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Abstract
This paper presents a broadband circularly polarized (CP) antenna array for millimeter-wave
applications, and the antenna array has the advantages of wide impedance bandwidth (IBW),
novel CP design, and low profile. The antenna unit consists of a two-layer substrate and
two pairs of magnetoelectric dipoles. Stepped microstrip lines coupled by rectangular slits
form a feeder network for easy integration. The axial ratio bandwidth (ARBW) is extended
because a pair of parasitic patches is loaded and an elliptical perturbation is added. The sim-
ulation results show that the antenna has an ARBW of 18.6% (26.4–31.9 GHz) and an IBW
of 45.5% (20.6–32.7 GHz), with a gain greater than 7.11 dBic in the IBW. To improve the
gain of the antenna, a 2 × 2 antenna array is designed, fabricated, and measured. The mea-
sured results show that the array has an ARBW of 16.6% (26.42–31.21 GHz), an IBW of 41.6%
(22.28–33.97 GHz), a peak gain of 13.89 dBic in the IBW, the cross-polarization levels in the
xoz-plane and yoz-plane are above 20 dB, and a radiation efficiency greater than 89%.

Introduction

With the continuous demand of the market, 4G has gradually failed to meet today’s commu-
nication needs and 5G came into being. Due to the scarcity of spectrum resources, the design
of miniaturized, broadband, high-gain, and array antennas has become a hot topic of research
today [1, 2].

Circularly polarized (CP) antenna has the advantages of anti-Faraday rotation effect and
anti-multipath interference. It can receive arbitrary line polarization signals and can avoid
the mismatch problem caused by polarization mismatch. Therefore, the CP antenna can
achieve stable communication transmission, and the CP antenna is needed in many wireless
communication systems to transmit and receive signals [3, 4].

In Ref. [5], a low-profile CP magnetoelectric dipole (MED) antenna is introduced, which
is excited by a substrate-integrated waveguide aperture coupling feed structure with butterfly-
shaped slots. MED antenna consists of a pair of rectangular metal sheets with a square
cross-section and elliptical perturbation as electric dipoles and two pairs of vertically metalized
vias as magnetic dipoles. The measured antenna array obtains an impedance bandwidth (IBW)
of 32.6% and a 3 dB axial ratio bandwidth (ARBW) of 12.5%. The actual measured peak gain
is 7.8 dBic. In Ref. [6], a 2 × 2 CP patch antenna array fed by substrate-integrated gap waveg-
uide (SIGW) with sequential rotating phase (SRP) is proposed for broadband millimeter-wave
applications.The antenna element consists of a truncated square patch, an SIGW feed line with
a three-layer printed circuit board (PCB), and another layer of PCBwith air holes for supporting
the radiation patch. Each radiating patch is driven by a lower coupling slot engraved on SIGW.
By deploying a 2 × 2 SIGW SRP feed network, the wide ARBW is realized, and the measured
IBW of the antenna array is 25.6%, 3 dB ARBW is 19%, and high gain of 11.53 dBic. In Ref.
[7], a compact broadband CP wearable antenna for wireless body area network in vitro com-
munication is proposed. Loading MED as the parasitic element can improve ARBW and IBW.
The measured IBW of the array is 40.8%, 3 dB ARBW is 22.3%, and the actual measured peak
gain is 6.5 dBic. In Ref. [8], a broadband CP MED antenna operating in the 28 GHz band is
proposed for 5G millimeter wave communication. The geometry of the antenna includes two
metal plates, with an extended hook-shaped strip at the main diagonal and two corners of the
truncated metal plate at the secondary diagonal. This pair of metal vias connects the improved
strip to the ground plane to form amagnetic dipole. L-shaped probe feed between bands is used
to excite the antenna. The measured 3 dB ARBW is 18.1%, and the peak gain is 8.5 dBic.

In this paper, a broadband CP antenna unit and an array of millimeter-wave applications in
the millimeter band are presented. The antenna unit consists of a two-layer substrate and two
pairs of MED [9–11]. Stepped microstrip lines coupled by rectangular slits form a feeder net-
work for easy integration. Loading a pair of parasitic patches and adding elliptical perturbations
greatly extends theARBW.To improve the gain of this antenna in practical applications, a planar
2 × 2 antenna array fed by a four-way microstrip power divider is designed, fabricated, and
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measured. The paper is organized as follows: the second part
introduces the structural evolution of the antenna unit, the work-
ing principle of CP, and finally gives the simulation results of
the antenna unit. The third part gives the physical processing
of the 2 × 2 antenna array, all the simulation and measurement
results, and the antenna performance comparison table. Finally, a
summary is given in the fourth part.

