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Abstract
Measure of uncertainty in past lifetime distribution plays an important role in the context of information theory,
forensic science and other related fields. In the present work, we propose non-parametric kernel type estimator
for generalized past entropy function, which was introduced by Gupta and Nanda [9], under U-mixing sample. The
resulting estimator is shown to be weak and strong consistent and asymptotically normally distributed under certain
regularity conditions. The performance of the estimator is validated through simulation study and a real data set.

1. Introduction

The concept of entropy was first introduced and thoroughly explored by Shannon [19], an electrical
engineer at Bell Telephone Laboratories, in his research on communication networks. Around the same
time, Wiener [22] independently investigated the concept in his work on Cybernetics, albeit with a
different motivation. Let X be a non-negative rv with an absolutely continuous cumulative distribution
function (cdf) F (x) = P[X ≤ x] and with probability density function (pdf) f (x). Then the Shannon
entropy associated with X is defined as

H (X) = −
+∞∫

0

f (x) log f (x) dx. (1.1)

Starting from the pioneering work of Shannon [19], different researchers have shown applications of
entropy in different fields. Apart from thermodynamics and information theory, application of Shannon
entropy varies over diverse fields such as statistics, economics, finance, psychology, wavelet analysis,
image recognition, computer science, fuzzy sets and so on. In spite of its well known applications, it is
necessary to modify this measure under different scenarios, specifically the concept of residual entropy
proposed by Ebrahimi [7] substantiate this claim.

If the system has already survived for some units of time, Shannon entropy will not be applicable in
such cases which led to the development of residual entropy. Residual entropy is the Shannon entropy
associated with the rv [X − t |X > t], t ≥ 0, and is defined as (see, Ebrahimi [7])
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H (f ; t) = −
+∞∫

t

f (x)
F (t)

log
(
f (x)
F (t)

)
dx, (1.2)

where F (t) denotes the survival function. Given that an item has survived up to time t, H (f ; t) measures
the uncertainty about its remaining life.

Ebrahimi [7] used this concept to define new ageing classes such as decreasing (increas-
ing) uncertainty of residual life (DURL (IURL)). Belzunce et al. [3] proposed kernel-type
estimation of the residual entropy function in the case of independent complete data sets.
Belzunce et al. [4] showed that for a rv X with an increasing residual entropy H (f ; t),
the function H (f ; t) uniquely determines the cdf. Rajesh et al. [15] thoroughly elucidated
the necessity of developing inferential aspects under dependent sample and proposed non-
parametric kernel type estimators for the residual entropy function based on U-mixing dependent
sample.

Di Crescenzo and Longobardi [6] discussed the necessity of developing the uncertainty measure
based on the reversed residual life (past lifetime) and they developed the concept of past entropy. If X
denotes the lifetime of a component, a system or a living organism, then the past entropy of X at time t
is defined as

H (f ; t) = −
t∫

0

f (x)
F (t) log

f (x)
F (t) dx. (1.3)

This measure has become significant in forensic science, particularly in determining the exact time
of failure (or death, in the case of humans) when a unit is found in a failed state at some time t. It also has
applications in actuarial science, as discussed by [18]. Maya [12] introduced non-parametric estimators
for this measure, applicable to both complete and censored U-mixing dependent samples.

Numerous researchers have explored various definitions of entropy and their associated properties.
Balakrishnan et al. [2] established relationships between certain cumulative entropies and the moments
of order statistics. Furthermore, a general formulation of entropy was presented in Balakrishnan
et al. [1]. Building on the successful applications of the past entropy function, Gupta and Nanda [9]
extended (1.3) to define the past entropy function of order V. Now the past entropy function of order V
is defined as

HV (f ; t) = 1
(1 − V)

log
t∫

0

(
f (x)
F (t)

)V
dx

 , for V ≠ 1, V > 0. (1.4)

Later on Nanda and Paul [13] elucidated certain ordering and ageing properties and some character-
ization results based on this generalized past entropy measure. As stated by Ebrahimi [7], systems
or components with high uncertainty tend to exhibit lower reliability. Building on this concept, these
measures can be effectively used to choose the most reliable system among competing models.

However, in terms of inferential aspects, no studies appear to have been conducted in the existing
literature. This gap motivates the authors to explore the development of a non-parametric estimator for
the generalized past entropy function using kernel-based estimation. The study focuses on cases where
the observations exhibit dependence. More specifically, the proposed estimator is based on an U-mixing
dependent sample (see Rosenblatt [17]), and its definition is provided below.

