; 3 and 4 are only utilised in support of Models 4.3–4.6). Generated using
Freemind (Müller et al., 2004).
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Limit definitions
A policy limit refers to the maximum amount payable under an insurance policy, either overall,

or in respect of a particular section of a policy (Lloyd’s, 2019), hereafter, known as “coverage
section.” This may be expressed on several bases; for demonstrative purposes, the following are
assumed applicable for losses associated with classes A–E:

• Per-loss: applies to individual costs (i.e. classes A–D)
• Per-occurrence: applies to total cost (i.e. class E)

The limited random variable X�b� is defined as follows:

X�b� � min X; b� �; (2)

where X is a random variable and fb : b > 0g is some limit. More generally, consider the limited
variable X�b� (2), and suppose X has a CDF and PDF denoted by F and f respectively; the limited
kth-order moment of X, when limit b applies, can then be expressed in terms of the Riemann-
Stieltjes integral:

E X�b�k� � � E min �X; b�k� � � Zb
0

xkdF�x�dx� bk�1 � F�b�� �
Zb
0

kxk�1SX�x�dx; (3)

where SX � 1 � F and (k � 1 yields the LEV). Refer to Lee (1988) for a graphical illustration and
Klugman et al. (2004) for a mathematical proof. Now let the aggregate loss in respect of limited
severities (hereafter, Limited Aggregate Severity, LAS) be S�b� defined by:

S�b� �
XN
i�1

X�b�
i ; (4)

where b > 0 is a given limit, and Xis are severities, and N is the loss count, as for the aggregate loss
in (2). This gives rise to the following definition: let limit factor, γ; for a given base limit, a; be
defined by:

γ�b� :� γ�b; a� � E S�b�� �
E S�a�� � ;E S�a�� �;E S�b�� � > 0; (5)

where a; b > 0. The term limit factor, for the purpose of the present research, refers to both
discount factors and ILFs, defined as follows:

• Discount factor: �a > b > 0� ) γ�b; a� 2 �0; 1�; in this case, a could represent the highest
limit of coverage, or, in the context of coverage without-limits, a ! ∞

• ILF: �0 < a ≤ b� ) γ�b; a� ≥ 1; the conventional definition of an ILF, where a and b
represent “basic” and increased limits respectively

In terms of (5), CR independence assumptions lead to the following expression for limit factors:

γ�b� � E X�b�� �
E X�a�� � : (6)

Consistency properties
Limit factors satisfy consistency properties if they are asymptotically constant, have a

monotonically decreasing and positive gradient, and are concave down.
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4.3. Risk Adjustments

Process risk refers to the inherent variability associated with the stochastic nature of frequency and
severity of losses. To allow for this, actuaries may incorporate a risk adjustment into ILF
calculations to achieve a certain risk margin (percentage increase in LAS).

Example 4.1. Variance principle risk adjustment

Let πvar�S;w� denote the variance-adjusted (pure-risk) premium with respect to the aggregate
loss amount, S; and a risk parameter, w > 0; be defined by:

πvar S;w� � � E S� � � wVar S� �; (7)

then the variance-adjusted limit factor, γS, can be defined as:

γS�b; a;w� �
πvar�S�b�;w�
πvar�S�a�;w�

; (8)

where S�a� and S�b� are LASs (4) with limits a; b > 0 respectively. Independence assumptions (1)
concerning loss count and i.i.d. severity (i.e. N , Y respectively), with Poisson N; simplify the risk-
adjusted limit factor, γS (8) to the following:

γY�b; a;w� �
π�
var�Y �b�;w�

π�
var�Y �a�;w� ;π

�
var�Y �b�;w� � πvar�Y �b�;w� � w E Y �b�� �� �

2: (9)

Example 4.2. Excess losses with inflation and variance principle risk adjustment

For a compound Poisson “excess” LAS, S � P
N
i�1 Yi, where Yi � max�0; vXi

�bv� � d�,
i � 1; 2; . . . ;N (i.e. N � Poisson�, under CR independence assumptions (1), limits a; b > 0;
deductible d; s.t. 0 ≤ d < min�a; b�, and constant inflation v > 1, the variance-adjusted limit
factor, γY (9), with parameter w (as before), becomes:

γY�b; a; d;w; v� �
π�
var X

b
v� �; vw

� �
� π�

var X
d
v� �; vw

� �
� 2dw E X

b
v� �

� �
� E X

d
v� �

� �h i
π�
var X

a
v� �; vw

� �
� π�

var X
d
v� �; vw

� �
� 2dw E X

a
v� �

� �
� E X

d
v� �

� �h i ; (10)

where π�
var is defined as previously. This can be shown through substitution x � yv�1.

Example 4.3. Proportional-Hazard (PH) transform

Let πPH be the mean in respect of the PH transform defined by:

πPH�Y �b�; b;w� �
Z

b

0
SY�x�

1
wdx; (11)

where b is a given non-negative limit, and, and w ≥ 1 (Wang, 1995, 1999a).

Example 4.4. Riebesell curves (power transform)

Let γ�2ka; a� � �1� r�k, where γ is the ILF in respect of an increased limit and base limit, in
this case, 2ka and a respectively, with a > 0; r 2 �0; 1�; and k > 1. It follows that:

γ�b; a;w� � �1� r�log2�ba�1� � �ba�1�log2�1�r� � �ba�1�w; (12)

where w � log2�1� r�: Refer to Mack and Fackler (2003) for details including origin.
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4.4. Correlated ALDs

This section describes CFs for correlated aggregate loss and count, based on pioneering
contributions by Wang (1998, 1999a) and conventional techniques for mixture models (Klugman
et al., 2004; Mildenhall, 2005).

Definition 4.1. Covariance coefficient

For random variables Xi andXj, with Pearson correlation coefficient ρij, means µi and standard
deviations, σi, the covariance coefficient κij is given by:

κij �
Cov�Xi;Xj�

µiµj
� ρijσiσj

µiµj
: (13)

The range of κij (13) depends on the shape of marginal distributions for Xi and Xj.

CFs for correlated aggregate loss
Define the joint CF, CS :� CS1;...;Sm , for m 2 Z� random variables, S � S1; . . . ; Sm	 
; by:

CS	t
 � 1�
X

i < j
κij 1 � Ci	ti
� � 1 � Cj	tj


� �� �Y
m
i�1

Ci	ti
; (14)

where Si; Sj 2 S have respective CFs Ci;Cj; and covariance coefficient κij; 1 ≤ i < j ≤ m; and
t � 	t1; . . . ; tm
, Wang (1998, pt. IV). Following (14), let the univariate CF of

S � S1�; . . . ; Sm be CS, then:

CS	t
 � 1�
X

i < j
κij 1 � Ci	t
� � 1 � Cj	t


� �� �Y
m
k�1

Ck	t
; (15)

where κijs and Cis are defined as previously. The mean and variance of aggregate loss, S; is:

µ :� E S� � � E S1�; . . . ;�Sm� �;
Var S� � � σ2 � 2

X
i < j

κijE Si� �E Sj
� � (16)

where σ2 � P
m
j�1 Var Sj

� �
, Wang (1998). The univariate CF (15) is apparently less restrictive, in

terms of covariance coefficients (for valid PDF), than is the case for the joint CF (16).

