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Recent years have witnessed the emergence of measurement models for analyzing action sequences
in computer-based problem-solving interactive tasks. The cutting-edge psychometrics process models
require pre-specification of the effectiveness of state transitions often simplifying them into dichotomous
indicators. However, the dichotomous effectiveness becomes impractical when dealing with complex tasks
that involve multiple optimal paths and numerous state transitions. Building on the concept of problem-
solving, we introduce polytomous indicators to assess the effectiveness of problem states ds and state-to-
state transitions�ds→s′ . The three-step evaluationmethod for these two types of indicators is proposed and
illustrated across two real problem-solving tasks. We further present a novel psychometrics process model,
the sequential response model with polytomous effectiveness indicators (SRM-PEI), which is tailored
to encompass a broader range of problem-solving tasks. Monte Carlo simulations indicated that SRM-
PEI performed well in the estimation of latent ability and transition tendency parameters across different
conditions. Empirical studies conducted on two real tasks supported the better fit of SRM-PEI over previous
models such as SRM and SRMM, providing rational and interpretable estimates of latent abilities and
transition tendencies through effectiveness indicators. The paper concludes by outlining potential avenues
for the further application and enhancement of polytomous effectiveness indicators and SRM-PEI.
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Problem-solving ability is often considered one of the most difficult aspects of human cog-
nition (Newell & Simon, 1972) and a crucial skill for the 21st century (Griffin & Care,
2014; OECD, 2018) . Computer-based interactive assessments are increasingly favored in large-
scale international survey programs. For example, the Organization for Economic Cooperation
and Development’s (OECD) Programme for International Student Assessment (PISA) introduced
tests for computer-based problem-solving andhuman-computer interactive collaborative problem-
solving in 2012 and 2015, respectively (OECD, 2014, 2016) . The Assessment and Teaching of
21st Century Skills (ATC21S) initiative pioneeres the interpersonal interaction testing task, which
can also assess cooperative problem-solving skills (Griffin&Care, 2014) . Computer-based inter-
active tests, grounded in realistic problem-solving scenarios, require respondents to engage with
the scenarios and make multistep decisions towards solutions. Every action taken in addressing
a problem is recorded as process data by the computer platform. These action sequences provide
valuable insights into the cognitive and response mechanisms of respondents, extending beyond
mere outcomes and grades (Bergner & von Davier, 2019) . They can be analyzed to extract
sequence-based features for interpreting the problem-solving process (e.g., (He & von Davier,
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2015, 2016; Tang et al., 2020) ) and are key in developing measurement models for estimating
latent problem-solving abilities (e.g., (Chen, 2020; Han et al., 2022; LaMar, 2018; Shu et al.,
2017; Xiao & Liu, 2023) ). Measurement models estimating problem-solving abilities encompass
both traditional psychometric models (Liu et al., 2018; Yuan et al., 2019; Han & Wilson, 2022)
and stochastic process modeling (Arieli-Attali et al., 2019; Xiao et al., 2021) . Merging the
strengths of these two approaches, psychometric models incorporating stochastic process prop-
erties have also emerged (Shu et al., 2017; LaMar, 2018; Chen, 2020; Han et al., 2022; Xiao &
Liu, 2023; Fu et al., 2023; Tang, 2023) . These models, considering the sequential dependency
of actions, view action sequences as stochastic processes with first-order Markov properties and
model the conditional probabilities of respondents’ choices under each problem state (Shu et al.,
2017) .

These process models are specifically designed for well-defined tasks, often utilizing the
Finite State Automata (FSA) framework, a prevalent structure for interactive problem-solving
tasks. In FSA tasks, the system is characterized by a finite number of states, a defined set of
allowable actions, and a transition function that dictates the next state based on the action taken
in the current state (Buchner & Funke, 1993) . Respondents are tasked with moving from an
initial state to a target state to resolve the problem (Anderson et al., 2007) . Effective perfor-
mance is achieved by determining and following the optimal path from the initial to the target
state. Additionally, the occurrence of unnecessary steps is indicative of inefficiency during the
knowledge application stage of the problem-solving process (Buchner & Funke, 1993; Funke,
2001) . To assess problem-solving ability, it is crucial to assess the effectiveness of each action
that leads to a transition, considering the nature of FSA tasks. Then the effectiveness is inte-
grated into the model as pre-defined parameters, subsequently facilitating the estimation of latent
problem-solving abilities.

The concept and assessment of effectiveness originate in reinforcement learning, but due
to the complexity of algorithmic evaluation, they have since evolved into manually assessed
dichotomous indicators. LaMar (2018) used the action-value function from the reinforcement
learning paradigm to evaluate the effectiveness of actions and established a measurement model
using Markov Decision Processes. The action-value function calculates the expected weighted
sum of future rewards for each action in a given problem state and is solved using dynamic
programming algorithms. However, Lamar’s approach to assessing action value is intricate, thus
limiting its practicality in psychometrics. Chen (2020) determined action effectiveness based
on whether an action, leading to a state-to-state transition, aligns with the optimal path. This
assessment, essentially evaluating the effectiveness of transition, utilizes a dichotomous indicator
with values of 0 and 1. For the PISA 2012 Ticket task (OECD, 2014) , which features a single
optimal path from the initial to the target state, Chen manually evaluated the effectiveness of each
transition. Transitions that are either on the optimal path or lead back to the optimal path from an
incorrect one are classified as correct transitions, with a value of 1 as effectiveness. Conversely,
transitions that are not on the optimal path, indicating they are on an incorrect path, are classified
as incorrect transitions, marked with a value of 0 as effectiveness. Essentially, effectiveness is
reduced to dichotomous correctness. Utilizing this dichotomous effectiveness, Chen applied the
Nominal Response Model (Bock, 1972) in conjunction with a task difficulty parameter to fit
action sequences, specifically employing the Continuous-Time Dynamic Choice Model (CTDC).

The newmodel modifies the values of dichotomous effectiveness and the difficulty parameter
under theNRMframework.Han et al. (2022) proposed the Sequential ResponseModel (SRM) and
employed values of 1 and−1 for correct and incorrect transitions, respectively. In SRM, effective-
ness is only multiplied by the latent ability parameter, and a set of transition tendency parameters
replaces the single task difficulty parameter. This expansion allows for a more nuanced estima-
tion of transitions. Furthering the SRM, Fu et al. (2023) incorporated a log-normal action time
model into the SRM to simultaneously accommodate action times. Xiao and Liu (2023) retained
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the dichotomous effectiveness indicators of 0 and 1 while altering the task difficulty parameter
in CTDC to transition tendency parameters in SRM, forming the State Response Measurement
Model (SRMM). Comparative analysis in both simulation studies and empirical research on the
Ticket task shows that SRMM outperforms CTDC.

However, the use of dichotomous effectiveness indicators often results in an oversimplifi-
cation of diverse situations and limits the application of measurement models to complex tasks,
primarily for three reasons: First, in scenarioswith a single path to the target andmultiple backward
transitions, dichotomous effectiveness fails to distinguish between different types of ineffective
transitions. For example, in a state transition diagram (Fig. 1a) with only one path from starting
state A to target state D via intermediates B andC, the transition fromC back toA (C→A) is worse
than fromCback toB (C→B) as itmoves further from the target. However, dichotomous effective-
ness does not capture the severity difference between these backward transitions. Second, when
multiple paths lead to a target or there are multiple targets, calibrating dichotomous effectiveness
becomes challenging since a transition canmove closer to one target while simultaneouslymoving
away from the other. For instance, in a transition diagram with two target states C and E (Fig. 1b),
the optimal path is A→B→C. According to the standard of dichotomous effectiveness, the tran-
sition D→B is considered correct because it leads back to the shortest path from a non-optimal
path. However, the transition D→E is more effective as it allows the task to be completed in fewer
steps, illustrating a limitation in the dichotomous approach where it fails to account for the effec-
tiveness of completing the task. Third, with a multitude of states, transitions, and optimal paths,
the complexities mentioned abovemay coexist, complicating the effectiveness assessment of vari-
ous transitions. Furthermore, the manual evaluation process becomes exceedingly labor-intensive
and time-consuming, making it impractical for complex tasks. Consequently, measurement mod-
els dependent on dichotomous effectiveness indicators face significant challenges in addressing
complex scenarios, highlighting the necessity for more sophisticated evaluation approaches. This
situation calls for an urgent shift towards polytomous effectiveness indicators and automated
evaluation methods. Such advancements are crucial for accurately differentiating and adapting to
a wide range of transitions and for broadening the scope of measurement models, making them
suitable for more complex FSA tasks.