Definition 1.1. Let {Xi; i ≥ 1} denote a sequence of rvs. Given a positive integer n, set

U(n) = sup
k≥1

{|P(A ∩ B) − P(A)P(B) |; AnFk
1 , BnF+∞

k+n}, (1.5)
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where Fk
i denote the f- field of events generated by {Xj; i ≤ j ≤ k}. The sequence is said to be U-mixing

(strong mixing) if the mixing coefficient U(n) → 0 as n → +∞.

Among various mixing conditions, U-mixing is reasonably weak and has many practical applications.
In the same way, Irshad et al. [10] have proposed non-parametric kernel type estimators for two versions
of cumulative residual Tsallis entropies.

The rest of the article is organized as follows. In Section 2, we propose a non-parametric kernel
type estimator of HV (f ; t) given in (1.4) by U-mixing dependent sample. Asymptotic properties of the
proposed estimator are discussed in Section 3. The performance of the estimator is validated using
simulation study in Section 4. In Section 5, a real data set is used to illustrate the performance of the
proposed estimator and then the asymptotic normality is analyzed by the use of histograms. Finally, the
article is concluded in Section 6.

2. Non-parametric estimation of generalized past entropy function

In this section, we propose a non-parametric kernel type estimator for the generalized past entropy
function.

Let {Xi; 1 ≤ i ≤ n} be a sequence of identically distributed rvs. Note that X i
′s need not be mutually

independent, that is, the observations are supposed to be U-mixing. Rosenblatt [16] and Parzen [14]
proposed a non-parametric kernel type estimator of f (x) that is given by

fn(x) =
1

nbn

n∑
j=1

K
(
x − Xj

bn

)
, (2.1)

where K (x) is a kernel of order s satisfying the conditions:

a. K (x) ≥ 0 for all x,

b.
+∞∫

−+∞
K (x)dx = 1,

c. K (·) is symmetric about zero and satisfies the Lipschitz condition, that is, there exists a constant M
such that |K (x) − K (y) | ≤ M |x − y|,

d. Kn (x) = 1
bn

K
(

x
bn

)
, where {bn} is a bandwidth sequence of positive numbers such that bn → 0 and

nbn → +∞ as n → +∞.

The expressions for the bias and variance of fn(x) under U-mixing dependence sample are respectively
given by

Bias (fn(x)) w
bs

nΔs

s!
f (s) (x) (2.2)

and

Var (fn(x)) w
f (x)
nbn

ΔK , (2.3)

where Δs =
+∞∫

−+∞
usK (u) du, ΔK =

+∞∫
−+∞

K2(u) du and f (s) (·) denotes the s-th derivative of f .
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Based on (2.1), we propose a non-parametric kernel type estimator for HV (f ; t) that is defined as

HV

n (f ; t) = 1
(1 − V)

log
t∫

0

f Vn (x) dx − V log Fn (t)
 , (2.4)

where fn(x) is a non-parametric estimator of f (x) and is given in (2.1) and Fn(t) =
t∫

0
fn(x)dx is a non-

parametric estimator of cdf F (t). The bias and variance of Fn(t) are respectively given by (see, Maya
[12])

Bias (Fn(t)) w
bs

nΔs

s!

t∫
0

f (s) (x) dx (2.5)

and

Var (Fn(t)) w
1

nbn
ΔKF (t). (2.6)

3. Asymptotic properties of generalized past entropy function

In this section, some asymptotic properties of generalized past entropy function are established.
For computational simplicity, define the following

an(t) = log
t∫

0

f Vn (x) dx, a(t) = log
t∫

0

f V (x) dx, (3.1)

and

mn(t) = log Fn(t) and m(t) = log F (t). (3.2)

Therefore,

HV (f ; t) = 1
(1 − V) [a(t) − V m(t)] (3.3)

and

HV

n (f ; t) = 1
(1 − V) [an(t) − V mn(t)] . (3.4)

In the following theorems, the weak and strong consistency properties of HV

n (f ; t) are proved.

Theorem 3.1. Suppose HV

n (f ; t) is a non-parametric estimator of HV (f ; t) defined in (2.4) satisfying
the assumptions given in Section 2. Then HV

n (f ; t) is a consistent estimator of HV (f ; t).
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Proof. By using Taylor’s series expansion, we have

log
t∫

0

f Vn (x) dx w log
t∫

0

f V (x) dx + (fn(t) − f (t))

t∫
0
Vf V−1(x)dx

t∫
0

f V (x)dx
.

