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Introduction

Integers form a group under addition but not under multiplication. However,

matrices with integer entries can form groups under multiplication. For ex-

ample, 2× 2 matrices of unit determinant and integer entries a, b, c, d ∈ Z,(
a b

c d

)
ad− bc = 1

form the group SL(2,Z) under multiplication, referred to as the modular

group. Functions and differential forms that are invariant under SL(2,Z) are

referred to as modular functions and modular forms, respectively. Modular

functions generalize periodic functions and elliptic functions, to which they

are intimately related. In turn, modular functions and modular forms are

special cases of automorphic functions and automorphic forms which are

invariant under more general infinite discrete subgroups of SL(2,R), or under

more general multiplicative groups of matrices with integer entries such as

SL(m,Z) and Sp(2m,Z), referred to as arithmetic groups.

In mathematics, the theory of elliptic functions was developed by Gauss,

Jacobi, and Weierstrass, building on the study of elliptic integrals by Euler,

Legendre, and Abel, and was motivated in part by questions ranging from

number theory to the solvability of algebraic equations by radicals. Riemann

generalized elliptic functions to Riemann surfaces of arbitrary genus.

The development of modular functions and forms dates back to Eisen-

stein, Kronecker, and Hecke. Automorphic functions and forms were stud-

ied by Fuchs, Fricke, Klein, and Poincaré. In modern times, among many

other developments, the Taniyama–Shimura–Weil conjecture ultimately led

to the proof of Fermat’s Last Theorem by Wiles and Taylor and to a

proof of the Modularity Theorem by Breuil, Conrad, Diamond, and Taylor.
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2 Introduction

A fundamental role was played by modular forms and quasi-modular forms

in the solution to the sphere packing problem in eight dimensions by Via-

zovska, work for which she was awarded the Fields Medal in 2022.

In physics, elliptic functions provide solutions to various boundary prob-

lems in electrostatics and fluid mechanics and play a fundamental role in

the theory of integrable systems. Elliptic integrals arise in the solution to

even the simplest mechanical problems, such as the pendulum.

The modular group SL(2,Z) first made its appearance in string theory

in 1972 when Shapiro identified it as a symmetry of the integrand for the

one-loop closed bosonic string amplitude. Shapiro defined the amplitude as

the integral over the quotient of the Poincaré upper half plane by SL(2,Z)

and argued that the amplitude thus obtained is free of the short-distance

divergences that arise in quantum field theory. This fundamental observation

extends to the perturbative superstring theories, and to all loop orders,

provided that the group SL(2,Z) is replaced by the modular group Sp(2g,Z)

for genus g Riemann surfaces. The absence of short-distance divergences

uniquely qualifies string theory for the task of unifying gravity with the

strong and electro-weak interactions into a consistent quantum theory.

A second context in which SL(2,Z) arises in string theory is as follows. The

five perturbative superstring theories in ten-dimensional Minkowski space-

time with spacetime supersymmetry are the Type IIA and Type IIB theories

with the maximal number of thirty-two supersymmetries, and the Type I and

two Heterotic string theories with sixteen supersymmetries. The massless

states of each one of these superstring theories are described by an associated

supergravity theory, which is an extension of the Einstein–Hilbert theory of

general relativity. For example, Type IIB supergravity contains, in addition

to the space-time metric, a complex-valued axion-dilaton scalar field τ . The

imaginary part of τ is related to the string coupling and must be positive

on physical grounds. Thus, the field τ takes values in the Poincaré upper

half plane SL(2,R)/SO(2), where the group SL(2,R) acts on τ by Möbius

transformations,

τ → aτ + b

cτ + d

(
a b

c d

)
∈ SL(2,R)

While SL(2,R) is a symmetry of Type IIB supergravity, certain quantum

effects in string theory reduce the SL(2,R) symmetry to its discrete subgroup

SL(2,Z), also referred to as the part of the S-duality group of Type IIB
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Introduction 3

string theory that acts on bosonic fields. Type IIB string solutions related

by an SL(2,Z) transformation are physically identical, so that the space of

inequivalent solutions is given by the double coset SL(2,Z)\SL(2,R)/SO(2).

The implications of this conjectured symmetry were fully appreciated only

with the discovery of NS- and D-brane solutions in the 1990s.

A third context where SL(2,Z) and higher arithmetic groups emerge is

when string theory is considered on a space-time of the form R10−d × Td,
where Td is a d-dimensional flat torus. Such a setup is referred to as toroidal

compactification. While the Fourier analysis of supergravity fields on a torus

produces only momentum modes, the compactification of a string theory

produces both momentum and winding modes. The winding modes are re-

sponsible for quintessentially string-theoretic discrete symmetries, referred

to as T-dualities, that have no counterpart in quantum field theory. For

example, Type IIB superstring theory on a circle of radius R is T-dual to

Type IIA superstring theory on a circle of radius α′/R, where α′ is a con-

stant with dimensions of length squared, which is proportional to the inverse

of the string tension. Toroidal compactification converts some of the com-

ponents of the bosonic fields, such as the metric, into scalar fields, which

combine with the axion–dilaton field τ of Type IIB to live on a larger coset

space that enjoys a larger arithmetic symmetry group. As a function of the

dimension d, the following arithmetic symmetry groups G(Z), and corre-

sponding coset spaces G(R)/K(R), arise starting with the ten-dimensional

Type IIB superstring theory for d = 0.

d G(Z) G(R) K(R)

