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We investigate theoretically the steady incompressible viscoelastic flow in a rigid
axisymmetric cylindrical pipe with varying cross-section. We use the Oldroyd-B
viscoelastic constitutive equation to model the fluid viscoelasticity. First, we derive exact
general formulae: for the total average pressure-drop as a function of the wall shear rate
and the viscoelastic axial normal extra-stress; for the viscoelastic extra-stress tensor and
the Trouton ratio as functions of the fluid velocity on the axis of symmetry; and for the
viscoelastic extra-stress tensor along the wall in terms of the shear rate at the wall. Then
we exploit the classic lubrication approximation, valid for small values of the square of the
aspect ratio of the pipe, to simplify the original governing equations. The final equations
are solved analytically using a regular perturbation scheme in terms of the Deborah
number, De, up to eighth order in De. For a hyperbolically shaped pipe, we reveal that the
reduced pressure-drop and the Trouton ratio can be recast in terms of a modified Deborah
number, Dem, and the polymer viscosity ratio, η, only. Furthermore, we enhance the
convergence and accuracy of the eighth-order solutions by deriving transformed analytical
formulae using Padé diagonal approximants. The results show the decrease of the pressure
drop and the enhancement of the Trouton ratio with increasing Dem and/or increasing η.
Comparison of the transformed solutions with numerical simulations of the lubrication
equations using pseudospectral methods shows excellent agreement between the results,
even for high values of Dem and all values of η, revealing the robustness, validity and
efficiency of the theoretical methods and techniques developed in this work. Last, it is
shown that the exact solution for the Trouton ratio gives a well-defined and finite solution
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for any value of Dem and reveals the reason for the failure of the corresponding high-order
perturbation series for Dem > 1/2.

Key words: viscoelasticity, lubrication theory, microfluidics

1. Introduction

Pressure-driven flows of viscoelastic fluids in narrow and long tubes (channel or pipes)
are widely encountered in industrial processes, such as extrusion (Pearson 1985; Tadmor
& Gogos 2013), in applications such as microfluidic extensional rheometers (Ober et al.
2013), in devices for subcutaneous drug administration (Allmendinger et al. 2014; Fischer
et al. 2015) and many others. The complex rheological behaviour of viscoelastic fluids
affects various features and properties of these flows, such as the average pressure drop
along the tube, �Π∗, as function of the flow rate, Q∗, and the effective elongational
viscosity of the fluid, η∗

el, as function of the extensional rate, Ė∗; throughout the paper
a star superscript denotes a dimensional quantity.

Contraction flows in internal confined geometries, and especially flows through
hyperbolic geometries, have attracted much attention because of the almost constant
extensional rate developed on the midplane for planar geometries or along the axis of
symmetry for axisymmetric ones. These flows have been used to measure η∗

el by relating
�Π∗ to Q∗ (see e.g. James, Chandler & Armour 1990; Collier, Romanoschi & Petrovan
1998; Gotsis & Adriozola 1998; Koppol et al. 2009; Campo-Deaño et al. 2011; Wang
& James 2011; Ober et al. 2013; Nyström et al. 2016; Kim et al. 2018). It should be
emphasized that both the measurement of extensional viscosity (Binding & Walters 1988;
Binding & Jones 1989; James & Walters 1993; Oliveira et al. 2007; Ober et al. 2013;
Keshavarz & McKinley 2016) and its theoretical prediction, as for instance presented by
the preliminary works of Cogswell (1972, 1978) and further improved by Binding (1988)
and later by James (2016), are challenging because a steady and spatially uniform (i.e.
homogeneous) flow from a Lagrangian point of view cannot be easily achieved (Petrie
2006). Other published works on the subject also include the experimental work of Lee
& Muller (2017), the simulations of Nyström et al. (2012, 2016, 2017) and Feigl et al.
(2003), and the optimization numerical work with respect to the geometry of Zografos
et al. (2020), with goal to produce a constant strain-rate along the midplane of a symmetric
channel. However, note that some authors have claimed that given that the flow in this
geometry is not purely extensional, it is difficult to estimate the resistance to extensional
motion directly from the �Π∗ − Q∗ experimental data (James 2016; Nyström et al. 2016;
Hsiao et al. 2017; James & Roos 2021).

Most of the available experimental data in the literature for viscoelastic fluids in
contraction flows show an increase of the total pressure drop with increasing the fluid
viscoelasticity. However, these data are mainly concerned with flows at high Weissenberg
number, or in geometric configurations with singular points (sharp corners) such as
the sudden contraction–expansion planar two-dimensional channels (Nigen & Walters
2002) or three-dimensional channels with square cross-section (Sousa et al. 2009), and
the contraction–expansion circular axisymmetric tubes (Rothstein & McKinley 1999,
2001; Nigen & Walters 2002). In these cases, secondary motion, vortices and/or elastic
instabilities arise which cause the increase of the average pressure drop in the tube
although in the experiments conducted by Rothstein & McKinley (1999, 2001) in the
sudden contraction–expansion geometry; it was mentioned that the increase of the pressure
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Viscoelastic flow in a non-uniform pipe

drop should not be directly connected with the onset of elastic instabilities. We also need to
emphasize that those experimental data are in contrast with the numerical results obtained
using macroscopic constitutive models, for instance those of Keiller (1993) using the
Oldroyd-B and FENE models in planar and axisymmetric contractions; the work of Alves,
Oliveira & Pinho (2003) using the Oldroyd-B and Phan-Thien–Tanner (PTT) models in
planar contraction flow; the work of Aguayo, Tamaddon-Jahromi & Webster (2008) using
the Oldroyd-B model in contraction and contraction/expansion geometries; and the work
of Aboubacar, Matallah & Webster (2002) using the PTT model in planar contraction
geometry. Boyko & Stone (2022) attributed the discrepancy between the experimental
data and the numerical results to the inability of the macroscopic models to capture the
complicated flow dynamics of viscoelastic fluids. These authors also speculated that a
possible answer to this problem is the development of multiscale models, such as the
mesoscopic numerical simulations with the bead–rod and bead–spring models performed
by Koppol et al. (2009) in an abrupt contraction.

The abovementioned flows and geometries are different from the pure hyperbolic case
in which no corners exist. In this geometry, the fluid enters the hyperbolic section of
the axisymmetric tube smoothly in a fully developed state without vorticial or secondary
motion. Two recent experimental papers by James & Roos (2021) and James & Tripathi
(2023) provide, among other quantities, measurements of the pressure-drop versus the
flow rate in this geometry; the former deals with the Boger-type, i.e. constant viscosity
viscoelastic fluids, while the later deals with viscoelastic fluids with power-law viscous
behaviour. The data showed that the pressure drop for the viscoelastic fluids remains
practically the same with the corresponding Newtonian value, whereas the pressure drop
increases with the flow rate for the power-law viscoelastic fluid.

For a very long time now, the theoretical study of viscoelastic flows has been proven
to be a very demanding and complicated task. This is mainly because the relevant
governing equations which predict the spatial and/or temporal evolution of the viscoelastic
extra-stresses due to flow deformation are highly nonlinear. This holds true even when the
most basic differential constitutive equation, i.e. the upper convected Maxwell (UCM)
model, is used, and under the simplest possible flow conditions (steady, laminar and
creeping conditions). Thus, the development and application of theories and techniques
that further simplify the original governing equations is crucial. One such theory is the
classic lubrication theory, a simple and efficient asymptotic technique widely used for
modelling fluid lubricants (Szeri 2005; Tichy 2012) and thin fluid films (Ockendon &
Ockendon 1995; Leal 2007; Langlois & Deville 2014), the motion of particles near surfaces
(Goldman et al. 1967; Stone 2005), free surface flows (Ro & Homsy 1995) and flow in
microchannels with known geometry (Plouraboué et al. 2004; Stone et al. 2004; Amyot
& Plouraboué 2007). It is also commonly applied in the theoretical study of slow flows
in narrow and confined geometries with small curvature. In these confined geometries,
advances on the classic lubrication theory, referred to as high-order or extended lubrication
theory, have been made recently by Tavakol et al. (2017), Housiadas & Tsangaris (2022,
2023) and Sialmas & Housiadas (2024).