Using (3.1), we get

an(t) w a(t) + (fn(t) − f (t))u(t), (3.5)

where

u(t) =

t∫
0
Vf V−1(x)dx

t∫
0

f V (x)dx
.

Also,

log Fn(t) w log F (t) + (Fn(t) − F (t))
F (t) .

From (3.2), we write

mn(t) w m(t) + (Fn(t) − F (t))
F (t) , (3.6)

Using (3.5) and (3.6), the bias and variance of an(t) and mn (t) are given by

Bias (an(t)) w
bs

n
s!
Δsf (s) (t)u(t), (3.7)

Var (an (t)) w
1

nbn
ΔK f (t)u2(t), (3.8)

Bias (mn(t)) w
bs

nΔs

s!F (t)

t∫
0

f (s) (x) dx, (3.9)

and

Var (mn(t)) w
1

nbn

ΔK

F (t) . (3.10)

From (3.7) and (3.8), as n → +∞

MSE (an(t)) → 0.

Therefore, the estimator an(t) is consistent (in the probability sense), i.e.,

an(t)
p
→ a(t).
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From (3.9) and (3.10), as n → +∞

MSE (mn(t)) → 0.

Therefore, the estimator mn(t) is consistent (in the probability sense), i.e.,

mn(t)
p
→m(t).

Therefore

HV

n (f ; t) = 1
(1 − V) [an (t) − V mn (t)]

p
→ 1

(1 − V) [a(t) − V m(t)] = HV (f ; t).

That is, HV

n (f ; t) is a consistent (in the probability sense) estimator of HV (f ; t). �

Theorem 3.2. Let HV

n (f ; t) be a non-parametric estimator of HV (f ; t) defined in (2.4) satisfying the
assumptions given in Section 2. Suppose the kernel K (·) satisfies the requirements:

a. K (u) → 0 as |u| → +∞,

b.
+∞∫

−+∞
|K ′ (u) |du < +∞,

c.
+∞∫

−+∞
|u|K (u) du < +∞.

Let t = sup{t ∈ R; F (t) < 1} and J be any compact subset of (0, t). Then

lim
n→+∞

sup
tn J

���HV

n (f ; t) − HV (f ; t)
��� = 0 a.s.

Proof. By direct calculations, we get

HV

n (f ; t) − HV (f ; t) = 1
(1 − V) (an(t) − a(t)) − V

(1 − V) (mn(t) − m(t)) .

|HV

n (f ; t) − HV (f ; t) | w u(t)
(1 − V) |fn(t) − f (t) | + V

(1 − V)

(
|Fn(t) − F (t) |

1 − F (t)

)
.

By using Theorem 3.3 and Theorem 4.1 of Cai and Roussas [5], the result is
immediate. Thus, we conclude that HV

n (f ; t) is a strong consistent estimator of
HV (f ; t). �

In order to prove that HV

n (f ; t) is an integratedly uniformly consistent in quadratic mean estimator of
HV (f ; t), we consider the following definition from Wegman [21].
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Definition 3.1. The density estimator fn(x) is said to be integratedly uniformly consistent in quadratic
mean if the mean integrated squared error (MISE) approaches zero, i.e.,

lim
n→+∞

E

[∫
(fn (x) − f (x))2 dx

]
= 0

In the following theorem, we prove that HV

n (f ; t) is integratedly uniformly consistent in quadratic
mean estimator of HV (f ; t).

Theorem 3.3. Suppose HV

n (f ; t) is a kernel estimator of HV (f ; t) as defined in (2.4). Then, HV

n (f ; t) is
integratedly uniformly consistent in quadratic mean estimator of HV (f ; t).

Proof. MISE of HV

n (f ; t) is given by

MISE(HV

n (f ; t)) = E
+∞∫

0

[
HV

n (f ; t) − HV (f ; t)
]2

dt

=

+∞∫
0

[
[Bias(HV

n (f ; t))]2 + Var(HV

n (f ; t))
]

dt

=

+∞∫
0

©­« bs
nΔs

(1 − V)s!
©­«f (s) (t)u(t) − V

F (t)

t∫
0

f (s) (x)dxª®¬ª®¬
2

dt

+
+∞∫

0

(
ΔK

nbn(1 − V)2

(
f (t)u2(t) + V2

F (t)

))
dt.

(3.11)

We have, as n → +∞,

MSE
(
HV

n (f ; t)
)
= Bias(HV

n (f ; t))]2 + Var(HV

n (f ; t)) → 0.

