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Heat-transfer scaling at moderate Prandtl
numbers in the fully rough regime
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In the fully rough regime, proposed models predict a scaling for a roughness heat-transfer
coefficient, e.g. the roughness Stanton number Stk ∼ (k+)−pPr−m where the exponent
values p and m are model dependent, giving diverse predictions. Here, k+ is the
roughness Reynolds number and Pr is the Prandtl number. To clarify this ambiguity,
we conduct direct numerical simulations of forced convection over a three-dimensional
sinusoidal surface spanning k+ = 5.5–111 for Prandtl numbers Pr = 0.5, 1.0 and 2.0.
These unprecedented parameter ranges are reached by employing minimal channels,
which resolve the roughness sublayer at an affordable cost. We focus on the fully rough
phenomenologies, which fall into two groups: p = 1/2 (Owen & Thomson, J. Fluid Mech.,
vol. 15, issue 3, 1963, pp. 321–334; Yaglom & Kader, J. Fluid Mech., vol. 62, issue 3,
1974, pp. 601–623) and p = 1/4 (Brutsaert, Water Resour. Res., vol. 11, issue 4, 1975b,
pp. 543–550). Although we find the mean heat transfer favours the p = 1/4 scaling,
the Prandtl–Blasius boundary-layer ideas associated with the Reynolds–Chilton–Colburn
analogy that underpin the p = 1/2 can remain an apt description of the flow locally in
regions exposed to high shear. Sheltered regions, meanwhile, violate this behaviour and
are instead dominated by reversed flow, where no clear correlation between heat and
momentum transfer is evident. The overall picture of fully rough heat transfer is then not
encapsulated by one singular mechanism or phenomenology, but rather an ensemble of
different behaviours locally. The implications of the approach to a Reynolds-analogy-like
behaviour locally on bulk measures of the Nusselt and Stanton numbers are also examined,
with evidence pointing to the onset of a regime transition at even-higher Reynolds
numbers.
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1. Introduction

The transport of scalars such as temperature (heat), contaminants and CO2 are a key feature
of many engineering and natural flows (Kays & Crawford 1993; Wyngaard 2010). It is
often the case that these flows are both turbulent and involve a surface roughness (Chung
et al. 2021), which further complicates the prediction of these flows. Here, we consider
the advection of passive scalars (forced convection) for incompressible flows, defined
by their relatively low concentrations with negligible buoyancy effects (Warhaft 2000).
Forced convection regimes are representative of many industrial flows where energy is
supplied to the system predominantly through shear such as pumps (Kays & Crawford
1993), and is also applicable to flow in the atmospheric surface layer, typically O(100) m
from the Earth’s surface under near-neutral conditions (Wyngaard 2010). The assumptions
of incompressible forced convection are violated typically in strongly heated flows where
significant density variations can cause buoyancy forces to become active (Warhaft 2000)
and in atmospheric flows at heights approaching the Obhukov height, LO, such that
|z/LO| � 0.01 (Wyngaard 2010). Such flows and those involving compressibility (high
Mach number) lie beyond the scope of the present work. In a forced convection regime,
the physical law governing the transport of mass and heat are identical, only differing
by the value of the Prandtl number (or Schmidt number, Sc, for mass transfer), Pr ≡ ν/α,
where ν is the kinematic viscosity and α its thermal (or mass) diffusivity. This equivalence
permits us to refer to both heat and mass transfer at the same time and we will refer to only
the former henceforth.

The presence of roughness elements will give rise to a drag penalty, �U+(k+), which
manifests as a downward shift in the logarithmic smooth-wall mean velocity profile
(Clauser 1954; Hama 1954):

U+ ≡ U
Uτ

= 1
κ

log[(z − d)+] + A − �U+(k+), (1.1a)

= 1
κ

log[(z − d)/z0], (1.1b)

= 1
κ

log[(z − d)/ks] + AFR, (1.1c)

where the mean streamwise velocity, U, is normalised by the friction velocity, Uτ ≡√〈τw〉/ρ, associated with the integrated wall shear stress per unit plan area, 〈τw〉, and
fluid density, ρ, with the von Kármán constant, κ ≈ 0.4, and the smooth-wall log intercept,
A ≈ 5.0. The wall shear stress is defined to include contributions from both pressure drag,
τp, and viscous drag, τν , such that 〈τw〉 ≡ 〈τp〉 + 〈τν〉. We use + superscripts to denote
quantities normalised by Uτ and ν. The wall-normal distance (z-direction) is measured
from the roughness virtual origin, z − d, where d represents a wall-normal shift relative
to a reference z-location (Perry & Joubert 1963; Raupach, Antonia & Rajagopalan 1991;
Luchini 1996; Nikora et al. 2002) to be defined more formally in § 3.2. The quantity �U+
is commonly referred to as the roughness function (Clauser 1954; Hama 1954) and depends
on the roughness Reynolds number, k+ ≡ kUτ /ν, where k is a representative size for
the rough surface, e.g. the peak-to-trough roughness height. The alternative formulations
provided in (1.1b) and (1.1c) use the roughness length for momentum, z0, and equivalent
sand-grain roughness, ks, with intercept, AFR ≈ 8.5 (Nikuradse 1933; Schlichting 1936).
The former is commonly used in meteorology (Raupach et al. 1991; Brutsaert 1982;
Wyngaard 2010), whereas the latter is typical for engineering applications and is exclusive
to the fully rough regime (Jiménez 2004; Chung et al. 2021). By combining (1.1a)–(1.1c),
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Heat-transfer scaling in the fully rough regime

we can relate �U+, k+
s and z+

0 . Namely, k+
s = exp[κ(�U+ − A + AFR)], k+

s /z+
0 =

exp(κAFR) ≈ 30, such that knowledge of either z+
0 or k+

s for a flow is equivalent to
knowing �U+. Generally, �U+ will depend on as many length scales that are required
to fully describe the rough surface in question (Raupach et al. 1991; Jiménez 2004; Flack
& Schultz 2010; Chung et al. 2021), but for geometrically similar rough surfaces, as is the
case in the present work, this dependency is reduced to a single length scale, k.

In addition to altering momentum transfer, rough surfaces also augment heat transfer at
solid interfaces (Bons et al. 2001). By analogy to the momentum transfer problem, this
can be represented as an offset relative to a logarithmic smooth-wall temperature profile
(Dipprey & Sabersky 1963; Yaglom & Kader 1974; Yaglom 1979; Kader 1981; Brutsaert
1982; Kays & Crawford 1993):

Θ+ ≡ Θ

Θτ

= 1
κθ

log[(z − d)+] + Aθ (Pr) − �Θ+(k+, Pr), (1.2a)

= 1
κθ

log[(z − d)/z0] + St−1
k (k+, Pr), (1.2b)

= 1
κθ

log[(z − d)/ks] + g(k+, Pr), (1.2c)

= 1
κθ

log[(z − d)/zi] + Θ+
i (k+, Pr), (1.2d)

with κθ ≈ 0.46 (Pirozzoli, Bernardini & Orlandi 2016) and Θ representing the
mean temperature relative to the wall temperature. The smooth-wall log intercept,
Aθ (Pr), depends on the Prandtl number, Pr, and roughness introduces a heat-transfer
augmentation, �Θ+(k+, Pr), relative to this intercept. The quantity Θτ ≡ 〈qw〉/(ρcpUτ )

is the friction temperature, with 〈qw〉 representing the wall heat flux (defined in (2.2a))
and cp the specific heat at constant pressure. Here, we measure from the same virtual
origin location, z − d, as that of the velocity in (1.1), assuming the virtual-origin shift, d,
to be identical for both velocity and temperature. In (1.2b)–(1.2d), we provide alternative
formulations that appear in the literature: formulations for the inverse roughness Stanton
number, St−1

k (also written as B−1 in the atmospheric sciences), using z0 coordinates
(Jayatilleke 1966; Garratt & Hicks 1973; Kays & Crawford 1993; Kanda et al. 2007;
Anderson 2013), the g-function (Dipprey & Sabersky 1963; Owen & Thomson 1963;
Webb, Eckert & Goldstein 1971; Yaglom & Kader 1974) using ks and the formulation
based on an interfacial height, zi, defined as the height above which the temperature
profile is logarithmic with its accompanying interfacial temperature at this height, Θi
(elaborated further in § 2) (Owen & Thomson 1963; Yaglom & Kader 1974; Brutsaert
1975a,b). The various log-intercepts are related by combining (1.2b)–(1.2d), e.g. St−1

k =
(1/κθ ) log(z0/ks) + g ≈ g − 7.4, St−1

k = (1/κθ ) log(z0/zi) + Θ+
i . Unlike with z0 and ks,

which can be linked through ks/z0 ≈ 30, zi does not have any fixed relation to z0 or ks
(Brutsaert 1975b, 1982). Some authors in their theories however, (e.g. Owen & Thomson
1963; Yaglom & Kader 1974) adopted (1.2d) as a starting point, and then set zi = ks so
Θ+

i = g.
Progress in our understanding of momentum transfer (drag) and heat transfer has been

largely disparate. The behaviour of �U+ is well documented in the literature and has
been extensively reviewed (e.g. Raupach et al. 1991; Jiménez 2004; Flack & Schultz 2010;
Chung et al. 2021). Since the seminal works of Nikuradse (1933); Schlichting (1936),
it is established that for rough surfaces in the fully rough regime, pressure drag acts
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Figure 1. (a) Typical behaviour of �U+ in the fully rough regime showing direct numerical simulation (DNS)
data for a sinusoidal surface (black circles) (MacDonald, Hutchins & Chung 2019) and irregular roughness
(blue circles) (Peeters & Sandham 2019). The k+

s ≤ 70 range is demarcated with the grey box and corresponds
to the conventional threshold below the fully rough regime (Flack & Schultz 2010). (b) Disparate predictions of
fully rough �Θ+ models. The model constants are fitted to the DNS data for Pr = 0.7 (black) from MacDonald
et al. (2019) and Pr = 1.0 (blue) from Peeters & Sandham (2019). For Pr = {0.7, 1.0}, the model constants are
C′

R = {0.3, 0.3}, D′
R = {7.2, 8.4} for g = C′

R(k+
s )1/2Pr2/3 + D′

R in Owen & Thomson (1963), CR = {2.5, 2.4},
DR = {2.7, 3.7} for Θ+

i = CR(k+
s )1/4Pr1/2 + DR in Brutsaert (1975b) assuming zi = ks, and b′

1 = {0.6, 0.5},
b′

2 = {0.4, 0.3}, b′
3 = {7.1, 7.8} for g = b′

1(k
+
s )1/2(Pr2/3 − b′

2) + b′
3 in Yaglom & Kader (1974), and �Θ+ =

{4.4, 4.8} in MacDonald et al. (2019).

as the dominant contribution to skin friction and their mean-flow behaviour follows a
log-linear relation, U+ = (1/κ) log[(z − d)/k] + C, where C is a constant that depends on
the roughness geometry independent of viscous effects (Jiménez 2004). The universality
of this behaviour is exploited by passing from k to ks via C ≡ (1/κ) log(k/ks) + AFR,
which allows for �U+ measurements of roughness from different types to collapse onto a
single, universal asymptote using ks as the reference scale (figure 1a).

Our understanding of �Θ+, by contrast, has not seen the same degree of progress.
Whereas pressure drag makes the dominant contribution to drag in the fully rough regime
(Jiménez 2004; Flack & Schultz 2010), an analogue for pressure drag does not exist in
heat transfer (Dipprey & Sabersky 1963; Owen & Thomson 1963). Heat transfer at the
solid surface occurs solely through molecular conduction and this is reflected in not
only the dependence on k+ but also the dependence on Pr, which includes the thermal
diffusivity, α. The underlying asymptotic form of �Θ+ in the fully rough regime remains
ambiguous with disagreement amongst current models (figure 1b). Empirical models for
rough-wall heat transfer have typically been restricted to fit data of single roughness
types and their universality cannot be guaranteed (e.g. Dipprey & Sabersky 1963;
Jayatilleke 1966; Webb et al. 1971; Dawson & Trass 1972; Garratt & Hicks 1973; Kays
& Crawford 1993). Phenomenological models, some of which are shown in figure 1(b),
have also emerged. Unlike the empirical formulations, the physical assumptions leading
to these model predictions provide a basis for scrutiny and will be the focus of
this paper.

The phenomenological model of Yaglom & Kader (1974) takes the form g =
b′

1(k
+
s )1/2(Pr2/3 − b′

2) + b′
3 in (1.2c) and is obtained through scaling arguments, where

b′
1, b′

2 and b′
3 are fitting constants. Later, the same authors amend this expression by

introducing a fitting parameter, γ , to replace the original 1/2 exponent, giving g =
b′

1(k
+
s )γ (Pr2/3 − b′

2) + b′
3 (Kader & Yaglom 1977). They allowed γ = 1/4 for better

agreement with two-dimensional (2-D)-roughness, arguing that γ could take the value
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Heat-transfer scaling in the fully rough regime

of either 1/2 or 1/4 depending on whether three-dimensional (3-D)- or 2-D-roughness is
being considered, but later, Yaglom (1979) concedes the crude nature of categorising all
roughness types into these two subsets, noting that the universality of these expressions
is suspect. Recently, the direct numerical simulation (DNS) study of MacDonald et al.
(2019) observed a thin conductive sublayer that conforms to the roughness topography
in the fully rough regime. This led them to postulate that the temperature field behaves
as though the rough wall is effectively smooth on the increased surface area so that
�Θ+ attains a constant value. This was one of the hypotheses proposed by Sverdrup
(1951), but limited data availability prevented concrete conclusions on the certainty of this
form. Interfacial temperature formulations (1.2d), discussed in § 2, take the form Θ+

i =
CR(k+)pPrm + DR, where CR and DR are constants dependent on roughness geometry, and
p and m are exponents determined by phenomenological arguments (Owen & Thomson
1963; Brutsaert 1975b). The appropriate values to take for p and m is an ongoing topic of
debate (Li et al. 2017, 2020) and we will dedicate § 2 towards elaborating on the diverse
perspectives. To demonstrate this, we show in figure 1(b) the Pr = O(1) formulation of
Owen & Thomson (1963) who propose p = 1/2, m = 2/3 and of Brutsaert (1975b) who
proposes p = 1/4, m = 1/2. Empirical expressions that have taken Θ+

i = g have also
seen diverse values proposed for the exponents, with p = 0.2–0.5, m = 0.44–0.8 (Dipprey
& Sabersky 1963; Sheriff & Gumley 1966; Webb et al. 1971; Dawson & Trass 1972).
Inspection of �Θ+ trends in figure 1(b) with respect to model predictions alone is not
sufficient in telling us what the appropriate scaling exponents should be, as the model
constants can be tuned to fit a particular dataset.