The application of the lubrication approximation to study the flow of viscoelastic
lubricants in confined tubes with solid walls was initiated and developed in the field
of tribology by Tichy (1996), who was the first to derive the lubrication equations for
the UCM model. Tichy’s work was subsequently followed by others such as Zhang,
Matar & Craster (2002) who investigated the dynamic spreading of a surfactant on a
thin viscoelastic film using the same constitutive model; Li (2014) who investigated the
effect of viscoelasticity on the lubrication performance in thin film flows using the PTT
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model; Gamaniel, Dini & Biancofiore (2021) who studied thin-film sliding lubricant
flow in the presence of cavitation using the Oldroyd-B model; Ahmed & Biancofiore
(2021, 2023) who studied lubricants viscoelastic flows using the UCM/Oldroyd-B and
FENE type models; and Sari et al. (2024) who studied the effect of fluid viscoelasticity
in soft lubrication using the Oldroyd-B model. Also, theoretical investigation of the
effect of viscoelasticity, augmented by numerical simulations, on contracting channels
with hyperbolic geometry was carried out by Pérez-Salas et al. (2019) using the PTT
model; Boyko & Stone (2022) using the UCM/Oldroyd-B models; and Housiadas &
Beris (2023, 2024a) who advanced the work of Boyko & Stone (2022) by deriving
high-order asymptotic solutions (up to eighth order in the perturbation parameter) using
the UCM/Oldroyd-B, PTT, Giesekus and FENE-P models. An extended list of the
literature works for viscoelastic flows in internal and confined geometries (both planar
and axisymmetric) has been compiled and can be found in the paper of Boyko & Stone
(2022).

Although plenty of computational and experimental works are available in the literature
for axisymmetric geometries (Rothstein & McKinley 1999, 2001; Nigen & Walters
2002; Oliveira et al. 2007; Sousa et al. 2009; James & Roos 2021; James & Tripathi
2023), a formal theoretical analysis for the axisymmetric hyperbolic case is still lacking.
Additionally, while the axisymmetric geometry is similar to the planar symmetric case,
experiments have shown differences (Nigen & Walters 2002; Rodd et al. 2005; Binding
et al. 2006; James & Roos 2021). Moreover, the singular mathematical nature of the
governing equations along the axis of symmetry of the tube requires special attention
and can reveal interesting features of the solution. This is the motivation for the present
work, in which we undertake a detailed theoretical analysis of the viscoelastic flow in
an axisymmetric pipe with a variable (non-uniform) cross-section. The pipe radius is
described with an appropriate smooth, continuous and adequately differentiable function
which we call the ‘shape function’. Although the general analysis is performed in terms of
this shape function, we focus on the hyperbolic contracting pipe given its importance to
applications and experiments. An entrance and an exit region are also considered.

A major goal of our work is to develop a general theoretical framework for the evaluation
of the dimensionless elongational viscosity (or Trouton ratio) of the fluid which is not
linked to the relationship between �Π∗ and Q∗. This is achieved first by showing that the
velocity field on the axis of symmetry of the pipe corresponds to pure uniaxial extension,
and then by solving exactly the constitutive model on the axis of symmetry. The analytical
solution allows for the development of a general formula for the Trouton ratio in terms of
the velocity field only.

Furthermore, we aim to derive approximate analytical solutions for the flow field in this
geometry. To this end, we exploit the classic lubrication theory to derive a simplified set
of governing equations, valid at the limit of a vanishing small aspect ratio of the pipe; the
latter is defined as the ratio of the radius of the cross-section at the inlet to the length of the
pipe. Furthermore, we investigate the validity and accuracy of the approximate solutions,
and we study the effect of the rheological parameters entering in the constitutive model.
All these are of fundamental importance for comparison with experimental data and for
building reliable mathematical model(s) with good predictive capabilities.

In this work, we restrict the analysis to the UCM/Oldroyd-B models, since previous
works for the planar hyperbolic geometry (Housiadas & Beris 2023, 2024a,b,c) showed
that for weakly viscoelastic fluids the results are insensitive to the nonlinear extensions of
the UCM/Oldroyd-B models involved in more realistic macroscopic constitutive models
(such as the Giesekus, PTT and FENE-P models). This is attributed mainly to the
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lubrication approximation within which most of the nonlinear terms of the polymer
extra-stress tensor in the constitutive equations are eliminated. Moreover, additional terms
are eliminated at the midplane of the channel or the axis of symmetry of the pipe
because of the symmetries and extensional character of the flow, reducing the equations
for all models there to those obtained for the UCM/Oldroyd models. For more details the
interested reader is referred to Housiadas & Beris (2023, 2024a,b,c).

The range of validity and accuracy of the high-order asymptotic expansion in terms
of the Deborah number is investigated in three ways (see § 2 for the definition of the
Deborah number). First, by employing a method that accelerates the convergence of series
such as the diagonal Padé approximants (Padé 1892); this method has been developed
and extensively studied in the literature (see, for instance, Baker & Graves-Morris (1981,
1996)). The performance of Padé approximants, as well as a few other methods that
accelerate the convergence of series, for pure shear and pure elongational viscoelastic
flows has been investigated systematically and presented by Housiadas (2017, 2023). These
methods have also been applied successfully in a variety of more complex viscoelastic
problems (Housiadas 2021, 2023; Housiadas & Beris 2023, 2024c). Second, by developing
and using highly accurate numerical methods for the solution of the lubrication equations,
and third by comparing the high-order asymptotic results for the Trouton ratio, and the
corresponding transformed formulae, with the exact analytical solution which is valid
beyond the classic lubrication limit.

The rest of the paper is organized as follows. In § 2, we describe the flow geometry,
the main dimensionless quantities, the governing equations and accompanied auxiliary
conditions for the steady flow of an incompressible viscoelastic fluid in an axisymmetric
non-uniform pipe. In § 3, we develop the general theoretical framework leading to general
analytical formulae for the average pressure drop and the dimensionless elongational
viscosity of the fluid (usually known as the Trouton ratio). In § 4 we derive a simplified
set of governing equations following the lubrication approximation. This is followed in
§ 5 by the development of analytical expressions for the first normal stress difference
and the Trouton ratio at the centreline, using an exact expression that involves only
the flow velocity and its approximation by the closed-form analytical expression for the
Newtonian lubrication solution. The method of developing high-order regular perturbation
solutions of the classic lubrication equations in terms of the Deborah number is
described in § 6. There, we report the most important new asymptotic formulae along
with suitable convergence acceleration results for the stream function, the total average
pressure-drop, the Trouton ratio, the total force balance and its individual contributions,
and the mechanical energy decomposition of the flow system. In the same section we
also demonstrate through detailed comparisons the accuracy of the Newtonian velocity
approximation entering the evaluation of the Trouton ratio based in the exact formula
developed before, as well as its extended validity with respect to the Deborah number in
comparison with more standard asymptotic evaluations. In § 7, we present the numerical
methodology developed to solve the final lubrication equations, along with a comparison
of the numerical results with the formulae derived in § 6. In § 8 we discuss an important
finding of the analysis, namely a non-algebraic dependence of the solution for the Trouton
ratio with respect to the Deborah number, and finally, in § 9 we provide our conclusions.

2. Problem formulation

The geometry and its main features are shown in figure 1. A varying axisymmetric pipe
which consists of three segments is depicted; an entrance region with constant radius
h∗

0, a varying region with radius h∗
0 at the inlet and radius h∗

f at the outlet and an exit
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Viscoelastic fluid

(Polymer solution)

Entrance region Exit region

Inlet
Outlet

�∗

2h∗
0

2h∗
f

z∗

y∗

Figure 1. Geometrical configuration and cylindrical coordinate system ( y*, z*) for an axisymmetric
hyperbolic pipe.

region with constant radius h∗
f ; the length of varying section of the pipe is �∗. We also

assume a constant volumetric flow rate, Q∗. The steady state flow in the entrance region of
the tube is fully developed. Given the smooth transition to the hyperbolic region and the
absence of inertia, the flow in the entrance region is unaltered from the steady state uniform
pipe flow (Poiseuille). This is very different from, for instance, the inlet conditions of the
sudden contraction–expansion geometry of Rothstein & McKinley (1999, 2001) according
to which major vortices appear on the corner region right before the contraction section of
the axisymmetric tube, or the work of Lubanssky et al. (2007) for the viscoelastic flow in
an abrupt axisymmetric contraction.

For later convenience, and to facilitate the discussion and analysis, we define the aspect
ratio of the varying region of the pipe, as well as one half of the average inlet velocity,

ε ≡ h∗
0

�∗ , u∗
c ≡ Q∗

2πh∗2
0

. (2.1a,b)

For narrow and confined geometries such as that shown in figure 1 the aspect ratio is small,
ε < 1, a feature that will be exploited in § 4 to simplify the original governing equations.
We consider a complex viscoelastic fluid (a polymeric material into a Newtonian solvent)
with longest relaxation time λ∗, and we recognize two distinct time scales associated
with the flow conditions for the process. The first is an inverse shear-rate h∗

0/u∗
c , and the

second is an average residence time of the fluid in the pipe �∗/u∗
c . Based on these three

characteristic times, we define two dimensionless groups of importance: the Weissenberg
and Deborah numbers,

Wi ≡ λ∗

h∗
0/u∗

c
= λ

∗u∗
c

h∗
0

, De ≡ λ∗

�∗/u∗
c

= λ
∗u∗

c

�∗ , (2.2a,b)

from where we observe that De = ε Wi. Since the analysis performed here assumes a
confined and narrow geometry, 0 < ε < 1, and in order to be able to observe the effect
of viscoelasticity, we demand that the Deborah number is finite when the aspect ratio goes
to zero, which in turn implies that the Weissenberg number is large, i.e. De = O(1) and
Wi = O(1/ε) as ε → 0. Note that if we had assumed Wi = O(1) as ε → 0, then De → 0
and either the relaxation time would be very small or the residence time would be very
large. In the first case, the effect of viscoelasticity would be negligible, while in the second
its effect would be observed in a very small region near the entrance of the pipe. Hence,
we proceed with De = O(1) and Wi = O(1/ε) as ε → 0, and we keep in mind that a small
value of De indicates that the relaxation time of the polymeric material is small compared
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with the residence time (i.e. the flow is ‘slow’), while a large value of De suggests that the
polymer molecules do not have enough time to relax before their exit from the tube (i.e.
the flow is ‘fast’). Note that very large values of the Deborah number are not permitted, as
they correspond to an elastic solid where flow is not possible, and the Oldroyd-B model
is not valid. In this work, we are primarily interested in creeping flow and small values of
the Deborah number.