0 SL(2,Z) SL(2,R) SO(2)
1 SL(2,Z) SL(2,R)× R× SO(2)
2 SL(2,Z)× SL(3,Z) SL(2,R)× SL(3,R) SO(2)× SO(3)
3 SL(5,Z) SL(5,R) SO(5)
4 SO(5, 5,Z) SO(5, 5,R)

(
SO(5)× SO(5)

)
/Z2

5 E6,6(Z) E6,6(R) USp(8)/Z2

6 E7,7(Z) E7,7(R) SU(8)/Z2

7 E8,8(Z) E8,8(R) Spin(16)/Z2

On the last three lines, En,n for n = 6, 7, 8 denotes a particular real form

of the corresponding complex Lie groups E6, E7, and E8. Compactification

on Calabi–Yau manifolds or orbifolds exhibit similarly quintessential string

theoretic relations that go under the name of mirror symmetry.

A fourth context where the modular group SL(2,Z) arose in physics is
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Yang–Mills theory. The Standard Model of Particle Physics is a Yang–Mills

theory with gauge group SU(3)×SU(2)×U(1) in which the masses of quarks,

leptons, and the gauge bosons W±, Z0 are generated via spontaneous sym-

metry breaking. In a grand unified field theory, the group SU(3)× SU(2)×
U(1) itself arises by spontaneous symmetry breaking of a simple gauge group

such as SU(5),SO(10), E6, E7, or E8. The spectrum of these theories con-

tains a massless photon and various electrically charged particles, but also

contains ‘t Hooft–Polyakov magnetic monopoles. In 1977, Goddard, Nuyts,

and Olive conjectured that such theories may exhibit electric–magnetic du-

ality which swaps electric particles and magnetic monopoles. Dyons, which

carry both electric and magnetic charges, extend this duality to the full

modular group SL(2,Z), or a subgroup thereof. A concrete realization of

electric–magnetic duality, referred to as Montonen–Olive duality, is provided

by Yang–Mills theories with extended supersymmetry, and culminated in the

Seiberg–Witten solution in 1994.

A fifth context where modular forms are of great importance is two-

dimensional conformal field theory. Cardy linked the SL(2,Z) symmetry of

a conformal field theory on a torus T2 to its unitarity properties. The pow-

erful constraints on the operator product expansion of conformal primary

fields in terms of representations of SL(2,Z), obtained by Erik Verlinde in

1988, may be implemented in the modular bootstrap program and have been

used to great effect to advance the classification of conformal field theories.

Thanks to the gauge–gravity correspondence, these constraints on confor-

mal field theory give rise to constraints on theories of quantum gravity in

three-dimensional anti-de Sitter space, which indeed was one of the origi-

nal motivations for the modular bootstrap program. Additionally, different

conformal field theories may be related to one another by Hecke operators.

Each of the contexts where modular forms play a role in physics, described

in the previous paragraphs, continues to provide an active and fertile area of

current research, with myriad open questions remaining. There are a num-

ber of further important and beautiful contexts where modular forms play

a central role but that will not be addressed directly in this book. They

include orbifold, Calabi–Yau, and F-theory compactifications; the counting

of microstates of four-dimensional black holes; the various incarnations of

moonshine; three-dimensional topological field theory; topological modular

forms; and modular cosmology. No doubt, the theory of modular forms con-

tinues to teach us important conceptual and computational lessons about
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these well-weathered fields, to say nothing of its promise for up-and-coming

topics such as generalized global symmetries.

The goal of this book is to exhibit the profound interrelations between

modular forms and string theory, which are numerous. Our presentation

is intended to be informal but mathematically precise, logically complete,

and self-contained. We have made every effort to render the exposition as

simple as possible and accessible to adventurous undergraduates, motivated

graduate students, and dedicated professionals interested in the interface

between theoretical physics and pure mathematics. To paraphrase Einstein,

“Everything should be made as simple as possible, but not simpler.”

Assuming little more than a knowledge of complex function theory, some

planar differential geometry, and basic group theory, we introduce elliptic

functions and elliptic curves as a lead-in to modular forms and modular

curves for SL(2,Z) and its congruence subgroups. A prior background in

modular arithmetic, Riemann surfaces, or line bundles is not required as

those subjects are presented in some detail in four separate appendixes.

Free quantum fields on a torus provide an excellent illustration of how el-

liptic functions and modular forms can be used to solve problems in two-

dimensional conformal field theory of relevance to string theory. A basic

understanding of the operator formulation of quantum mechanics and some

Lie algebra theory will prove useful here but is not absolutely required. As

will be explained in the organizational introductions, further mathematical

topics, ranging from quasi-modular forms and modular graph functions to

Hecke operators and Galois theory, are included in order to broaden the

spectrum of applications in conformal field theory and string theory.

Even the most economical introduction to string theory proper, attempted

here, inevitably benefits from some familiarity with general relativity, classi-

cal fields, and some basic elements of scattering theory, though much may be

picked up at an intuitive level during a first read-through. By contrast, the

chapter on toroidal compactifications should be accessible without further

physics prerequisites, while the chapter on S-duality will expose the reader

to supergravity. Although the chapter on dualities in super Yang–Mills the-

ory also appeals to several further physics concepts, such as Yang–Mills

theory, supersymmetry, magnetic monopoles, and effective field theory, we

have attempted to introduce each one of these vast subjects with the mini-

mal amount of detail needed to exhibit their interplay with modular forms.
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