In this study, we introduce a novel method for assessing the effectiveness of various state
transitions, as well as a new measurement model that incorporates polytomous effectiveness
indicators and is tailored for complex tasks with multiple optimal paths. Specifically, in Sect. 1,
we propose a universal method for gauging the effectiveness of states and state-to-state transitions
capable of complex FSA tasks. We then exemplify the derivation of polytomous effectiveness
evaluation outcomes through the two real FSA tasks. In Sect. 2, we introduce a new measurement
model, termed the Sequential Response Model with Polytomous Effectiveness Indicators (SRM-
PEI), detailing its specification and parameter estimation methodology. In Sect. 3, we execute a
simulated study to probe the accuracy of SRM-PEI estimations under various conditions within
simulated tasks. In Sect. 5, we demonstrate the applicability of SRM-PEI and compare it with
SRM and SRMM in two problem-solving tasks. The article concludes with a discussion in Sect.
6.

1. Effectiveness Indicators of the States and Transitions in FSA Tasks

1.1. New Definitions of Effectiveness of States and State-to-State Transitions

Theoretically, problem-solving is a process of navigating towards the target through a series
of state-to-state transitions (Newell & Simon, 1972; Mayer & Wittrock, 2006) . The criterion
for dichotomous effectiveness is determined by whether the state after the transition is closer
to the goal than the state before the transition. When there is a single target and an optimal
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Figure 1.
Diagram of two scenarios with multiple backward transitions and target states.

path, the criterion reduces to whether it is consistent with the optimal path. This criterion has two
limitations: first, it does not account for scenarios withmultiple targets andmultiple shortest paths;
second, it merely assesses whether the distance to the target state is reduced without considering
the extent of the change in distance. Our proposed concept of transition effectiveness quantifies
the change in distance to the target before and after each transition in situations with multiple
targets and paths. A transition is considered effective if it reduces the distance and inefficient if it
increases the distance, aligning with the principles of evaluating problem-solving abilities in FSA
tasks (Buchner & Funke, 1993; Funke, 2001) . To address these complexities, we propose two
types of effectiveness indicators suitable for complex FSA tasks: (1) the effectiveness indicators
ds of the state s, (2) the effectiveness indicators �ds→s′ of the transition s → s′.

First, we define the distance between any problem state s and the target state starget , denoted
as ds . The ds is the minimal steps of transitions needed to reach the target state starget from the
state s. A smaller ds means that state s is closer to target state, so it is more effective to solve the
problem if the state with smaller ds is reached In complex FSA tasks, there can be k target states
that can be reached from state s, denoted as s(1)

target , s
(2)
target to s

(k)
target . The distances to these target

states are correspondingly d(1)
s , d(2)

s to d(k)
s . Given the understanding of state effectiveness as the

theoretical minimum distance from a state to any target state, the effectiveness of the state s is
calculated as ds= min (d(1)

s d(2)
s , . . . , d(k)

s )

In Fig. 1a, the effectiveness of states A, B, C, and D is determined by their respec-
tive shortest distances to the target state D, which are 3, 2, 1, and 0, respectively. In
Fig. 1b, where the target states are C and E, both have an effectiveness of 0. The short-
est distances from B to targets C and E are 1 and 2, respectively. Therefore, the effec-
tiveness of state B is dB= min

(
dCB , dE

B

)= min (1, 2) = 1. Similarly, the effectiveness
of state D is dD= min

(
dCD, dE

D

) = min (2, 1) = 1, and the effectiveness of state A is
dA= min

(
dCA , dE

A

)= min (2, 3) = 2
Second, to get the effectiveness of a transition s → s′, we calculate two distances from state s

to starget (i.e., ds) and s′ to starget (i.e., ds′), respectively Then, we compute the difference between
ds and ds′ denoted as �ds→s′ = ds − ds′ The difference, �ds→s′ is defined as the effectiveness
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indicator of the transition s → s′ whose value is equal to the change in the shortest distance from
the target after the transition s → s′. A value greater than zero for �ds→s′ indicates that it is
closer to the target after the transition s → s′, while a value less than zero implies that it is further
from the target. The absolute value of�ds→s′ indicates the number of steps closer or farther away
from the target It is noteworthy that two types of effectiveness indicators are located on different
ends of the indicator scales. A state with a higher value of ds is less effective, while a transition
with a higher value of �ds→s′ is more effective.

In Fig. 1a, there are three transitions with an effectiveness of 1 that move closer to the target
(�d A→B = �dB→C = �dC→D = 1). Additionally, there are two transitions that move away
from the target with unequal effectiveness (�dC→B = dC − dB = −1, �dC→A = dC − d A =
−2). The transition C→A, which moves further back, has lower effectiveness. Polytomous effec-
tiveness differentiates between various types of backward movement. In Fig. 1b, the effectiveness
of three transitions close to the target is also equals 1 (�d A→B = �dB→C = �dD→E = 1).
Notably, �dB→D = �dD→B = 0, indicating that the distance to the target remains unchanged
after these transitions. This suggests that D→B, compared to the more effective D→E, is a less
efficient transition and not always the optimal choice for returning to the shortest path. Since
�dB→A = −1, the transition B→A is a worse option than B→D. The polytomous effective-
ness provides a more nuanced evaluation than the dichotomous effectiveness based solely on the
shortest path, better aligning with the task design.

This section presents a general framework that can automatically evaluate the polytomous
effectiveness indicators of states and transitions in FSA tasks. The process of evaluating the
effectiveness can be summarized in three steps: (1) Define the state space. This involves finding
all the target states. During this step, states may be categorized and simplified. Simultaneously,
all state transitions are defined. (2) Calculate the effectiveness ds for all states. The shortest path
can be identified using transition diagrams or search algorithms. (3) Calculate the effectiveness
�ds→s′ for all transitions. This process requires that each state within the task can reach a target
state through a series of transitions. If this requirement is not met for some states or transitions,
additional values may need to be assigned to their effectiveness. In the two subsequent sections,
we will demonstrate the process of evaluating effectiveness for two real tasks, one with single
optimal path and the other with multiple optimal paths.

1.2. Example of Evaluating the Effectiveness Indicators for a FSA Task with a Single Optimal
Path

In this section, we demonstrate the calculation of effectiveness metrics using the Ticket task
from PISA 2012, which is the most commonly used problem-solving task in existing models
(Chen, 2020; Han et al., 2022; Xiao & Liu, 2023; Fu et al., 2023) . Taking sub-task CP038Q02
as an example, this task requires students to purchase a full-fare ticket for country trains, valid
for two trips. Students have to sequentially select the correct option on the simulated ticketing
interface (“COUNTRY TRAINS”→“FULL FARE”→“INDIVIDUAL”→“2 Trips”→“BUY”)
Before selecting “BUY”, the student has the option to hit “CANCEL” to restart the task from the
beginning. This taskwas scored in a binary fashion, depending onwhether the student successfully
purchased the correct ticket.