2.1. Governing equations
We consider the isothermal and incompressible steady flow of a viscoelastic fluid which
consists of a Newtonian solvent with constant shear viscosity η∗

s and a polymeric material
with constant shear viscosity η∗

p and longest relaxation time λ∗. The fluid has constant
mass density denoted by ρ∗. We use a cylindrical coordinate system (z∗, y∗, θ) to describe
the flow field, where z* is the main flow direction, y* is the radial direction and θ is
the azimuthal angle; eθ , ez and ey are the unit vectors in the θ , z* and y* directions,
respectively. The origin of the coordinate system is placed on the centre of the inlet
cross-section with radius h∗

0 (see figure 1). The wall of the pipe is described by the shape
function H∗ = H∗(z∗) > 0 for z∗ ∈ [0, �∗], i.e. y∗ = H∗(z∗). The shape function H∗ is
considered fixed and known in advance; for H∗(z∗) = h∗

0 one gets a straight circular pipe.
Also, we exclude variations of the flow field in the azimuthal angle which implies that
the flow is axisymmetric and two-dimensional. The velocity vector in the flow domain
is denoted by u∗ = V∗(y∗, z∗)ey + U∗(y∗, z∗)ez and the total pressure is denoted by
p∗ = p∗(y∗, z∗)∗. The latter is induced by the flow and the imposed constant flow rate
Q* at the inlet,

Q∗ = 2π

∫ h∗
0

0
U∗(y∗, 0)y∗ dy∗. (2.3)

Using the unit tensor I , the rate of deformation tensor γ̇ ∗ = ∇∗u∗ + (∇∗u∗)T where

∇∗ ≡ ey
∂

∂y∗ + ez
∂

∂z∗ + eθ

1
y∗

∂

∂θ
, (2.4)

is the gradient operator, the viscoelastic extra-stress tensor τ ∗, and the Reynolds stress
tensor u∗u∗; we define the total momentum tensor as

T ∗ := −P∗I + η∗
s γ̇

∗ + τ ∗ − ρ∗u∗u∗. (2.5)

In the absence of any other external forces and torques, the conservation equations that
govern the flow in the pipe are the mass and momentum balances, respectively,

∇∗ · u∗ = 0, ∇∗ · T ∗ = 0. (2.6a,b)

Equations (2.6a,b) are accompanied with a constitutive equation that models the response
of the polymeric material to the flow deformation, namely with an equation for τ∗.
Specifically, we consider the fundamental nonlinear differential Oldroyd-B models,
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given by

τ ∗ + λ∗ δ∗τ ∗

δt∗
= η∗

p γ̇
∗, (2.7)

where δ∗τ ∗/δt∗ represents the upper convected derivative of τ∗ at steady state,

δ∗τ ∗

δt∗
= u∗ · ∇∗τ ∗ − τ ∗ · ∇∗v∗ − (∇∗v∗)T · τ ∗. (2.8)

The domain of definition of (2.4)–(2.8) is

Ω∗ = {(z∗, y∗, θ)|, 0 < z∗ < �∗, 0 < y∗ < H∗(z∗), 0 ≤ θ < 2π}. (2.9)

The governing equations are solved with no-slip and no-penetration boundary
conditions along the wall of the pipe,

U∗(H∗(z∗), z∗) = V∗(H∗(z∗), z∗) = 0 at 0 ≤ z∗ ≤ �∗. (2.10)

All the equations are well-defined and all the dependent variables are finite in the entire
axisymmetric domain satisfying the following conditions at y∗ = 0:

V∗(0, z∗) = ∂U∗

∂y∗

∣∣∣∣
y∗=0

= τ ∗
yz(0, z∗) = 0 at 0 ≤ z∗ ≤ �∗, (2.11a)

τ ∗
yy(0, z∗) = τ ∗

θθ (0, z∗) at 0 ≤ z∗ ≤ �∗. (2.11b)

The integral constraint of mass at any distance from the inlet is also utilized,

Q∗ = 2π

∫ H∗(z∗)

0
U∗(y∗, z∗)y∗ dy∗ = constant at 0 ≤ z∗ ≤ �∗. (2.12)

Finally, a datum pressure, p∗
ref , is chosen at the wall of the outlet cross-section,

p∗
ref = p∗(H∗(�∗), �∗). (2.13)

Note that when the Newtonian solvent is absent (η∗
s = 0) the governing equations reduce

to the UCM model, or to the Oldroyd-B model when both the Newtonian solvent and the
polymer molecules are present, η∗

s , η∗
p > 0.

2.2. Scaling and non-dimensionalization
Dimensionless variables are introduced based on the lubrication theory using the
transformation X = X∗/X∗

c where X∗ = z∗, y∗, H∗, U∗, V∗, P∗, τ ∗
zz, τ ∗

yz, τ ∗
yy, τ ∗

θθ and
X∗

c is the relevant characteristic scale for X∗. The characteristic scales are defined with
the aid of the aspect ratio of the pipe and one half of the cross-sectionally average
velocity at the inlet of the pipe defined in (2.1a,b). The z*-coordinate is scaled by �∗
and the y∗-coordinate and the shape function H* by h∗

0. The characteristic scale for the
main velocity component U∗ is u∗

c , and from the continuity equation one finds that the
characteristic scale for the vertical velocity component V∗ is εu∗

c . With the aid of
the momentum balance along the main flow direction, z*, the characteristic scale for
the pressure difference P∗ − P∗

ref is (η∗
s + η∗

p)u
∗
c�

∗/h∗2
0 (Tavakol et al. 2017; Housiadas

& Tsagaris 2022, 2023; Housiadas & Beris 2023, 2024a,b,c). For the viscoelastic
extra-stress components, τ ∗

zz, τ ∗
yz, τ ∗

yy and τ ∗
θθ , consistency of the governing equations for
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Viscoelastic flow in a non-uniform pipe

a negligible relaxation time of the polymer (λ∗ → 0) and a long pipe (h∗
0 � �∗) implies

that different scales for the components of τ ∗ must be used. Careful examination of the
momentum balance and the individual components of the constitutive equation shows that
the characteristic scales for τ ∗

yz, τ ∗
zz, τ ∗

yy and τ ∗
θθ are η∗

pu∗
c/h∗

0, η∗
pu∗

c�
∗/h∗2

0 , η∗
pu∗

c/�
∗ and

η∗
pu∗

c/�
∗, respectively. Based on these scales, the velocity vector and the Reynolds stress

tensor are given as, respectively,

u = Uez + εVey, (2.14)

uu = ezezU2 + ezeyεUV + eyezεUV + eyeyε
2V2. (2.15)

Similarly, with the aid of the gradient operator

∇ ≡ h∗
0∇∗ = ey

∂

∂y
+ εez

∂

∂z
+ eθ

1
y

∂

∂θ
, (2.16)

we find that the rate of deformation tensor, scaled by u∗
c/h∗

0, is

γ̇ = ezez

(
2ε

∂U
∂z

)
+ ezey

(
∂U
∂y

+ ε2 ∂V
∂z

)
+ eyez

(
∂U
∂y

+ ε2 ∂V
∂z

)
+ eyey

(
2ε

∂V
∂y

)

+ eθeθ

(
2ε

V
y

)
. (2.17)

Also, the dimensionless polymer extra-stress tensor, scaled by η∗
pu∗

c/h∗
0, is

τ = ezezτzz/ε + ezeyτyz + eyezτyz + eyeyετyy + eθeθ ετθθ . (2.18)

Finally, the total momentum tensor, scaled by (η∗
s + η∗

p)u
∗
c�

∗/h∗2
0 , is given by

T = −PI + ε(1 − η)γ̇ + εητ − Remuu. (2.19)

In (2.19), the modified Reynolds number, Rem, and the polymer viscosity ratio, η, appear:

Rem ≡ ρ∗u∗
ch∗2

0
(η∗

s + η∗
p)�

∗ , η ≡ η∗
p

η∗
s + η∗

p
. (2.20a,b)

The dimensionless form of the balance equations in scalar form is

∂U
∂z

+ ∂V
∂y

+ V
y

= 0, (2.21)

Rem
DU
Dt

= −∂P
∂z

+ (1 − η)

(
∂2U
∂y2 + 1

y
∂U
∂y

+ ε2 ∂2U
∂z2

)
+ η

(
∂τyz

∂y
+ τyz

y
+ ∂τzz

∂z

)
,

(2.22)

ε2Rem
DV
Dt

= −∂P
∂y

+ (1 − η)ε2
(

∂2V
∂y2 + 1

y
∂V
∂y

− V
y2 + ε2 ∂2V

∂z2

)

+ ηε2
(

∂τyy

∂y
+ ∂τyz

∂z
+ τyy − τθθ

y

)
, (2.23)

where D/Dt is the material derivative defined at steady state as
D
Dt

≡ U
∂

∂z
+ V

∂

∂y
. (2.24)

For η = 0, i.e. in absence of the polymeric molecules, (2.21)–(2.24) reduce
to the well-known dimensionless Navier–Stokes equations for an incompressible

999 A7-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

84
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.848


K.D. Housiadas and A.N. Beris

Newtonian fluid. Notice that for η = 1 there is no solvent contribution, i.e. the fluid is
a pure polymeric material, while for 0 < η < 1 the fluid consists of a Newtonian solvent
and a polymeric material.

The UCM/Oldroyd-B models in scalar form are given as

τzz + De
(

Dτzz

Dt
− 2τzz

∂U
∂z

− 2τyz
∂U
∂y

)
= 2ε2 ∂U

∂z
, (2.25)

τyy + De
(

Dτyy

Dt
− 2τyz

∂V
∂z

− 2τyy
∂V
∂y

)
= 2

∂V
∂y

, (2.26)

τθθ + De
(

Dτθθ

Dt
− 2τθθ

V
y

)
= 2

V
y

, (2.27)

τyz + De
(

Dτyz

Dt
+ τyz

V
y

− τzz
∂V
∂z

− τyy
∂U
∂y

)
= ∂U

∂y
+ ε2 ∂V

∂z
. (2.28)

The dimensionless domain of definition of (2.21)–(2.28) is
Ω = {(z, y, θ)|0 < z < 1, 0 < y < H(z), 0 ≤ θ < 2π}. (2.29)

Various cases can be considered for the shape function but here we focus on the hyperbolic
pipe,

H(z) = 1√
1 + (Λ2 − 1)z

0 ≤ z ≤ 1, (2.30)

where Λ = h∗
0/h∗

f . In the entrance region (z ≤ 0) H(z) = 1, while in the exit region
(z ≥ 1), H(z) = 1/Λ. Thus, H = H(z) is a piecewise smooth function which is continuous
in the whole domain but not differentiable at z = 0 and z = 1. For Λ > 1, (2.30)
describes a converging pipe, while for 0 < Λ < 1 it describes an expanding pipe; in the
former case Λ will be referred to as the contraction ratio. Note that for axisymmetric
geometries, experimentalists relate the contraction ratio to the Hencky strain, εH , as
εH = ln((πh∗2

0 )/(πh∗2
f )) = ln(Λ2) which, of course, implies Λ = exp(εH/2). Typical

contraction ratios used in experiments are Λ ∼ 3–7; for instance, James & Roos (2021)
and James & Tripathi (2023) used Λ = √

117/5.8 ≈ 4.49, Kamerkar & Edwards (2007)
used Hencky strain values in the range 4 ≤ εH ≤ 7 and Collier et al. (1998) used εH in the
range 6 ≤ εH ≤ 7.

The auxiliary dimensionless conditions (boundary conditions, total mass balance,
constraints on the axis of symmetry and the datum pressure) are

V = U = 0 at y = H(z), 0 ≤ z ≤ 1, (2.31a)

V = ∂U
∂y

= τyz = 0 at y = 0, 0 ≤ z ≤ 1, (2.31b)

τyy = τθθ at y = 0, 0 ≤ z ≤ 1, (2.31c)∫ H(z)

0
U( y, z)y dy = 1, 0 ≤ z ≤ 1, (2.31d)

P(H(1), 1) = 0. (2.31e)

Equations (2.31b,c) are needed so that (2.21)–(2.23) are well-defined at y = 0, while
(2.31d) results from the integration of (2.21) along the y-direction, between the limits
y = 0 and y = H(z), applying the no-penetration boundary condition and using the
dimensionless flow rate at the inlet of the pipe.
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Viscoelastic flow in a non-uniform pipe

2.3. The conformation tensor
As mentioned above, the constitutive models for the polymeric molecules are frequently
provided in terms of the conformation tensor C (dimensionless). For the Oldroyd-B model,
and its limiting form, the UCM model, the conformation tensor is related to the extra-stress
tensor (Bird, Armstrong & Hassager 1987; Beris & Edwards 1994) as follows:

τ ∗ = η∗
p

λ∗
(C − I). (2.32)

For a Newtonian fluid, i.e. for λ∗ → 0, the conformation tensor reduces to the identity
tensor, C → I , and the extra-stress tensor to the rate-of-deformation tensor, τ∗ → γ̇ ∗;
for no-flow C → I and τ ∗ → 0. An important property of the real, second-order and
symmetric tensor C is that is positive definite, and therefore its eigenvalues and its
determinant, are strictly positive.

Based on the dimensionless form of the extra-stress tensor, τ , the conformation tensor,
C, is given through τ = (C − I)/Wi = ε(C − I)/De where

C = ezez (ε2Czz)︸ ︷︷ ︸
czz

/ε2 + ezey (εCyz)︸ ︷︷ ︸
cyz

/ε + eyez (εCyz)︸ ︷︷ ︸
cyz

/ε + eyey Cyy︸︷︷︸
cyy

+eθeθ Cθθ︸︷︷︸
cθθ

, (2.33a)

or
C = ezezczz/ε

2 + ezeycyz/ε + eyezcyz/ε + eyeycyy + eθeθcθθ . (2.33b)

From (2.18) and (2.33b), we find that the components of τ and the rescaled components of
C are connected as

τzz = czz − ε2

De
, τyz = cyz

De
, τyy = cyy − 1

De
, τθθ = cθθ − 1

De
. (2.34a–d)

One is easy to confirm that the Oldroyd-B model can be equivalently and consistency
expressed in terms of τzz, τyz, τyy and τθθ or czz, cyz, cyy and cθθ ; the same expressions
for τzz, τyz and τyy have also been derived by Boyko & Stone (2022), Ahmed & Biancofiore
(2021, 2023) and Housiadas & Beris (2023) for the viscoelastic lubrication flow in
a hyperbolic channel. Note that an unstretched or equilibrium state for the polymer
molecules implies that

czz = ε2, cyy = cθθ = 1, cyz = 0, (2.35a)

or, based on the components of the original conformation tensor as follows:

Czz = Cyy = Cθθ = 1, Cyz = 0. (2.35b)

Before proceeding with the derivation of some general results, we emphasize that
with the method of solution used here, i.e. the lubrication approximation, the boundary
conditions at the inlet and/or outlet of the hyperbolic section of the pipe require special
attention. We will return to this issue with more details below, in §§ 4 and 7.

3. General analytical results

Main quantities of interest for this type of flow are the average pressure-drop required
to maintain the constant flowrate through the pipe, the first normal stress difference and
the Trouton ratio (or dimensionless elongational viscosity) of the fluid, as well as the
viscoelastic extra-stresses at the wall.
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K.D. Housiadas and A.N. Beris

3.1. Pressure-drop
The average pressure-drop is defined as

�Π∗ := 2π

(∫ H∗(0)

0
P∗(y∗, 0)y∗ dy∗ −

∫ H∗(�∗)

0
P∗(y∗, 1)y∗ dy∗

)

= −2π

∫ �∗

0

d
dz∗

(∫ H∗(z∗)

0
P∗(y∗, z)y∗ dy∗

)
dz∗, (3.1)

where �f ∗ := f ∗(z∗ = 0) − f (z∗ = �∗) for any field variable f ∗ (or �f := f (z = 0) −
f (z = 1) in dimensionless form). Using the characteristic scales reported in § 2.3, we find
�Π ≡ �Π∗/�Π∗

c :

�Π = 2
∫ H(0)

0
P( y, 0)y dy − 2

∫ H(1)

0
P( y, 1)y dy = −2

∫ 1

0

d
dz

(∫ H(z)

0
P( y, z)y dy

)
dz,

(3.2)

where �Π∗
c = (η∗

s + η∗
t )�

∗Q∗/(2h∗2
0 ). Applying Leibniz’s rule for integrals in (3.2), and

splitting the resulting expression, gives

�Π = −2
∫ 1

0

{∫ H

0

(
∂P
∂z

y dy
)

dz
}

−
∫ 1

0
2H′HP(H, z) dz. (3.3)

The second term on the right-hand side of (3.3) is simplified using 2H′H = (H2 − 1)′ and
performing integration by parts gives

∫ 1

0
2H′HP(H, z) dz = [(H2(z) − 1)P(H(z), z)]1

0 −
∫ 1

0
(H2 − 1)

d
dz

P(H, z) dz. (3.4)

Since H(0) = 1 (due to dimensionalization) and P(H(1), 1) = 0 (due to the reference
pressure), the first term on the right-hand side of (3.4) vanishes. Thus, (3.3) and (3.4)
yield

�Π = −2
∫ 1

0

(∫ H

0

∂P
∂z

y dy
)

dz +
∫ 1

0
(H2 − 1)

d
dz

P(H, z) dz. (3.5)

Using the chain rule to find the derivative of P(H(z), z) with respect to z, we find the
general formula for the average pressure drop in the varying region of the pipe:

�Π = −2
∫ 1

0

(∫ H

0

(
∂P
∂z

y dy
))

dz +
∫ 1

0
(H2 − 1)

(
∂P
∂z

∣∣∣∣
y=H

+ H′ ∂P
∂y

∣∣∣∣
y=H

)
dz.