Configuration and operating concepts

Geometry of the antenna

The antenna unit consists of two-layer of Rogers 5880 substrate
(𝜀r = 2.2, tan 𝛿 = 0.0009) and two pairs of MED. Stepped
microstrip lines coupled by rectangular slits form a feeder net-
work. The height of the upper dielectric substrate is h1, and the
height of the lower dielectric substrate is h2. The electric dipole
near the rectangular slit is etched with rectangular tangent corners,
and the magnetic dipole is three metal vias of radius “R”, and the
center of the metal vias located in the middle of the three metal
vias is offset by a distance of “d2” from the centers of the other
two vias. The other pair of MED is side by side with the first one,
with the electric dipoles etching the tangent angles of the triangles
and adding elliptical perturbations, the magnetic dipoles are three
metal through-holes of radius “R”, centered on the same line. The
3D view (Fig. 1a), side view (Fig. 1b), power feed view (Fig. 1c), and
radiation patch view (Fig. 1d) of the antenna are shown in Fig. 1.

Operating mechanism

The initial antenna is a pair of MED, a rectangular coupling slot,
and a rectangular microstrip line, as shown in Fig. 2a, antenna II
is based on antenna I with a rectangular cut angle for the elec-
tric dipole, evolution of rectangular microstrip lines into T-shaped
microstrip lines, and antenna III is side by side to add a pair of
MED and the electric dipole with a triangular cutting angle, evo-
lution of the T-shaped microstrip line into stepped microstrip line.

Finally, antenna IV based on antenna III adds an elliptical pertur-
bation, where the axis ratio is obtained by the formula (1), “a” is
the long axis of the ellipse and “b” is the short axis of the ellipse:

AR = 20 * lg (a/b) (1)

Figure 2b shows that four antennas obtain awide IBW, and from
Fig. 2c, it can be seen that antenna II with a rectangular cut angle to
the electric dipole shows the possibility of adjusting to CP, antenna
III achieves an ARBW of 8% from 23.16 to 25.12 GHz, while
antenna IV with the addition of elliptical perturbation expands
the ARBW by 18.6% from 26.4 to 31.9 GHz. The CP principle
of antenna realization is equal amplitude in horizontal and verti-
cal directions and a phase difference of 90∘. Simulation results of
magnitude difference and phase difference of the four antennas are
given in Fig. 2d and e.The results show that antenna I does not sat-
isfy the principle of CP, antenna II has the possibility of realizing
CP, antenna III has the performance of CP but with narrowARBW,
and antenna IV has equal amplitude and phase difference of −90∘.
ARBW is wider and the phase difference of antenna IV is −90∘, so
the designed antenna is a left-hand CP (LHCP) antenna.

Figure 2f simulates the distribution of the surface currents of
the four antennas at 29.5 GHz at different times [12]. The antenna
I has no obvious rotation of surface current with time at t = 0 and
t = T/4, antenna II has a relatively weak rotation of surface cur-
rent with time at t = 0 and t = T/4, antenna III has a clockwise
rotation of surface current with time at t = 0 and t = T/4, and
antenna IV has a clockwise rotation of surface current with time
at t = 0 and t = T/4 and strong rotation. The current distribu-
tions at t = T/2 and t = 3T/4 are similar to those at t = 0 and
t = T/4, respectively, but in opposite directions. Combined with
the working principle of CP, we can know that the antenna is an
LHCP antenna, and after loading a pair of parasitic patches and
adding elliptical perturbation, the ARBW is greatly expanded.