When evaluating dichotomous effectiveness in the Ticket task, previous studies have already
completedmuch of the fundamental work for evaluating the polytomous effectivenesswe propose.
For the first step, Chen (2020) defined all states and transitions. Building on this, Han et al. (2022)
merged states with similar error types, effectively reducing the number and complexity of states
and transitions. More importantly, they illustrated all paths leading to the target state through a
transition diagram, which is crucial for identifying the shortest path from each state to the target in
the second step. However, some adjustments to the state categorization and the transition diagram
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Figure 2.
A new transition diagram for the CP038Q02 subtask of the Ticket task in the PISA 2012. Note: The solid arrows represent
transitions that move closer to the target state, while the dotted arrows represent transitions that do not move closer to the
target state.

are still required for assessing the polytomous effectiveness. It is important to note that the Ticket
task has only one target state, but also includes a non-target end state. Once the incorrect end state
is reached, the problem-solving process terminates prematurely, making it impossible to reach
the target state. In this case, we cannot get the shortest distance between the incorrect end state
and the target state. From the task design, the incorrect end state is further from the target state
than all other states, so we can set its effectiveness to be lower than any other state. Eventually, we
distinguish between the correct target state and the incorrect end state to depict a new transition
diagram (see Fig. 2) and then calculate the effectiveness of all transitions (see Table 1).

To proceed, we complete the final two steps by sequentially calculating the two types of
effectiveness indicators. Step (2): The state effectiveness ds distinctly and meaningfully differen-
tiates between states A,B,C,D,E, and K on the optimal path. States G, H, I, and J on an incorrect
path indicate a shortest distance of 6 transitions from the target. The other incorrect state F, as a
branch on the optimal path, is only 2 steps away from the target. Since the maximum effective-
ness value among states A to J is 6, we set the effectiveness of incorrect end state L as 7. Step
(3): Different from the dichotomous effectiveness which can only indicate correct or incorrect,
our effectiveness �ds→s′ can be polytomously scored in the task with a single optimal path, and
clearly show the change in the shortest distance to the target state after each transition. Comparing
with the evaluation of Han et al. (2022), the effectiveness of correct transitions remains at a value
of 1, while incorrect transitions have effectiveness values ranging from 0 to−5, with lower values
indicating that the target is further away after the transitions These two types of effectiveness can
be aggregated into descriptive indicators, not only providing a deeper description and evaluation
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of the problem-solving process but also serving as validation for estimating latent abilities in
measurement models. The application of aggregated indicators will be discussed in detail in Sect.
5.

1.3. Example of Evaluating the Effectiveness Indicators for a FSA Task with Multiple Optimal
Paths

In this section, we demonstrate the step-by-step evaluation of effectiveness indicators using
a complex FSA task—the Balance Beam task—a collaborative problem-solving task from the
Assessment and Teaching of 21st Century Skills (ATC21S) project (Griffin & Care, 2014) .
In the Chinese version of the Balance Beam task developed by Yuan et al. (2019), two students
are required to balance a beam that has four notches on each side for placing four weights
(50g, 100g, 300g, and 500g). Only student A possesses all four weights at the beginning, while
student B has none (see Fig. 5 in the Appendix). The testing system permits weight transfers
between the students. The Balance Beam task exemplifies a complex FSA task with a multitude
of intermediate states, intricate transition connections, and notably, multiple target states. There
aremultiple optimal paths to a target, because the order of hanging the same set ofweights does not
affect the final balance. The existence of multiple targets further expands the number of optimal
paths. These paths are interconnected, meaning that a change in the target state during problem-
solving can render a previously optimal transition suboptimal from a broader perspective. This
complexity in the task structure necessitates a nuanced approach to evaluating the effectiveness
of transitions and states within the problem-solving process. The procedure for automatically
evaluating the effectiveness of all states and transitions in the Balance Beam task is as follows:

Step (1): Define all problem states and state transitions. Given the collaborative nature of the
task, we view both sides of the balance beam as a whole, defining the state space based on the
positions of the four weights. Each weight can occupy one of ten possible positions: eight on the
beam and two off-beam, i.e., held by a student (see Appendix A for details). Given four weights,
there are potentially 104 =10,000 distinct states. Consistent with the principle when defining the
state space, the target state is also defined at the group level, which means that the states in which
the beam is balanced are the target states shared by both individuals. Whether utilizing two, three,
or four weights, there exists a wide array of combinations for hanging weights to attain balance.
The Depth First Search (Cormen et al., 2022) is adept at swiftly locating all the target states in
the Balance Beam task within one second. When using two, three, and four weights, there are 24,
68, and 40 target states, respectively.

A transition between states occurs when the position of any of the four weights changes. The
testing platform accommodates four kinds of actions capable of inducing a position change and a
state-to-state transition, which include hanging weights, removing weights, transferring weights,
and shifting notches on the same side Fig. 6 illustrates four types of transitions that can occur when
a single weight is moved among ten possible positions. Note that Fig. 6 is not the state transition
diagram showing all possible paths in this task. Under these conditions, the task permits 168,000
possible state-to-state transitions. For any intermediate state, all target states are accessible Two
students have the flexibility to change targets at any time. Thus, it is impractical to represent all
states and transitions through a diagram or a table, let alone find all the optimal paths from a given
state to target states.

Step (2): Evaluate the effectiveness of all states Within the context of the Balance Beam
task, the effectiveness indicators ds of the state s can be interpreted as the theoretical shortest
distance between the current state and any group-level target state The state effectiveness defined
under the grouplevel target does not distinguish to which student the remaining transitions belong.
Obviously, the effectiveness of all target states is set as dtarget = 0. Subsequently, the effective-
ness of all non-target states is evaluated. Since Any intermediate state can reach all target states
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before exiting the mission, we developed a rule-based algorithmwhich incorporates the positional
encoding and edit distance. This approach can be programmed to compute the shortest distance
between any intermediate and target states swiftly and precisely to avoid the labor-intensive and
potentially error-prone process of manual computations. Further details of the algorithm can be
found in Appendix A.

Step (3): Calculate the effectiveness of all transitions. With the effectiveness of all states
determined, the effectiveness of all the transition can be obtained simply by �ds→s′ = ds − ds′ .
This transition effectiveness defined at the group level represents the impact of an individual’s
action on accomplishing the common goal shared by the two people.

In the Balance Beam task, the number of original states and transitions is too large, and the
role of the original states (such as all four weights being with student A) and actions (for instance,
student A passing the 50g weight to student B) is ambiguous in terms of problem-solving. The
two types of effectiveness ds and�ds→s′ facilitate a rapid and meaningful categorization of these
numerous states and transitions. The polytomous effectiveness indicators not only reduce the
number of categories for states and transitions but also enhance the interpretability of further
analysis for this task. In the balance beam task, all states can be divided into 6 types based on
the value of ds from 0 to 5. Each type of state can transition from itself (e.g., 5→5), or from
states that are one transition away (e.g., 5→4), resulting in 16 types of transitions according to the
effectiveness of the states before and after the transition s → s′. Furthermore, based on the values
of transition effectiveness �ds→s′ , all transitions can be classified into 3 categories: advancing
towards the target (�ds→s′ = 1), staying in the same place (�ds→s′ = 0), and moving away
from the target (�ds→s′ = −1).

2. Sequential Response Model with Polytomous Effectiveness Indicators (SRM-PEI)

The new proposed indicators in Section 1 not only allow the description of response charac-
teristics, but also enable the development of measurement models for complex problem-solving
tasks. Specifically, we maintain the framework of the measurement model combined with the
random process, substituting the dichotomous effectiveness indicator for the transition with the
polytomous effectiveness indicator. As an example, we take the Sequential Response Model
(SRM; Han et al. (2022)), a model for state transitions with a dichotomous effectiveness indica-
tor, to illustrate how to extend amodel designed for a single optimal path task to one applicable for
a complex task using the new effectiveness indicator. We call it the Sequential Response Model
with Polytomous Effectiveness Indicators (SRM-PEI).

2.1. Model Specification

Drawing inspiration fromSRM (Han et al., 2022) , we focus on the state transitions prompted
by a respondent’s actions, viewing these as external manifestations of latent ability. Each state is
treated as an item,while each transition originating from this state is considered a choice pertaining
to that item. This structure helps us conceptualize and analyze the transitions in process datawithin
an IRT model. The effectiveness indicators of transitions (�ds→s′) in SRM-PEI provide a more
nuanced assessment of how good or bad each transition is.