Rather than merely compare model predictions, a more robust approach is to test the
underlying physical assumptions which underpin these models. However, the hypothesised
mechanisms involved have remained difficult to interrogate due to a lack of high-fidelity
data in the fully rough regime, alongside insufficient Prandtl number variations. Although
recent DNS studies (e.g. Leonardi et al. 2015; Orlandi, Sassun & Leonardi 2016;
Forooghi, Stripf & Frohnapfel 2018a; Forooghi et al. 2018b; MacDonald et al. 2019;
Peeters & Sandham 2019; Hantsis & Piomelli 2020) have helped to further advance our
understanding of rough-wall heat transfer, a systematic sweep of the (k+, Pr) parameter
space that is necessary to scrutinise these hypothesised mechanisms has yet to emerge.
Not only is the 2-D (k+, Pr) parameter space expensive to sample, the unfavourable
O(Re9/4

τ ) computational cost of resolving the momentum field in a smooth-wall DNS flow
(Pope 2000, § 9.1.2) is further increased to O(Re9/4

τ Pr3/2) for Pr � 1 simulations (Yano &
Kasagi 1999), where Reτ is the friction Reynolds number.

Our present work will circumvent these stringent computational costs by employing
minimal channel simulations, which only capture the near-wall flow by constraining
the channel domain size (Chung et al. 2015; MacDonald et al. 2017, 2019). The
assumption which underpins this approach lies in Townsend’s outer-layer similarity
hypothesis (Townsend 1976), which states that roughness serves to predominantly alter
only the flow confined to the near-wall region. The outer layer remains insensitive to
roughness except for how it sets the friction velocity Uτ , and outer-layer details are
unimportant in studying the effects of roughness. More recently, DNS studies have
emerged which corroborate that outer-layer similarity can be generalised to heat transfer
(Doosttalab et al. 2016; MacDonald et al. 2019; Hantsis & Piomelli 2020), so that
the minimal channel approach can provide an efficient method to sweep the (k+, Pr)
parameter space. With a comprehensive DNS dataset to work with, we will scrutinise the
proposed phenomenologies that describe rough-wall heat transfer, so that the underlying
mechanisms can be resolved.
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The paper is organised as follows. We summarise the key competing phenomenologies
in § 2. Our DNS data are detailed in § 3, with § 4 dedicated to addressing our primary
research questions concerning the phenomenology of heat transfer. As we shall see,
although the phenomenological model of Brutsaert (1975b) will be favoured when we
consider measures of the total heat transfer, certain phenomenological ideas in the contrary
theories of Owen & Thomson (1963) and Yaglom & Kader (1974) can remain robust
when examining the flow locally. We investigate the implications this has on full-scale
heat transfer prediction in § 5, through bulk measures of the Nusselt and Stanton numbers.
We provide conclusions in § 6.

2. Fully rough models for rough-wall heat-transfer

2.1. Mean scaling laws in terms of local quantities
The influence of rough walls on heat transfer is encapsulated in any of the logarithmic
intercepts in (1.2a)–(1.2d). We will focus on the (1.2d) formulation, which makes use of
the interfacial height, zi, defined to be the height above which the temperature profile is
logarithmic and homogeneous (Brutsaert 1975b). The interfacial temperature at this height
is described through a power law formulation Θ+(z − d = zi) ≡ Θ+

i ∼ (k+)pPrm. The
correct values to take for p and m have been a topic of contention (Li et al. 2017, 2020)
and one of our main contributions in the present work will be to provide evidence towards
resolution. A sketch of the physical picture using this (zi, Θi) framework is provided in
figure 2(a). Provided Θ+

i and z+
i are known as a function of k+ and Pr, the procedure

thereafter falls to matching at z+
i with the logarithmic profile using the value Θ+

i , which
is equivalent to prescribing the logarithmic intercept. The region below zi is assumed to
be well mixed, having uniform temperature Θi, but closer to the wall, there will exist the
conductive sublayer of thickness δθ submerged below zi. In the case of Pr 
 1 such as for
liquid metals, the effects of molecular conduction may extend beyond the expected extent
of the logarithmic temperature profile, invalidating the concept of zi (Alcántara-Ávila,
Hoyas & Pérez-Quiles 2018; Abe & Antonia 2019). In such instances, the framework in
figure 2(a) will no longer hold so the case of Pr 
 1 will not be treated.

To probe local mechanisms pertinent to the phenomenologies, it is useful to adopt a
local conductive sublayer thickness, δθ :

δθ (x, y) = θδθ (x, y)
∂θ/∂n|w ≈ Θi

∂θ/∂n|w , (2.1)

where ∂θ/∂n|w is the local wall-normal temperature gradient at the rough wall, θδθ is the
local temperature at the edge of the conductive sublayer and x–y are streamwise-spanwise
coordinates. Equation (2.1) takes δθ to be the intersection point between the tangent of the
local temperature profile with θδθ . By consequence of assuming a well-mixed roughness
sublayer, this temperature is then taken to be θδθ ≈ Θi (figure 2b). This δθ definition
corresponds to the so-called tangent method common in the Rayleigh–Bénard literature,
where Θi coincides with the temperature in the bulk region (Zhou et al. 2010; Scheel &
Schumacher 2014). The viscous sublayer thickness δν is the linear region dominated by
viscous diffusion and in separated regions, is somewhat ill-defined. The viscous sublayer
is meaningful primarily in attached regions, which tend to form only in the exposed,
windward regions experiencing favourable pressure gradients, as envisioned in figure 2(a).

Assuming the region below zi to be well mixed except through the conductive
sublayer, δθ , in which the temperature varies linearly, the local heat transfer can be
inferred through Fourier’s conduction law: qw/(ρcp) = αΘi/δθ (Owen & Thomson 1963;
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θδθ

∂θ/∂n|w

κθ(z – d )

Θτ

dz
dΘ

=

〈qw〉
ρcp

∂θ
∂n≡ 〈 〉α

Log region

Well-mixed

region

Log region

z – d

z – d

z – d = zi

Θ+ = (1/κθ) log[(z – d )/zi] + Θi
+

Θ(z – d )

θ = Θi θδθ
= Θi

Θ = Θi

∝ k

n

θ(n)

θ(n)
n

δθ

δθ

δθ =

δν

(a) (b)

(c)

Figure 2. (a) Sketch of the problem set-up used in fully rough phenomenologies. The flow is partitioned into
two regions by the height zi, above which the temperature profile is logarithmic. The task falls to prescribing
a phenomenology which describes the well-mixed region z − d ≤ zi (light grey) to obtain the temperature Θi,
given the roughness size k and wall heat-flux 〈qw〉. The sketch presents a configuration where Pr > 1, such
that the conductive sublayer (red) is below zi. (b) An example profile for the local wall-normal temperature
profile, θ(n), showing how this problem can be reinterpreted in terms of the conductive sublayer thickness (2.1).
A well-mixed roughness sublayer implies the temperature at the edge of the conductive sublayer, θδθ , is taken
to be Θi. (c) A prototypical sketch of the mean temperature, Θ , measured from the virtual origin plane (dashed
line) z − d. The origin coincides with the wall-origin perceived by the turbulent eddies in the logarithmic
region (Nikora et al. 2002; Chung et al. 2021), which is assumed to be identical for both mean velocity and
temperature (i.e. dθ = d).

Yaglom & Kader 1974; Brutsaert 1975b), the global effect of which can be obtained via
integration as follows. By changing from the spatially homogeneous Θi to δθ , local
variations arising due to roughness inhomogeneities can be examined:

〈qw〉
ρcp

≡ Aw

At

1
Aw

∫
Aw

α
∂θ

∂n

∣∣∣∣
w

dAw (2.2a)

= Aw

At
αΘi

1
Aw

∫
Aw

1
δθ

dAw (2.2b)

≡ Aw

At
αΘi

〈
1
δθ

〉
w

. (2.2c)

Here, Aw is the wetted area, defined as the total rough-wall surface area in contact with
the working fluid and At is the plan (or projected) area, with the ratio Aw/At staying
a fixed constant for a given roughness geometry. The expression (2.2a) is the physical
definition of the heat flux, whilst to obtain (2.2b), we have substituted (2.1) into (2.2a).
We use 〈·〉w ≡ (1/Aw)

∫
Aw

(·) dAw to denote the average over the wetted area, as in (2.2c),
and 〈·〉 ≡ (1/At)

∫
Aw

(·) dAw for the wetted area integral normalised on the plan area. In
non-dimensional units, (2.2c) reads:

Θ+
i = Pr(At/Aw)〈1/δ+

θ 〉−1
w . (2.3)

We see from (2.3) that knowledge of the scaling 〈1/δ+
θ 〉w ∼ (k+)−pPr1−m would be

equivalent to knowledge of the scaling Θ+
i ∼ (k+)pPrm. In general, 〈δ+

θ 〉w /=〈1/δ+
θ 〉−1

w ,
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Log region

Fresh
eddy

Old eddy

Well-mixed
region

z – d = zi

zi ∝ k

∝ k
ηK

n

Uτ
3

κkε ∼

Θi δ+
θ

θ

n

Inc. t

t → ∞

t → 0

δθ = 
παt

p
.d

.f
.(
δ+ θ

)

(a) (b) (c)

Figure 3. (a) Fully rough model of Brutsaert (1975b) which uses the Kolmogorov energy-cascade
phenomenology. A scale separation forms between the roughness size k and the Kolmogorov-eddies which
scour the surface area and have size ηK . The cascade is characterised by the rate of energy transfer ε.
There exists an ensemble of these Kolmogorov eddies, each with their own contact time with the surface,
t, and all of which initially carry temperature Θi from the well-mixed region, which we illustrate in (b).
(c) Ensemble of Kolmogorov eddies represented by a probability density function (p.d.f.).

but many authors have neglected this distinction (Owen & Thomson 1963; Yaglom &
Kader 1974). The approximation 〈δθ 〉w ≈ 〈1/δθ 〉−1

w can be formally deduced by writing
δθ in terms of a mean and fluctuation: δθ ≡ 〈δθ 〉w + δ′′

θ and letting ε ≡ δ′′
θ /〈δθ 〉w, we

perform a Taylor series expansion at ε = 0 to obtain 〈1/δθ 〉−1
w = 〈〈δθ 〉−1

w (1 + ε)−1〉−1
w =

〈δθ 〉w〈1 − ε + ε2 + . . . 〉−1
w ≈ 〈δθ 〉w(1 − 〈ε2〉w) ≈ 〈δθ 〉w for 〈ε2〉w 
 1. Thus, provided

δθ does not deviate significantly from 〈δθ 〉w, one may expect the 〈δ+
θ 〉w = 〈1/δ+

θ 〉−1
w

approximation to hold. Although we have presented a framework adopting (z+
i , Θ+

i ),
the Θ+

i ∼ (k+)pPrm scaling law may be recast using any of the reference heights and
logarithmic intercepts in (1.2b) and (1.2c). Recasting to the inverse roughness Stanton
number and roughness length (z+

0 , St−1
k ), for instance, is done by combining (1.2b) and

(1.2d) to obtain St−1
k = (1/κθ ) log(z0/zi) + Θ+

i . Provided z0/zi attains a constant value in
the fully rough regime, this will result in St−1

k ∼ Θ+
i ∼ (k+)pPrm.

2.2. The 1/4 Kolmogorov–Brutsaert scaling
The 1/4 power law scaling picture, sometimes known as surface renewal theory (e.g.
Brutsaert 1982; Katul & Liu 2017; Li et al. 2017, 2020) related to penetration theory
(Danckwerts 1951; Bird, Stewart & Lightfoot 2007), was proposed for rough walls by
Brutsaert (1975b). For this model, Brutsaert prescribes the energy cascade phenomenology
of Kolmogorov (1941) to describe the well-mixed region, z − d ≤ zi. In the fully rough
regime, a k � ν/Uτ scale separation will develop and, as illustrated in figure 3(a),
Brutsaert proposes that this roughness cascade starts at the beginning of the logarithmic
region, zi, which is assumed to be proportional to k, zi ∝ k. The cascade is characterised
by a constant rate of energy transfer given by the turbulent dissipation rate ε ≈
U3

τ /(κzi) ∝ U3
τ /(κk) down to an ensemble of the smallest Kolmogorov eddies, having

size ηK ≡ (ν3/ε)1/4. The roughness elements provide a windless, stagnant shelter for these
Kolmogorov eddies, which initially carry temperature Θi from the well-mixed region (grey
region in figure 3a) and straddle the conductive sublayer. During the contact time, t, the
Kolmogorov eddies give rise to a surface renewal process, depositing their temperature
onto the rough surface in this windless environment that is everywhere without any
viscous sublayer (compare figure 2a and figure 3a). Thus, in the absence of advection,
the temperature they carry, θ , is modelled through an unsteady diffusion problem in
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the local wall-normal direction n: ∂θ/∂t = α(∂2θ/∂n2) with boundary conditions θ(n =
0, t) = 0, θ(n > 0, t = 0) = Θi, θ(n → ∞, t) = Θi. The latter two conditions reflect the
notion that the Kolmogorov eddies exist in a well-mixed region and with the asymptotically
large scale separation in the fully rough regime zi � ηK , zi can be interchanged with the
far-field condition at n → ∞ as both are large relative to the Kolmogorov eddy size. This is
Stokes’ first problem which has the solution θ(n, t) = Θierf[n/(4αt)1/2] (figure 3b). Recall
that t here is not understood as time elapsed, but rather the individual contact times of
these Kolmogorov eddies. As seen in figure 3(b), fresh eddies from the well-mixed region
initially carry a uniform temperature of Θi, which is gradually deposited over the duration
of the contact period of the surface. The conductive sublayer thickness using this model
is given by δθ = (παt)1/2, obtained by combining (2.1) and ∂θ/∂n|w = Θi/(παt)1/2 from
the error function solution. The ensemble of these eddies and their respective contact
times is represented by prescribing a probability density function, p.d.f.(t), or p.d.f.(δθ )
equivalently. Here, Brutsaert (1975b) follows the same prescription originally proposed
by Danckwerts (1951), whereby the stochastic nature of these eddy-renewal times follows
an exponential probability distribution, with a mean contact time commensurate to the
Kolmogorov time scale tη ≡ (ν/ε)1/2. The mean heat flux is then obtained by Brutsaert
(1975b) through an integration over the ensemble of contact times as prescribed by the
exponential p.d.f. along with the solution ∂θ/∂n|w = Θi/(παt)1/2, or alternatively, recast
here also in terms of δθ = (παt)1/2 and its p.d.f.:

〈qw〉
ρcp

= Aw

At

∫ ∞

0
α

∂θ

∂n

∣∣∣∣
w

1
tη

exp
(

− t
tη

)
︸ ︷︷ ︸

p.d.f.(t)

dt (2.4a)

= Aw

At

∫ ∞

0

αΘi

δθ

[
2
π

δθ

η2
B

exp

(
− δ2

θ

πη2
B

)]
︸ ︷︷ ︸

p.d.f.(δθ )

dδθ (2.4b)

= Aw

At
αΘi

1
ηB

, (2.4c)

where ηB ≡ (αtη)1/2 is the Batchelor scale. Comparing (2.4c) with (2.2c), we identify
〈1/δθ 〉w = 1/ηB. Finally, to obtain ηB, we insert ε ∼ U3

τ /(κk) (figure 3a) into tη ≡
(ν/ε)1/2 and ηB ≡ (αtη)1/2. Letting 〈1/δθ 〉w = 1/ηB, we obtain the scaling law for the
inverse of the conductive sublayer thickness:

〈1/δθ 〉w = α−1/2ν−1/4ε1/4 ∼ α−1/2ν−1/4U3/4
τ k−1/4 (2.5a)

=⇒ 〈1/δ+
θ 〉w ∼ (k+)−1/4Pr1/2. (2.5b)

Adopting (2.3), this resulting scaling predicts

Θ+
i ∼ St−1

k ∼ (k+)1/4Pr1/2. (2.6)

A limitation of this surface renewal model is that it does not distinguish between particular
roughness locations and the potential for different renewal dynamics at these locations.
The subtleties of these considerations, however, are hidden in the context of the final
scaling law obtained in (2.5b) as noted by Katul & Liu (2017), as it is ultimately the mean
value of 1/δθ that will yield the final scaling law.
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δν ∼ kRek
–1/2

1.5

1.0
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–0.5
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0

0 2 4 6

δ

δθ

Θ∞

θδθ,( )
u/U∞

θ/Θ∞

δ

δν

U∞

uδν,( )
d2(u/U∞)

d(z/δ)2
d2(θ/Θ∞)

d(z/δ)2

(a) (b) (c)

δθ ∝ δν Pr–1/3

Figure 4. (a) A fully rough model sketch whereby Prandtl–Blasius-type laminar boundary layers, illustrated
in (b), cover the entirety of the rough surface. The case is sketched for Pr � 1 such that δθ ∝ δνPrm−1 =
δνPr−1/3. (c) Example solutions from Prandtl–Blasius theory for velocity (black) and temperature (red) (Pr =
5.0). The linear viscous and conductive sublayer regions, δν , δθ , respectively, are situated by the minima of
second derivatives (square markers).

2.3. The 1/2 Owen–Thomson scaling
The 1/2 power law scaling for the fully rough regime draws on elements reminiscent
of the Prandtl–Blasius laminar boundary layer theory (Schlichting & Gersten 2017) and
is closely associated with the Reynolds–Chilton–Colburn analogy between heat or mass
transfer and skin friction. The approach of authors proposing this method (e.g. Owen &
Thomson 1963; Yaglom & Kader 1974) has been to generalise the scaling arguments of
the Prandtl–Blasius solution to describe the local viscous sublayer, now assumed to cover
the entirety of the rough surface (figure 4a,b) in contrast to surface renewal (figure 3a).
In Prandtl–Blasius theory, the viscous sublayer thickness, δν is (e.g. Landau & Lifshitz
1987):

δν ∼ xRe−1/2
x , Rex ≡ xU∞/ν, (2.7a,b)

where x is the streamwise fetch, U∞ is the free stream velocity and Rex is the
Reynolds number defined on these quantities. The result arises from laminar flow where
streamwise advection balances wall-normal diffusion: U(∂U/∂x) = ν(∂2U/∂z2), which
implies U2∞/x ∼ νU∞/δ2

ν or (2.7a,b) equivalently after rearrangement. Here, a choice is
made to link the viscous sublayer, δν , and the usual laminar boundary-layer thickness, δ =
xRe−1/2

x , in Prandtl–Blasius theory (Landau & Lifshitz 1987; Schlichting & Gersten 2017).
The viscous sublayer, δν , encapsulates the extent of the linear region where viscous stresses
are most active and, as illustrated in figure 4(c), can be situated as the local minima of the
second velocity derivative, d2u/dz2. For Prandtl–Blasius boundary-layers, one may adopt
δν and the velocity at this location, uδν , in replacement for the usual δ and U∞ without
loss of generality for scaling relations, as these quantities are related by a proportionality
constant, δν/δ ≈ 2.9, uδν /U∞ ≈ 0.8. Similar definitions for the conductive sublayer
thickness, δθ , and its temperature, θδθ , may also be inferred from the second derivative
minima (figure 4c, red). The advantage in adopting these viscous–conductive quantities as
opposed to the free stream velocity U∞ or boundary-layer thickness δ will be that these
viscous–conductive quantities can be computed unambiguously in both a rough-wall flow
and smooth-wall turbulent flow, providing a direct avenue to test the assumptions of a local
Prandtl–Blasius or smooth-wall-like behaviour.

In the theories of Owen & Thomson (1963) and Yaglom & Kader (1974), it is proposed
that the streamwise fetch x may be replaced by an arbitrary, but geometrical roughness

959 A8-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

12
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.125


Heat-transfer scaling in the fully rough regime

length scale: x ∝ k, which physically implies that laminar boundary-layers will develop
locally over distances proportional to k. This generalises the Prandtl–Blasius scaling
of δν ∼ xRe−1/2

x to δν ∼ kRe−1/2
k , where Rek ≡ kuδν /ν, a scaling which we may test

explicitly in a rough-wall flow. The velocity scale uδν ∝ Uτ is proposed, and reflects an
intuition whereby Uτ represents the velocity scale directly above the viscous sublayer.
Making these substitutions into (2.7a,b) enables a scaling with respect to k+ to be
obtained:

δν ∼ (νk/Uτ )
1/2, δ+

ν ∼(k+)1/2 (2.8a,b)

which was the result of Owen & Thomson (1963) and Yaglom & Kader (1974). However,
the authors did not begin their arguments starting from the Prandtl–Blasius scaling of
(2.7a,b) at the time, but rather by presuming that the flow within the viscous sublayer is
characterised by dU/dz ∼ Uτ /k. As demonstrated by Yaglom & Kader (1974), this can
be integrated to obtain U ∼ Uτ z/k. This velocity evaluated at δν , uδν = Uτ δν/k, is used
to define a Reynolds number scaled on the viscous sublayer quantities and is enforced
to be of order unity: Reδν ≡ uδν δν/ν = O(1), which implies δν ∼ ν/uδν = νk/(Uτ δν), an
equivalent result to (2.8a,b). Recent studies concerning this scaling law (e.g. Li et al. 2017,
2020) interpret this as a case where the dynamics near the rough wall are driven primarily
through the mean inverse time scale dU/dz ∼ Uτ /k, a so-called macro-eddy model. For
laminar boundary-layers in general, δθ ∝ δνPrm−1, yielding the scaling for the conductive
sublayer thickness δ+

θ ∼ (k+)1/2Prm−1, as required in (2.3), to obtain for the heat transfer

Θ+
i ∼ St−1

k ∼ (k+)1/2Prm. (2.9)

For the Prandtl number exponent m, Owen & Thomson (1963) proposed m = 2/3 for
Pr � 1 and m = 3/4 for Pr � 1, while Yaglom & Kader (1974) adopts a fixed m = 2/3
for Pr � 1. In smooth-wall flows, the exponents m = 1/2 for Pr 
 1 and m = 2/3 for
Pr � 1 have been corroborated extensively by adopting Prandtl–Blasius-type arguments
for laminar boundary-layers (Landau & Lifshitz 1987; Kays & Crawford 1993; Schlichting
& Gersten 2017) and classical natural convection (Grossmann & Lohse 2000; Shishkina,
Horn & Wagner 2013; Shishkina, Grossmann & Lohse 2016), and by assuming cubically
increasing eddy diffusivities for the viscous–conductive sublayer region of turbulent flows
(Kader 1981; Durbin & Pettersson-Reif 2011). The so-called Chilton–Colburn analogy
for predicting heat transfer coincides with the case m = 2/3 (Kays & Crawford 1993;
Bird et al. 2007). Some authors have also argued the case m = 3/4 for very large Pr (Lin
1959; Townsend 1976; Shaw & Hanratty 1977). MacDonald et al. (2019) observed a close
analogy between local viscous and conductive fluxes, alongside an apparent saturation of
the rough-wall heat transfer augmentation �Θ+ to a constant value, which led the authors
to postulate a local smooth-wall-like behaviour across the surface wetted area, implying
that the same δθ ∝ δνPrm−1 relation for smooth walls may be found locally.

3. DNS dataset

3.1. Simulation set-up
We consider a channel flow with identical roughness topography at both top and bottom
walls through a reflection at the channel centre-plane (figure 5a). The (x, y, z) directions
are the streamwise, spanwise and wall-normal directions, respectively, with corresponding
velocity components u = (u, v, w). The temperature, T , is considered a passive scalar and
is decomposed as T = θw + θ , where θw is the wall temperature. We solve the governing
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Ly
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λ = 7.1k λ =
 7.1k

k
z

Flow

(a) (b)

Figure 5. (a) Schematic of the computational domain. The channel half-height, h, is measured from the
sinusoidal mid-plane to the channel centreline. (b) The present sinusoidal roughness, with amplitude, k, and
wavelength, λ, as defined by (3.4). The wall-normal origin for z is taken to be the sinusoidal mid-plane as
shown.

equations:

∇ · u = 0, (3.1)

∂u
∂t

+ ∇ · (uu) = −∇p + ν∇2u − êxΠ(t), (3.2)

∂θ

∂t
+ ∇ · (uθ) = α∇2θ − u

dθw

dx
, (3.3)

where the (kinematic) pressure gradient is decomposed into a periodic fluctuating
component, ∇p, and a spatially uniform streamwise component, êxΠ(t), with Π < 0
driving the flow at a constant mass flux. For temperature, we solve for the fluid
temperature relative to the wall θ and drive heat transfer through a constant, prescribed
wall-temperature gradient dθw/dx. This forcing is equivalent to having a statistically
uniform wall heat-flux (Kays & Crawford 1993) and is a common forcing strategy in
channel-flow DNS of passive scalars (e.g. Kasagi, Tomita & Kuroda 1992; Kawamura
et al. 1998; Alcántara-Ávila, Hoyas & Pérez-Quiles 2021).

The roughness considered is a 3-D sinusoidal roughness, given by

zw(x, y) = k cos(2πx/λ) cos(2πy/λ), (3.4)

where k is the sinusoidal semi-amplitude and the wavelength is fixed as λ = 7.1k as
in figure 5(b) for all the present cases, so that the roughness is geometrically similar.
The surface has maxima and minima points at zw = ±k, which we presently refer to
as roughness crests and troughs, respectively. This roughness has been investigated
previously for both channels (Chung et al. 2015; MacDonald et al. 2016, 2019) and pipe
flows (Chan et al. 2015, 2018). The computational domain has a channel half-height h,
defined as the distance between the sinusoidal mid-plane and channel centreline, and
the friction Reynolds number is defined on this height, Reτ ≡ hUτ /ν. We measure the
wall-normal direction z from the sinusoid midplane, although we will account for the
virtual origin later in § 3.2. The domain is periodic in the streamwise and spanwise
directions. No-slip impermeable (u = 0) wall conditions and a zero fluid–wall temperature
contrast (θ = 0) are enforced using an immersed-boundary method (IBM). This code has
been validated for momentum (Rouhi, Chung & Hutchins 2019) and has presently been
extended to solve for rough-wall heat transfer. The IBM uses a direct-forcing approach
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(Fadlun et al. 2000) with a volume-of-fluid interpolation. For spatial discretisation, the
code employs the fully conservative fourth-order finite-difference scheme of Verstappen
& Veldman (2003) for a staggered grid, while for time-stepping, we use the three-step
Runge–Kutta method of Spalart, Moser & Rogers (1991). At each substep, the velocity
field is projected onto a divergence-free space using the fractional-step algorithm (Perot
1993).

Mean quantities such as U(z) for streamwise velocity or Θ(z) for temperature are defined
to be the xyt-averages of their respective fields and for regions below the roughness, we
take this average to be the intrinsic average. That is, the average that is representative of the
volume occupied by the fluid domain (Nikora et al. 2007). Overbars (e.g. ū) will be used to
denote time averages, while time-fluctuating fields will be denoted by a prime superscript:
u′(x, y, z, t) ≡ u(x, y, z, t) − ū(x, y, z).