Therefore, from (3.11), we have

MISE
(
HV

n (f ; t)
)
→ 0, as n → +∞. (3.12)

From (3.12), we can say that HV

n (f ; t) is integratedly uniformly consistent in quadratic mean estimator
of HV (f ; t).

Thus the theorem is proved. �

In the following theorem, we obtained the optimal bandwidth.
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Theorem 3.4. Suppose HV

n (f ; t) is a non-parametric estimator of HV (f ; t) defined in (2.4) satisfying
the assumptions given in Section 2. Then the optimal bandwidth is given by

b
′
n =


1
n

+∞∫
0

ΔK

(
f (t)u2(t) + V2

F (t)

)
dt

2s
+∞∫
0

(
Δs
s!

(
f (s) (t)u(t) − V

F (t)

t∫
0

f (s) (x)dx

))2

dt



1
2s+1

. (3.13)

Proof. By using (3.11), the asymptotic-MISE (A-MISE) is given by

A-MISE(HV

n (f ; t)) = b2s
n

+∞∫
0

©­« Δs

(1 − V)s!
©­«f (s) (t) − V

F (t)

t∫
0

f (s)(x) dxª®¬ª®¬
2

dt

+ 1
nbn

+∞∫
0

ΔK

(1 − V)2

(
f (t)u2(t) + V2

F (t)

)
dt.

By minimizing MISE(HV

n (f ; t)) with respect to the parameter bn, we get the optimal bandwidth b′
n.

mA-MISE(HV

n (f ;t) )
mbn

= 0 ⇒

2sb2s−1
n

+∞∫
0


Δs

(1 − V)s!
©­«f (s) (t) − V

F (t)

t∫
0

f (s)(x) dxª®¬


2

dt =

1
nb2

n

+∞∫
0

ΔK

(1 − V)2

(
f (t)u2(t) + V2

F (t)

)
dt.

⇒

b2s+1
n =

1
n

+∞∫
0

ΔK
(1−V)2

(
f (t)u2(t) + V2

F (t)

)
dt

2s
+∞∫
0

{
Δs

(1−V)s!

(
f (s) (t) − V

F (t)

t∫
0

f (s)(x) dx

)}2

dt

.

Therefore,

b
′
n =



+∞∫
0

ΔK

(
f (t)u2(t) + V2

F (t)

)
dt

2s
+∞∫
0

{
Δs
s!

(
f (s) (t) − V

F (t)

t∫
0

f (s)(x) dx

)}2

dt



1
2s+1

n− 1
2s+1

= O
(
n− 1

2s+1

)
, s = 1, 2, ....

�

The following lemma is used to derive the asymptotic normality of HV (f ; t) and is established in
Theorem 3.4.
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Lemma 3.1. Let K (x) be a kernel of order s, let {U(i)} be the mixing coefficients and let {bn} be a
sequence of numbers satisfying the assumptions given in Section 2. Then, for all fixed point x, with
f (x) > 0,

(nbn)
1
2

{
(fn(x) − f (x))

ff

}
(3.14)

has a standard normal distribution as n → +∞ with f2
f w

1
n f (x)Δk .

Proof. The proof follows directly by applying the same steps as in the proof of Theorem 8 in Masry
[11]. �

Theorem 3.5. Let HV

n (f ; t) be a non-parametric estimator of HV (f ; t), K (x) be a kernel of order s
satisfying the assumptions given in Section 2. Then for fixed t,

√
nbn

{
(HV

n (f ; t) − HV (f ; t))
fH

}
(3.15)

has a standard normal distribution as n → +∞ with

f2
H
w

ΔK

nbn(1 − V)2

{
f (t)u2(t) + V2

F (t)

}
. (3.16)

Proof.

√
nbn

(
HV

n (f ; t) − HV (f ; t)
)
=

1
(1 − V) (nbn)

1
2

log
t∫

0

f Vn (x) dx − log
t∫

0

f V (x) dx


− V

(1 − V) (nbn)
1
2 {log Fn(t) − log F (t)}

w
1

(1 − V) (nbn)
1
2 {(fn(t) − f (t))u(t)}

− V

(1 − V) (nbn)
1
2

t∫
0
(fn(x) − f (x)) dx

F (t) .