Assuming that the next state s′ only depends on the current state s and the respondent’s latent
ability during the problem-solving process We can treat the response sequence as a discrete-
time stochastic process with a conditional Markov property. Given that a state can have multiple
transitions in a complex problem-solving task, we employ the effectiveness indicators to ascertain
the relative superiority among all transitions. The SRM-PEI can thus be built within the framework
of the NRM The SRM-PEI specifies the conditional probability of respondent i choosing to reach
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state s′ when in problem state s as follows:

P(Si,l+1=s′ | Si,l = s, θi ,λ,D) = exp(�ds→s′ · θ i+λs→s′)∑
x∈Ms

exp(�ds→x · θ i+λs→x )
(1)

where θ i represents the latent ability of respondent i , while λs→s′ is the tendency parameter for
the transition from state s to s′ and reflects the easiness of the transition. A larger value of λs→s′
indicates a higher likelihood of making that transition. λ is a vector of tendency parameters for
all transitions within the task. Ms represents the set of reachable states in the next step from
the current state s; and �ds→s′ is the effectiveness indicator calculated in the previous section,
forming a vector D of effectiveness indicators for all transitions.

2.2. Model Estimation

For flexibility and convenience in implementation, Bayesian estimation is adopted to estimate
the parameters of latent ability and transition tendency. Let θ and S denote the collection of latent
variables for n respondents and their response sequences. The posterior probability of θ and S
can be expressed as follows:

p(θ, λ|S,D) ∝p(S| θ, λ,D)p(θ, λ) =
n∏

i=1

Li−1∏

l=1

p(Si,l+1=s′ | Si,l=s,θi ,λ,D)p(θi )p(λ) (2)

where p(θi ) and p(λ) are the prior distributions of the latent ability and vector of the transition
tendency parameter, respectively, and are assumed to be independent of each other. To ensure
model identification, the sum of all tendency parameters of transitions from the same state is
constrained to be zero. To simplify Bayesian estimation, we assume that the prior distributions
for the latent abilities are assumed to be standard normal distributions. The Markov chain Monte
Carlo (MCMC) estimation is implemented using theMetropolis-Hastings-within-Gibbs sampling
approach to empirically approximate the joint posterior distribution (Patz & Junker, 1999a,b) .
The detailed sampling procedures can be found in the Appendix of Han et al. (2022).

It is crucial to assess the convergence and model fit in Bayesian estimation. We used two
methods to monitor MCMC convergence: (1) the potential scale reduction factor (PSRF; Gelman
& Rubin, 1992), where PSRF values approximating 1 suggest convergence; (2) Monte Carlo
error (MCE; Koehler et al. (2009)) which measures the standard deviation of the sample means
across chains. A smaller MCE indicates less variability between different chains, hence a higher
likelihood of convergence. Following the assurance of convergence, we employ Posterior predic-
tive checking (PPC) using the test statistics approach to evaluate the model-data fit (Gelman et
al., 1996, 2014; Guttman, 1967; Rubin, 1984) . Specifically, we visually compare the observed
frequencies of transitions to those obtained from the posterior predictive data. Additionally, we
compute the posterior predictive p-value (ppp) based on the chi-square test of the twodistributions.
A ppp value close to 0.5 signifies a good model fit (Gelman et al., 2014) .

3. Simulation Study

In this section, we have performed a Monte Carlo simulation study to assess the precision
of the SRM-PEI in estimating latent abilities and transition tendencies within the context of a
simulated problem-solving task encompassing multiple optimal paths. This study is designed
to explore the impacts of differing prior distributions, sample sizes, and lengths of response
sequences on the parameter recovery performance of the SRM-PEI.
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4. Simulation Design

In this simulation study, three factors were examined for their potential impact on the perfor-
mance of SRM-PEI: sample sizes, sequence lengths, and prior distributions for transition tendency
parameters. This resulted in a total of 16 condition: 4 (sample sizes: 200, 500, 1000, and 2000)
× 2 (sequence lengths: short, long) × 2 (prior distributions: informative, non-informative). Each
condition was replicated 100 times. The descriptive of the simulated problem-solving task and
the effectiveness of the states and transitions are given in Supplementary Material S1

The true ability parameters were generated from a standard normal distribution for each
replication.The transition tendencyparameters can influence the lengths of the observed sequences
(Han et al., 2022) . Based on the values of polytomous transition effectiveness and the magnitude
of transition tendency parameters in the original SRM (Han et al., 2022) , we designed two sets
of tendency parameters for SRM-PEI that could consistently generate differences in sequence
length (see Table S2 in the Supplementary Material). To ensure model identification in SRM-PEI,
a constraint was placed on

∑
x∈Ms

λs→x= 0. The priors for transition tendency parameters were
only set for transitions with effectiveness �ds→s′ < 1, i.e., transitions not lying on the optimal
paths. Tendency parameters of transitions with �ds→s′ = 1 were set to equal the opposite of
the sum of the tendency parameters for transitions with �ds→s′ < 1 starting from the same
state s The informative prior was a standard multivariate normal distribution λ�ds→s′ <1~MVN(0,
I), where I refers to the identity matrix. The non-informative prior only changed the standard
deviation to 10, so λ�ds→s′ <1~MVN(0, I· 100). The prior for the ability parameters was set as a
standard normal distribution.

In MCMC, three chains were implemented with different initial values. The 10,000 sam-
ples from each chain were obtained, and the first 5,000 samples were discarded as burn-in. The
remaining 15,000 samples in total were taken as the posterior distribution for each parameter. The
last 500 samples from each of the three chains were used to conduct posterior predictive checks
(PPC)

4.1. Results of the Simulation Study

Under all conditions, the MCMC estimates of SRM-PEI converged normally. The PSRF
values for all parameters in both task settings were between 1 and 1.1, providing evidence of
convergence (Brooks & Gelman, 1998; Gelman & Rubin, 1992) . Furthermore, the MCE was
0.024 for ability parameters and 0.004 for tendency parameters, which suggests negligible differ-
ences between the means of the sampling chains for each parameter and supports the assertion
of convergence. In terms of model-data fit, the ppp value of 0.598 was close to 0.5, indicating a
good fit between the model and the data. The empirical values of each transition in the observed
data were consistent with the median of the posterior predictive distributions (see Figure S1 in
the Supplementary Material).

The average sequence lengths of the short and long sequence conditions in this task were
17 and 45, respectively. To evaluate the accuracy of parameter estimation, four metrics were
calculated under each condition: BIAS, MAE (mean absolute error), RMSE (root mean squared
error) and correlation between the estimated and true values of ability and tendency parameters.
The estimation accuracy of ability and tendency parameters is shown in Table 2.

In most conditions, the BIAS of latent ability parameters remains relatively small and
decreases with larger sample size and longer sequence length, particularly under informative
priors (standard normal distribution), where the absolute value of BIAS does not exceed 0.005.
Moreover, the correlations between the estimated and true values were relatively high and sel-
dom influenced by the prior, sequence length, and sample size. MAE and RMSE displayed more
obvious differences across various factors. Generally speaking, the errors of tendency parameters
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Table 2.
The estimation accuracy of ability and tendency parameters in SRM-PEI in the simulated problem-solving tasks with
multiple optimal paths.