Although we will focus our discussions primarily on the fully rough regime, our
parameter space spans lower-transitional cases at k+ ≈ 5.5 towards the fully rough regime
at k+ ≈ 111 for Pr = 0.5, 1.0 and 2.0, all detailed in table 1. Owing to our presently
fixed λ/k = 7.1, the increasing k+ will correspond to an increasing wall-unit-scaled
roughness wavelength λ+. These simulations employ minimal channels, whereby domain
sizes Lx × Ly are truncated whilst still resolving the roughness sublayer (Chung et al.
2015; MacDonald et al. 2017), allowing for a parametric sweep at affordable cost. For
each rough wall simulation, a smooth-wall simulation at matched Reτ and domain size
has also been conducted for a domain-size-independent measure of �U+ and �Θ+.
Prescriptions for Lx and Ly follow from the recommendations of MacDonald et al.
(2017). For minimal channels, the flow is explicitly captured in a region of ‘healthy’
turbulence up to a critical height zc ≈ 0.4Ly. We require that this healthy turbulence
threshold resides above the roughness sublayer, above which the time-averaged flow is
spatially homogeneous. For the same 3-D sinusoidal roughness in pipe flow, Chan et al.
(2018) suggested that the roughness sublayer height could be estimated as zr ≈ λ/2
measured from the virtual origin. This estimate was based on an observation of the
roughness-induced, dispersive motions becoming negligible at zr ≈ λ/2 universally for
varying k+ and λ/k (see Chan et al. 2018, figures 7d and 8d). The importance of
in-plane roughness lengths in scaling zr has been highlighted in the past, particularly for
surfaces with strong in-plane heterogeneity (e.g. Raupach et al. 1991; Chung et al. 2021).
Our present λ/k = 7.1 gives zr ≈ λ/2 = 3.55k, which is consistent with the common
zr ≈ 2k–5k estimate for rough-wall flows (e.g. Raupach et al. 1991; Jiménez 2004; Hong,
Katz & Schultz 2011; Rouzes et al. 2019; Chung et al. 2021). To resolve the roughness
sublayer flow with minimal channels, we then require zc = 0.4Ly > zr ≈ λ/2 which can
be satisfied with the spanwise domain length prescription Ly ≥ max(100ν/Uτ , k/0.4, 2λ).
The streamwise length prescription is Lx ≥ max(3Ly, 1000ν/Uτ , λ) (MacDonald et al.
2017). In our present study, these constraints produce Lx = 6λ–28λ ≈ 2.4h–2.8h, Ly =
2λ–4λ ≈ 0.39h–0.79h depending on the k+ and h/k considered. This minimal channel
approach was previously demonstrated by MacDonald et al. (2019) to adequately resolve
the near-wall flow for temperature for a fixed Pr = 0.7 and employed even more restrictive
computational domain sizes than our present study. For completeness, we have dedicated
Appendix A towards further validating the minimal channel approach by comparing
against full-span channel results for our varying Pr = 0.5, 1.0, 2.0, selecting k+ ≈ 22
as the candidate case. Our validation showed negligible differences between full-span and
minimal channel results in the logarithmic flow region, consistent with other rough-wall
minimal channel studies (e.g. MacDonald et al. 2017, 2019; Endrikat et al. 2021). We have
selected Reτ ≈ 395 as the lowest Reynolds number for our study, as this has been seen to

959 A8-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

12
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.125


K. Zhong, N. Hutchins and D. Chung

Re
τ

P
r

h k
k+

L+ x
L+ y

N
x

N
y

N
z

�
x+

�
y+

�
z+ b

�
z+ t

λ �
x

λ �
y

k
�

z b
�

t+
T s

�
U

+
�

Θ
+

39
5

0.
5

—
—

10
91

15
6

12
8

32
30

0
8.

52
4.

87
0.

34
5.

70
—

—
—

0.
25

16
37

—
—

39
5

1.
0

—
—

10
91

15
6

12
8

32
30

0
8.

52
4.

87
0.

34
5.

70
—

—
—

0.
25

15
55

—
—

39
5

2.
0

—
—

10
91

15
6

19
2

64
44

0
5.

68
2.

43
0.

23
3.

89
—

—
—

0.
16

21
5

—
—

39
5

0.
5

72
5.

5
10

91
15

6
76

8
12

8
42

0
1.

42
1.

22
0.

26
5.

55
27

32
21

0.
06

45
8

1.
5

0.
3

39
5

1.
0

72
5.

5
10

91
15

6
76

8
12

8
42

0
1.

42
1.

22
0.

26
5.

55
27

32
21

0.
06

33
1

1.
5

0.
8

39
5

2.
0

72
5.

5
10

91
15

6
76

8
12

8
56

0
1.

42
1.

22
0.

21
3.

89
27

32
26

0.
06

25
9

1.
5

1.
9

39
5

0.
5

—
—

10
13

15
6

12
8

32
30

0
7.

91
4.

87
0.

34
5.

70
—

—
—

0.
25

11
33

—
—

39
5

1.
0

—
—

10
13

15
6

12
8

32
30

0
7.

91
4.

87
0.

34
5.

70
—

—
—

0.
25

84
2

—
—

39
5

2.
0

—
—

10
13

15
6

19
2

64
44

0
5.

27
2.

43
0.

23
3.

89
—

—
—

0.
16

21
4

—
—

39
5

0.
5

36
11

10
13

15
6

38
4

64
52

0
2.

64
2.

43
0.

26
5.

45
30

32
43

0.
09

28
3

4.
1

1.
2

39
5

1.
0

36
11

10
13

15
6

38
4

64
52

0
2.

64
2.

43
0.

26
5.

45
30

32
43

0.
09

34
6

4.
1

2.
9

39
5

2.
0

36
11

10
13

15
6

38
4

64
64

0
2.

64
2.

43
0.

23
3.

96
30

32
47

0.
08

36
0

4.
0

6.
3

39
5

0.
5

—
—

10
91

31
2

12
8

64
30

0
8.

52
4.

87
0.

39
5.

46
—

—
—

0.
24

44
5

—
—

39
5

1.
0

—
—

10
91

31
2

12
8

64
30

0
8.

52
4.

87
0.

39
5.

46
—

—
—

0.
24

35
1

—
—

39
5

2.
0

—
—

10
91

31
2

19
2

96
38

4
5.

68
3.

25
0.

30
4.

27
—

—
—

0.
17

41
7

—
—

39
5

0.
5

18
22

10
91

31
2

19
2

64
66

0
5.

68
4.

87
0.

28
5.

54
27

32
77

0.
07

18
1

6.
7

2.
0

39
5

1.
0

18
22

10
91

31
2

19
2

64
66

0
5.

68
4.

87
0.

28
5.

54
27

32
77

0.
07

15
0

6.
8

4.
7

39
5

2.
0

18
22

10
91

31
2

19
2

64
66

0
4.

26
2.

43
0.

24
3.

76
37

64
90

0.
06

62
6.

9
8.

9
59

0
0.

5
—

—
13

96
46

5
19

2
12

8
51

2
7.

30
3.

64
0.

34
4.

78
—

—
—

0.
13

13
8

—
—

59
0

1.
0

—
—

13
96

46
5

19
2

12
8

51
2

7.
30

3.
64

0.
34

4.
78

—
—

—
0.

14
10

0
—

—
59

0
2.

0
—

—
13

96
46

5
25

6
19

2
60

0
5.

45
2.

42
0.

25
4.

26
—

—
—

0.
11

70
—

—
59

0
0.

5
18

33
13

96
46

5
32

4
10

8
92

0
4.

31
4.

31
0.

29
6.

34
54

54
11

1
0.

03
37

8.
0

2.
6

59
0

1.
0

18
33

13
96

46
5

32
4

10
8

92
0

4.
31

4.
31

0.
29

6.
34

54
54

11
1

0.
03

35
8.

0
5.

0
59

0
2.

0
18

33
13

96
46

5
45

6
15

2
11

20
3.

06
3.

06
0.

25
5.

00
76

76
13

3
0.

03
35

8.
0

9.
0

72
0

0.
5

—
—

17
04

56
8

19
2

12
8

50
0

8.
88

4.
44

0.
43

5.
97

—
—

—
0.

08
59

—
—

72
0

1.
0

—
—

17
04

56
8

19
2

12
8

50
0

8.
88

4.
44

0.
43

5.
97

—
—

—
0.

09
10

3
—

—
72

0
2.

0
—

—
17

04
56

8
25

6
19

2
70

0
6.

66
2.

96
0.

22
4.

64
—

—
—

0.
10

97
—

—
72

0
0.

5
18

40
17

04
56

8
38

4
12

8
11

80
4.

44
4.

44
0.

29
5.

59
64

64
13

7
0.

03
40

8.
4

2.
7

72
0

1.
0

18
40

17
04

56
8

38
4

12
8

11
80

4.
44

4.
44

0.
29

5.
59

64
64

13
7

0.
03

39
8.

6
5.

2
72

0
2.

0
18

40
17

04
56

8
46

8
15

6
13

60
3.

64
3.

64
0.

25
5.

12
78

78
16

3
0.

02
29

8.
5

9.
1

Ta
bl

e
1.

Fo
rc

ap
tio

n
se

e
on

ne
xt

pa
ge

.

959 A8-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

12
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.125


Heat-transfer scaling in the fully rough regime

Re
τ

P
r

h k
k+

L+ x
L+ y

N
x

N
y

N
z

�
x+

�
y+

�
z+ b

�
z+ t

λ �
x

λ �
y

k
�

z b
�

t+
T s

�
U

+
�

Θ
+

10
00

0.
5

—
—

23
67

78
9

25
6

19
2

66
0

9.
20

4.
10

0.
45

6.
29

—
—

—
0.

12
63

—
—

10
00

1.
0

—
—

23
67

78
9

25
6

19
2

66
0

9.
20

4.
10

0.
45

6.
29

—
—

—
0.

13
12

6
—

—
10

00
2.

0
—

—
23

67
78

9
38

4
25

6
90

0
6.

16
3.

08
0.

24
5.

01
—

—
—

0.
08

40
—

—
10

00
0.

5
18

56
23

67
78

9
57

6
19

2
15

60
4.

11
4.

11
0.

29
6.

58
96

96
19

3
0.

02
25

9.
3

2.
8

10
00

1.
0

18
56

23
67

78
9

57
6

19
2

15
60

4.
11

4.
11

0.
29

6.
58

96
96

19
3

0.
02

27
9.

6
5.

2
10

00
2.

0
18

56
23

67
78

9
51

2
38

4
18

60
4.

62
2.

05
0.

24
5.

39
85

19
2

22
7

0.
04

32
8.

7
8.

7
20

00
0.

5
—

—
47

33
15

78
51

2
38

4
12

00
9.

24
4.

11
0.

42
7.

21
—

—
—

0.
09

36
—

—
20

00
1.

0
—

—
47

33
15

78
51

2
38

4
12

00
9.

24
4.

11
0.

42
7.

21
—

—
—

0.
09

24
—

—
20

00
2.

0
—

—
47

33
15

78
76

8
51

2
12

00
6.

16
3.

08
0.

16
9.

08
—

—
—

0.
05

15
—

—
20

00
0.

5
18

11
1

47
33

15
78

10
80

36
0

27
00

4.
38

4.
38

0.
29

10
.6

18
0

18
0

38
6

0.
02

8.
9

10
.9

2.
8

20
00

1.
0

18
11

1
47

33
15

78
10

80
36

0
27

00
4.

38
4.

38
0.

29
10

.6
18

0
18

0
38

6
0.

02
8.

8
10

.8
4.

7
20

00
2.

0
18

11
1

47
33

15
78

10
24

76
8

32
00

4.
62

2.
05

0.
25

8.
58

17
1

38
4

45
0

0.
03

13
.6

11
.0

7.
1

Ta
bl

e
1.

Ta
bl

e
of

ru
ns

fo
r

th
e

(k
+ ,

P
r)

pa
ra

m
et

er
sw

ee
p.

T
he

N
x,

N
y

an
d

N
z

ar
e

th
e

nu
m

be
r

of
gr

id
po

in
ts

in
th

e
st

re
am

w
is

e,
sp

an
w

is
e

an
d

w
al

l-
no

rm
al

di
re

ct
io

ns
,w

ith
un

ifo
rm

gr
id

sp
ac

in
gs

�
x+

an
d

�
y+

,w
hi

le
th

e
w

al
l-

no
rm

al
gr

id
sp

ac
in

g
is

gi
ve

n
by

th
e

(c
on

st
an

t)
gr

id
sp

ac
in

g
be

lo
w

th
e

ro
ug

hn
es

s
cr

es
ts

�
z+ b

an
d

th
e

sp
ac

in
g

at
th

e
ch

an
ne

lc
en

tr
el

in
e

�
z+ t

.T
he

av
er

ag
e

tim
e

st
ep

is
gi

ve
n

by
�

t+
≡

�
tU

2 τ
/
ν

an
d

T s
≡

TU
τ
/
z c

is
th

e
to

ta
ls

im
ul

at
io

n
tim

e
us

ed
fo

re
ns

em
bl

e
av

er
ag

in
g

ba
se

d
on

z c
-s

iz
ed

ed
dy

tu
rn

ov
er

s.

959 A8-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

12
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.125


K. Zhong, N. Hutchins and D. Chung

be sufficient for avoiding low-Reτ influences from altering the logarithmic region (Chan
et al. 2015; Thakkar, Busse & Sandham 2018). For a fixed k+, these Reτ influences may
also be interpreted as the effect of the blockage ratio h/k on the logarithmic region since
Reτ = (h/k)k+. MacDonald et al. (2019) found that Reτ ≈ 395 as their lowest Reynolds
number did not alter near-wall heat transfer significantly for Pr = 0.7, concluding Reτ ≈
395 to be an adequate lower-bound. This same validation has been repeated in Appendix B
for Pr = 0.5, 1.0, 2.0, where we similarly conclude the lower bounds Reτ � 395, h/k � 18
are adequate.

Uniform grid-spacing is employed in the streamwise and spanwise directions, while a
hyperbolic grid stretching is used in the wall-normal direction above the roughness crests.
Below this height, the grid spacing �zb in the wall-normal direction is uniform. Previous
studies on the sinusoidal roughness we consider have determined that 24–48 cells per
wavelength is adequate in resolving the roughness lateral scales (Chan et al. 2015, 2018;
MacDonald et al. 2019; Rouhi et al. 2019). For higher-k+ simulations, the limiting
requirement on grid resolution shifts from resolving the roughness elements to resolving
the smallest turbulence scales. We have kept the streamwise and spanwise grid spacings,
�x+ � 6, �y+ � 5 for our Pr = 0.5 and Pr = 1.0 cases. For Pr = 2.0, the smaller
scales in the temperature field will need to be captured by a finer resolution so the
grid has been refined in these cases. We have conducted simulations at a constant
Courant–Friedrichs–Lewy (CFL) number between 0.5 and 1, where the CFL number
is defined presently by CFL ≡ maxi(|ui|�t/�xi). Here, |ui| is the magnitude of the ith
velocity component, �xi the grid spacing in the ith direction which determines the
computational step size �t. Time steps for the cases considered were typically limited
by flow regions close to the wall for the wall-normal direction (i = 3), owing to the high
computational grid density in this region, as well as observed increases in wall-normal
velocities occurring close to the wall. The average time-step size, �t+ ≡ �tU2

τ /ν is
provided in table 1. Time-averaging windows are chosen based on sampling enough
zc-sized eddies in the log layer. These zc-sized eddies have a characteristic time scale zc/Uτ

and the number of zc/Uτ flow-through times is given by the simulation time Ts ≡ TUτ /zc
in table 1. For the largest simulations at k+ ≈ 111, runtimes are limited to Ts ≈ 10. Despite
the limited sampling windows, the near-wall roughness sublayer flow and log-intercept
measurements do not significantly vary, which is the focus of the present work. Details on
statistical variations for our k+ ≈ 111 cases are reported in Appendix C.