CFs for correlated loss count
Often, there is an exogenous cause for uncertainty regarding the extent or number of losses.

This is referred to as parameter risk in the context of stochastic models (Freifelder, 1979, cited by
Miccolis (1978). To reflect such uncertainty, a secondary mixture CDF can be incorporated within
the model. In this section, a joint PGF for correlated aggregate loss count variables is built up using
Poisson mixtures. Refer to Klugman et al. (2004, Section 4.6.10) for examples of various other
mixtures with theoretical underpinnings.

Poisson mixture models
Let N � 	N1; . . . ;Nm
 be a vector of m discrete random variables with joint PGF given

by PN :� PN1;...;Nn
and assume there exists a random variable θ with MGF Mθ such that

�Njjθ � ω� � Poisson�λjω� (B.3) where ENj θ � ω� � � ωλj, j � 1; . . . ;m: The marginal PGF of
Njj�θ � ω� is then PNjjθ�ω	tj
 � ewλj�tj�1�, which leads to the following joint PGF for N:

PN	t
 � Eθ E t1N1 . . . tmNm jθ� �� � � Eθ exp�θλ � �t0 � 10m��
� � � Mθ	λ � �t0 � 10m�
; (17)

where λ � 	λ1; . . . ; λm
; t � 	t1; . . . ; tm
; and 1m is a (row) vector with m ones.
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Example 4.5. Gamma-mixed Poisson model

Suppose θ � Gamma�α; 1�; for some a > 0, has MGFMθ	t
 � �1 � t��α; then the joint PGF in
(17) becomes PN	t
 � �1 � λ � �t0 � 10m���α. This specifies a form of multivariate negative
binomial CDF

where marginals, Nj � NB�α; λj� (B.4), have respective PGFs, PNj
; j � 1; . . . ;m; defined by:

PNj
	tj
 � �1 � λj�tj � 1���α; (18)

(Wang, 1999b). Refer to Mildenhall (2005) for MGFs with alternative parameterisations, and
Reshetar (2008) for practical application in the context of OR.

Example 4.6. Multivariate Negative Binomial (MNB) distribution

From Example 4.5, let Nj � NB�aj; λj� – the joint PGF, PN, is now:

PN	t
 � �1m�k0 �m� 1��1
w; (19)

where t � t1; . . . ; tm	 
;1m is a row vector of m ones; k � 	k1; . . . ; km
 with
kj � �1 � λj�tj � 1��αjw; j � 1; . . . ;m; and w≠ 0: This specifies a family of MNB CDFs, with
marginals Nj � NB�αj; λj�; in either of the following cases:

1. 0 < w < min
j2	1;m


fαj
�1g

2. w < 0 s.t. PN	0m
 > 0 and �1
w 2 Z�

where 0m is a row vector of m zeros, (Wang, 1998).
Here, the random vector N follows an MNB distribution, denoted by N � MNB�α; λ; w� with

vector parameters α � α1; . . . ;αm	 
 and λ � 	λ1; . . . ; λm
: Suppose S1; . . . ; Sm represent m 2 Z�
CR loss models (1) that are specified by their severities and loss count variables, �Xi;Ni�;
i � 1; . . . ;m; and only correlated through N � 	N1; . . . ;Nm
 � MNB �α; λ;w� (Example 4.6).
Accordingly, the CF for the overall aggregate loss, CS :� CS1�;...;�Sm , is defined by:

CS	t
 � �1m�y0 �m� 1��1
w; (20)

where 1m is a row vector of m ones, y � 	y1; . . . ; ym
 with yj � �1 � λj�Cj � 1��αjw, Cj is the CF of
Xj j � 1; . . . ;m (Meyers & Heckman, 1984; Wang, 1998). As such, FFT reconstructs the CDF of
S � S1�; . . . ;�Sm, from transforms CS (20). The mean and variance of S can be determined using
(16) – substituting κij with w, the correlation parameter in (20).

4.5. Severity Model

Define a two component spliced model in terms of n observed severities, ordered as
x1 < x2 < ; . . . ; < xn: Losses in the interval 	0; τ
, for a given non-negative threshold, τ (i.e.
“splicing point”), are assumed to follow a small loss CDF (in this case, estimated by the empirical
CDF, Fn). To cover the interval �τ; ∞ �, a parametric distribution G is estimated using (observed)
losses greater than τ. Now let H be the spliced distribution in question:

1 � H�x� �
1� Fn�x� x ≤ τ

1 � Fn�τ�� � 1 � G�x��G�τ�
1�G�τ�

� �
x > τ

(

�
1� Fn�x� x ≤ τ

1 � Fn�τ�� � 1�G�x�
1�G�τ�

� �
x > τ

( (21)
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where the first component CDF, Fn x� �=Fn τ� � (for x ≤ τ) and second component CDF,
G x� � � G τ� �� �= 1 � G τ� �� �, for x > τ; are spliced with weights Fn�τ� and 1 � Fn�τ� respectively
(Klugman et al., 2004).

Selection (large-loss model)
The following steps are used to select a large-loss CDF, from a set of k 2 Z� candidate models

(e.g. Burr, Weibull, Pareto, etc.) and identify a suitable threshold for application of the spliced
model in (21) (i.e. given xn � 	x1; . . . ; xn
):

Step 1 Fit m > 1 CDFs, Gi1; . . . ;Gim; to the largest n � i� 1 severities, for some
i � 2; 3; . . . ; n � k � 1; where k ≤ n � 2 is the minimum number parameter estimates for each
CDF (e.g. based on Maximum Likelihood Estimation, MLE).

Step 2 Let G�
i � min

j
fcjg, where cj is the AICc for Gij, j � 1; . . . ;m.

Step 3 Calculate B�
i , the KS-ratio (ratio of the Kolmogorov Smirnov test statistic (Glivenko-

Cantelli – van der Vaart (1998)) to the critical value at the specified level) for G�
i .

Steps 1–3 have the following outputs: the large-loss distribution, G�
i ; empirical threshold, xi,

and KS-ratio, B�
i (valid scores require i � 2; . . . ; n � k � 1, as in step 1). In terms of the spliced

model, H (21), G�
i x� � � G x� � � G τ� �� �= 1 � G τ� �� �; x > τ and xi ≤ τ < xi�1 – if τ < x2 or

τ > xn�k�1, then the unconditional CDFs, G and Fn respectively, might be used. The threshold
itself can be expressed in terms of the empirical rank as follows:

j � nFn�τ�; (22)

where j � 1; . . . ; n; Fn, τ; and x1 are defined as previously (21).

Threshold determination
A score-based approach (Klugman et al., 2004, Section 13.5.3) is adopted using a similar set-up

adopted for Maximum Likelihood by Ralucavernic (2009), but with greater emphasis being placed
on tail fit and limit-factor consistency. Differentiability and continuity requirements (Cerchiara &
Acri, 2016) are not explicitly allowed for, however, model selection incorporates the corrected
Akaike Information Criteria (AICC); refer to Akaike (1998) and Burnham and Anderson (2002)
for details. This provides a practical and simplified means to identify both parametric CDF and
threshold – additional considerations pertain to limit-factor consistency and mean excess (ME)
plots.