Sample size Sequence length Prior BIASa MAE RMSE Correlation
θ θ λ θ λ θ λ

200 Short Non-inf. 0.051 0.257 0.139 0.321 0.174 0.922 0.988
Inf. −0.003 0.256 0.127 0.321 0.161 0.920 0.990

Long Non-inf. 0.011 0.262 0.126 0.333 0.162 0.932 0.992
Inf. 0.005 0.258 0.112 0.329 0.144 0.932 0.995

500 Short Non-inf. 0.031 0.230 0.086 0.301 0.111 0.900 0.995
Inf. −0.001 0.229 0.074 0.301 0.096 0.900 0.997

Long Non-inf. 0.020 0.212 0.071 0.283 0.092 0.928 0.998
Inf. 0.003 0.211 0.071 0.282 0.091 0.928 0.998

1000 Short Non-inf. 0.011 0.221 0.056 0.289 0.072 0.896 0.998
Inf. 0.001 0.220 0.055 0.288 0.070 0.897 0.998

Long Non-inf. 0.003 0.206 0.051 0.276 0.066 0.925 0.999
Inf. 0.000 0.205 0.049 0.276 0.065 0.925 0.999

2000 Short Non-inf. 0.007 0.214 0.040 0.280 0.050 0.893 0.999
Inf. 0.001 0.213 0.040 0.279 0.051 0.894 0.999

Long Non-inf. 0.004 0.199 0.036 0.266 0.046 0.925 0.999
Inf. 0.004 0.200 0.037 0.267 0.048 0.924 0.999

a The constraint leads to zero average bias over all tendency parameters.

were lower than those of latent abilities. The precision of the estimation was found to increase
with sample size and sequence length, both of which emerged as key factors influencing MAE
and RMSE Specifically, a larger sample size was associated with a more accurate estimation of
tendency parameters, as reflected by the reduced MAE and RMSE. Likewise, longer sequences
yielded lower MAE and RMSE for both latent abilities and tendency parameters. For complex
multi-optimal-path tasks, informative priors were found to reduce estimation errors for both types
of parameters, especially under conditions of a small sample size and a short sequence.

The estimation accuracy of each transition parameter was examined (see Table S3 in the
SupplementaryMaterial)Most of the tendency parameters exhibited anRMSE lower than average,
and the tendency parameters with high accuracy were the important transitions in the problem-
solving process. Setting informative priors can reduce the estimation errors of transition tendency
parameters with low actual occurrence frequencies, especially in cases with small samples and
short sequences. Some transition parameters with low occurrence frequencies might still face
estimation errors due to amismatch between the prior and the data, resulting in parameter estimates
pulled towards the overall mean.

5. Empirical Study

In this section, we demonstrate the applicability of SRM-PEI by analyzing empirical data
from two tasks, one with a single optimal path (i.e., the Ticket task) and the other with multiple
optimal paths (i.e., the Balance Beam task). Specifically, we examine whether SRM-PEI can
distinguish response patterns of different abilities and provide rational estimates of transition
tendencies. In addition, we conduct model comparisons between SRM-PEI and other process
models on both tasks

Downloaded from https://www.cambridge.org/core. 06 Jan 2025 at 10:36:26, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


890 PSYCHOMETRIKA

5.1. Ticket Task

5.1.1. Data Description and Analysis Process for the Ticket Task To demonstrate the appli-
cation of the SRM-PEI in conjunction with effectiveness indicators, we utilized it to analyze log
file data from the sub-task CP038Q02 of the TICKET unit in PISA 2012. After excluding data
that did not align with the transition diagram, we analyzed sequences from 31,906 students. The
lengths of these sequences ranged from 2 to 110, with an average of 6.983 and a median of 6. For
comparative purposes, we also implemented the original SRM (Han et al., 2022) and the SRMM
(Xiao & Liu, 2023). We estimated transition tendency parameters and latent abilities for all three
models. While SRM and SRMM relied on dichotomous effectiveness and Bayesian estimation as
outlined in their respective studies, SRM-PEI used the polytomous transition effectiveness derived
in Sect. 1. Given that effectiveness in SRM-PEI is akin to discrimination parameters in the NRM,
extreme negative values (e.g., �dD→L = −5) were considered impractical. The pre-experiment
show that directly using the effectiveness of the minimum value of −5 harms the model-data fit
of SRM-PEI and leads to unreasonable transition characteristic curves. We scaled the effective-
ness indicators to a range of −1 to 1 before integrating them into SRM-PEI. For the Bayesian
estimation process, we employed three chains with 10,000 sampling iterations each, discarding
the initial 5,000 as burn-in. The priors for latent ability and transition tendency parameters were
set to standard normal and standard multivariate normal distributions, respectively. The approach
for assessing convergence and model-data fit mirrored that used in the simulation study. To com-
pare the models, we utilized various indices such as the Deviance Information Criterion (DIC;
Spiegelhalter et al. (1998)), and Pseudo-Bayes Factor (PsBF; Geisser & Eddy, 1979; Gelfand &
Dey, 1994). For DIC, lower values suggesting a model that provides a better fit without unnec-
essary complexity. According to Levy & Mislevy (2016, p. 246), a PsBF value greater than 3 is
considered to provide positive, or even stronger, evidence in favor of Model 1 over Model 2.

The latent abilities estimated by the other two models, SRM and SRMM, were utilized
to validate the SRM-PEI. Another essential part of our analysis involved determining whether
latent abilities from SRM-PEI could account for the overall problem-solving performance in
PISA 2012. To this end, we selected ten items (CP018Q04T, CP018Q05, CP025Q01, CP025Q02,
CP036Q01, CP036Q02, CP036Q03, CP038Q01, CP038Q02, and CP038Q03) and used Rasch
models to estimate overall problem-solving performance. In addition, we conducted an extensive
calculation of effectiveness indicators for all states and transitions present in the sequences. This
analysis led to the derivation of four aggregated indicators, which were employed to validate the
latent abilities estimated by SRM-PEI. Three of these indicators were based on the effectiveness of
transitions: the proportion of transitions that approach the target state (i.e.,�ds→s′= 1), transitions
that maintain the same distance from the target state (�ds→s′= 0), and transitions that move away
from the target state (�ds→s′< 0). The fourth indicator was state-based, reflecting the average
shortest distance to the target state across all states in a given sequence. These indicators provided a
comprehensive viewof the students’ problem-solving processes, further substantiating the validity
of the latent abilities estimated by SRM-PEI.

5.1.2. Results of the Empirical Study on the Ticket Task The Bayesian estimation metrics for
the three models, as shown in Table 3, proved the robustness of the MCMC estimates for the
three models echoing the findings of previous studies (Han et al., 2022; Xiao & Liu, 2023;
Fu et al., 2023) . The Potential Scale Reduction Factor (PSRF) for all parameters was below
1.1, and the Monte Carlo Error (MCE) for ability and tendency parameters was small. These
indicators confirm that the MCMC for the three models has successfully converged. Furthermore,
the posterior predictive p-value (ppp) for all threemodels was close to 0.5, suggesting an excellent
fit between the models and the observed data. Most notably, two evaluation indices for model
comparisons (DIC and PsBF) strongly supported the superiority of the SRM-PEI over the SRM
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Table 3.
Model comparison of three models in the two empirical studies.

Max PSRF MCE ppp DIC PsBF
θ λ

Ticket task
SRM-PEI 1.045 0.037 0.002 0.441 202188.986
SRM 1.050 0.036 0.002 0.443 203780.763 3529.466
SRMM 1.060 0.051 0.002 0.457 230881.946 34080.304
Balance Beam task
SRM-PEI 1.050 0.016 0.018 0.458 42791.019
SRM-v1 1.060 0.022 0.023 0.334 42978.018 151.365
SRM-v2 1.058 0.018 0.024 0.650 43183.545 361.788
SRMM-v1 1.066 0.019 0.050 0.241 47100.057 6,273.488
SRMM-v2 1.061 0.021 0.040 0.243 48485.016 5,657.929

and SRMM in modeling the Ticket task. This indicates that process models embedded with
polytomous effectiveness parameters are a better fit than those with dichotomous effectiveness
parameters.

The posterior estimates for the transition tendency parameters from SRM-PEI are shown
in Table 4 The transition parameters obtained for SRM and SRMM aligned closely with those
reported in the original studies by Han et al. (2022) and Xiao and Liu (2023). When grouping
by transitions under the same state, the ranking order of the transition tendency parameters esti-
mated by SRM-PEI was consistent with those derived from SRM and SRMM. Figure3 displays
characteristic curves for each group of transitions fitted by SRM-PEI, revealing that the transition
tendency parameters assisted by polytomous effectiveness accurately portrayed the probabilities
in a manner that reflects the inherent dynamics of the Ticket task. These curves demonstrated that
students with higher abilities were more likely to engage in actions that brought them closer to the
target state or returned to the initial state from the incorrect path. In contrast, students with lower
abilities tended to engage in actions that enter or stay on the incorrect path. This distinction is cru-
cial for understanding the variations in problem-solving abilities among students, as reflected in
their choices during the task. It underscores the effectiveness of SRM-PEI in accurately capturing
these subtle differences.