3.2. Virtual-origin effects
To obtain robust measures of the logarithmic intercepts in (1.2a)–(1.2d), we need to
measure from the virtual origin, by accounting for a shift, d (Raupach et al. 1991; Nikora
et al. 2002; García-Mayoral, de Segura & Fairhall 2019). For low k+, d represents a
displacement of smooth-wall turbulence and can be obtained by shifting the Reynolds
shear stress profiles to collapse with a smooth wall. We have adopted this approach to
obtain d for our k+ = [5.5, 11, 22] cases and refer the reader to Endrikat et al. (2021,
§ 2.3) for details on the methodology.

At higher k+, this framework may no longer hold, as the near-wall turbulent structures
in the conventional, smooth-wall sense may no longer exist (Nikora et al. 2002; Jiménez
2004). Jackson (1981) proposed that d can be evaluated as the displacement which
situates the centre of drag acting on the rough surface, although this definition may not
always be appropriate (Cheng & Castro 2002; Coceal et al. 2007; Chung et al. 2021).
The heat transfer analogue to Jackson’s drag-centroid d, say, dθ , would correspond to
locating the centroid for the distribution of heat sources from the roughness elements
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Figure 6. (a) Variation of d/k with respect to k+. The circle markers designate the low-k+ cases where d
is evaluated as per Endrikat et al. (2021). Values for d/k (coloured markers) are obtained through an ad hoc
fit for our higher-k+ data: d/k = −(k+/365)2 + (k+/213) + 0.27, which gives d/k = {0.42, 0.45, 0.50, 0.70}
for k+ = {33, 40, 56, 111}. We select d/k = [0, 1.0] (error bars) as bounds to assess the errors propagated by
the uncertainty in d. (b) Schematic illustration of d and its relation to the roughness mean height and size k.
(c) Velocity and (d–f ) temperature difference profiles between smooth and rough walls from the roughness
crests to the unphysical region zc, the d/k fit in (a) and d/k = 0, 1. The profiles roughly collapse once zc is
approached and are staggered by +3 at each k+ for clarity.

(Brutsaert 1982). Presently, we neglect this distinction, taking d = dθ , and instead elect
to evaluate d for our k+ = [33, 40, 56, 111] cases through an ad hoc tuning to yield a
close fit to κ ≈ 0.4 and κθ ≈ 0.46 slopes in the logarithmic regions. Despite the ad hoc
nature, we will show that the influence of the uncertainty in d is largely inconsequential
when measuring the logarithmic intercepts. Figure 6(a) shows the d/k obtained from
our ad hoc tuning approach. Alongside this, we have selected fixed prescriptions of
d/k = [0, 1] to assess the uncertainty this propagates into measurements of the logarithmic
intercepts. The choices d/k = 0, 1 coincide with the extreme cases where the virtual
origin is situated at the roughness mean and crest height, respectively, and are intended
to be worst-case-scenario error measures for the uncertainty caused by d. As shown in
the velocity and temperature difference profiles (figure 6c–f ), variation in d/k produces
slight changes in the difference profiles, but the profiles roughly collapse towards the
same value as the unphysical region of minimal channels, zc, is approached. In figure 7,
we demonstrate that this d/k uncertainty does not significantly alter values for the
logarithmic intercepts by presenting measurements of �U+ and �Θ+, obtained by
evaluating the difference profiles (figure 6c–f ) at the minimal channel critical height
zc, i.e. �U+ = U+

s (z+
c ) − U+

r (z+
c ), �Θ+ = Θ+

s (z+
c ) − Θ+

r (z+
c ). We also examined the

influence of measuring the roughness functions at different heights above the roughness
sublayer, zr ≈ λ/2, and below zc. This produced negligible variations in �U+, �Θ+ that
were no greater than 0.3 (not shown). Figure 7(a) plots �U+ at a fixed d/k = 0 and when
fitted to the equivalent sand-grain roughness asymptote �U+ = (1/0.4) log(k+

s ) − 3.5
yields ks/k ≈ 3.3. Prior studies on our present roughness in pipe flows have found
ks/k ≈ 4.1 (Chan et al. 2015), which is also shown in figure 7(a) for reference. MacDonald
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Figure 7. (a) �U+ and (b) �Θ+ measured with the mean roughness height (d/k = 0) as the origin. The
Pr = 0.7 data are retrieved from MacDonald et al. (2019). (c,d) Roughness functions corrected for the virtual
origin using the d/k fit in figure 6(a). The k+

s = 2.7k+ prefactor for k+ is obtained by collapsing the fully
rough asymptote (dashed black line) of Nikuradse (1933). The error bars for high-k+ data are evaluations for
d/k = 0, 1 resulting in ks/k ≈ 3.3, 2.4, respectively.

et al. (2019) ascribed this ks/k mismatch as being due to differences in blockage ratios
(h/k = 6.75 as opposed to our present h/k = 18) and fundamental differences between
pipes and channels. In figure 7(c,d), we propagate our d/k uncertainties into the error bars
for �U+, �Θ+ when d/k is fixed as 0 and 1. The data of MacDonald et al. (2019) are
included, taking into account virtual-origin effects using our fit in figure 6(a). Their data
tend to produce smaller error bars, which is due to a different prescription for z+

c where
the roughness functions are measured. The d/k uncertainty results in ks/k ≈ 2.4–3.3, with
ks/k ≈ 2.7 as the result from our d/k fit (figure 6a). The consequent uncertainties in �U+
caused by d/k variations result in relative errors no greater than 7.5 %, which are not
too significant bearing in mind this considers the worst-case-scenario limits of d/k = 0
and 1. Later in § 4.2 when we present mean profiles, we will provide further evidence
demonstrating the insensitivity of the high-k+ data with respect to choices in d.

The �Θ+ trends suggested by figure 7(b,d) are that heat transfer augmentation through
roughness is most significant for higher-Pr fluids. Across all Pr, �Θ+ appears to plateau
in the vicinity of k+ ≈ 40, before beginning a gradual decrease, with signs that this peak
occurs at lower k+ for higher Pr. It is unclear whether this decrease should continue
or if there exists another asymptotic scaling for �Θ+. A continual decrease in �Θ+
for increasing k+ would imply that �Θ+ would eventually attain a negative value.
That is, a reduction in heat transfer relative to a smooth wall which seems unintuitive.
Ultimately however, higher-k+ data are needed to affirm the asymptotic state of �Θ+ for
k+ → ∞.
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Figure 8. (a–c) Instantaneous streamwise velocity fields at k+ = 56 with contour lines at u+ = 0, 4 (white,
black) to highlight stagnant fluid regions and the slip velocity across the roughness crests, respectively. The
corresponding temperature fields are shown in (d–f ) for Pr = 0.5–2.0 where the black contour lines show
coordinate traces of δ+

θ , obtained by projecting the distance δ+
θ in the local wall-normal direction (illustrated

in d). The local δ+
θ is estimated as the departure from a locally fitted linear tangent by a threshold of 10 %

relative error. Refer to the body text for more details. (g–l) Same as (a–f ) for k+ = 111.

4. Fully rough phenomenology

4.1. Flow visualisations
In figure 8, we provide instantaneous views of the flow fields close to the wall at our two
highest k+ = 56, 111, visualising the streamwise velocity u+ as well as spatial variations of
the conductive sublayer, δ+

θ in the temperature fields. Recall that δ+
θ represents the extent of

the local region in which the temperature varies linearly. To obtain rough estimates of δ+
θ in

figure 8, we have first selected a temperature threshold value, θ+ = 2Pr that was found to
lie within the linear conductive regions at a wide range of spatial locations for all the cases
shown in figure 8. A local tangent was then fitted to the wall-normal temperature profile
at each wall location which passed through the location of this threshold coordinate. We
then take δ+

θ to be the point at which the wall-normal temperature departs from this tangent
by a 10 % relative error, such that it roughly encapsulates the extent of the linear region.
At both k+ = 56, 111, we can make three distinct observations concerning the spatial
variations of δ+

θ in the temperature fields (figure 8d–f,j–l). First, the thicker conductive
sublayers observed at lower-Pr is reflective of the tendency for conduction to occur over
greater distances in lower-Pr fluids (Kays & Crawford 1993; Dimotakis 2005). Second, the
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thinnest regions of δ+
θ are typically seen in exposed, windward locations – a phenomena

which relates to the higher heat transfer that is typically observed due to impingement
of windward faces (Peeters & Sandham 2019), as a higher heat transfer corresponds
to a thinner observed conductive sublayer. Third, the observation of detaching plumes,
corresponding to relatively thick regions of δ+

θ tend to emerge in sheltered, leeward
regions. The formation of these plumes roughly correlate to regions of turbulent reversed
flow, u+ < 0, as seen in the velocity fields (figure 8a–c,g–i). The primary difference in the
k+ = 111 fields from k+ = 56 appears to be that the detaching plumes diminish in size
relative to the roughness size k. The visualisations show that the reversed-flow regions
cover the majority of the surface wetted area and thereby is the primary flow acting to
mix temperature locally. This prominence of reversed-flow however, does not preclude
the existence of other mechanisms which may drive heat transfer locally. Highlighted by
the velocity contour lines u+ = 4 in figure 8, regions such as crests are exposed to faster
flow producing higher shear, which may suggest a Reynolds-analogy-type shear-driven
heat transfer mechanism not unlike a smooth-wall boundary layer that is postulated in the
phenomenology of § 2.3. A similar smooth-wall analogy at exposed regions was discussed
by Chan-Braun, García-Villalba & Uhlmann (2011) for transitionally rough flow over
packed spheres which motivated them to adopt a smooth-wall analogy model for predicting
the hydrodynamic drag. When considering these packed spheres in the fully rough regime
however, Mazzuoli & Uhlmann (2017) found that the success of the smooth-wall analogy
model diminishes, which they attributed to the absence of any smooth-wall-type flow
structure near the wall. We will dedicate § 4.3 to scrutinising the validity of a local
smooth-wall, Reynolds-analogy-type behaviour in the fully rough regime.

4.2. Mean quantities and scaling laws
Before examining hypothesised local phenomena associated with fully rough heat transfer,
we will look at features of the mean flow that are pertinent to the phenomenologies
outlined in § 2. One such feature is the notion of the temperature being well mixed below
zi by the scale-separated turbulent eddies, with significant variations only occurring in the
conductive sublayer very close to the surface. We first test this assumption in figure 9(a–d)
against the mean profiles. The near-wall distributions of Θ+ at higher-k+ tend to support
this hypothesis, as Θ+ is held approximately uniform below the logarithmic region (the
lower limit of the logarithmic region, zi, is marked with the open symbols). The velocity
profiles (figure 9a), however, do not seem to exhibit this same degree of well mixing. Note
that the profiles in figure 9(a–d) only show data up to the minimal channel unphysical
region, (z − d)+ = z+

c = 0.4L+
y . For our k+ ≥ 22 cases, this is fixed at zc/h ≈ 0.32, which

lies above the conventionally quoted extent of the logarithmic region, z/h ≈ 0.15 (e.g.
Pope 2000; Marusic & Monty 2019). Given that our present work is not concerned with
the outer-scale flow dynamics and that the wake region beyond zc is inherently unphysical
in minimal channels, the data beyond zc are not of importance here. Figure 9(e–l) examines
further evidence by highlighting the mean profile distributions within the roughness
canopies against logarithmic and linear z/k axes. For increasing k+, we observe the
gradual emergence of a steeper temperature gradient beginning at the roughness troughs,
z/k = −1, best seen on the linear z/k axes (figure 9j–l). At our highest k+ = 111, this
sharp increase accounts for nearly 50 % of the total temperature variation in the channel,
lending credence to the assumption of well-mixing. For the velocity in figure 9(e),
we highlight the fully rough behaviour, U+ = (1/κ) log[(z − d)/k] + C, where C ≈ 6.0
corresponds to our choice of d/k in figure 9(a) consistent with ks/k ≈ 2.7. The bounds
for d/k = [0, 1] (dashed red lines) show that despite being representative of extreme cases
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Figure 9. (a–d) Intrinsically averaged velocity and temperature profiles for k+ ≈ 5.5–111, where darker lines
correspond to increasing k+. The circle markers locate estimates for the beginning of the logarithmic region,
z+

i = max(30, z+
r ), where z+

r ≈ λ+/2 = 3.55k+ is the roughness sublayer height (Chan et al. 2018) and the
vertical lines mark the roughness crests, z/k = 1. The dashed lines show the smooth wall profile at Reτ ≈
2000. Only data below (z − d)+ = z+

c are shown. (e–h) Intrinsically averaged profiles versus z/k log-axes and
(i–l) linear-axes highlighting the distributions within the roughness canopies (z/k ≤ 1). The dashed red lines
in (e) demonstrate the insensitivity of high-k+ trends with respect to the choice in d/k by plotting U+ =
(1/κ) log[(z − d)/k] + C, for d/k = [0, 1], where C ≈ 6.0 is obtained from our ks/k = 2.7 result (figure 7c).

for the uncertainty in d, this amounts to an inconsequential uncertainty in the logarithmic
intercept as the lines eventually collapse above z/k ≈ 3. The mean temperature profiles
against log(z/k) meanwhile (figure 9f –h), do not show a single fully rough asymptote like
the velocity, instead showing a persistent dependence on k+.

Recall from § 2, the fully rough phenomenologies are distilled into a scaling law for
the temperature at the beginning of the logarithmic region Θ+(z − d = zi) ≡ Θ+

i ∼
(k+)pPrm. The exponents p and m will now be investigated. To obtain self-consistent
measures of the various logarithmic intercepts in (1.1) and (1.2), we have performed
regression fits to the logarithmic mean profiles in figure 9(a–d). For evaluation of
Θ+

i , we have adopted the prescription z+
i = max(30, z+

r ), where z+
r ≈ λ+/2 = 3.55k+

is the roughness sublayer thickness (Chan et al. 2018). The condition z+
i = z+

r sets the
beginning of the log layer to coincide with the end of the roughness sublayer and, as
seen in figure 9(a–d), provides a reasonable estimate at higher k+. For lower k+, the
flow retains a form similar to that of a smooth wall, with the roughness sublayer lying
below the logarithmic region (Luchini 1996). For these instances, we set z+

i = 30, which
coincides with the typical interfacial height expected from a smooth-wall flow (Brutsaert
1982).