Criteria 4.1 Splicing point
The following criteria are contemplated for determining threshold, τ, in terms of output from

steps 1–3:

1. τ; with the greatest rank, i.
2. τ; with the lowest KS-ratio, B�

i .

In this way, larger thresholds are favoured through the first criterion, whilst the second
attempts to optimise tail fit. Upper bounds are established subjectively by considering ME plots.

Normalising scores
According to the set of Criteria 4.1, preference is given to higher and lower values of xis and B�

i s
respectively (i.e. steps 1–3). Equivalently, higher values of αi and βi; defined as follows, are
favoured over lower values:
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αi �
xi

xn�k�1
;βi �

min
i2	1;n


fB�
i g

B�
i

8B�
i > 0 (23)

The weighted average score, zi; with respect to measures αi and βi (23), is determined by:

zi � wiαi � �1 � wi�βi; (24)

With i defined as previously in step 1; thus αi;βi 2 �0; 1
 are on the same scale. w�2�
i , which

reduces as τ increases, can be defined as follows:

w�2�
i � n � i

n
(25)

Algorithm 1. Optimal threshold and large-loss CDF
For a given group (i.e. class) of n ordered, homogeneous, and independent severities, x1; . . . ; xn,

with empirical CDF Fn � 1
n

Pn
i�1

1fxi ≤ xg; steps 1-3 (p. 14) are run for each i 2 	2; n
 to produce the

following input vectors for this algorithm:

• G � 	G�
2 ;G

�
3 ; . . . ;G

�
n�k�1
 (i.e. selected large-loss distributions from step 3).

• x � 	x�2 ; . . . ; x�n�k�1
 (i.e. vector of “thresholds”).
• B � 	B�

2 ;B
�
3 ; . . . ; B

�
n�k�1
 (i.e. associated vector of KS-ratios).

Next, (23) is applied to x and B (element by element) to obtain the vector of scores
α � 	α2; . . . ;αn
 and β � 	β2; . . . ;βn
 respectively. For a given vector of weights w � 	w2; . . . ;wn
;
where wi 2 �0; 1�8i � 2; 3; . . . ; n, the vector of (calculated) weighted scores, z � 	z2; . . . ; zn
, is
determined using (24). The optimal threshold, τ�, is xi�, where i� 2 f2; 3; . . . ; ng is the optimal
index value that yields the solution to the following:

zi� � maxfzi : i � 2; 3; . . . ; ng: (26)

The corresponding (parameterised) optimal distribution is then G�
nFn�τ�� � G�

i� (which follows
from (22) with j :� i��: Thus, the outputs of this algorithm are the optimal threshold, optimal
index value, and optimal distribution (i.e. τ�, i�, and G�

i� respectively).

Algorithm 2. Model confidence sets – Kullback-Leibler
This algorithm follows the bootstrap approach of Burnham & Anderson 2002 (Section 4.5), which
is based on essential Kullback & Leibler (1951) theory associated with AIC and other such
information criteria. For each candidate CDF (i.e. parametric family), Gi; and bootstrap sample
indexed i � 1; . . . ;m andj � 1; . . . ;M respectively, m;M > 2; determine Akaike differences, δij,
in relation to the minimum AICC, A�

j � min
i�1;::;m

fAijg, and associated Akaike weights, wij (that sum
to one for each sample) as follows:

δij � Aij � A�
j wij �

exp��0:5δij�P
m
u�1 exp��0:5δij�

(27)

where Aij is the AICC score for CDF Gi, parameterised (e.g. using MLE) in respect of data for
sample j 2 f1; . . . ;Mg. Differences and weights accompanying theM samples can provide insight
into model (in this case, CDF) selection uncertainty. For instance, in terms of the following “model
confidence set” and selection probability estimates:
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• The 100 α% “Kullback-Leibler” (KB) confidence set, for specified CDF with (common) index
s 2 f1; . . . ;mg;comprises the set of candidate CDFs with corresponding Akaike differences
below the 100α% empirical quantile, q�α�;of Akaike differences for the specified CDF; the

probability that CDF indexed i � 1; . . . ;m is in such a confidence set, c�α�i ; can be estimated

from the samples as follows: ĉ�α�i � M�1PM
j�1 1fAij�A�

j ≤ q�α�g(where, in general, indicator

1fAg � 1 if a given event A occurs – failing which, 1fAg � 0).
• Correspondence between the average weight, ŵi � M�1PM

j�1 wij, for a given CDF with
index i � 1; . . . ;m, and the proportion of �M� minimum Akaike scores that correspond to
the CDF in question, π̂i � M�1 PM

j�1 1fδij�0g; attests to the veracity of the (aforementioned)
KL confidence set, and associated model inference uncertainty.

4.6. Limit Factor and Aggregate Loss Models

This section describes and formulates various models, which are grouped in Figure 2 according to
whether correlation is recognised, and how loss count, N , is modelled:

• IR framework: N � n is given.
• CR framework: N is a random variable with a given PDF.

In this way, IR represents a special type of CR, where N has a degenerate distribution such that
Pr N � n� � � 1, as contemplated by Klugman, Panjer & Willmot (2004, Section 6.1).

Models 4.1 and 4.2 Limit factors for independent, individual classes (IR model)
The following is an overview of Models 4.1–4.6, as depicted in Figure 2:

Individual classes Correlated classes

IR
 f

ra
m

ew
or

k
C

R
 f

ra
m

ew
or

k

Models 4.1 - 4.2 
Aggregate loss models
(small, large losses),  
limit factors:   
� Model 4.1 
empirical severity cdf
� Model 4.2      
spliced severity cdf

Model 4.3
ALDs, by class, using 
FFT with given loss 
count

Model 4.4
ALDs for correlated  
classes using FFT 
with given loss counts 
and covariance-
coefficients

Models 4.5 - 4.6
� Model 4.5: as for 
4.4 but with random 
variable loss count            
� Model 4.6: loss 
count N~MNB using 
FFT with given 
correlation parameter

Model 4.3 
ALDs, by class, using 
FFT with random 
variable loss count

Figure 2. Flow chart for Models 4.1–4.6. Models 4.4–4.5 and Model 4.6 assume correlated aggregate loss amounts and
counts (classes A–D) respectively. Adjustments (e.g. inflation, risk) may apply to limit factors based on any of these models.
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• Models 4.1–4.2 model aggregate losses in respect of small and large severities, using empirical
CDFs and the spliced-severity model (Section 4.5); relevant limited moments (3) are used to
determine the risk-adjusted LAS (7) and limit factors (8) in an IR framework with
consideration for possible application in a CR framework.

• Model 4.3 (IR and CR) derives ALDs in respect of classes A–D (subject to per-loss limits),
and class E (subject to a per-occurrence limit) from which limit factors are determined in
respect of ground-up or excess losses; inflation and risk adjustments (10).

• Models 4.4 and 4.5 rely on given covariance coefficients between aggregate losses in classes
A–D (15).

• Model 4.6 applies (20) with relevant parameters for the (correlated) marginal loss count
CDFs (NB, Table B.2: B.4).

Models 4.1 and 4.2 are formerly defined in this section; Models 4.3–4.6 are more descriptive in
nature and are framed in the context of tailored FFT steps, with compound Poisson and negative
binomial applications for Models 4.5–4.6.