Table 5 summarizes the marginal posterior distributions for latent abilities alongside corre-
sponding response sequences, focusing on the five patterns that received the highest and lowest
abilities from SRM-PEI. Compared with the states represented by letters, the implementation of
state effectiveness encoding markedly enhanced the ability to discern students’ proximity to the
target. Notably, behavioral patterns closely aligningwith the optimal pathwere associatedwith the
highest problem-solving abilities. In contrast, those students who initially pursued incorrect paths
and faced difficulties in redirecting towards the correct path were assigned the lowest abilities.

The latent ability estimated by SRM-PEI demonstrated a very high correlation with the abil-
ity estimates from both SRM (r = 0.987∗∗∗) and SRMM (r = 0.975∗∗∗). Furthermore, the
correlation of the problem-solving abilities as assessed in PISA 2012 with latent abilities from
SRM-PEI was marginally higher (r = 0.608∗∗∗) compared to those obtained from SRM (r
= 0.601∗∗∗) and SRMM (r = 0.607∗∗∗). This finding suggests that SRM-PEI may provide a
slightly more accurate representation of students’ problem-solving abilities. In addition, the latent
abilities of SRM-PEI revealed significant correlations with aggregated variables that describe the
problem-solving process. These correlations are indicative of the model’s nuanced understanding
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Figure 3.
State transition characteristic curves for all transitions under each state of the Ticket task as estimated by SRM-PEI

of students’ problem-solving strategies. Specifically, students with higher abilities were more
likely to make progress towards the target (indicated by �ds→s′ = 1, r = 0.976∗∗∗), and less
inclined to maintain a constant distance (�ds→s′ = 0, r = –0.916∗∗∗) or move backwards
(�ds→s′ < 0, r = −0.843∗∗∗). They generally exhibited a shorter average distance to the
target throughout their sequence of actions (r = –0.984∗∗∗). These findings demonstrate at
the behavioral level that students with high abilities assessed by SRM-PEI tend to engage in
more actions that are conducive to problem-solving and fewer actions that are detrimental to
it. Moreover, they exhibit a preference for choosing paths that are easier to approach the tar-
gets throughout the problem-solving process. This interpretation underscores the importance of
considering both the directionality of actions (towards or away from the target) and the overall
strategic approach in assessing problem-solving abilities. The SRM-PEI’s ability to capture these
aspects highlights its utility in providing a comprehensive evaluation of problem-solving skills in
educational assessments.
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Table 5.
Marginal posterior distributions for the top five and bottom five abilities estimated by SRM-PEI and corresponding
response patterns for the Ticket task.

Sequence of Sequence coded Frequency Mean Median SD 95% HPDI
states by state effectiveness a

ABCDEK 543210 11111 0.827 0.773 0.703 (−0.467, 2.229)
ABCDE 54321 248 0.760 0.709 0.722 (−0.579, 2.197)
ABCD 5432 5 0.692 0.633 0.745 (−0.666, 2.185)
ABCDABCDEK 5432543210 92 0.684 0.635 0.572 (−0.366, 1.827)
ABCDABCDE 543254321 1 0.626 0.578 0.568 (−0.386, 1.783)
AGH 566 66 −0.910 −0.880 0.726 (−2.364, 0.462)
AGHIJ 56666 186 −0.934 −0.898 0.639 (−2.216, 0.269)
AGHI 5666 137 −0.964 −0.926 0.700 (−2.365, 0.352)
AGHIJL 566667 1665 −1.073 −1.033 0.606 (−2.286, 0.061)
AGHIL 56667 4964 −1.134 −1.093 0.673 (−2.479, 0.126)

95%HPDI: 95% highest posterior density interval.
a The end of the number 0 means that the correct ticket was bought, the end of the number 7 means that the
wrong ticket was bought, and the end of the other numbers means that the task was quit midway.

5.2. Balance Beam Task

5.2.1. Data Description and Analysis Process for the Balance Beam Task Students from eighth
and ninth grades across six schools in three regions of China participated in the Chinese version
of the Balance Beam task developed by Yuan et al. (2019). In this study, we only used records
from the sub-task requiring two weights to balance the beam. The states and transitions in the
records inconsistent with the system settings (as detailed in Sect. 1.3) were excluded from the
analysis. After data cleaning, there were a total of 422 groups with 167 successfully completing
the task. On average, each group executed 33 transitions.

Based on the classification of effectiveness values in Sect. 1.3, there are 6 types of states and
16 types of state transitions. Additionally, Yuan’s testing system allows students to exit the test
either midway through or after task completion. As a result, the extra termination states (marked
as #) were added. Unlike the incorrect end state in the Ticket task, we defined the effectiveness
of the transitions leading to the termination states in two cases: Exiting the system after reaching
any target state (the transition is denoted as 0→#) was considered correct with an effectiveness of
1 (i.e., �d0→# = 1). Since the task could not be continued after the termination, the transitions
from the 5 types of non-target states (ds= 5, 4, ..., 1) to the termination state were the incorrect
early termination. A lower value of effectiveness than any other transition was assigned to these 5
transitions of early termination (�ds→# = −2 for any state s if ds > 0), indicating themas the least
preferable among the 22 (i.e., 16+1+5) transition types. In this study, we classified transitions
based on the values of state effectiveness before and after the transition (22 categories), rather
than using the original state representations from the task interface (168,000 categories) or the
values of transition effectiveness (4 categories, i.e., �ds→s′ = −2,−1, 0, 1). By doing so, we
ensured a manageable number of transition tendency parameters, with grouped transitions more
likely to conform to the premise of equal difficulty, thereby sharing the same tendency parameters
in the SRM-PEI.

Since Sect. 1.3 has defined the target states and the two types of effectiveness at the group
level for the Balance Beam task, the measurement model combined with these effectiveness was
designed to estimate the collective problem-solving ability of groups. To facilitate a comparison
between SEM-PEI and the models utilizing dichotomous effectiveness, we adapted the polyto-
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mous effectiveness into dichotomous form. Specifically, transitions that progress closer to the
targets (i.e., �ds→s′ = 1) retained their effectiveness value of 1, denoting correct transitions. In
contrast, transitions that lead away from the targets (i.e., �ds→s′ < 0) were considered incorrect.
For SRM and SRMM, these transitions were reassigned values of −1 or 0 as dichotomous effec-
tiveness, respectively. Transitions that keep a constant distance from the target (i.e.,�ds→s′ = 0)
were bifurcated as either correct or incorrect, leading to two distinct versions of both SRM (termed
SRM-v1 and SRM-v2) and SRMM (termed SRMM-v1 and SRMM-v2). The latent abilities esti-
mated by these four versions offered a basis for validating the SRM-PEI. Mirroring the approach
used for the Ticket task, we computed the proportion of each of the four types of transitions,
categorized by their effectiveness values, within every sequence. This computation also included
an assessment of the average distance from the target throughout the problem-solving process.
For the Balance Beam task with multiple targets, we defined the nearest targets as the target states
closest to the current state. Moreover, we quantified the average number of nearest targets, and the
proportion of transitions that either augmented or reduced this number. To evaluate the efficacy of
the SRM-PEI, we scrutinized the correlations between these seven aggregated indicators, based
on both state and transition effectiveness, and the latent abilities estimated by the SRM-PEI. These
correlations were integral to understanding the validity and interpretability of the SRM-PEI in
measuring group problem-solving abilities.