The four perturbation structures with the same equivalent area
are compared, and the axial ratio results are shown in Fig. 3a;

Figure 1. Geometry of proposed CP antenna. (a) 3D view, (b) side view,
(c) power feed view, and (d) radiation patch view. L = 9.5 mm,
W = 9.5 mm, Lp = 1.1 mm, Wp = 4.3 mm, Lpp = 0.97 mm,
Wpp = 1.8 mm, R = 0.2 mm, R1 = 0.6 mm, d1 = 0.57 mm, d2 = 0.4 mm,
Lpx = 0.75 mm, Wpy = 3 mm, Px = 0.15 mm, Py = 0.15 mm,
Sl = 5.4 mm, Sw = 0.8 mm, Gl1 = 0.2 mm, Gw1 = 5 mm, Gl2 = 0.8 mm,
Gw2 = 1.6 mm, Gl3 = 3.8 mm, Gw3 = 0.8 mm, h1 = 0.508 mm,
h2 = 0.254 mm.
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Figure 2. (a) Configuration evolution of CP antennas, (b) a comparison of the reflection coefficient S11 of four antennas, (c) a comparison of the AR of four antennas,
(d) a comparison of the magnitude difference of four antennas, (e) a comparison of the phase difference of four antennas, and (f) a comparison of the electric field vector
distribution in T/4 of four antennas at 29.5 GHz.
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Figure 3. (a) AR of four cases and (b) AR of R1.

the circular polarization performance when the perturbation
structure is elliptical under the same area is best to analyze the
parameters of the elliptical long-axis radius, and the axial ratio
results are shown in Fig. 3b; and the circular polarization perfor-
mance is best when the long axis radius R1 = 0.6 mm.

Equivalent circuit model

In order to explain the working principle of the designed CP
antenna more clearly, the equivalent circuit characteristics of the
CP antenna are analyzed and its model is shown in Fig. 4a. The
input port is equivalent to a resistor of 50 Ω, and the feeder line
can be equivalent to an inductor L1 and a series resistor R1. The
input signal passes through substrate 1, which can be equivalent
to Tx line 1 and reaches the uppermost radiation patch through
the rectangular slot and substrate 2. The rectangular slot is equiv-
alent to the band-pass filter of the inductor (L2) in series with
the capacitor (C2), and substrate 2 can be equivalent to Tx line 2.
The metal via etched in substrate 2 can be equivalent to shunt
inductance (L3), in which the Tx line 2 is connected in paral-
lel. The radiation patch of the antenna can be equivalent to the
series connection of radiation resistance (Rrad), inductance (L4),
and capacitance (C1). The overall circuit is drawn in Advanced
Design System (ADS) software, and the parameters are as follows:

L1 = 0.6 pH,R1 = 26.8Ω, L2 = 35.5 pH,C2 = 29.7 fF, L3 = 30.5 pH,
Rrad = 63.8 Ω, C1 = 8.4 fF, and L4 = 3.4 fH. A good agree-
ment between the simulated high-frequency structure simulator
(HFSS) response and the numerically calculated advanced design
system(ADS) result is observed in Fig. 4b.

The design of the antenna array

To obtain higher antenna gain in the application, a four-way
microstrip power divider is designed [13], and four radiating ele-
ments are arranged into a periodic structure, which forms a pla-
nar 2 × 2 antenna array. The antenna is designed and optimized
using Ansys full-wave electromagnetic simulation software. The
power divider and the antenna array are shown in Fig. 5a, and the
S-parameters of the power divider are shown in Fig. 5b. To inves-
tigate the effect of the spacing between the antenna units on the
antenna array S11 and AR, a parametric analysis was performed,
the results for antenna arrays S11 and AR corresponding to differ-
ent unit spacing are shown in Fig. 5c. From Fig. 5b, it can be seen
that S11 of input port #1 within the IBW of the antenna is lower
than −15 dB, #2, #3, #4, and #5 the insertion loss is −6 dB between
the four output ports and input port. The isolation between the
output ports S23/S45/S25/S34 is lower than −25 dB, which indi-
cates that the mutual coupling between the output ports is weak.

Figure 4. (a) Equivalent circuit modeling and (b) results of ADS and HFSS.

https://doi.org/10.1017/S1759078724000199 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078724000199


International Journal of Microwave and Wireless Technologies 889

Figure 5. (a) Antenna array and power divider, (b) S-parameters of the power divider, and (c) S11 for different parameters of Dis.

The optimal cell spacing Dis = 9.5 mm can be obtained from
Fig. 5c, and five circular holes with DD = 2 mm diameter were
etched around the antenna for fixation; to reduce the loss, the com-
pensation structure is designed in the feed network, that is the
angle is cut, in which w, x, d, and m are indicated in Fig. 5a, and
the best way to cut the angle can be obtained by formula (2):

m = 0.52 + 0.65 × e[−1.35*(w/h)] (2)

where w = 0.8 mm, h = 0.254 mm, and, therefore, the “m” is
calculated at around 0.529.