Assumptions for ILFs
The “top-slicing” method is used to determine ILFs; in respect of the risk premium. This

assumes that severities, by class, are homogenous, independent, and independent of loss count;
non-risk elements (e.g. expenses) are negligible (or proportional); and there is no anti-selection
(e.g. by size of limit).

Variables and definitions
Define the following for a given class with n observed severities:

• Fn and τ: empirical CDF and splicing point respectively.
• x1 ≤ ; . . . ; ≤ xu ≤ τ: the smallest, ordered, u (i.i.d.) severities with LAS, LEV,

and “limited” variance denoted by ZS�b� �
P

u
i�1 x

�b�
i ;µS;b � E X�b�

S

� �
� 1

u

P
u
i�1 x

�b�
i ; and

σ2
S;b � Var X�b�

S

� �
� 1

u

P
u
i�1 �x�b�i � µS;b�2 respectively, where b > 0 is a single limit that

applies to severity (maximum payable in respect of individual claims);
u � nFn�τ� 2 f0; 1; . . . ; ng; XS 2 fx1; . . . ; xug is the small severity random variable:
xi�dXS; i � 1; . . . ; u, XS � Fn.

• X1; . . . ;Xn�u: n � u random variable “large” severities with LAS, LEV, and limited variance

ZL�b� �
P

u
i�1 X

�b�
i ; µL;b � E X�b�

L

� �
, and σ2

L;b � Var X�b�
L

� �
respectively, where Xi are i.i.d.

such that Xi�dXL; i � 1; . . . ; n � u; XL � G, where XL and G are large severity and its CDF
(unconditional with respect to τ�; respectively; XL?XS; b is the limit as before.

Thus, µL;b �
R
b
0 SX�x�dx and σ2

L;b � 2
R
b
0 xSX�x�dx � µL;b

2, which follows from Equation (3)
with k � 1; 2 respectively, and SX � 1� FX where FX x� � � G x� � � G τ� �� �= 1 � G τ� �� �; x > τ

FX�x� � 0; x ≤ τ� �. The overall aggregate loss, Z, its mean, µZ , variance, σ2
Z , and associated

(variance principle) risk-adjusted LAS, πZ :� πvar ((7), S � Z), and limit factor, γZ :� γS ((8),
S � Z), are defined by Models 4.1–4.2, in an IR framework, as follows:

Z�b� � ZS�b� � ZL�b� �
Xu
i�1

x�b�i �
Xn�u
i�1

X�b�
i

E Z�b�� � � µZ;b � uµS;b � �n � u�µL;b; Var Z�b�� � � σ2
Z;b � uσ2

S;b � �n � u�σ2
L;b

πZ;b � µZ;b � wσ2
Z;b; γZ;a;b �

πZ;b

πZ;a

(28)
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where a; b > 0; (u; n; b; ZS, ZL; µS;b; µL;b; σ
2
L;b) as before; and Cov XSX� �L � 0:Models 4.1–4.2 can

now be distinguished from one another as follows:

• Model 4.1 – by setting u � n (or equivalently, τ ≥ xn, the maximum observed severity), XL
and associated terms in Equation (28) become redundant and Z, µZ , σ2

Z ,. πZ;. and γZ are
expressed solely in terms of xi, i � 1; . . . ; n) and calculated numerically.

• Model 4.2 – this relies on the spliced-severity model (and associated algorithms) developed
in Section 4.5, by setting τ, u, and G to the optimal outputs (i.e. threshold τ�, index i�, and
large-loss CDF, G�

i� respectively); analytical solutions, are checked using Model Risk by Vose
(2019), risk analysis software and simulation (e.g. Appendix C)

ILFs and associated measures for Models 4.1–4.2 can then be determined for a range of
different splicing points and associated (small and large) severity CDFs. Model 4.2 can easily be
amended to cater for the CR framework.

Attention is now turned to Models 4.3–4.6, which utilise FFT as summarised in Table 3.
Model 4.3 ALD for independent classes (IR, CR models)
Of Models 4.3–4.6, this model represents the most straightforward application of FFT. In terms

of steps 1–4 (Table 3), consider a class with n observed severities. Model 4.3 (IR) proceeds with
step 1 by discretising the spliced-severity distribution (of limited severities) using the rounding
method. The corresponding vector of CFs (determined in step 2) are raised to the power of n
(element by element) to obtain CFs in respect of ALDs (step 3a), which are yielded using the
inverse Fourier transform (step 4). Model 4.3 (CR) is very similar except, instead of raising severity
CFs to the power of n (step 3a), the PGF of an assumed loss count CDF (in this case, Poisson) is
incorporated (steps 1, 2, and 4 remain otherwise unchanged.

Model 4.4 ALD for correlated aggregate losses (IR model)
Step 3a is relevant for Model 4.4 as this is based on the IR framework which assumes each class

has a (deterministic) loss count, n. The CF for each of the classes A–D is thus raised to the power
of n (element by element) to obtain corresponding (class-level) CFs in respect of their marginal
ALDs. Step 3b combines these using (15) (with m � 4; and assumed covariance coefficients,

Table 3. FFT steps for ALDs (Models 4.3–4.6) (✓) if step is relevant, (x) otherwise

Steps 1 - 2 Step 3a Step 3b Step 4

Model:

1) Discretise  (limited, 
spliced ) severity cdf s 
in respect of classes
A-E ; 2) Apply FFT 
(element by element) to 
obtain their cfs

Cf s (step 2 ): raise to 
power of n (i.e. given loss 
count), or apply within pgf 
of N  (i.e. random variable 
loss count ) to obtain 
aggregate loss cf s

Combine cf s (step 3a ) to 
obtain overall aggregate 
loss cf  using given 
covariance coefficients or 
Multi-NegBin model

Reconstruct ALD (s) from 
cf (s) in penultimate step 
(i.e. step 3a  or step 3b ), 
using inverse FFT

Model 4.3 (IR ) Raise cf s to power of n Inverse FFT (cf s: step 3a )

Model 4.3 (CR ) Apply cf s in pgf  of N Inverse FFT (cf s: step 3a )

Model 4.4 Raise cf s to power of n Combine using cov coeff Inverse FFT (cf : step 3b )

Model 4.5 Apply cf s in pgf  of N Combine using cov coeff Inverse FFT (cf : step 3b )

Model 4.6 Apply cf s in NegBin pgf s Combine with MNB Inverse FFT (cf : step 3b )
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κij � κ�; before taking the inverse Fourier transform in step 4 to yield the aggregate loss CDF (i.e.
joint CDF for correlated marginal ALDs with respect to classes A–D).

Model 4.5 ALD for correlated aggregate losses (CR model)
Model 4.5 is the CR analogue to Model 4.4. Instead of raising the CFs in each of the classes A–D

to the power of a deterministic count parameter, n, as is the case for Model 4.4 in step 3a, the PGF
of an assumed loss count variable is incorporated within the CF (element by element). This yields
the CFs in respect of the (marginal) ALDs for each of the classes A–D. Step 3b (i.e. application of
(15) with given marginals and covariance coefficients) and step 4 (i.e. inverse Fourier transform)
used in this model are otherwise identical to those used for Model 4.4. For variance principle
adjustments regarding limit factors, (16) is utilised.