By using the asymptotic normality of fn(x) given in Lemma 1, the proof is immediate. �

4. Simulation

A simulation study is conducted to evaluate the performance of the proposed estimator HV

n (f ; t). Here
the process {Xi} is generated form exponential AR(1), with correlation coefficient q = 0.2 and param-
eter _ = 1. The Gaussian kernel is employed as the kernel function for estimation. The estimated value,
bias, and MSE of the proposed estimator are calculated for various sample sizes. We vary the values of
V and the bandwidth parameter is determined using the plug-in method as proposed by Sheather [20].
The result for the exponential AR(1) process are presented in Table 1.

From Table 1, it is evident that both the MSE and bias of the estimators decrease as the sample size
increases. The reduction in MSE signifies that the estimators’ predictions become closer to the true
values with larger sample sizes, reflecting improved accuracy and efficiency in estimation. Similarly,
the decreasing bias highlights the growing precision of the estimator.

https://doi.org/10.1017/S0269964825100132 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964825100132


10
R.M

aya
etal.

Table 1. Estimated value, bias ad MSE of HV

n (f ; t) for the Exponential AR(1) process along with the corresponding theoretical value HV (f ; t).
V = 2 V = 4

n HV
n (f ; t) bias MSE HV (f ; t) HV

n (f ; t) bias MSE HV (f ; t)
100 −0.05474 0.02405 0.00239 −0.07879 −0.08847 0.05484 0.00693 −0.14331

200 −0.05302 0.02577 0.00152 −0.09441 0.04889 0.00478

300 −0.05726 0.02153 0.00119 −0.09913 0.04418 0.00393

400 −0.0579 0.02089 0.00096 −0.10095 0.04236 0.00328

V = 6 V = 8

100 −0.11872 0.07284 0.01181 −0.19156 −0.1378 0.08929 0.01524 −0.22709

200 −0.12471 0.06686 0.00823 −0.14546 0.08163 0.01131

300 −0.12888 0.06268 0.00677 −0.15353 0.07356 0.00928

400 −0.13256 0.059 0.006 −0.15745 0.06963 0.00785
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Table 2. Bootstrap bias and mean-squared error of HV

n (f ; t) for the real data set.

t Bias MSE t Bias MSE

2.0 −0.0713 0.1461 5.0 −0.0307 0.0133

2.5 0.0041 0.0299 5.5 −0.0873 0.0196

3.0 −0.0232 0.0668 6.0 −0.0785 0.0217

3.5 0.0112 0.0187 6.5 −0.0470 0.0178

4.0 −0.0786 0.0243 7.0 −0.1472 0.0383

4.5 −0.0428 0.0661

5. Numerical examples

To demonstrate the practical applicability of the proposed estimator discussed in Section 2, we analyze
real-world data consisting of the failure times (in months) of 20 electric carts used for internal transport
and delivery in a large manufacturing facility (see Zimmer et al. [23]). The bootstrapping procedure is
employed to determine the optimal value of bn (see Efron [8]).

For estimation, we utilize the Gaussian kernel function:

K (z) = 1
√

2c
exp

(
−z2

2

)
.

At each value of t, we compute the biases and mean-squared errors of HV

n (f ; t) using 250 bootstrap
samples of size 20. Table 2 presents the bootstrap biases and mean-squared errors for the estimator
HV

n (f ; t). Figure 1 compares the theoretical value HV (f ; t) with the estimated value HV

n (f ; t). From
Figure 1, it is evident that for the given dataset, the generalized past entropy function increases over
time.

Next, we aim to examine the asymptotic normality of the estimator presented in Theorem 3.5. To
achieve this, we conduct a numerical evaluation of HV

n (f ; t) and analyze it through Monte Carlo simu-
lations. Let X follow an exponential distribution with parameter _, where the mean is given by ` = 1/_.
Then, the past entropy function of order V is expressed as

HV (f ; t) = 1
1 − V

[
(V − 1) log_ − log V − V log(1 − e−_t) + log(1 − e−_Vt)

]
. (5.1)

Before obtaining our estimator, it is necessary to fix a function K and a sequence {bn}n∈N which
satisfy the assumptions given in Section 2. Here, we consider

K (x) =
1

√
2c

exp
(
−x2

2

)
, x ∈ R (5.2)

bn =
1
√

n
, n ∈ N. (5.3)
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Figure 1. Plots of estimates of generalized past entropy function for the first failure of 20 electric carts.

(a) λ = 1, β = 2, t = 2 (b) λ = 1, β = 2, t = 4

(c) λ = 1, β = 0.5, t = 2 (d) λ = 2, β = 0.5, t = 2

Figure 2. Histograms of (3.15) with parameters given in Section 5 and different choices of U, V and t.
a) _ = 1, V = 2, t = 2 b) _ = 1, V = 2, t = 4 c) _ = 1, V = 0.5, t = 2 d) _ = 2, V = 0.5, t = 2.