(3.6)
Worth mentioning is that the second integral on the right-hand side of (3.6) results from
the variation of the shape function with respect to the axial coordinate. All quantities in
(3.6) can be obtained directly from the non-trivial components of the momentum balance,
i.e. (2.22)–(2.23), which can also be used to reveal the individual contributions to the total
average pressure drop.
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Viscoelastic flow in a non-uniform pipe

3.2. First normal stress difference
The extensional character of the flow is investigated starting from the constraints at y = 0,
given by (2.31b), along with continuity equation evaluated on the axis of symmetry. In this
case, we find

lim
y→0

V
y

= lim
y→0

∂V
∂y

= −1
2

∂U
∂z

∣∣∣∣
y=0

, (3.7)

where the first equality is due to L’Hôpital’s rule. Due to (3.7), the rate-of-deformation
tensor is given by

γ̇ |y=0 = ε
∂U
∂z

∣∣∣∣
y=0

(2ezez − eyey − eθeθ ). (3.8)

Thus, the flow on the axis of symmetry is a pure uniaxial extensional flow and the quantity
ε∂U/∂z|y=0 is a dimensionless rate of extension Ė. We emphasize, however, that the flow
in the hyperbolic pipe is a mixed flow with both extensional and shear characteristics. It is
purely extensional in character along the axis of symmetry of the pipe only, while at the
wall the shear characteristics dominate. When the rate-of-deformation tensor is given in
the form of (3.8), the dimensionless extensional viscosity of the fluid can be determined
merely from the first total normal stress difference N1 := (Tzz − Tyy)/ε

2 which has been
scaled by η∗

0u∗
c�

∗/h∗2
0 . Following the definition of the total stress tensor given in (2.19), the

rate of deformation tensor given in (2.17) and the viscoelastic extra-stress tensor given in
(2.18), we find

N1 = 3(1 − η)
∂U
∂z

+ η
(τzz

ε2 − τyy

)
at y = 0. (3.9a)

For a Newtonian fluid, i.e. for De = 0, (2.25) and (2.26) with the aid of (3.7) give
τzz,N = 2ε2∂U/∂z|y=0 and τyy,N = −∂U/∂z|y=0, and therefore (3.9a) reduces to N1,N =
3∂U/∂z|y=0. Equation (3.9a) can also be expressed in terms of the rescaled components
of the conformation tensor (see (2.33b)) as follows:

N1 = 3(1 − η)
∂U
∂z

+ η

De

(czz

ε2 − cyy

)
at y = 0, (3.9b)

or in terms of the original components of the conformation tensor,

N1 = 3(1 − η)
∂U
∂z

+ η

De
(Czz − Cyy) at y = 0. (3.9c)

Considering the constraints on the axis of symmetry (see (2.31b,c)), the zz−, yy- and
θθ -components of the Oldroyd-B model can be solved analytically. Denoting with u(z) ≡
U( y = 0, z) and u′(z) ≡ ∂U/∂z|y=0, and taking into account (2.34) and (3.7), (2.10)–(2.12)
are given in terms of the rescaled components of the conformation tensor (see (2.33a)),

czz + De(uc′
zz − 2czzu′) = ε2, (3.10)

cyy + De(uc′
yy + cyyu′) = 1, (3.11)

cθθ + De(uc′
θθ + cθθu′) = 1. (3.12)
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The exact analytical solution of (3.10)–(3.12) is

czz(0, z) = u2(z)ϕ(z)
{

czz(0, 0)

u2(0)
+ ε2

De

∫ z

0

dx
ϕ(x)u3(x)

}
, (3.13)

cyy(0, z) = ϕ(z)
u(z)

{
u(0)cyy(0, 0) + 1

De

∫ z

0

dx
ϕ(x)

}
, (3.14)

cθθ (0, z) = ϕ(z)
u(z)

{
u(0)cθθ (0, 0) + 1

De

∫ z

0

dx
ϕ(x)

}
, (3.15)

where

ϕ(z) := exp
(

− 1
De

∫ z

0

ds
u(s)

)
. (3.16)

From (2.34) and (3.13)–(3.16), the normal extra-stress components are trivially found as

τzz(0, z) = czz(0, z) − ε2

De
, τyy(0, z) = cyy(0, z) − 1

De
, τθθ (0, z) = cθθ (0, z) − 1

De
.

(3.17a–c)

Moreover, since Czz ≡ czz/ε
2, Cyy ≡ cyy and Cθθ ≡ cθθ , the components of the original

conformation tensor can easily be extracted too; worth mentioning is that the solution
for Czz, Cyy and Cθθ at y = 0 depends on the aspect ratio only implicitly through the
velocity profile u = u(z). Equations (3.13)–(3.16) also show that the spatial evolution of
Czz, Cyy and Cθθ at y = 0 depends on the conditions at the inlet of the pipe (as it should
be expected) as well as on the fluid velocity at y = 0, u = u(z); note that hereafter we will
be referring to the inlet conditions as the ‘initial conditions’ (considered in a Lagrangian
sense as such for the hyperbolic section of the flow). Noticing that

∫ z
0 (1/u(s)) ds > 0, it is

clear that ϕ = ϕ(z) is a continuous and positive function with ϕ(0) = 1 which decreases
exponentially to zero in the range 0 ≤ z ≤ 1.

Finally, by plugging (3.13)–(3.17) in (3.9b), we find

N1 = 3(1 − η)u′(z) + η

De2 ϕ(z)
(

u2(z)
∫ z

0

dx
ϕ(x)u3(x)

− 1
u(z)

∫ z

0

dx
ϕ(x)

)

+ η

De
ϕ(z)

(
u2(z)czz(0, 0)

u2(0)ε2 − u(0)

u(z)
cyy(0, 0)

)
. (3.18a)

Equation (3.18a) is the general formula for the evaluation of the dimensionless first normal
stress difference based on the flow field on the axis of symmetry of the pipe. Restoring the
original components of the conformation tensor, czz ≡ ε2Czz and cyy ≡ Cyy, and using
that the polymer molecules are unstretched at the origin of the coordinate system, i.e. at
the centre of the inlet of the varying region of the pipe, namely for czz(0, 0) = ε2 and
cyy(0, 0) = 1 (see (2.35a)), or equivalently, Czz(0, 0) = Cyy(0, 0) = 1 (see (2.35b)), gives

N1 = 3(1 − η)u′(z)

+ ηϕ(z)
De

(
1

De

(
u2(z)

∫ z

0

dx
ϕ(x)u3(x)

− 1
u(z)

∫ z

0

dx
ϕ(x)

)
+ u2(z)

u2(0)
− u(0)

u(z)

)
.

(3.18b)

Equations (3.18a) and (3.18b) are exact, namely no approximations whatsoever have been
made for their derivation. Also, notice that (3.18b) does not depend directly on the aspect
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Viscoelastic flow in a non-uniform pipe

ratio; instead, there is an indirect dependence of N1 on ε2 through u. We emphasize that
the equilibrium conditions imposed at y = z = 0 are a consequence of the exact analytical
solution at the entrance region (see below in § 4.1). Finally, worth noting is that the Trouton
ratio is evaluated at a postprocessing step after the solution of the governing equations has
been evaluated. It is calculated from (3.18b) based on the (exact, numerical or approximate)
solution for the velocity profile of the fluid at the centreline.