Model 4.6 ALD for correlated loss count (CR model)
Model 4.6 utilises a (multivariate) mixture model, as considered for Example 4.6.
In particular, step 3a assumes that the class has random variable loss count, Nj, with NB�aj; λj�

CDF and specified parameters aj; λj, j � 1; 2; 3; 4 (Table B.2: B.4). The associated PGF is thus
incorporated (element by element) within CFs in step 2 to produce (class-level) vectors of CFs
(step 3a) for respective ALDs. These are then combined using (15) (with m � 4; and assumed
correlation parameter, w� in step 3b, before using the inverse Fourier transform to yield the
aggregate loss CDF in step 4 (i.e. joint CDF in respect of classes with correlated aggregate NB loss
count variables).

5. Results
Severity distributions are first identified; these are used to devise ALDs from which ILFs are
determined to study the impact of risk adjustments in the presence of correlation.

5.1. Severity CDFs

Final selections (CDFs, thresholds), based on Algorithm 1 (Table B.1) are in Table 4.

Turning to model confidence sets (Algorithm 2), the first column of Table 5 show the top four
models according to how frequently they were selected on the basis of AICC. Key observations
include:

• Selected %�π̂; following (27)), AIC weight�ŵ�, KS and Anderson Darling (AD) ratios (i.e. test
statistic to critical value) are in agreement; π̂ and ŵ are highest for selected CDFs, except for

Table 4. Selected large-loss CDFs and splicing points. Threshold: dollar value of splicing
point; Burr represents inverse Burr (i.e. Dagum CDF); CDFs fit using MLE to severities from
Ponemon Institute (2012a–2012i, 2013a–2013j, 2014a–2014k, 2015, inflated to end of 2016

A B C D E

Threshold ($m) 1.40 0.29 1.67 4.14 6.50
Percentile 87.3% 77.5% 81.0% 92.1% 83.9%

Distribution Weibull Burr Burr Weibull Weibull
Shape 0.76 2.12, 0.53 2.13, 0.57 1.56 1.11
Scale ($m) 0.82 0.38 1.34 3.37 3.81
Location ($m) 1.40 0.29 1.67 4.14 6.50
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C (Weibull, the highest, fails the AD-test, 5% critical; also, the selected Burr CDF has a
similar 90% confidence set success rate, ĉ�90%�).

• Light-tailed CDF selections are confirmed for D, E (with average shape α > 1�.
• Lowest and highest ĉ�90%� can be seen for D (due to high, 92.5% truncation, Table 4) and
E (due to additional 350 observations, year 2015) respectively.

5.2. ALDs

ALDs in Figures 3 and 4 are now considered in terms of underlying costs (Table 2):

• B: this has the lowest mean (Figure 3) and largest kurtosis – in keeping with the fact that these
costs are not significant drivers of overall loss (e.g. data recreation, expert engagement,
possibly customer notification); and the element of “determining regulatory requirements,”
suggesting a heavier tail than otherwise (i.e. in support of Burr, Table 4)

• A, C: most similar in terms of ALDs and moments – this agrees with underlying cost types
which appear to be overlapping in some respects (e.g. forensic, investigative, communication,
assessment costs); however, the nature of other costs in C (legal, regulatory fines and
penalties, product discounts, and credit monitoring) would explain its relatively larger
moments and heavier tail.

• D: the largest mean and, as implied by the lowest kurtosis and skewness (relative to mean),
lightest tail (severity CDF and ALD) – this appears to reflect the nature of the underlying
extrapolated cost estimate that has been derived from some other distribution. Further
investigation shows that positive correlation with D is a key driver for the bimodal feature
that can be seen in Figure 4 for scenario 3 (more prominent in Model 4.4 than 4.5).

Table 5. Bootstrap results. 10k samples; selected % achieving minimum AICC; 90% confidence sets based on
Kullback-Leibler distance estimate for selected CDF (colour coded font, A–E – average shape parameter for Weibull
CDF selections). Tail-fit ratios (KS, AD – 5% critical); consistent ILFs (rate per 100). Underlying costs based on
Ponemon Institute (2012a–2012i, 2013a–2013j, 2014a–2014k, 2015 inflated to 2016

Model Selected % AIC weight Confidence set % KS-ratio AD-ratio Consistent ILFs

Weibull3 (α=0.76) 79% 77% 68% 0.5 0.6 99.8
Burr 17% 18% 25% 1.1 1.3 54.4
Fatigue 3% 3% 2% 2.5 17.8 24.5
LogLaplace 1% 1% 2% 3.4 67.8 99.5

Burr 74% 67% 48% 0.7 0.5 99.9
Weibull3 22% 22% 23% 0.7 1.1 99.9
LogGamma 3% 7% 17% 0.4 0.2 100
GEV 1% 2% 8% 0.4 0.2 100

Weibull3 55% 52% 26% 0.7 1.0 99.9
Burr 29% 29% 25% 0.8 0.6 98.0
LogGamma 14% 12% 17% 0.4 0.2 100
LogLaplace 1% 2% 8% 1.0 0.3 99.9

Weibull3 (α=1.20) 49% 34% 11% 0.6 0.6 99.8
Fatigue 21% 21% 4% 2.2 14.0 41.9
Burr 9% 9% 10% 1.5 1.5 52.1
Pearson5 8% 6% 8% 0.5 0.2 100

Weibull3 (α=1.04) 85% 80% 74% 0.5 0.6 100
Burr 8% 10% 13% 0.9 0.3 95.6
LogGamma 7% 8% 12% 0.4 0.2 100
LogLaplace 0% 1% 1% 1.7 0.7 99.3

A

B

C

D

E
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It is worth considering the point regarding class D and the bimodal formation in greater detail.
The implications of a correlated class D (business interruption) may be exacerbated in the
presence of interdependent organisational structures (processes, activities). For instance, vertically
integrated businesses that suffer losses due to a common cause may find there is inadequate
coverage (e.g. if such losses erode a common aggregate limit). Organising structures that avoid
upstream (or downstream) dependences should assist in preserving coverage limits. However, this
may not always be feasible (logistics, costs, etc.).

A B C D
Mean 7.05 2.12 10.35 14.99
Min 0 0 0 0
Std dev 3.48 1.39 5.24 8.08
Skew 1.00 3.03 1.10 0.84
Kurt 4.67 28.60 5.25 3.87
VaR 1% 17.58 6.56 26.87 38.38

A B C D
Mean 7.05 2.12 10.35 14.99
Min 0.54 0 0.61 0.09
Std dev 2.67 1.22 4.10 6.54
Skew 1.23 3.93 1.39 0.77
Kurt 5.74 43.29 6.91 3.68
VaR 1% 15.55 6.08 24.36 33.61
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C
D
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Figure 3. ALDs: Model 4.3 Loss count: CR – Poisson(10); IR – 10 (deterministic). Ponemon Institute (2012a–2012i, 2013a–
2013j, 2014a–2014k, 2015) costs inflated to end of 2016. Per-loss limit ($20m, A-D).