5.2.2. Results of the Empirical Study on the Balance Beam Task All models met the criteria
of convergence and good model-data fit as shown in Table 3. The trace plots for the ability and
transition tendency parameters specific to SRM-PEI are displayed in Figures S2 and S3 in the
SupplementaryMaterial The model comparison metrics indicated a preference for SRM-PEI over
the two versions of SRM and SRMM. These preliminary findings suggest that, considering the
complexity of the model, SRM-PEI is more apt at predicting data in complex problem-solving
tasks that encompass multiple optimal paths.

Upon evaluating the transition tendency parameters estimated by SRM-PEI (see Table 6) and
by two versions of SRM and SRMM (see Table S4 in the Supplementary Material), the assign-
ment schemes of the effectiveness for transitionsmaintaining the same position (i.e.,�ds→s′ = 0)
played an important role.When these transitions were considered incorrect, their tendency param-
eter rankings generally decreasedA comparison of the rankings for the tendency parameters across
each group of transitions revealed that SRM-v1 aligned most closely, albeit not identically, with
the estimations of SRM-PEI. Another crucial observation was that assigning a small effectiveness
value of −2 to the five types of early termination transitions did not compromise the rationality
and order of the tendency parameters in SRM-PEI. These transitions uniformly received the low-
est rankings in terms of transition tendency parameters, signifying a strong preference to avoid
prematurely ending the task. This inference was supported by the low percentages of groups that
opted for early termination (0.8%, 1%, 4%, 0.6%, and 0.5%).

Figure 4 displays the characteristic curves for each group of transitions fitted by SRM-PEI.
These curves demonstrated the nuanced capabilities of SRM-PEI, especiallywith its incorporation
of polytomous transition effectiveness, in precisely fitting probability curves aligned with the task
design. For states that were not the target, groups with lower abilities tended to exhibit a higher
likelihood of either terminating the task prematurely or moving away from the target. In contrast,
groups with medium abilities generally engaged in actions that maintain the current distance from
the target.Most notably, groupswith the highest abilities demonstrated a pronounced propensity to
make transitions that brought them closer to the target. Upon reaching the target state, the pattern
of responses shifted. Groups with the highest abilities are most likely to correctly conclude the
task and exit the system, a behavior indicative of successful task completion. However, groups
with lower abilities might persist in actions like passing weights (which did not affect the balance)
or hanging or removing weights (which could disrupt the balance). These observed behaviors and
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Table 6.
Marginal posterior distributions for the transition tendency parameters of SRM-PEI for the Balance Beam task.

Transition Transition effectiveness Frequency Mean Median SD 95%HPDL 95%HPDU

5→# −2 1 −1.742 −1.722 0.418 −2.538 −0.911
5→5 0 44 0.124 0.131 0.306 −0.462 0.766
5→4 1 84 1.618 1.616 0.274 1.074 2.132
4→# −2 44 −2.203 −2.182 0.187 −2.606 −1.870
4→5 −1 85 −1.549 −1.549 0.134 −1.813 −1.289
4→4 0 1911 1.981 1.970 0.079 1.849 2.152
4→3 1 1349 1.770 1.757 0.117 1.557 1.999
3→# −2 233 −1.759 −1.753 0.120 −2.000 −1.546
3→4 −1 1394 0.304 0.303 0.051 0.208 0.400
3→3 0 2870 1.096 1.094 0.048 1.001 1.184
3→2 1 1473 0.358 0.362 0.099 0.184 0.575
2→# −2 2 −1.918 −1.921 0.146 −2.209 −1.668
2→3 −1 1329 1.217 1.217 0.069 1.077 1.351
2→2 0 1404 1.001 1.004 0.059 0.878 1.109
2→1 1 528 −0.300 −0.295 0.109 −0.522 −0.095
1→# −2 5 −0.900 −0.909 0.176 −1.249 −0.584
1→2 −1 404 0.945 0.943 0.089 0.788 1.126
1→1 0 338 0.528 0.529 0.087 0.355 0.702
1→0 1 219 −0.572 −0.567 0.132 −0.835 −0.322
0→ 1 −1 53 0.540 0.538 0.160 0.238 0.817
0→0 0 24 0.484 0.493 0.129 0.225 0.729
0→# 1 119 −1.024 −1.018 0.170 −1.352 −0.685

95%HPDL: Lower bound of 95% highest posterior density interval.
95%HPDU: Upper bound of 95% highest posterior density interval.

the corresponding probability curves underscore the effectiveness of SRM-PEI in capturing the
likelihood of various transitions accurately.

Table 7 showcases sequences associated with the highest and lowest abilities estimated by
SRM-PEI. With the help of state effectiveness, we could clearly observe the problem-solving
process in complex tasks in which the massive original states were challenging to represent by
letters. High-ability groups efficiently located and followed optimal paths, demonstrating profi-
cient problem-solving processes. Conversely, low-ability groups wandered in states further from
the targets than the initial state and finally terminated the test process. States with an effectiveness
value of 4, which were one step further from the targets than the initial state with an effectiveness
value of 3, typically resulted from an incorrect action such as the improper transfer or suspension
of one weight.

The latent problem-solving abilities of groups estimated by SRM-PEI exhibited a very high
correlation with those derived from SRM (r = 0.922*** for SRM-v1 and r = 0.931***
for SRM-v2) and SRMM (r = 0.888*** for SRMM-v1 and r = 0.924*** for SRMM-v2),
indicating strong consistency across these models. In terms of aggregated indictors, groups with
higher abilities demonstrated a greater likelihood of advancing towards the target (�ds→s′ = 1,
r = 0.845***). They were less prone to maintaining the same distance (�ds→s′ = 0, r =
−0.502***), retreating one step (�ds→s′ = −1, r = −0.574***), or terminating the task
prematurely (�ds→s′ = −2, r = −0.381***). These groups also showed a shorter average
distance to targets throughout the sequence (r = −0.928***), suggesting efficient progression
towards task completion. Furthermore, they tended to focus on fewer targets (r = −0.422***),
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Figure 4.
State transition characteristic curves for all transitions in each state of the Balance Beam task as estimated by SRM-PEI.

Table 7.
Marginal posterior distributions for the top five and bottom five abilities estimated by SRM-PEI and corresponding
response patterns for the Balance Beam task.

Sequences coded by state effectiveness a Frequency Mean Median SD 95% HPDI

3210# 11 2.085 2.055 0.606 (0.932, 3.288)
32100# 1 1.681 1.660 0.494 (0.754, 2.675)
33210# 2 1.672 1.653 0.503 (0.717, 2.682)
321210# 1 1.549 1.534 0.439 (0.672, 2.369)
322110# 1 1.531 1.511 0.438 (0.709, 2.430)
33334444444# 1 −1.025 −1.031 0.304 (−1.607, −0.421)
3234344443344444444# 1 −1.035 −1.036 0.331 (−1.710, −0.426)
33434344344444# 1 −1.062 −1.064 0.360 (−1.792, −0.391)
3334444# 1 −1.102 −1.108 0.366 (−1.853, −0.399)
344444# 1 −1.474 −1.490 0.386 (−2.218, −0.709)

95%HPDI: 95% highest posterior density interval.
a The state effectiveness for the termination state (#) is not defined.

and take more actions that reduced (r = 0.735***) rather than increasing the number of nearest
targets (r = −0.471***). These findings underscore the strong alignment between the latent
ability as estimated by SRM-PEI and the actual performance in the problem-solving process.
The results affirm that SRM-PEI effectively characterizes the procedural aspects of evaluation,
highlighting its utility in assessing complex problem-solving skills.

6. Discussion

In this study, we innovated a method that assesses the effectiveness indicators of problem
states ds and transitions�ds→s′ in problem-solving tasks.Moreover, we proposed ameasurement
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model named the sequential responsemodel with polytomous effectiveness indicators (SRM-PEI)
Through simulation and empirical studies, we demonstrated that the effectiveness indicators and
SRM-PEI are capable of estimating latent problem-solving ability in various types of tasks.