3.3. Viscoelastic extra-stresses at the wall
Considering the boundary conditions for the velocity field at the wall eliminates the
material derivative of the polymeric extra stress(es) along the wall, namely Df /Dt = 0
for f = τzz, τyz, τyy, τθθ at y = H(z). One can also confirm that along the wall, all
velocity gradients can be expressed in terms of the wall shear rate γ̇ ≡ ∂U/∂y|y=H only.
This can be shown starting from the no-slip and no-penetration conditions (see (2.31a)),
differentiating with respect to z and using the continuity equation (see (2.21)),

∂U
∂z

= −H′γ̇ ,
∂V
∂y

= H′γ̇ ,
∂V
∂z

= −H′2γ̇ at y = H. (3.19)

Using (3.19), the exact analytical solution of the constitutive model, (2.25)–(2.28), is

τzz(H, z) = 2De γ̇ 2 + 2ε2γ̇ H′(−1 + De H′γ̇ ),

τyy(H, z) = 2H′γ̇ (1 + De H′γ̇ ) + 2ε2 De γ̇ 2H′4,
τθθ (H, z) = 0,

τyz(H, z) = γ̇ (1 + 2De H′γ̇ ) + ε2γ̇ H′2(−1 + 2De γ̇ H′).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.20)

Equation (3.20) is well-defined for any value of γ̇ and De ≥ 0. Moreover, based on the
positive definiteness criterion of the confirmation tensor C, its diagonal elements and
its determinant, det(C) = Cθθ (CyyCzz − C2

yz) = cθθ (cyyczz − c2
yz)/ε

2, must be positive.
Indeed, by using (2.34) and (3.20) we have confirmed that the diagonal elements of C
and its determinant

det(C) = ε2 + (De γ̇ )2(1 + ε2H′2)
2

ε2 = 1 + (Wi γ̇ )2(1 + ε2H′2)2, (3.21)

are strictly positive for any value of De, or Wi, and any geometry.

4. Lubrication approximation

The evaluation of the total average pressure drop from (3.6), the first normal stress
difference from (3.18b), and the viscoelastic extra-stresses at the wall from (3.20), require
the velocity field in the flow domain Ω . We will not proceed by solving the full nonlinear
governing equations reported in § 2, but we will find good approximations of the field
variables. This can be achieved by considering pipes with small aspect ratio, i.e. ε <

1. From an asymptotic point of view and based on the magnitude of ε, all terms in
(2.21)–(2.23) and the constitutive equation, (2.25)–(2.28), multiplied with ε2 or ε4 are
much smaller compared with the other terms and can be ignored as a first approximation.
Therefore, the solution for each dependent field variable X can be expressed formally
as a perturbation power series in terms of ε2, X( y, z) ≈ ∑

i≥0 X(2i)( y, z)ε2i as ε2 → 0.
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Dropping the zero subscript in parenthesis throughout the paper for simplicity, unless
otherwise noted, the leading-order balance equations are

∂U
∂z

+ ∂V
∂y

+ V
y

= 0, (4.1)

Rem
DU
Dt

= −∂P
∂z

+ (1 − η)

(
∂2U
∂y2 + 1

y
∂U
∂y

)
+ η

(
∂τzz

∂z
+ ∂τyz

∂y
+ τyz

y

)
, (4.2)

0 = −∂P
∂y

, (4.3)

τzz + De
(

Dτzz

Dt
− 2τzz

∂U
∂z

− 2τyz
∂U
∂y

)
= 0, (4.4a)

τyy + De
(

Dτyy

Dt
− 2τyz

∂V
∂z

− 2τyy
∂V
∂y

)
= 2

∂V
∂y

, (4.4b)

τθθ + De
(

Dτθθ

Dt
− 2τθθ

V
y

)
= 2

V
y

, (4.4c)

τyz + De
(

Dτyz

Dt
+ τyz

V
y

− τzz
∂V
∂z

− τyy
∂U
∂y

)
= ∂U

∂y
, (4.4d)

where the convective derivative D/Dt is given by (2.24). The same type of lubrication
analysis has been performed before for the planar case by Boyko & Stone (2022), Ahmed &
Biancofiore (2021, 2023) and Housiadas & Beris (2023, 2024a,b,c). However, as it will be
become clear later, the analysis for the cylindrical pipe requires special attention because
from the mathematical point of view, the governing equations at the axis of symmetry
of the pipe although well-defined are singular in cylindrical coordinates, namely are not
strictly defined on y = 0, but they should be considered only as the limit as y goes to zero.
This implies that the conditions (2.31b) and (2.31c) must hold.

Equation (4.3) shows that P = P(z) only, and thus ∂P/∂z ≡ P′(z) is an unknown
function that must be determined; this is a major feature of the classic lubrication theory
at the limit of a vanishing small aspect ratio. It is also interesting that the corresponding
equation for τθθ , (4.4c), is decoupled from the remaining equations. Thus, one can solve
(4.1), (4.2) and (4.4a,b,d) to find the velocity components U and V, the pressure gradient
P′(z) and the viscoelastic extra-stresses τzz, τyy and τyz, and then (4.4c) to find τθθ

for completeness. This decoupling is a consequence of the lubrication approximation
according to which τθθ in the momentum balance is neglected, and the axisymmetry of
the flow field.

We proceed by reporting the solution of the lubrication equations at the entrance
region of the pipe, the solution of the lubrication equations in the varying region of
the pipe for a Newtonian fluid at creeping flow conditions, and by providing information
about the discontinuity of the viscoelastic extra-stress when the polymeric fluid exits the
entrance region and enters the varying region. Most importantly, starting from the general
expressions derived in § 3, we derive the simplified formulae for the total average pressure
drop, the first normal stress difference and the Trouton ratio at the classic lubrication
limit. We also use (4.1)–(4.3) to derive the individual contributions to the total mechanical
energy of the system; this leads to an alternative decomposition of the average pressure
drop in the pipe.
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Viscoelastic flow in a non-uniform pipe

4.1. Solution at the entrance region
The pipe at the entrance region has a constant radius, i.e. H(z) = 1 for z ≤ 0. In this case,
(4.1)–(4.4a–d) can easily be solved analytically for all the field variables,

Uen = 4(1 − y2), Ven = 0, P′
en = −16,

τzz,en = 128De y2, τyz,en = −8y, τyy,en = τθθ,en = 0,

}
(4.5)

where the subscript ‘en’ is used to denote the entrance region. It is interesting to mention
here that on the axis of symmetry of the pipe, y = 0, all the components of the polymer
extra-stress tensor vanish, i.e. the polymer molecules are upstretched; the same holds for
the planar case too (see (56) in Housiadas & Beris (2023)).

4.2. Newtonian solution for creeping flow
For a Newtonian fluid (De = 0) and creeping flow (Rem = 0) (4.1)–(4.3) can be solved
analytically too (Housiadas & Tsangaris 2022; Sialmas & Housiadas 2024). The solution is

UN = 4
H2

(
1 − y2

H2

)
, VN = H′

H
yUN, P′

N = − 16
H4 , (4.6a–c)

where a subscript ‘N’ throughout the paper denotes the solution for the Newtonian fluid.
Using (4.6), one can find the polymer extra-stresses through (4.4a–d):

τzz,N = 0, τyz,N = ∂UN

∂y
= − 8y

H4 ,

τyy,N = 2
∂VN

∂y
= 8

H′

H3

(
1 − 3

y2

H2

)
, τθθ,N = 2

VN

y
= 8

H′

H3

(
1 − y2

H2

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.7)

Along the axis of symmetry of the pipe, i.e. at y = 0, (4.7) gives τzz,N = τyz,N =
0 and τyy,N = τθθ,N = 8H′/H3; thus for a hyperbolic shape function τyy,N = τθθ,N =
−4(Λ2 − 1).

4.3. Extra-stresses discontinuity
As mentioned above for a straight pipe, the velocity, pressure and extra-stress profiles given
in (4.5) satisfy the lubrication equations (4.1)–(4.4a–d). However, the entrance extra-stress
profiles given in (4.5) are not compatible with the exact solution at the wall given by (3.20).
Indeed, from (4.5) we find that limz→0− γ̇ (z) = −8 and

lim
z→0−

τzz(1, z) = 128De, lim
z→0−

τyy(1, z) = lim
z→0−

τθθ (1, z) = 0, lim
z→0−

τyz(1, z) = −8.

(4.8a–c)
Since limz→0+ γ̇ (z) = −8 and limz→0+H′(z) /= 0, from (3.20) we also find:

lim
z→0+

τzz(1, z) = 128De + 16ε2H′(0)(1 + 8De H′(0)),

lim
z→0+

τyy(1, z) = −16H′(0) + 128De H′(0)2 + 128ε2 De H′(0)4,

lim
z→0+

τθθ (1, z) = 0,

lim
z→0+

τyz(1, z) = −8 + 128De H′(0) + 8ε2H′(0)2(1 + 16De H′(0)),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.9)
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where in (4.9) the underlying O(ε2) terms are disregarded at the classic lubrication limit,
i.e. at ε2 → 0, and have been included here for completeness only. Equations (4.8) and
(4.9) show that the viscoelastic extra-stress τyz and τyy at the inlet are discontinuous, and
therefore a substantial rearrangement of the stresses is expected to take place when the
fluid enters the varying (hyperbolic) section of the pipe.