Model 4.3 (IR ) Scenario 1 Scenario 2 Scenario 3
35.84 34.46 34.46 34.46
3.50 7.22 7.15 7.08

11.06 8.26 10.41 12.18
0.62 0.61 1.63 1.84
3.50 3.55 7.08 6.79
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Model 4.3 (CR ) Scenario 1 Scenario 2 Scenario 3 Model 4.6
Mean 35.84 34.46 34.46 34.46 34.46
Min 0 1.75 1.68 1.61 0
Std dev 15.83 10.33 12.12 13.67 14.75
Skew 0.66 0.59 1.27 1.52 0.75
Kurt 3.56 3.51 5.85 6.08 3.79
VaR 1% 79.85 62.88 75.40 81.58 76.44
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Figure 4. ALDs: Models 4.3–4.6 $m; Scenarios 1–3: constant covariance coefficients of 0%, 5%, 10% resp., for Models 4.4
(IR) and 4.5 (CR). Loss count: Poisson(10) (Models 4.3–4.5, CR); MNB(10,1,0.09) for Model 4.6; IR: 10 (deterministic).
Ponemon Institute (2012a–2012i, 2013a–2013j, 2014a–2014k, 2015) costs inflated to end of 2016. Per-occurrence limit
(class E).
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5.3. Risk-Adjusted ILFs

Table 6 compares ILFs for several major league insurers to those based on Models 4.5–4.6 (low–
high risk), filed by Cresenzi and Alibrio (2016) on behalf of ACE (Chubb, 2017). See Figure B.2 for
a description of low-high-risk environments referenced in this table.

Costs covered by the insurance products underlying Table 6 correspond with A–D categories
(Table 2). Since insurer ILFs incorporate a base retention and base limit of $10k and $1m respectively,
model ILFs are derived using Equation (10) with v � 1:025 (based on inflation used for E, year 2015),
d � $10 k; and a � $1m: Riebesell estimation ($100m) is based upon Equation (12) with
a � $1m;b � $100m; and an insurer-specific parameter w that ranges from (0.34, 0.56). Overall,
there appears to be reasonable correspondence betweenmodelled and insurer ILFs. However, as might
be expected, there is greater alignment with high-risk parameter as the limit increases.

6. Conclusions, recommendations
The model review (Section 2, Appendix A) found cyber-pricing models to be in need of further
development and empirical support – particularly derelict aspects included severity and aggregate
loss; there was no evidence of ILF related models. Empirical support, based on statistically viable
severity data, featured only once (Biener et al. (2015) and included almost 1,000 cases. Key
contributions made by the present research include:

1. Model confidence sets for various severity CDFs, derived in relation to key forms of first-
party data breach coverage.

2. New insight into aspects associated with correlated ALDs and risk-adjusted ILFs.

Table 6. Insurer ILF comparison (per-loss limits). Insurer comparison: 2016 ACE SERFF filing – Chubb Enterprise Risk
Management Cyber and Digitech products (Cresenzi & Alibrio, 2016), with reference to (2015 year) SERFF filings by: AIG
(Speciality Risk Protector) [AGNY-130104025], Travellers (Cyber-Essentials) [TRVD-130748646], Philadelphia (Cyber-Security
Liability) [PHLX-G128091742], and ACE (MPL Advantage) [ACEH-125807939]. *$100m: ILFs estimated with Riebesell curve
(implied at $10m limit). Base limit: $1m; retention: $10k. Shading: model range within insurer range (A:B)≔(min, max); partial
if ranges overlap. “Median”: model ILF range. Ponemon Institute (2012a–2012i, 2013a–2013j, 2014a–2014k, 2015, inflated to
end of 2016 (ILFs: adjusted to 2015)

Insurer $1m $2m $3m $4m $5m $10m $100m*

Chubb 1 1.29 - 1.50 1.49 - 1.89 1.65 - 2.21 1.77 - 2.50 2.20 - 3.60 4.84 - 12.96
AIG National 1 1.50 1.88 2.14 2.35 3.04 9.24
Travelers 1 1.42 1.62 1.83 1.99 2.73 7.44
Philadelphia 1 1.58 1.98 2.27 2.47 3.15 9.92 - 9.92
ACE 1 1.30 - 1.50 1.50 - 1.89 1.65 - 2.22 1.78 - 2.51 2.21 - 3.62 4.88 - 13.10
Overall range ( A , B ) 1 1.29 - 1.58 1.49 - 1.98 1.65 - 2.27 1.77 - 2.51 2.20 - 3.62 4.84 - 13.10

Models 4.5 - 4.6

Low risk 1 1.37 1.56 - 1.57 1.66 - 1.68 1.72 - 1.75 1.84 - 1.89 3.39 - 3.57
__(Median - A ) / ( B - A ) - 27% 15% 3% -5% -24% -16%

Medium risk 1 1.43 - 1.45 1.67 - 1.73 1.81 - 1.90 1.90 - 2.02 2.09 - 2.31 4.37 - 5.32
__(Median - A ) / ( B - A ) - 52% 43% 33% 26% 0% 0%

High risk 1 1.49 - 1.54 1.78 - 1.90 1.96 - 2.13 2.07 - 2.30 2.33 - 2.73 5.44 - 7.48
__(Median - A ) / ( B - A ) - 77% 71% 64% 57% 23% 20%

Limit
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This was done in terms of nonparametric models based on empirical data, extracted from data
breach survey reports (4 × 800 : A–D; 1 150 : E). There was no evidence of such applications or
findings in the model review (or, to the best knowledge of the author, elsewhere in cyber-related
research).

6.1. Conclusions

Conclusions, some of which are data or model dependent (i.e. not necessarily applicable in every
situation) include:

• Severity distributions, based on data breach costs, were heavy tailed in the main, although D,
representing business interruption, often affiliated with issues such as interdependence in the
realm of insurance, was found to be light-tailed.

• Correlation between D and other classes (i.e. A–C) was found to have the greatest impact on
the ALD in its tail (in the case where the aggregate loss model was used, the peak of the
second mode of a bimodal distribution was intensified). The Value at Risk, however, was less
affected by this compared to other risk measures (e.g. standard deviation).

• Empirical evidence suggests insurers are indeed avoiding volatile severity risk associated with
increased cover limits, not only through low upper limits, but through increasing implied risk
margins. Reducing Riebesell parameters support this view; in some (isolated) cases, this led to
ILF consistency not being observed.

Enriched empirical data, as a basis for actuarial experience rating, may represent a source of value,
despite the notion that it “quickly goes stale” due to the dynamic nature of the technological
environment. This is demonstrated by reconciling modelled (i.e. “experience-based”) and insurer
(exposure-based) ILFs, and introduces the recommendations made in Section 6.2.

6.2 Recommendations

Wider audience
Onus should be placed on all stakeholders concerned to establish a unified approach to deal

with common cyber-risk management issues – whilst industry groups and international initiatives
are reportedly underway; actions to “better” address basic data issues are still highly anticipated.

Developing an anonymised “community-wide” data base (with key elements for quantifying
cyber-risk) may be fraught with wider issues concerning cooperation, funding, administration,
and governance. However, there would appear to be some incentive to collaborate more
effectively, given the $600bn (and growing) cyber-cost estimate previously mentioned (Section 1).