Following the concepts of problem-solving and the characteristics of interactive tasks, we
defined the effectiveness of a state as the theoretical shortest distance from the target state and
the effectiveness of a transition between two states as the change in the theoretical shortest
distance to the target. To facilitate the application, we proposed a general algorithm for computing
the effectiveness indicators and illustrated the calculation process and results using two real
tasks. Applied to measurement models and sequence-based aggregated features, we established
an accessible methodology that promotes standardization and accuracy in the interactive problem-
solving tests. Our proposed effectiveness indicators demonstrate several primary benefits. First,
the automated nature of the evaluationmethod allows for rapid computation of the effectiveness of
all states and transitions through straightforward programming. Second, our evaluation approach
is not reliant on response data collection and can be performed once the task simulation system is
designed or the task is planned out. Third, in the context of complex tasks with multiple states and
transitions, the effectiveness indicators assist in simplifying and categorizing states and transitions.
The indicator values provide a clear semantic understanding of different categories, as illustrated
in the Balance Beam task. Fourth, in the simple task with a single optimal path, such as Ticket,
the polytomous effectiveness indicators offer a more detailed classification and richer information
compared to dichotomous effectiveness. Fifth, in the reinforcement learning framework that first
proposed action effectiveness (i.e., (LaMar, 2018) ), there is also a state-value function, closely
related to the action value function, which computes the expected weighted rewards in the future
for a given state, but the calculation is complex and difficult to use.Our proposed state effectiveness
has a concise meaning and low computational complexity to evaluate the value of states, which
enriches the applicable scope and improves the usability of effectiveness indicators.

The SRM-PEI model leverages the full potential of the effectiveness indicator �ds→s′ for
evaluating and differentiating various types of state transitions, especially filling the gaps in the
modeling and analysis of process data in complex problem-solving tasks. Furthermore, the SRM-
PEI model introduces a new tool for data analysis that can facilitate the development of more
intricate and realistic problem-solving interactive tests, as well as the evaluation of higher-level
cognitive abilities. Both simulation and empirical studies demonstrated that the SRM-PEI model
provides a comprehensive characterization of the easiness and probability of occurrence for a vast
number of state transitions. The transition characteristic curves not only serve to further evaluate
whether the model accurately fits the data, but also provide a detailed and intuitive description of
the difficulty of each transitionwithin the task.These curves canbeutilized to study the adaptability
of SRM-PEI to various tasks, inform the design of scoring based on transition tendencies, and
validate the scores. In this study, in order to test the validity of latent abilities, we also innovatively
created many aggregation indicators based on two effectiveness indicators, and all of them have
a very high correlation with the latent ability estimated by SRM-PEI.

Unlike the values of dichotomous effectiveness indicators in CTDC, SRM, and SRMM,
which merely categorize responses as correct or incorrect, the effectiveness indicators �ds→s′
provide more practical meaning, as their value signifies the distance toward the target that a
transition affords. Furthermore, the SRM-PEI broadens the applicability of these types of mod-
els to encompass more complex problem-solving tasks. The aforementioned models—CTDC,
SRM, and SRMM—while insightful, are best suited to the problem-solving task with a single
optimal path. In contrast, the introduction of effectiveness indicators allows SRM-PEI to navi-
gate inherently complex tasks with multiple optimal paths, as demonstrated by the Balance Beam
task. Therefore, the development of polytomous effectiveness and SRM-PEI signals a meaningful
progression in the analysis of process data in complex problem-solving tasks. We also simplify
the polytomous effectiveness of transitions to dichotomous version to makes SRM and SRMM
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capable of the Balance Beam task. From a different perspective, the SRM can be considered a
special case of the SRM-PEI with restricted effectiveness indicators. If the ability and tendency
parameters in SRM-PEI are reparametrized, then both the CTDC and SRMM can also be viewed
as special cases of the SRM-PEI with restricted effectiveness indicators. Additionally, two issues
need to be considered when estimating models with the polytomous effectiveness �ds→s′ : First,
this study categorizes transitions in the Balance Beam task based on the values of effectiveness,
which implies the assumption that all transitions with the same value of �ds→s′ have equal diffi-
culty and can be estimated with the same transition tendency parameter. This assumption needs
to be evaluated for its applicability to different tasks. Second, when some values of �ds→s′ are
excessively small as demonstrated in the Ticket task, it is feasible to scale the original values to
a range appropriate for the NRM framework to achieve a better model-data fit of SRM-PEI.

This study serves as an initial exploration, and several areas warrant further research in the
future. (1) Effectiveness indicators can be leveraged across different levels of process data analysis
and integrated with a wider range of models and analytic methodologies. In the framework of
computational psychometrics put forward by vonDavier (2017) for unstructured data in computer-
based interactive assessments, effectiveness indicators could be used not only in measurement
models, but also in sequence-based analysis approaches. (2) In addition to the two approaches
demonstrated on the Ticket task and the Balance Beam task, there are various ways to assign
effectiveness values to incorrect end or termination states and transitions leading to these states.
The impact of different effectiveness values on SRM-PEI or othermethods is alsoworth exploring.
(3) There are numerous possibilities to improve the SRM-PEI. Though two empirical studies
have all been conducted on a single sub-task, SRM-PEI is capable of handling multiple tasks
like other psychometrics process models. After classifying states and transitions with the same
evaluation procedure, SRM can be utilized to analyze the total ability across multiple sub-tasks.
From a methodology perspective SRM-PEI could also be extended to a multidimensional form to
estimate the abilities of two individuals, as well as two distinct types of abilities in collaborative
problem-solving tasks (Yuan et al., 2019; Li et al., 2023)
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Appendix A. Algorithm for Automatically Calculating State Effectiveness in the Balance Beam
Task

In the Balance Beam task, the ten potential positions for each weight are categorized into four
groups: (1) Positions 1–4: Positioned on side A of the beam; (2) Position 5: Not suspended on
side A; (3) Position 6: Not suspended on side B; (4) Positions 7–10: Positioned on side B of the
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beam. Figure 5 illustrates the transition of each weight among ten positions through four types of
operations: (1) removing a weight from the beam; (2) hanging an unhung weight; (3) passing a
weight to the other student; and (4) shifting the position of a weight on the same side. Each arrow
represents an operation that can lead to a transition. Through this figure, we can easily find the
minimum number of transitions between any two positions for one weight. Since an operation
can only alter the position of one weight once, the shortest distance between states s and s′ equals
the sum of the minimum number of operations required for each of the four weights to change its
position from state s to s′. Then, we can quickly and accurately calculate the shortest distance d(k)

s

between a state s and the target state s(k)
target using the state code and rules to change the position

according to Fig. 6. Finally, we select the minimum distance ds = min
(
d(1)
s , d(2)

s , . . . , d(k)
s

)
as

the effectiveness indicator ds of the state s
During the process of programming the calculations mentioned above, the position of each

weight can be assigned a unique number from one to ten. Therefore, any given state in the
Balance Beam task can be encoded by a sequence of four numbers, a representation we refer to as
the state code. For one weight, calculating the shortest distance between any two positions can be
simplified by several rules. The R code for evaluating the effectiveness of states for the Balance
Beam task that requires the use of two weights to achieve balance is available at https://osf.io/
fw82q/.
In the example of the code, the four positions for hanging weights on the balance beam on

student A’s side are coded as 1 to 4, and the four positions on student B’s side are coded as −1
to −4. The unhung weights are coded as 0.5 when in student A’s hand and −0.5 when in student
B’s hand. In the initial state, all four weights are in the hand of A, and the state code is (0.5, 0.5,
0.5, 0.5). The effectiveness of the initial state is equal to 3, which means that the balance state
using two weights can be achieved after a minimum of three transitions. Another example is that
Student B holds the 50g and 100g weights and Student A has hung the 300g weight at position
1 and the 500g weight at position 2. This state is at a minimum distance of 2 from the balance
state.

Figure 5.
The interface of the initial state in the Chinese version of the Balance Beam task.
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Figure 6.
The diagram for the four types of transitions that can occur when a weight moves among ten possible positions in the
Balance Beam task.
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