4.4. Average pressure drop
The general formula for the average pressure-drop required to drive the flow, at the classic
lubrication limit, is found from (3.6) by taking into account that the leading-order pressure
field is independent of the transverse direction y:

�Π = −
∫ 1

0
P′(z)H2(z) dz +

∫ 1

0
(H2(z) − 1)P′(z) dz = −

∫ 1

0
P′(z) dz. (4.10)

Although (4.10) may seem trivial, it is a consequence of the classic lubrication
approximation according to which the pressure gradient is independent of the radial
coordinate. For Rem = 0, we proceed by multiplying (4.2) with y, integrating with respect
to y from y = 0 to y = H(z) and applying the conditions on the axis of symmetry.
Simplifying the result, gives

P′(z) = 2
H

(
(1 − η)

∂U
∂y

+ η(τyz − H′τzz)

)
y=H

+ 2η

H2
d
dz

(∫ H

0
τzzy dy

)
︸ ︷︷ ︸

I(z)

, (4.11)

where the quantity I(z) := ∫ H(z)
0 τzz( y, z)y dy has been defined for convenience. Equation

(4.11) can be simplified further by considering (3.20) at the limit ε2 → 0, i.e. by omitting
the O(ε2) and O(ε4) terms. In this case, (τyz − H′τzz)y=H = γ̇ , where γ̇ = ∂U/∂y|y=H and
thus, (4.10) and (4.11) give

�Π = −2
∫ 1

0

γ̇ (z)
H(z)

dz︸ ︷︷ ︸
γ̇ w

+ 2η

(
I(0) − Λ2I(1) −

∫ 1

0

2H′(z)
H3(z)

I(z) dz

)
︸ ︷︷ ︸

τ

. (4.12)

Due to the definitions shown in (4.12), �Π = γ̇w + τ , namely the total average pressure
drop along the pipe is a consequence of the tangential viscous stresses along the wall,
γ̇w, plus an additional term, τ , that comes from the axial viscoelastic extra-stress along
the main flow direction. Furthermore, using (2.30) gives 2H′(z)/H3(z) = −(Λ2 − 1) and
thus (4.12) reduces to

�Π = −2
∫ 1

0

γ̇ (z)
H(z)

dz + 2η

(
I(0) − Λ2I(1) + (Λ2 − 1)

∫ 1

0
I(z) dz

)
. (4.13)

For a Newtonian fluid, τzz = 0 (see (4.4a)) and (4.12), or (4.13), gives

�ΠN = 16
∫ 1

0

dz
H4(z)

. (4.14a)

For the hyperbolic pipe (4.14a) reduces to

�ΠN = 16(1 + Λ2 + Λ4)/3. (4.14b)
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Viscoelastic flow in a non-uniform pipe

It is trivial to confirm that for a straight pipe Λ = 1, or H(z) = 1, and (4.14a,b) give
�ΠN = 16. Finally, we mention that (4.13) can also be derived from the total force balance
on the entire hyperbolic section of the flow domain at the classic lubrication limit.

4.5. Mechanical energy
Here, we present the analysis for the total mechanical energy of the system at the classic
lubrication limit, in terms of its individual contributions. For a planar hyperbolic channel,
the same analysis has also been performed by Housiadas & Beris (2024c), including fluid
slip along the walls of the channel. We start from the momentum equation for creeping
flow, i.e. (4.2) with Rem = 0, which we multiply with yU. Then, we integrate along the
y-direction and perform integration by parts on the viscous and viscoelastic terms applying
the no-slip and no-penetration conditions at the walls. We also use the constraints along
the axis of symmetry, integrate the resulting equation with respect to the axial coordinate,
and use Leibniz’s rule for integrals in the viscoelastic terms, to find

�Π = ΦV + Φel + Wel, (4.15)

where ΦV is the viscous dissipation, Φel is the elastic bulk contribution, and Wel is
the work done by the elastic forces. Reiterating that �f = f (z = 0) − f (z = 1), these
quantities are given as

ΦV = (1 − η)

∫ 1

0

∫ H

0

(
∂U
∂y

)2

y dy dz, (4.16a)

Φel = η

∫ 1

0

∫ H

0

(
τzz

∂U
∂z

+ τyz
∂U
∂y

)
y dy dz, (4.16b)

Wel = η�

(∫ H

0
τzzUy dy

)
. (4.16c)

Obviously, ΦV is strictly positive, while Φel can theoretically take any value. It is positive,
namely purely dissipative, only at the limit De → 0 in which case (1 − η)Φel = ηΦv .
However, we need to emphasize that in the parameters range investigated here, Φel is
indeed dissipative (see also below in § 6.4).

Equation (4.15) is an alternative expression for �Π to that given by (4.13). For a
Newtonian fluid in a hyperbolic axisymmetric pipe, (4.16a–c) reduce to

Φv,N

1 − η
= Φel,N

η
= �ΠN, Wel,N = 0. (4.17a,b)

Although in the Newtonian limit τzz,N = 0 everywhere, as seen in (4.4a), resulting in
Wel,N = 0, in the viscoelastic case, τzz is non-zero in the bulk except on the axis of
symmetry of the pipe (τzz(0, z) = 0). Also note that τyz,N = ∂UN/∂y (see (4.4d)). Taken
together the above explain the viscous dissipation and elastic contributions as given in
(4.17a).

5. Trouton ratio based on the exact, velocity-based formula (3.18b)

Using the analytical solution for the extra-stress tensor at the entrance region, (4.5), i.e.
the information that the polymer molecules are unstretched at the origin of the coordinate
system (y = z = 0), the general formula for the first normal stress difference at the
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lubrication limit is derived directly from (3.18b) because as mentioned in § 3, ε2 does
not appear explicitly in (3.18b). Thus, N1 can be found provided that the velocity profile
on the axis of symmetry, u = u(z), is known. Of course, this requires the solution of the
full governing equations albeit approximation(s) of u can be utilized too. For instance, for a
Newtonian fluid (De = 0) and creeping flow (Rem = 0), and using (4.6) to find the velocity
on the axis of symmetry, uN(z) ≡ UN( y = 0, z) = 4/H2(z) and u′

N(z) = −8H′(z)/H3(z),
reduces (3.18b) as follows:

N1,N = 3u′
N(z) = −24H′(z)/H3(z). (5.1)

The approximation of the velocity profile with the corresponding Newtonian one is
a common approach in the literature for hyperbolic geometries and many fluids with
different rheological behaviour such as viscoelastic Boger-type fluids (James & Roos
2021), inelastic shear thinning-fluids (Ober et al. 2013; Pérez-Salas et al. 2019) or
viscoelastic fluids with power-law viscous behaviour (James & Tripathi 2023). Although
the first normal stress difference shown in (5.1) appears to depend on the axial coordinate,
due to the dependence of H on z, for the hyperbolic pipe described by (2.30), H′/H3 =
−(Λ2 − 1)/2 yielding a simple formula for N1,N which depends on the geometric ratio
Λ ≡ h∗

0/h∗
f only, i.e. N1,N = 12(Λ2 − 1). Therefore, for Λ /= 1, the Trouton ratio, defined

as Tr ≡ N1/u′(z) = N1/4(Λ2 − 1), gives the well-established result for a Newtonian fluid
under homogeneous uniaxial extension,

TrN = 3, Λ /= 1. (5.2)

For the viscoelastic case, one can use the Newtonian velocity profile in (3.18b), to find an
approximation of the Trouton ratio; this merely corresponds to the uncoupled case (η = 0)
at the lubrication limit (ε2 → 0). Assuming the hyperbolic pipe, i.e. considering (2.30) for
the shape function and substituting in (3.18b) yields Tr = Tr(z, η, Λ, Dem),

Tr = 3(1 − η)

+ η

Dem

⎛
⎜⎜⎜⎝1 − 2Dem(1 + (Λ2 − 1)z)2−1/Dem

1 − 2Dem︸ ︷︷ ︸
Czz(0,z)

− 1 + Dem(1 + (Λ2 − 1)z)−1−1/Dem

1 + Dem︸ ︷︷ ︸
Cyy(0,z)

⎞
⎟⎟⎟⎠,

(5.3a)

or, after some rearrangement to show that the formula is not singular as Dem → 0, we find

Tr = 3
(

1 + η
(1 + 2Dem) Dem

(1 − 2Dem)(1 + Dem)

)