This would align with academic interests in support of such an initiative – although a unified
approach may also be required here – possibly through a multidisciplinary academic interest group.
Such cross-pollination would accelerate the development of cyber-risk and associated pricing models.

Specific directions – academia
There were only two “actuarial” contributions (according to title) that featured in the model

review, neither of which appeared to have emerged from that domain. Given this, it is worth
emphasising that further actuarial contribution to this specialised field of academia is essential.

Specific areas that warrant greater input include the following:

• Correlation and interdependence: risks within a class were assumed to be independent –
simulation (e.g. common shock model) would be useful for understanding interdependence
with respect to business interruption.
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• Information asymmetry: anti-selection (e.g. different limits attracting different types, levels
of risk) could be explored using SERFF ILFs (e.g. Hanover, 2015) which differentiate by
turnover; or considering class D divided by customer churn); empirical insight into the
notion of secondary loss (Bandyopadhyay et al., 2010) and associated asymmetries
(e.g. insureds’ claiming strategy) could be investigated in terms of “retention factors” (for
pricing different deductibles).
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Appendix A. Literature review
A.1. Search Strategy

The search strategy used to identify studies in the model review (Section 2) is illustrated in Figure A.1. This incorporates
various filters (e.g. language, content, etc.) and utilises the University of Cape Town [UCT] (2019) online search engine. Titles
and keywords are searched using strings that are made up of one word from each of the following groups:

• Group 1: “cyber,” “information,” and “interdependent”
• Group 2: “risk management,” “insurance” (and derivatives, such as insurability), and “security”

The UCT (2019) online search, used to generate these results, accesses databases such as WorldCat (2019), which is self-
proclaimed as “world’s largest network of libraries.” Incorporated in it are supplementary sources to compliment the search,
such asWorkshop on the Economics of Information Security [WEIS] (2019) – (archives of papers on information security and
privacy), and Association for Computing Machinery [ACM] (2019) – (an international society for learned computing). The
library catalogue of the Institute and Faculty of Actuaries (2019) was also considered.

The 22 studies that are identified in Figure A.1 constitute studies in the taxonomy (Figure A.2) – this excludes the study
Edwards et al. (2016), which fell outside the review period (2000–mid-2006).

Introduced Results Excluded Note

Search string ~ 34 000 (1)

Language 1 15 352 ~ 18 000 (2)

Content 2 1 960 13 393 (3)

Period 1 432 530 (4)

Full text review 11 52 1 380 (5)

Model-review 22 41 (6)

Fi
lte

rs

Figure A.1. Identification of studies. Notes: (1) Search string: “ti:((cyber | information | interdependent) + (risk management |
insur* | security)) kw: (model | empirical)” – which applies to titles (i.e. “ti”) and keywords (i.e. “kw”), through the UCT (n.d.)
search engine; (2) English-only; identified Barracchini & Addessi (2014) from a similar (but excluded) Italian manuscript, ; (3)
Full-text, peer-reviewed (re-included Soo Hoo (2000), Liu et al. (2007) – not peer-reviewed); (4) Period: 2000 – mid 2016; (5)
52 studies identified for full-text review by scanning titles, then abstracts, and introduced 11 new studies from online
searches; references; and archived libraries (e.g. WEIS (2019); (6) eliminated 41 studies based on full-text review, leaving 22
for the model review. Motivated by Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) – (Moher
et al., 2009), and Biener et al. (2015) search strategy for cyber-related losses.
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A.2. Taxonomy

Figure A.2. Overview of cyber-risk models. Text colour: common model types. Abbreviations: Bank for International
Settlements [BIS] (2013); Honeypot – Pouget et al. (2005); ICSA: International Computer Security Association – Bridwell
(2004); Ministry of Economy Trade Industry [METI] (2004); Operational Riskdata eXchange Association [ORX] (2017);
SysAdmin, Audit, Admin and Security [SANS] (2019); World Development Indicators Database (WDID): World Bank (2019).
SEIR: Susceptible-Exposed-Infected-Recovered, SIS: Susceptible-Infected-Susceptible. Note (1): undisclosed source.
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Appendix B. Results
B.1. Identifying Severity CDFs (Algorithm 4.1)

B.2 Mean Excess Plots (A-D)

Markers in Figure B.1 indicate the apparent onset of volatility, or other such irregularity due to having too few data points.
These correspond to maximum permissible thresholds for use in Algorithm 4.1 (Appendix B.1).

As can be seen, MEs for classes B and C initially decrease before assuming upward concavity (possibly indicating a Burr
type CDF), and ultimately, continue to increase beyond the indicated percentiles (i.e. 94%, 93% respectively). This could also
be indicative of a heavy-tailed Weibull, possibly a Pareto. In contrast, MEs for class A and D reduce after the threshold of 93%
(sharply so, in class D), which undermines a CDF such as the Pareto, and may even imply a short-tailed CDF for D.

Table B.1. Large-loss CDFs and scores. Final selections (percentiles: coloured font, A–E; CDFs: boxed) correspond to
maximum overall scores (boxed). Weibull (shifted; asterisked: light-tailed), Burr (type III: Dagum), and Pearson: 3, 4, and 6
parameter CDFs respectively. Coloured bars: models – quantile divided by maximum (empirical severity); scores – relative
magnitude. Criteria for (failing which, ): percentile deemed to be acceptable (in terms of ME plots); spliced CDF yields
consistent ILFs over a given set of limits ($10k, $100m). Underlying costs: Ponemon Institute (2012a–2012i, 2013a–2013j,
2014a–2014k, 2015, inflated to 2016
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B.3. Densities, Limited Moments

For beta and gamma families (Table B.2: B.6–B.7) gamma (Γ) and beta (B) functions, and respective lower incomplete
variations are defined as follows:

Γ�a� � R∞
0
ua�1 exp��u�du; Γ�a; b� � Rb

0
ua�1 exp��u�du f

B�a; b� � R1
0
ua�1�1 � u�b�1du � Γ�a�Γ�b�

Γ�a�b� ; B�a; b; c� � B�a; b� Rc
0
ua�1�1 � u�b�1du

(B.1)

where a; b; c > 0; c < 1 (Klugman et al., 2004: 102, 627–629), noting that in this case, the incomplete gamma, Γ�a; b�, is not
“standardised” with divisor Γ�a�: In this table, limited moments for continuous distributions do not incorporate a shift
(i.e. location parameter). For this, an adjustment can be applied as described in the following. Suppose random variable
Y � X � φ has a shifted CDF, based on (non-negative) random variable X with location (i.e. “shift”) parameter φ > 0
(i.e. Y ≥ φ�: Then limited moments for Y; when limit l > φ applies, can be determined analytically using
E Y �l�k� � � E �X�l�φ� � φ�k� �

; assuming respective limited moments for X exist. This follows from the fact that

min�X � φ; l� � min�X; l � φ� � φ: For φ > l ≥ 0; EY �l�k � lk by definition.