Next, the gain of the unit or array and the half-power
beamwidth are compared, and the result is shown in Fig. 6.The gain
increases and half-power beamwidths narrow of antenna arrays.
Where the gain can be obtained by the formula (3), “D” is the
directivity of the antenna, and “𝜆0” is the wavelength:

Gain = 10lg{4.5*( D
𝜆0)∧2} (3)

Simulation and measurement

Figures 7a and b show the top view and bottomview of the antenna.
Respectively, simulations and measurements were performed for

the proposed antenna. Figure 7c shows the simulated and mea-
sured S11 as well as the AR of the antenna array. It can be seen that
the measured and simulated curves of the antenna match well, and
a relative bandwidth of 41.6% (22.28–33.97 GHz) and an ARBW
of 16.6% (26.42–31.21 GHz) are obtained.Themeasured peak gain
of the antenna reaches 13.89 dBic as seen in Fig. 7d. The radiation
efficiency of the antenna is higher than 89% in the whole operat-
ing band. The radiation efficiency can be obtained by the formula
(4), where “D” and “Ap” are the directivity and aperture size of the
antenna and “𝜆0” is the wavelength:

Efficiency = D𝜆0∧2
4𝜋Ap (4)

Figures 8a and b give the measured and simulated directional
diagrams of the xoz-plane and yoz-plane at 27 GHz and 31.5 GHz.
It can be seen that the simulated and measured radiation patterns
coincide with each other.Themain polarization is LHCP, the right-
hand CP (RHCP) level is low, and the measured cross-polarization
is below −20 dB in the whole operating band.The antenna achieves
a stable radiation performance.

To better illustrate the value of the antenna array designed in
this paper for millimeter-wave applications, Table 1 [14–17] shows
the comparison of the proposed antenna with other CP antenna
arrays in terms of IBW, ARBW, gain, shape, and size. As can be
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Figure 6. (a) The gain of the antenna unit and array and (b) the HPBW of the antenna unit and array.

Figure 7. The fabricated antenna and the simulated and measured results. (a) The top view, (b) the bottom view, (c) S11 and AR, and (d) gain and radiation efficiency.

seen from Table 1, the antenna array designed in this paper has
significant advantages over arrays of the same size, both in terms
of IBW and ARBW, and ensures gain and overall size.

Conclusion

This paper designs and processes a broadbandCP antenna unit and
array for millimeter-wave applications. The results of the planar

https://doi.org/10.1017/S1759078724000199 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078724000199


International Journal of Microwave and Wireless Technologies 891

Figure 8. xoz-plane and yoz-plane radiation patterns
(a) at 27 GHz and (b) at 31.5 GHz.

Table 1. Performance comparison with the proposed antenna

Ref. Size (𝜆0
3) Scale

CP center
frequency (GHz) −10 dB bandwidth 3 dB AR bandwidth Peak gain (dBic)

Cross-polarization
ratio

[5] 0.73 × 0.590.12 1 24 GHz 32.6% 12.8% 7.8 ≥16 dB

[6] 2.25 × 2.25 × 0.21 2 × 2 25 GHz 25.6% 17.0% 11.53 ≥17 dB

[7] 0.64 × 0.64 × 0.17 1 5.8 GHz 40.8% 22.0% 6.50 ≥15 dB

[8] 0.83 × 0.83 × 0.23 1 28 GHz 25.4% 18.1% 8.50 ≥18 dB

Proposed 2.02 × 1.74 × 0.17 2 × 2 28 GHz 41.6% 16.6% 13.89 ≥20 dB

2 × 2 antenna array measurements show that when S11< −10 dB,
the measured IBW is 41.6% from 22.28 to 33.97 GHz. The mea-
sured 3 dBARBW is 16.6% from 26.42 to 31.21GHz.The peak gain
is 13.89 dBic, and the radiation efficiency is greater than 89% in
the operating bandwidth.The antenna array is LHCP, with obvious
main polarization LHCP and low cross-polarization RHCP level
greater than −20 dB, and has good radiation characteristics.
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