The Θ+
i ∼ (k+)p scaling is assessed directly in figure 10(a). As the fully rough regime

is approached, our present data support the Θ+
i ∼ (k+)1/4 scaling of Brutsaert (1975b),
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Figure 10. (a) Scaling of the interfacial temperature Θ+
i ≡ Θ+(z − d = zi), where z+

i = max(30, λ+/2),
which shows an approach to Θ+

i ∼ (k+)1/4 rather than Θ+
i ∼ (k+)1/2 in the fully rough regime. The interfacial

velocity, U+
i ≡ U+(z − d = zi) (black squares), by contrast, shows an approach to a constant U+

i ≈ 9.0.
(b) The scaling of Θ+

i with respect to Pr, where solid lines join data at matched k+ which increase in darkness
with k+. This shows that high-k+ tend to follow a Θ+

i ∼ Pr1/2 scaling, whilst at lower k+, the smooth-wall
Θ+

i ∼ Pr2/3 scaling is more closely followed. For the trends to be discernible, data for k+ < 33 have been
staggered down a decade, 0.1Θ+

i , while the smooth wall data (square markers; blue line) show 0.15Θ+
i .

while the Θ+
i ∼ (k+)1/2 scaling does not appear to be followed along any k+ range. The

failure of this scaling despite its contemporary support (Li et al. 2017, 2020) will be treated
specifically in §4.3. This continual increase in Θ+

i with k+ stands in contrast with what
is understood in the interfacial velocity, U+

i ≡ U+(z − d = zi). As seen in figure 10(a),
unlike with Θ+

i , a constant value U+
i ≈ 9.0 is attained. In figure 10(b), the Θ+

i ∼ Prm

scaling is assessed. With increasing k+, our data appear to be in reasonable agreement
with the m = 1/2 scaling of Brutsaert (1975b). In addition, the Θ+

i ∼ Pr2/3 smooth-wall
scaling (Kader 1981; Brutsaert 1982; Durbin & Pettersson-Reif 2011) is included, which is
approached for small k+. Owing to the success of both the p = 1/4 and m = 1/2 scalings,
we see that plotting the Θ+

i ∼ (k+)1/4Pr1/2 relation in figure 11(a) is able to collapse our
k+ > 22 data across all Prandtl numbers onto a single curve, Θ+

i = 3.7(k+)1/4Pr1/2 +
2.6, where the constants depend only on roughness geometry. This suggests that one needs
to only find the constants for a single working fluid, i.e. a single Pr, and that the prediction
may be generalised to arbitrary Pr > 1.

Although the data of figure 11(a) are presented in terms of Θ+
i and k+, the

data can also be expressed using the roughness length z0 or equivalent sand-grain
roughness ks. For example, we can obtain the inverse roughness Stanton number St−1

k ≡
Θ+(z+

0 ) = (1/κθ ) log(z0/zi) + Θ+
i by combining (1.2b) with (1.2d). Since z0 ∝ zi ∝ k in

the fully rough regime (Brutsaert 1982), this amounts to St−1
k ∼ Θ+

i ∼ (k+)1/4Pr1/2 ∼
(z+

0 )1/4Pr1/2, as is corroborated in figure 11(b). For completeness, the set of expressions
equivalent to the Θ+

i = 3.7(k+)1/4Pr1/2 + 2.6 result we find in figure 11(a) are

St−1
k (z+

0 , Pr) = (1/κθ ) log(z0/zi) + 3.7(k/z0)
1/4(z+

0 )1/4Pr1/2 + 2.6, (4.1a)

g(k+
s , Pr) = (1/κθ ) log(ks/zi) + 3.7(k/ks)

1/4(k+
s )1/4Pr1/2 + 2.6, (4.1b)

�Θ+(k+, Pr) = (1/κθ ) log[(zi/k)k+] + Aθ − 3.7(k+)1/4Pr1/2 − 2.6, (4.1c)
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Figure 11. (a) Interfacial temperature with respect to the p = 1/4, m = 1/2 power-law scaling of Brutsaert
(1975b) which predicts the high-k+ DNS data. (b) The same information in (a) reformulated using z+

0 and the
roughness Stanton number, Stk. For smooth walls, St−1

k = cθ Pr2/3 + (1/κθ ) log[0.135/(cθ Pr−1/3)], deduced
from the intersection of the conductive and logarithmic regions, where cθ ≈ 11.7 presently. For fully rough,
St−1

k = 6.5(z+
0 )1/4Pr1/2 − 4.6 (see (4.1a)). The Pr = 0.7 data are processed from MacDonald et al. (2019).

(c,d) Log-intercept g(k+
s , Pr) comparing the present Pr = 0.5–2.0 sinusoidal roughness and the Pr = 1.2–5.9

close-packed granular type roughness of Dipprey & Sabersky (1963), with empirical fits given in (d).

where z0/zi ≈ 0.03, k/z0 ≈ 11, k/zi = 1/3.55 = 0.28 and ks/zi ≈ 0.76 are self-consistent
constants in the fully rough regime for our present roughness. In figure 11(b),
we also include the smooth-wall asymptote, Θ+(z+

0 ) = (1/κθ ) log(z+
0 ) + Aθ , where

z+
0 = exp(κA) ≈ 0.135 from combining (1.1a) and (1.1b), and Aθ = cθPr2/3 −

(1/κθ ) log(cθPr−1/3), where cθ ≈ 11.7 presently. This Aθ form is deduced from the
intersection of the conductive and logarithmic regions (e.g. Kader 1981; Kays & Crawford
1993; Durbin & Pettersson-Reif 2011) and is commonly approximated by Aθ = aPr2/3 −
b, where a and b are constants (cf. Brutsaert 1982, table 4.1). Figure 11(b) then provides
an overall view for rough-wall heat transfer, from smooth to fully rough under a variety of
working fluids.

In figure 11(c,d), we show comparisons of our present sinusoidal surface with
experimental data on close-packed granular type roughness from Dipprey & Sabersky
(1963) spanning Pr = 1.2–5.9 adopting the g-function formulation (1.2c). We remark how
their data tend to exhibit similar qualitative behaviour to our present sinusoidal surface: a
minimum at k+

s ≈ 70, followed by the power-law dependence g ∼ (k+
s )pPrm in the fully

rough regime. Their empirically fitted exponents, p = 0.20, m = 0.44 are similar to the
proposals p = 1/4, m = 1/2 of Brutsaert (1975b). Fixing p = 0.20, as done by Dipprey &
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Figure 12. (a) Turbulent dissipation rate ε ≡ 2νs′
ijs

′
ij computed approximately 0.3ν/Uτ above the roughness

crests, compared against ε+ ∼ (k+)−1 (dashed line) which in dimensional form is the ε ∼ U3
τ /k approximation.

(b) Streamwise energy spectra at the same z-location, normalised on Kolmogorov units. The vertical
lines mark the roughness size k and the black line adopts the model spectrum of Pope (2000) for the
dissipation range, Φ(K) = Ckε

2/3K−5/3 exp{−β{[(KηK)4 + c4
η]1/4 − cη}}, Φu′u′ (kx) = ∫∞

kx
K−1Φ(K)(1 −

k2
x/K2) dK with Ck ≈ 1.5, β ≈ 5.2 and cη ≈ 0.4. The range of Taylor Reynolds numbers, Reλ computed above

the roughness crests is also provided.

Sabersky (1963), we find a similar value of m = 0.40 that collapses our present data well
(figure 11d).

A key ingredient to the Kolmogorov–Brutsaert phenomenology concerns the energy
cascade from scales zi ∝ k to the Kolmogorov scale ηK , characterised by its constant
turbulent dissipation rate ε ∼ U3

τ /(κk) in the well-mixed region (cf. figure 3a), which
in dimensionless form is ε+ ∼ (κk+)−1. In figure 12(a), we compare this scaling
against measurements of ε approximately 0.3ν/Uτ above the roughness crests, which we
presently compute as ε ≡ 2νs′

ijs
′
ij, where s′

ij ≡ (1/2)(∂u′
i/∂xj + ∂u′

j/∂xi) is the fluctuating
rate-of-strain tensor (Pope 2000). The scaling is in good agreement with our present data,
even appearing to hold at intermediate values of k+ in the transitional regime, k+ ≈ 22.
This could explain the success of Brutsaert’s scaling in figure 11(a) at intermediate values
of k+.

Another view of this cascade is provided by figure 12(b) in streamwise energy spectra
with respect to the streamwise wavenumber, Φu′u′(kx), computed at the same z-location
in figure 12(a), serving to illustrate the energy distribution across spatial scales and is
related to the Reynolds stress as u′u′ ≡ ∫∞

0 Φu′u′ dkx. Note that kx here is the streamwise
wavenumber, not to be confused with the roughness length scale, and that u′ is defined
as the deviation from the time-average mean: u′(x, y, z, t) ≡ u(x, y, z, t) − ū(x, y, z). The
Φu′u′ spectra show oscillatory peaks corresponding to harmonics of the roughness
wavelength λ/n for some integer n, and are more pronounced for low-k+. Physically,
these oscillations can be interpreted as the roughness topography creating motions near
the wall with characteristic length scales O(λ). Wall-parallel visualisations of velocity
fluctuations at matched z-locations to the Φu′u′ spectra in figure 12(b) (not shown) were
found to be consistent with this intuition, with imprints of the roughness topography
visible in the form of small wakes coincident with roughness crests. These were most
pronounced for low-k+, much like the peaks of Φu′u′ appearing strongest for low-k+.
Likewise, results of surface features being visible in the turbulent fluctuations have been
observed previously (e.g. Abderrahaman-Elena, Fairhall & García-Mayoral 2019; Fairhall,
Abderrahaman-Elena & García-Mayoral 2019). It appears that the k+ � 22 cases, where
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ε+ ∼ (k+)−1 holds (figure 12a), display spectra which exhibit roughly universal behaviour
at wavenumbers kxηK > 10−2. Conventional understanding of turbulence argues that the
inertial subrange down to the dissipation range becomes a universal function of kxηK once
an energy-cascade has developed through sufficient scale separation (Tennekes & Lumley
1972; Pope 2000). The model spectrum (figure 12b, black line) of Pope (2000), which
relies on this intuition, is closely followed by our k+ ≥ 22 spectra, supporting the view of
Brutsaert (1975b) in an energy-cascade having developed in the vicinity of the roughness
elements. For reference, we also compute the Taylor Reynolds number above the roughness
crests, Reλ ≡ urmsλT/ν, where λT ≡ urms(15ν/ε)1/2 is the Taylor microscale and urms is
the root mean square streamwise velocity (Pope 2000). Our present data cover a range
Reλ ≈ 13–87 for k+ ≈ 5.5–111, and, for the k+ � 22 cases which collapse in figure 12(b),
cover Reλ ≈ 44–87. These magnitudes are similar to published data where a k−5/3

x scaling
in the inertial subrange is weakly present (e.g. Saddoughi & Veeravalli 1994; Dimotakis
2000; Donzis & Sreenivasan 2010), which appears consistent with our data.

4.3. Local roughness crest scaling
As was seen in figure 10(a), from a spatially averaged view, the p = 1/2 exponent from
the Prandtl–Blasius phenomenology is seen to fail in favour to the Kolmogorov–Brutsaert
p = 1/4 exponent for Θ+

i ∼ St−1
k ∼ (k+)p. Whilst the failure of the p = 1/2 in § 2.3

scaling may imply that the laminar boundary-layer phenomenology of Prandtl–Blasius is
inappropriate for rough walls, we will demonstrate that such a phenomenology can be apt
when we examine the flow locally at roughness crests. Here, the intuition which motivates
this insight comes from the observation that roughness crests, being regions where the flow
remains attached and is exposed to higher shear (cf. velocity in figure 8) are regions where
we may expect the flow to be most analogous to a shear-driven, Prandtl–Blasius-type
boundary layer.

In figure 13(a,b), we show time-averaged wall-normal velocity and temperature (Pr =
1.0) profiles taken at roughness crests. The axes are scaled on the locally measured
viscous friction velocity at the crest, u∗ ≡ √|τν |/ρ, where τν/ρ ≡ ∂u/∂n|w and local
friction temperature θ∗ ≡ qw/(ρcpu∗). Here, we observe clear linear viscous–conductive
regions, u∗

crest = z∗
crest and θ∗

crest = Prz∗
crest, with the extent of these regions corresponding

to the local viscous and conductive sublayer thicknesses, δν and δθ , respectively. These
thicknesses are located through the minima of second derivatives: d2ucrest/dz2 and
d2θcrest/dz2 (figure 13a,b, markers). The insets of figure 13(a,b) show that these measures
of δν and δθ are indeed appropriate to scale ucrest and θcrest in the linear viscous–conductive
regions for k+ � 22.

The advantage in introducing these viscous–conductive quantities defined by the second
derivative minima is that they can be computed unambiguously in smooth-wall DNS and
are defined for Prandtl–Blasius boundary layers (cf. figure 4c), enabling direct comparison.
Specifically, we may define a primitively scaled skin-friction coefficient, Ĉf , Stanton
number, Ŝt, as well as a viscous Reynolds number, Reδν :

Ĉf

2
≡ τν

ρu2
δν

, Ŝt ≡ qw

ρcpuδν θδθ

, Reδν ≡ uδν δν

ν
. (4.2a–c)

Here, we use primitive scaling to refer to normalisations on the basic viscous–conductive
quantities of the flow, such that one can define and compare the quantities in (4.2)
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Figure 13. (a) Time- and phase-averaged velocity profiles at crest locations scaled by the local viscous friction
velocity u∗ ≡ √|τν |/ρ with increasing line darkness with k+. Here, zcrest measures the wall-normal distance
taking roughness crests (cf. figure 6b) as the origin. The markers locate the local viscous sublayer thickness, δν ,
situated by the local minima of d2ucrest/dz2, and velocity at this location uδν for each k+ (the marker fill colours
match the mean profile colours). A turbulent smooth-wall profile (Reτ ≈ 2000, red line) is included to illustrate
the gradual approach to local smooth-wall conditions with increasing k+. (b) Same as (a) but for temperature
at Pr = 1.0, scaled on the local friction temperature θ∗ ≡ qw/(ρcpu∗). The markers locate the local conductive
sublayer, δθ (corresponding to d2θcrest/dz2 minima locations) and the temperature at these locations, θδθ . The
insets of (a,b) demonstrate that re-scaling the profiles on viscous–conductive quantities, (δν, uδν ), (δθ , θδθ ),
collapses the profiles and agree near the wall with the Prandtl–Blasius (PB) profiles.

between the different flow configurations (e.g. smooth wall versus roughness crest).
In the case of Prandtl–Blasius boundary layers, one has that ŜtPr2/3 ∝ Ĉf ∼ Re−1

δν

(Schlichting & Gersten 2017), coinciding with the Reynolds analogy (Bird et al.
2007). In figure 14(a,b), we test these scalings directly, while also comparing with the
values obtained from a smooth-wall DNS (Reτ ≈ 2000) to illustrate the approach to
smooth-wall-like conditions locally. The primitively scaled quantities for smooth walls
did not change with Reτ , so we have elected to only show smooth-wall data for a single
Reτ in figure 14 for clarity. Our empirical fits, Ĉf /2 = 1.9Re−1.17

δν
, ŜtPr0.75 = 0.72Re−0.82

δν

are similar to the theoretical Re−1
δν

, Pr2/3 exponents, providing supporting evidence
for a Prandtl–Blasius-like behaviour at crests. The mismatch in the Reynolds number
exponent between skin-friction and heat transfer Ĉf ∼ Re−1.17

δν
, Ŝt ∼ Re−0.82

δν
is perhaps

indicative of crest regions not being driven purely by a Reynolds-analogy-type mechanism.
The compensated viscous-to-conductive sublayer ratio (δθ/δν)Pr1−2/3 (figure 14c), too,
shows a mild departure from the Reynolds analogy limit of (δθ/δν)Pr1−2/3 = constant,
with instead a weak dependence on Reδν . Further assumptions in the rough-wall
Prandtl–Blasius theory are tested in figure 14(d), where we examine the generalisation
of the roughness length scale as an effective streamwise fetch for the local flow: x ∝ k.
Following our discussion surrounding (2.7a,b), this assumption led to the canonical
δν/x ∼ Re−1/2

x of Prandtl–Blasius theory being modified to δν/k ∼ Re−1/2
k , where Rek ≡

uδν k/ν. As seen in figure 14(d), measurements at the crests agree well with this
prediction: δν/k = 1.38Re−0.50

k for k+ � 33, thus supporting the local Prandtl–Blasius
boundary-layer arguments put forward by Owen & Thomson (1963) and Yaglom & Kader
(1974) in § 2.3.