Figure B.1. Empirical ME plots. Axes: x (threshold, $m), y (mean excess, values omitted as they are unnecessary for this
exercise). Data: costs sourced from Ponemon Institute (2012a–2012i, 2013a–2013j, 2014a–2014k, 2015, inflated to 2016.
Square markers (i.e. 94th, 96th, 93rd, and 92nd percentiles: A–D respectively) indicate the onset volatile or irregular trends
(used as maximum percentiles for).
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Table B.2. Discrete and continuous distributions. Limit l> 0 applies to random variable X for limited moments B.5–B.7 (Klugman et al., 2004, sec. A.2.1.1, A3.1.1). *Dagum is represented as
Burr(b,c,d) – (i.e. a = 1) throughout the present research to align with Vose (2019) parameterisation of Burr (ordinarily d = 1 for Burr). Location parameter, for a shifted CDF, is included
after other applicable parameters a-d (limited moments, B.5–B.7, based on need to be adjusted accordingly)

Model or family Notation, parameters Density, distribution, support

Discrete: PGF, P[t]; mean, μ; variance, σ2

Continuous: limited moments – E(X (l)k); l> 0,
k ∈ Z+

Discrete Binomial Bin n; p� �
n 2 Z�; p 2 0; 1� �

f x� � � C n;x� �px�1 � p�n�x ,
x � 0; 1; . . . ; n

P t	 
 � �1 � p� pt�n
µ � np; σ2 � np 1 � p� �

B.2

Poisson Pois λ� �
λ > 0

f x� � � λxexp �λ� ��x!��1,
x � 0; 1; . . . ; n

P t	 
 � exp λ t � 1� �� �;
µ � σ2 � λ

B.3

Negative binomial NB a; b� �
a; b > 0

f x� � � Γ a�x� �bx
Γ a� �x!�1�b�a�x ; x � 0; 1; . . . P	t
 � �1 � b�t � 1���a

µ � ab; σ2 � ab�1� b�
B.4

Continuous Lognormal LN µ; σ� �,
µ 2 R; σ > 0

f x� � � exp �1
2s

2� �
xσ�2π�12

; s � σ�1 ln x� � � µ� �
F x� � � 1 � S x� � � Φ s� �; x > 0

E X l� �k� � � exp kµ� 1
2 k

2σ2
� �

Φ s � kσ� � � lkS l� � B.5

Transformed beta (four
parameter excluding shift)

a; b; c; d > 0
• Dagum: a = 1, Burr(b,c,d)*
• GPD (a,b,d): c = 1
• Pareto (a,b): c = d = 1
• Log-logistic (b,c): a = d = 1

f x� � � Γ a�d� �cxcd�1b�cd
Γ a� �Γ d� � 1� xb�1� �c� �a�d

F x� � � 1 � S x� � � B d; a; p x� �� �;
p x� � � 1� x�1b

� �
c

� ��1; x > 0

E X l� �k� � � bkΓ m� �Γ q� �B m; q; p l� �� �
Γ d� � � lkS l� �;

k > � cd; m � d� kc�1; q � a � kc�1
B.6

Transformed gamma (three
parameters, excluding shift)

a; b; c > 0
• Gamma: c = 1, G(a,b)
• Weibull: a = 1, Weib(b,c)
• Exponential: a = c = 1, Exp(b)

f x� � � cxac�1
bacΓ a� � exp �xcb�c� �

F x� � � 1 � S x� � � Γ a; xcb�c� �; x > 0
E X l� �k� � � bkΓ a�kc�1 ; xcb�c� �

Γ a� � � lkS l� �;
k > � ac

B.7
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B.4. Risk-Adjusted ILFs

Key observations from the risk-adjusted ILFs and associated gradients in Figure B.2 include:

• PH (Weibull) limit factors are closely aligned to (variance-adjusted) Model 4.3 (CR), as is the case for Models 4.5
(scenario 3) and 4.6; PH (lognormal) and Model 4.3 ILFs crossover at a limit between the $15m-$20m (due to the
underlying CDFs)

• Variance principle risk-adjusted limit factors, in this case, are generally consistent (i.e. positive and decreasing
gradients, which is always the case for PH), although a subtle initial increase can be seen for Model 4.3 (i.e. closing
the gap between CR and PH Weibull in medium–high risk, Figure B.2: 4, 6)

• Increasing the risk parameter leads to a greater risk adjustment at higher limits than lower limits for a given model
(i.e. discount factor reduces, whilst ILFs increase at limits greater than $1m); a similar effect can be achieved
through the correlation parameter in Models 4.5–4.6 (although this is partially offset by equalising risk margins at
the $2.5m limit)
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Figure B.2. Limit factor and gradient curves. Base limit: $100m. Risk margin (Model 4.3 (CR) in low (1–2), medium (3–4), and
high environments achieve a risk margin of 5% at $10m, $100k, and $10k limits, respectively (based upon variance principle,
which also applies to Models 4.5–4.6. PH transform applies to a compound Poisson-Weibull and lognormal CDF, fit to
Ponemon Institute (2012a–2012i, 2013a–2013j, 2014a–2014k, 2015 costs, inflated to end of 2016). Loss count ∼ Poisson(10)
(all CR models), and 10 (deterministic for Model 4.3 IR) Model 4.3 (IR).
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Appendix C. Validation

Numerous checks have been performed by comparing ALDs and their moments against alternative derivations. One such
example is depicted in Figure C.1 and Table C.1, which illustrates the close correspondence between Model 4.3 (CR) and an
MC simulation based upon an algorithm developed by Homer and Rosengarten (2011).

A
B

C

D

E

20

40

60

80

100

10

20

30

40

9.E-09 5.E-09  0 5.E-09 9.E-09

A
ggregate loss ($m

, E)
A

gg
re

ga
te

 lo
ss

 ($
m

, A
-D

)

Probability

Figure C.1. ALDs: Monte Carlo versus FFT (Model 4.3, CR) – (1) Left (of probability = 0): MC simulation with 500k iterations;
(2) Right: Model 4.3 (CR) with FFT (truncation, span) – A–D: ($96.2m, $23.5k), E: ($287.1, $70.1k). Limits: A–D ($20m), E ($80m);
Poisson loss count with mean 10. Vertical axes – left (A–D); right (E). Underlying data: Ponemon Institute (2012a–2012i,
2013a–2013j, 2014a–2014k, 2015), costs inflated to year 2016.

Table C.1. Moments: Monte Carlo versus FFT. MC simulation with 500k iterations; Model 4.3
(CR) with FFT (truncation, span) – A–D: ($96.2m, $23.5k), E: ($287.1, $70.1k). Means: $m. Limits:
A–D ($20m), E ($80m); Poisson loss count with mean 10. Underlying data based on Ponemon
Institute (2012a–2012i, 2013a–2013j, 2014a–2014k, 2015, with costs inflated to end of 2016 year

Class Method Mean Min Std dev Kurt Skew
Monte Carlo 7.080 0 3.485 4.683 0.998
Model 4.3 7.050 0 3.478 4.666 0.996
Monte Carlo 2.137 0 1.397 27.695 2.985
Model 4.3 2.119 0 1.388 28.599 3.029
Monte Carlo 10.362 0 5.238 5.204 1.095
Model 4.3 10.346 0 5.242 5.250 1.103
Monte Carlo 14.895 0 7.961 3.852 0.831
Model 4.3 14.989 0 8.080 3.875 0.840
Monte Carlo 35.806 0 15.710 3.521 0.643
Model 4.3 35.836 0 15.834 3.556 0.657
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