By using these assumptions, we obtain

ΔK =
1

2
√
c

,
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and, for the exponential distribution, we have

u(t) = V2

_(V − 1)
1 − e−_(V−1)t

1 − e−_Vt .

We aim to verify whether the quantity defined in (3.15) follows a standard normal distribution. Using
the exprnd function in MATLAB, we generate 500 samples, each of size N = 50, from an exponential
distribution with parameter _. For each simulated sample, we extract only the values that do not exceed
a fixed threshold t, and the count of these selected values is used as n in our evaluations. Subsequently,
using the fixed parameters, we compute the quantity given in (3.15) for each sample. To assess its
asymptotic normality, we construct a histogram based on the 500 computed values. Specifically, we
explore various choices for _, V, and t, as illustrated in Figure 2.

6. Conclusion

This paper examines non-parametric estimators for the generalized past entropy function using kernel-
based estimation, with U-mixing dependent observations. The asymptotic properties of the proposed
estimator are analyzed and established. Additionally, a simulation study and real data analysis are carried
out to evaluate the performance of the proposed estimator. We obtained that the estimator is performing
good on both simulation study and data analysis owing to bias and MSE. As discussed earlier these
estimate can be used in selecting a reliable system from the other available competing models.

Future research will extend beyond the U-mixing dependence condition to explore the inferential
properties of generalized past entropy function under q-mixing and d-mixing dependence conditions.
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Appendix

R-code to find HV

n (f ; t) by simulation for size n=100.

rm(list = ls())
library(MASS)
library(extremefit)
library(xlsx)
library(stats)

# Upper limit of integration
t <- 1

# PDF of the exponential distribution with rate = 1.5
f <- function(x) {
dexp(x, rate = 1)
}

# CDF of the exponential distribution at t
F_t <- pexp(t, rate = 1)

betas <- c( 2,4, 6, 8, 10) # Add more beta values as needed
results_list <- list()

for (beta in betas) {
r2 <- NULL # Reset results for each beta

n <- 100
r <- 1000
t <- 1

Hhat <- numeric(r)

for (s in 1:r) {

print(c(beta, k, s))
#set.seed(10)
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# Generate data for the process
lambda <- 1
phi <- 0.2

X <- numeric(n)
a <- numeric(n)

for (i in 2:(n + 1)) {
a[i] <- sample(c(0, rexp(1, lambda)), prob = c(phi, 1 - phi), size = 1)
X[i] <- phi * X[i - 1] + a[i]
}

X <- X[-1]

# Bandwidth estimation
h <- bw.SJ(X)
# The integrand function: (f(x) / F_t)^beta
integrand <- function(x) {
(f(x) / F_t)^beta
}

# Integrate the function from 0 to t, passing beta
integral_result <- integrate(integrand, lower = 0, upper = t)

# Extract the integral value
integral_value <- integral_result$value

# PDF approximation using a kernel density estimator
int <- function(x) {
fn <- numeric(length(x))
for (i in 1:length(x)) {
fn[i] <- mean(dnorm((x[i] - X) / h) / h)
}
return(fn)
}

# Compute the non-parametric CDF Fn(t)
compute_Fn <- function(data, t) {
integrate(Vectorize(int), lower = 0, upper = t)$value
}

# Compute the integral of f_n(x)^beta from 0 to t
compute_integral <- function(data, t, beta){
integrand <- function(x) int(x)^beta
integrate(Vectorize(integrand), lower = 0, upper = t)$value
}

# Function to compute H^beta_n(f; t)
H_beta_n <- function(data, t, beta) {
integral_value <- compute_integral(data, t, beta)
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Fn_t <- compute_Fn(data, t)

result <- (log(integral_value) - beta * log(Fn_t))
return(result)
}

# Compute H^beta_n(f; t)
Hhat[s] <- (1 / (1 - beta)) * H_beta_n(X, t, beta)
}

# Compute the estimator and related metrics
est <- (1 / (1 - beta)) * log(integral_value)
H <- mean(Hhat)
Mse <- (est - Hhat)^2
bias <- H - est
MSE <- mean(Mse)
}

Cite this article: Maya R., Irshad MR., Buono F. and Longobardi M. (2025). Non-parametric estimation of the generalized past entropy function
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