Next, we discuss the approach to smooth-wall-like behaviour at crests in the context
of the smooth-wall DNS datapoints shown in figure 14(a–c). Here, the smooth wall
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Figure 14. Empirical scalings measured at roughness crests for k+ > 11 showing (a) the viscous skin-friction
coefficient normalised on primitive, viscous quantities, Ĉf /2 ≡ τν/(ρu2

δν
). The value computed from a

smooth wall DNS (Reτ ≈ 2000) is also included. (b) Same as (a) for a Stanton number normalised on
viscous–conductive quantities: Ŝt ≡ qw/(ρcpuδνθδθ

). (c) Compensated ratio between local conductive and
viscous sublayer thicknesses (δθ /δν)Pr1−2/3, which show a mild dependence on Reδν . (d) Scaling of δν/k ≡
Reδν /Rek with respect to Rek, which agrees with the theoretical Re−1/2

k prediction. The inset presents the
empirical scaling of Reδν with respect to k+ to demonstrate the gradual approach to smooth-wall conditions
(Reδν ≈ 50).

value Reδν ≈ 50 has not yet been reached for our present k+ range. As seen in the
inset of figure 14(d) however, the Reδν ≈ 50 limit at crests may eventually be attained
owing to the continual growth with k+: Reδν = 3.1(k+)0.46. This predicts the smooth-wall
limit, Reδν ≈ 50, to be reached once k+ ≈ 420 or k+

s = (ks/k)k+ ≈ (2.7)(420) ≈ 1140.
The approach to local smooth-wall conditions at crests may tie to a regime transition
at even-higher k+ beyond the fully rough regime, where the local boundary layers can
become turbulent (Kraichnan 1962; Grossmann & Lohse 2011). The behaviour of such a
regime, if it exists, would likely have implications in atmospheric flows for instance, where
k+

s can approach O(105) (Kanda et al. 2007). Moreover, the existence of this regime will be
contingent on extended attached-flow regions existing locally, such that the local boundary
layer may develop. These conditions may depend on the strength of the local shear which
will generally grow with k+ and will change depending on the rough surface considered.
Consequently, our k+ ≈ 420 extrapolation is specific to our present surface and is likely
to change when considering alternative surfaces.

An alternative view of the approach towards local smooth-wall conditions at crests can
be quantified by measuring the relative difference between the viscous sublayer thickness
δ∗
ν,r and conductive sublayer thickness δ∗

θ,r at crests compared to smooth walls, δ∗
ν,s, δ∗

θ,s
(the r and s subscripts denote rough- and smooth-wall values, respectively). These values
are reported in figure 15. Here, the data show a tendency towards local smooth-wall
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Figure 15. (a) Relative difference of the local viscous sublayer thickness measured at the crests, δ∗
ν,r ≡

δν,ru∗/ν (the r subscript denotes the value for the rough wall), for k+ ≥ 11, compared to the smooth-wall value
δ∗
ν,s ≈ 7.3 (the subscript s denotes the smooth-wall value). The extrapolation to k+ ≈ 420, where smooth-wall

conditions (figure 14d, inset) may be expected, is shown as a red square marker. (b) Same as (a) but for the
conductive sublayer thickness, δ∗

θ , at varying Pr. For Pr = {0.5, 1.0, 2.0}, δ∗
θ,s ≈ {9.2, 7.3, 5.8}.

conditions with increasing k+, with our highest k+ ≈ 111 attaining approximately 80 % of
the smooth-wall value. Our extrapolation from the inset of figure 14(d), which predicted
the local smooth-wall transition at k+ ≈ 420, is also included in figure 15 (red squares).
The figure 15 data appear to show a gradual slow-down of the approach to local
smooth-wall conditions with increasing k+. Though our k+ ≈ 420 extrapolation for local
smooth-wall conditions may perhaps be plausible based on the trends on δ∗

ν,r (i.e. the
momentum field), this extrapolation is almost certainly not valid for δ∗

θ,r (i.e. the thermal
field), where the slow-down of growth with k+ is more drastic.

Having provided evidence in the time-averaged flow that heat transfer may be driven
locally through a Reynolds-analogy-type behaviour, we now provide an instantaneous
view to this behaviour in figure 16, showing joint-p.d.f.s (j.p.d.f.s) between the primitively
scaled viscous skin-friction and local heat transfer, Ĉf and Ŝt, respectively. We include
j.p.d.f.s computed from a smooth-wall DNS (coloured contours), and ‘crestward’
locations, which sample regions local to the roughness crests, 0.95k ≤ zw ≤ k. Emerging
for both transitional k+ ≈ 33 (figure 16a–c) and fully rough k+ ≈ 111 (figure 16d–f ) is a
smooth-wall-like correlation between the local skin-friction and heat transfer at crestward
locations running closely parallel to the Reynolds-analogy line Ĉf /2 = ŜtPr2/3. The
crestward j.p.d.f.s for both k+ ≈ 33 and k+ ≈ 111 tend to show greater standard deviations
(width of the j.p.d.f.s) compared to the smooth wall which can be interpreted as a Reδν

effect. With increasing k+ (and thereby Reδν ), the crestward p.d.f.s shrink closer towards
the smooth-wall p.d.f. The approach towards the smooth-wall mean values of Ĉf , Ŝt, square
markers shown in figure 14(a,b), are also included in figure 16.

A useful implication of these local smooth-wall scaling results at the crests is that
they enable one to predict the crest skin-friction and heat transfer, relative to, say, the
global friction and heat transfer in the form of the globally averaged crest velocity and
temperature Uk ≡ U(z = k), Θk ≡ Θ(z = k). Here, we make use of the scalings we report
in figure 17, where the relation to the primitive viscous–conductive quantities, (δν , uδν ),
(δθ , θδθ ), are linked to the globally averaged crest values Uk, Θk and k+. Specifically,
figure 17 reformulates the original primitive scaling results presented in figure 14 to
now adopt normalisations on the global friction velocity Uτ and globally averaged crest
values Uk, Θk for use in prediction. Notably in figure 17(b), we observe the velocity
outside the viscous sublayer follows uδν ≈ 0.75Uk ≈ (0.75)(4.7)Uτ , i.e. uδν ∝ Uτ , as
was proposed by Owen & Thomson (1963) and Yaglom & Kader (1974), leading to
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Figure 16. (Black) Conditional joint-p.d.f.s between the local viscous skin-friction coefficient Ĉf /2 ≡
τν/(ρu2

δν
) and local Stanton number Ŝt ≡ qw/(ρcpuδν θδθ ) for Pr = 0.5–2.0 at (a–c) k+ ≈ 33 and (d–f )

k+ ≈ 111. The rough-wall data are conditionally sampled at regions local to crests: 0.95k ≤ zw ≤ k and the
normalisation choice enables direct comparison to smooth-wall DNS (coloured contours). Each contour level
encloses 20–80 % of the total probability in increments of 20 %. The Reynolds-analogy line, Ĉf /2 = ŜtPr2/3

(dashed red line), forms the principal axes for the smooth walls and appears approximately parallel in crestward
regions. The mean values measured at crests (cf. figure 14a,b) are marked by the black squares and the mean
values for the smooth wall DNS are marked by red squares.

the eventual δ+
ν ∼ (k+)1/2 prediction in (2.8a,b), a scaling that is affirmed by our data

in figure 17(a) for k+ � 33. A likewise proportionality is observed at the conductive
sublayer for heat transfer: θδθ ≈ 0.75Θk. We now demonstrate how these results can be
used for a local skin-friction and heat transfer prediction. Recognising that in the linear
viscous–conductive regions, the velocity and temperature gradients are constant up to δν

and δθ , respectively (cf. figure 13a,b), we set τν/ρ = νuδν /δν and qw/(ρcp) = αθδθ /δθ .
These relations may then be inserted into a local skin-friction coefficient for crests, Cf ,crest,
and for a Stanton number, Stcrest:

Cf ,crest

2
≡ τν

ρU2
k

= νuδν /δν

U2
k

=
(

uδν

Uk

)(
1

U+
k

)(
1
δ+
ν

)

≈ (0.75)

(
1

4.7

)(
1

0.7

)
(k+)−0.50 ≈ 0.23(k+)−0.50, (4.3)

Stcrest ≡ qw/(ρcp)

UkΘk
= αθδθ /δθ

UkΘk
= Pr−1

(
θδθ

Θk

)(
1

U+
k

)(
1
δ+
θ

)

≈ (0.75)

(
1

4.7

)(
1

0.97

)
(k+)−0.42Pr−0.72 ≈ 0.16(k+)−0.42Pr−0.72, (4.4)

where we have made use of the various results of figure 17 for the numerical prefactors.
The relations (4.3)–(4.4) thus allow one to determine the viscous–conductive fluxes at the
crests provided only k+ and Pr within a constant of proportionality. These results then
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Figure 17. (a) Scaling behaviours of δ+
θ and δ+

ν at the crests, with empirical fits provided. For clarity, δ+
ν has

been staggered down by a decade. (b) Various scaling behaviours of local viscous–conductive quantities at the
crest linked to the globally averaged crest velocity and temperature, Uk, Θk.

demonstrate how a p = 1/2 type scaling in heat transfer, Stcrest ∼ (k+)−p as originally
put forward in the Prandtl–Blasius ideas of Owen & Thomson (1963) and Yaglom &
Kader (1974) can be favoured for prediction. The key distinction here being to consider
the heat transfer only in regions where the flow is attached and exposed to high-shear,
where presently, we have demonstrated this case for roughness crests. Much like the
original p = 1/2 theories, these predictions are to be restricted to the high-k+ or fully
rough regime, k+ � 33, where the various scalings in (4.3)–(4.4) remain valid. Finally, it
is worth mentioning that one may expect the validity of this local Prandtl–Blasius scaling
to be restricted to regions of mild curvature, such that the local flow remains attached.
For our present 3-D sinusoids, this curvature is characterised by the wavelength-to-height
ratio λ/k = 7.1. Overall, this paper suggests that the ratio of attached to separated flow
regions is key to modelling the effect of roughness topography on heat-transfer (and drag)
behaviour.

4.4. Local roughness trough behaviour
Having seen at roughness crests that we may observe a Reynolds-analogy-like behaviour,
we now provide an opposite view to this at roughness trough regions. Unlike crests,
the flow in the vicinity of troughs is predominantly driven by a low-shear, reversed
flow (cf. figure 8), such that we may expect vastly different behaviours to those
we observed in § 4.3 at crests. Figure 18(a,b) demonstrates this with time-averaged
velocity and temperature profiles (Pr = 1.0) at trough regions. Here, the profiles
are scaled on the crest values, Uk, Θk and roughness height k, as opposed to the
local friction velocity u∗ as with figure 13, since troughs are low-shear regions
with u∗ → 0. The disparate behaviour between velocity and temperature is apparent:
the near-wall flow is reversed (utrough < 0) with distinct minima in the velocity
emerging, a feature entirely absent in the temperature profiles. The reversed flow
is predominantly confined to ztrough/k � 1, and may perhaps serve as the primary
flow which drives heat transfer locally. The insets of figure 18(a,b) show the profiles
rescaled by viscous–conductive quantities situated through the local second derivative
extrema, identical to the method adopted for crests in figure 13(a,b). Although these
normalisations appear adequate for collapsing the temperature profiles, this is not the
case for the streamwise velocity, perhaps indicating the existence of some other velocity
and length scale as being appropriate. The absence of any Reynolds-analogy-type
scaling at troughs may be further illustrated by the results of figure 18(c,d), where
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Figure 18. (a) Time- and phase-averaged profiles at roughness troughs. Here, ztrough measures the wall-normal
distance taking roughness troughs (cf. figure 6b) as the origin. The local viscous sublayer and the velocity at
this location, δν , uδν (square markers), is situated by maxima of the second derivative d2utrough/dz2. The inset
rescales the profiles on δν , uδν . (b) Same as (a) but for temperature at Pr = 1.0. (c,d) Local skin-friction
coefficient and Stanton number at the troughs, normalised on the global crest velocity and temperature,
|Cf ,trough|/2 ≡ |τν |/(ρU2

k ), Sttrough ≡ qw/(ρcpUkΘk), with empirical fits provided. The absolute value of
skin-friction is taken to enable plotting on log-axes.

we show the locally measured skin-friction coefficient, Cf ,trough/2 ≡ τν/(ρU2
k ), and

Stanton number, Sttrough ≡ qw/(ρcpUkΘk). These normalisation choices are identical
to those chosen in (4.3)–(4.4) for crests to contrast with the Reynolds-analogy-like
scaling behaviour that was seen at crests, Cf ,crest ∼ (k+)−0.50, StcrestPr0.72 ∼ (k+)−0.42.
At trough regions, we instead find |Cf ,trough| ∼ (k+)−0.20, SttroughPr0.38 ∼ (k+)0.19,
following neither the SttroughPr1/2 ∼ (k+)−1/4 to be expected from surface renewal
or the SttroughPr2/3 ∼ (k+)−1/2 of Prandtl–Blasius. A contrast in behaviour between
crests and troughs may be further visualised by the conditional j.p.d.f.s in figure 19
between the primitively scaled skin-friction coefficient and Stanton number, Ĉf , Ŝt,
respectively. Here, ‘troughward’ regions, which sample regions local to troughs (−k ≤
zw ≤ −0.95k) show a vastly different behaviour to the Reynolds-analogy-like behaviour
we had proposed for crestward regions originally in figure 16. Notably, the troughward
j.p.d.f.s tend to be much wider than the crestward counterparts, indicating a greater
prominence of skin-friction and heat-transfer fluctuations in the vicinity of troughs.
The formation of a principal axes between Ĉf and Ŝt is perhaps weakly present in the
troughward j.p.d.f.s. Moreover, these principal axes do not appear to strongly follow
a reversed-flow Reynolds-analogy correlation −Ĉf /2 = ŜtPr2/3 (dashed red line). Our
intention in showcasing these contrasting results at troughs is to highlight the potential for
multiple mechanisms to be at play in driving heat transfer locally. Much like at roughness
crests where our analysis showed that a pure Reynolds-analogy-driven heat transfer did
not quite emerge, it is possible that roughness troughs may experience the same crossover
among multiple mechanisms. Unravelling the heat transfer mechanisms which underpin
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Figure 19. Conditional j.p.d.f.s between the primitive local skin-friction coefficient Ĉf /2 ≡ τν/(ρu2
δν

) and
local Stanton number Ŝt ≡ qw/(ρcp|uδν |θδθ ) (the absolute value of uδν is taken to circumvent negative values
for St) at varying Pr and for (a–c) k+ ≈ 33; (d–f ) k+ ≈ 111. The blue lines sample regions local to roughness
troughs: −k ≤ zw ≤ −0.95k and is contrasted with the crestward j.p.d.f.s originally shown in figure 16 (black
lines). A reversed-flow Reynolds-analogy line, −Ĉf /2 = ŜtPr2/3 is given by the dashed red line.

these flow-separated trough regions will require a deeper investigation, but is outside the
scope of our present work.

5. Full-scale heat transfer predictions

Having seen the success of the Kolmogorov–Brutsaert fully rough model for the mean
heat transfer (§ 4.2), we will examine here the implications this has on full-scale heat
transfer predictions. One of the primary quantities of interest in heat transfer prediction
is the Nusselt number, Nu ≡ ReStPr (Kays & Crawford 1993), defined on an outer-scale
Reynolds number, Re ≡ hUh/ν, and an outer-scale Stanton number, St ≡ 1/(U+

h Θ+
h ) ≡

(CF/2)1/2/Θ+
h , where CF ≡ 2/(U+2

h ) is a global friction coefficient encompassing both
pressure and viscous drag. These use the velocity and temperature evaluated at the channel
centreline: Uh ≡ U(z = h), Θh ≡ Θ(z = h).

Recall that in minimal channels, the mean profiles above the critical height zc is
unphysical and will need to be modelled before we evaluate Uh and Θh. Presently, we have
computed Uh and Θh from our DNS cases by extending the logarithmic regions towards
the channel centreline, replacing the unphysical data beyond zc. Doing so, we also neglect
wake contributions to the mean profile. For additional comparison, we will adopt models
which employ the logarithmic profiles (1.1) and (1.2) evaluated at z = h, again neglecting
wake contributions to obtain U+

h and Θ+
h , respectively. The results can then be combined

to obtain (cf. Kays & Crawford 1993, (13)–(48))

NuRe−1Pr−1 ≡ St = CF/2
(κ/κθ ) + √

CF/2/Stk
. (5.1)
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Figure 20. (a) Nusselt number and (b) Stanton number dependence on the Reynolds number. Circle markers
are from rough wall DNS at k/h = 1/18. The solid lines are model lines obtained using the smooth-wall log
law, whilst the dashed lines are from the fully rough models. The insets highlight the crossover points (crosses)
between smooth- and rough-wall curves at high Re.

For model parameters, we use κ ≈ 0.4, κθ ≈ 0.46, that we have used throughout
our manuscript. We use the fully rough model �U+ = (1/κ) log(2.7k+) − 3.5
(cf. figure 7c) and the fully rough model of Brutsaert (1975b): St−1

k = 6.5(z+
0 )1/4Pr1/2 −

4.6 (figure 11b).
Shown in figure 20 are the variations of Nu and St for our present study using k/h =

1/18. The adopted model (dashed lines) agrees well with our present DNS (markers)
and for intermediate Re ≈ 104–106, roughly follow the well-known smooth-wall scaling
Nu ∼ Re0.8, St ∼ Re−0.2 (Kays & Crawford 1993). The smooth wall curves of figure 20
(solid lines), included for comparison, are obtained by adopting the same equation (5.1)
as with the rough walls but with �U+ = 0 and �Θ+ = 0 when obtaining U+

h , Θ+
h from

the log-equations (1.1a) and (1.2a). In the insets of figure 20, we illustrate the paradox
introduced in figure 7(b,d) concerning the effects of heat transfer augmentation at high
Reynolds number when extrapolating the rough-wall log-intercepts (4.1a)–(4.1c) towards
Re → ∞, k+ → ∞. Whilst for intermediate Re, both Nu and St are larger for rough walls,
indicating a heat transfer augmentation. There is an eventual crossover point with the
smooth-wall curves. In the limit of large Re, we see that the fully rough model no longer
predicts augmented heat transfer relative to a smooth wall, standing in contrast to how
rough-wall heat transfer is conventionally viewed (Dipprey & Sabersky 1963; Owen &
Thomson 1963; Bons et al. 2001). Despite the largely successful predictive capabilities of
Brutsaert’s model having been established for the present k+ range in our study, a more
concrete conclusion concerning the true asymptotic form of heat transfer as k+ → ∞,
Re → ∞ remains unsettled. It is worth highlighting that the data shown in figure 20 are
for a fixed h/k = 18. In practice, this may not always be the case, such as in river beds
with h/k = O(1) (Rouzes et al. 2019). Such flows may have poorly defined logarithmic
regions (Jiménez 2004) which would make our model curves of figure 20 inapplicable.
Provided h/k is not too small and Re is sufficiently large however, such flows will maintain
a better-defined logarithmic region and we would expect the same trends we show in
figure 20 to hold. Noteworthy is that several DNS studies (e.g. Chan et al. 2015; Thakkar
et al. 2018; Ma et al. 2020) have found that despite using h/k = O(1), the log-intercept
measurements can still remain robust.
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6. Conclusion

We have investigated the phenomenology surrounding rough-wall heat transfer by
scrutinising a comprehensive DNS dataset, systematically varying both the Prandtl
number, Pr, and roughness Reynolds number, k+. Our work begins to address the
uncertainty that lingers concerning the asymptotic form of heat transfer in the fully rough
regime by testing many of the hypothesised phenomenologies proposed to describe this
regime (Li et al. 2017, 2020). Although it appears that bulk measures from our data
affirm the surface-renewal phenomenology (Brutsaert 1975b) consistent with Kays &
Crawford (1993), which proposes the interfacial temperature scaling Θ+

i ∼ (k+)pPrm with
p = 1/4, m = 1/2 in the fully rough regime, the mechanism locally is more complex.
Nevertheless, an energy-cascade-type scaling for ensemble-averaged measures of the
dissipation, ε ∼ U3

τ /k, a crucial element to the surface renewal theory, is upheld even
in the vicinity of the roughness elements. We show that the ideas underpinning the
p = 1/2 Prandtl–Blasius, Reynolds-analogy-type scaling can remain robust in certain
regions where the flow remains attached and is exposed to high shear such as roughness
crests. This manifests as an empirical local heat transfer scaling, StcrestPr0.72 ∼ (k+)−0.42,
lying close to the StcrestPr2/3 ∼ (k+)−1/2 to be expected from Reynolds analogy. However,
the Reynolds-analogy scaling is violated in regions locally exposed to reversed flow and
weak shear. The mechanisms which drive rough-wall heat transfer then are not captured
by any singular mechanism, but likely an ensemble of different behaviours locally.

While the model of Brutsaert (1975b) appears largely successful in predicting the mean
heat transfer for the k+-range considered in our present study, the Θ+

i ∼ (k+)1/4 predicted
by this theory implies a continual decrease in �Θ+ with k+, eventually resulting in a
negative �Θ+. That is, roughness may cause a reduction in heat transfer relative to a
smooth wall, which stands in contrast to how rough-wall heat transfer is conventionally
viewed (e.g. Bons et al. 2001) and poses a question concerning the true asymptotic form
of rough-wall heat transfer as k+ → ∞. Examination of the local flow behaviour at crest
regions exposed to higher shear shows a continual growth of the local viscous Reynolds
number towards the smooth-wall value Reδν ≈ 50, which is potentially indicative of a
local smooth-wall-like regime transition. Though higher-k+

s data are ultimately needed to
affirm the existence of this regime transition (cf. figure 15), we speculate its onset to occur
at k+

s ≈ 1140, lying well within the expected range of natural flows (Kanda et al. 2007).
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Figure 21. (a–d) Mean velocity and temperature profiles comparing full-span (black) to minimal channels
(coloured) at k+ ≈ 22. Dashed lines correspond to smooth walls while solid lines are for rough walls.
The dotted lines demarcate the unphysical region, z > zc. The markers in (a) are the data from Moser,
Kim & Mansour (1999), while the markers in (c,d) are from Kozuka, Seki & Kawamura (2009).
(e–h) Differences of smooth- and rough-wall velocities and temperatures from which �U+, �Θ+ are
computed at z = zc.

Appendix A. Minimal channel influences on heat transfer

In this appendix, we present results comparing full-span and minimal channels at k+ ≈ 22,
assessing the domain size influences on heat transfer at Pr = 0.5, 1.0 and 2.0. The
simulations are summarised in table 2. Here, Lx and Ly for smooth- and rough-wall
simulations are matched exactly so domain size effects will not influence the results in
our comparison. We summarise in figure 21 mean profiles and the difference between
smooth- and rough-wall profiles from which �U+ and �Θ+ are computed at z = zc.
Roughness functions quoted in table 2 are within ±0.2 for �U+ and �Θ+, which are
similar to statistical uncertainties in other minimal channel studies (MacDonald et al. 2017,
2019; Endrikat et al. 2021). Given the good agreement between the full-span and minimal
channels across the Pr values with which we are concerned, we conclude that the use of
minimal channels will be adequate in our study of the near-wall effects of rough-wall heat
transfer.

Appendix B. Low-Reynolds-number effects on heat transfer

A well-documented result in wall-bounded turbulence is that a low Reτ can alter the
mean momentum and temperature balance of the flow (Wei 2018). This can shift the
logarithmic region, affecting the measurement of �U+ and �Θ+ (Chan et al. 2015;
Pirozzoli et al. 2016; Alcántara-Ávila et al. 2018; Thakkar et al. 2018; MacDonald et al.
2019). This low-Reτ influence on heat transfer was investigated by MacDonald et al.
(2019) at Pr = 0.7, k+ ≈ 22 for Reτ ≈ 395 and 590, who found that the differences were
primarily in the outer region of the flow such that Reτ ≈ 395 would be adequate for
studying near-wall effects. The purpose of this appendix will be to affirm this result for
Pr = 0.5, 1.0, 2.0 with the simulations in table 3. The mean velocity and temperature
profiles presented in figure 22(a–d) show that Reτ ≈ 395 is satisfactory for capturing
much of the near-wall behaviour across all Pr. The main discrepancies emerge at the
outer-edge of the log layer in the vicinity of z = zc. This is carried forward into the
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Figure 22. (a–d) Mean velocity and temperature profiles at matched k+ ≈ 22 for Reτ ≈ 590 (black) and
Reτ ≈ 395 (coloured). Dashed lines correspond to smooth walls while solid lines are for rough walls. The
dotted lines demarcate the unphysical region, z > zc. (e–h) Differences of smooth- and rough-wall velocities
and temperatures from which �U+, �Θ+ are computed at z = zc.
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Figure 23. The difference profiles between (a) streamwise velocity and (b) temperature for k+ = 111 and
Pr = 1.0 obtained from progressively longer time-averaging periods TUτ /zc. The log-intercepts, �U+ and
�Θ+, are computed as the difference profiles at the minimal channel critical heights (demarcated by the dotted
lines), z+

c = 0.4L+
y . The roughness sublayer (RSL) height is demarcated by the dashed vertical line, z+

r = λ+/2
(Chan et al. 2018).

differences of smooth- and rough-wall velocities and temperatures (figure 22e–h), where
�U+ and �Θ+ are found to vary by ±0.3. These variations are similar to the statistical
uncertainties we present in our main results of § 3.2. In light of this finding and the fact
that the roughness sublayer region z+

r ≈ λ+/2 ≈ 80 (Chan et al. 2018) is still adequately
captured by Reτ ≈ 395, we deem Reτ ≈ 395 as a suitable lower-bound for our parameter
space.

Appendix C. Statistical sampling uncertainties in k+ = 111 cases

Here, we provide details on the characteristic statistical uncertainties for our k+ ≈ 111
cases in table 1, which have time-averaging periods TUτ /zc ≈ 8.8–13.6. Shown in
figure 23 are the difference profiles between smooth and rough walls for the mean
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Figure 24. Reproduced figure 7(c,d) showing roughness functions (a) �U+ and (b) �Θ+. We highlight (in
red) the range (�U+) ≈ 0.6, range (�Θ+) ≈ 0.4 scatter that was presented in figure 23.

velocity and temperature, for k+ = 111, Pr = 1.0 at progressively longer time-averaging
periods. The near-wall, roughness sublayer region, (z − d)+ < z+

r , remains well-captured
among all time-averaging periods. The log-intercepts, �U+ and �Θ+, are taken to be
the values at the minimal channel critical height (z − d)+ = z+

c , which show scatters
of approximately 0.4 and 0.6 for �U+ and �Θ+, respectively. These scatters are
contextualised in figure 24 (a reproduced figure 7c,d of our present work) by overlaying
these error bands of 0.6 and 0.4 for �U+ and �Θ+, respectively. Here, we observe that
these errors are commensurate to the uncertainties caused by the d/k ∈ [0, 1] variations
investigated in § 3.2 and likewise, do not significantly alter the trends we observe in the
fully rough regime.
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