− η

(
(1 + (Λ2 − 1)z)2−1/Dem

1 − 2Dem
− (1 + (Λ2 − 1)z)−1−1/Dem

1 + Dem

)
, (5.3b)

where, assuming hereafter Λ /= 1, the modified Deborah number Dem ≡ 4De(Λ2 − 1)

has been used. Here Dem is a new dimensional group which combines both viscoelastic
and geometric effects and plays an important role in the solution of the major quantities
of interest. For a contracting pipe, Λ is larger than one and thus Dem is positive. Note
that the first term in parenthesis on the right-hand side of (5.3a) is merely Czz(0, z),
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Viscoelastic flow in a non-uniform pipe

while the second is Cyy(0, z) = Cθθ (0, z); for completeness, we also report that ϕ(z) =
(1 + (Λ2 − 1)z)−1/Dem . In contrast to the Trouton ratio for a Newtonian fluid given
by (5.1), the formulae for a viscoelastic fluid given by (5.3a,b) depends on the axial
coordinate, z. Evaluating (5.3a,b) at the exit of the pipe, we find Trex ≡ Tr(1, η, Λ, Dem),
respectively,

Trex = 3(1 − η) + η

Dem

(
1 − 2Dem Λ2(2−1/Dem)

1 − 2Dem
− 1 + Dem Λ−2(1+1/Dem)

1 + Dem

)
, (5.4a)

and

Trex = 3
(

1 + η
Dem(1 + 2Dem)

(1 − 2Dem)(1 + Dem)

)
︸ ︷︷ ︸

Trh

−η

(
2Λ2(2−1/Dem)

1 − 2Dem
+ Λ−2(1+1/Dem)

1 + Dem

)
︸ ︷︷ ︸

Trnh

.

(5.4b)

Based on the quantities indicated in (5.4b) Trex = Trh − η Trnh where Trh, Trnh > 0. It is
not difficult to recognize that Trh is the solution for homogeneous extension, while −η Trnh
is a negative contribution that can be seen as a non-homogeneous term. The formula for
Trh is derived from the Oldroyd-B model assuming that a pure steady uniaxial elongation
is imposed (Bird et al. 1987; Tanner 2000; Housiadas 2017; Housiadas & Beris 2024b).
Therefore, the Trouton ratio of the fluid at the exit of the hyperbolic pipe is always less
than the corresponding Touton ratio for steady homogenous extension. It is very interesting
that although Trh is valid and bounded only in the range 0 ≤ Dem < 1/2 (the well-known
singularity of the Oldroyd-B model for steady homogeneous extension at a finite Deborah
number), the formula for Trex = Trh − η Trnh is well-defined and finite for any Dem > 0.
Similar formulae have also been derived and discussed for the steady viscoelastic flow
with slip along the walls of a hyperbolic planar channel by Housiadas & Beris (2024b,c).

In figure 2(a), (5.3a) or (5.3b), is shown as function of z for Dem = 0.3 (black solid
line), 0.5 (dashed red line) and 0.7 (dotted blue line) for Λ = 3 and η = 4/10. A monotonic
increase of the Trouton ratio with the distance from the inlet is depicted, and the same
holds with the increase of Λ. Also, figure 2(b) shows the Trouton ratio at z = 1, i.e. Trex, in
logarithmic scale as a function of Dem, for η = 4/10 and Λ= 2 (solid black line), 4 (dashed
red line) and 8 (dotted blue line). A smooth enhancement of the Trouton ration is observed,
although at high enough modified Deborah number a slight decrease is also seen.

We also comment on the peculiar behaviour of Czz(0, z) as Dem → 1/2. In this case,
Czz(0, z) is defined only as a limit which is given by

lim
Dem→1/2

Czz(0, z) = 1 + 2 ln(1 + (Λ2 − 1)z). (5.5)

Note, however, that Czz(0, z) is continuous and differentiable for any Dem > 0 (including
Dem = 1/2). From (5.3a,b)–(5.5) we find the corresponding limits of Tr and Trex,
respectively,

lim
Dem→1/2

Tr = 3 + η

(
4 ln(1 + (Λ2 − 1)z) − 2

3(1 + (Λ2 − 1)z))3 − 7
3

)
, (5.6)

and

lim
Dem→1/2

Trex = 3 + η

(
8 ln(Λ) − 2

3Λ6 − 7
3

)
. (5.7)
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Figure 2. The Trouton ratio, (5.3a) or (5.3b), for a fluid with η = 4/10 based on the Newtonian velocity profile
at the classic lubrication limit (i.e. (4.6)) evaluated at y = 0: (a) versus z; (b) evaluated at z = 1 versus Dem.

We conclude this section by emphasizing that, generally, the Trouton ratio is defined only
for pure extensional flow. In the hyperbolic tube studied here, the flow is purely extensional
exclusively along the axis of symmetry of the pipe, y, making its calculation meaningful
only at y = 0. Additional formulae for the Trouton ratio in series form follow in § 6, further
comments and discussion are given in § 8, while advancements on the same issue for
viscoelastic flows, with or without slip along the walls of a hyperbolic channel, can be
found in Housiadas & Beris (2024a,b,c).

6. Low Deborah number analysis of the lubrication equations

Instead of solving the (4.1)–(4.4) for the primary field variables {U, V, p, τzz, τyz, τyy, τθθ },
we introduce the stream function, Ψ , which is defined with the aid of the two velocity
components,

U = 1
y

∂Ψ

∂y
, V = −1

y
∂Ψ

∂z
. (6.1a,b)

Thus, the continuity equation, (4.1), is satisfied automatically and the pressure gradient
can be eliminated by differentiating (4.2) with respect to y. Thus, (4.1)–(4.3) are replaced
with the following equation:

Rem
∂

∂y

(
D
Dt

(
1
y

∂Ψ

∂y

))
= (1 − η)

y

(
∂4Ψ

∂y4 − 2
y

∂3Ψ

∂y3 + 3
y2

∂2Ψ

∂y2 − 3
y3

∂Ψ

∂y

)

+ η

(
∂2τzz

∂z∂y
+ ∂2τyz

∂y2 + 1
y

∂τyz

∂y
− τyz

y2

)
, (6.2)

where

∂

∂y

(
D
Dt

(
1
y

∂Ψ

∂y

))

= 1
y2

((
3
y2

∂Ψ

∂z
− 1

y
∂Ψ

∂y
∂Ψ

∂z
+ ∂3Ψ

∂y∂z2

)
∂Ψ

∂y
+

(
3
y

∂2Ψ

∂y2 − ∂3Ψ

∂y3

)
∂Ψ

∂z

)
. (6.3)
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Viscoelastic flow in a non-uniform pipe

Since both U and V (and their gradients) are expressed in terms of derivatives of the
stream function only, a reference value for Ψ can be chosen arbitrary. Substituting U in the
total mass balance, (2.31d), gives Ψ (H(z), z) − Ψ (0, z) = 1 which indicates that one of
Ψ (0, z) and Ψ (H(z), z) can be set conveniently. Also, considering the boundary conditions
at the wall and the restrictions needed so that the governing equations are well-defined on
the axis of symmetry of the pipe, the final auxiliary conditions for the stream function,
imposed for any 0 ≤ z ≤ 1, are summarized as follows:

Ψ (0, z) = ∂Ψ

∂y
(0, z) = ∂3Ψ

∂y3 (0, z) = 0, Ψ (H(z), z) = 1,

∂Ψ

∂z
(H(z), z) = ∂Ψ

∂y
(H(z), z) = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (6.4a–c)

The conditions approaching the symmetry axis, can also be expressed as Ψ = O(y2) as
y → 0 (Sisavath, Jing & Zimmerman 2001).

For a Newtonian fluid (De = 0) and creeping flow conditions (Rem = 0) the analytical
solution for the stream function in the varying region of the pipe, 0 ≤ z ≤ 1, is

ΨN = y2

H2

(
2 − y2

H2

)
. (6.5)

It can be trivially confirmed that (6.5) satisfies all conditions given in (6.4), as well as that
0 ≤ ΨN ≤ 1. At the entrance region, z ≤ 0, the shape function is constant, i.e. H(z) = 1,
and (6.5) reduces to Ψen = y2(2 − y2) where we have used the subscript ‘en’ in accordance
with (4.5).

For the solution of (5.2) and (4.4a–d) we assume a regular perturbation scheme in terms
of the Deborah number,

f ≈ fN +
∞∑

k=1

fk Dek 0 < De � 1, (6.6)

where f = Ψ, τzz, τyy, τyz and τθθ . The series are substituted into the governing equations
and accompanied boundary conditions yielding a sequence of equations which are
solved analytically up to O(De8) with the aid of MATHEMATICA software (Wolfram
2023). This quite demanding task requires advanced techniques and substantial computer
resources to be achieved; it is also more difficult than the planar case solved and presented
recently by Housiadas & Beris (2023, 2024a). The O(De0) = O(1) equations correspond
to the equations for a simple Newtonian fluid, while the effect of viscoelasticity is built
with the addition of the O(Dek) terms, k = 1, 2, . . . , 8. Worth mentioning is also the
fact that with this method of solution, inlet (at z = 0) and/or outlet (at z = 1) conditions
for the stream function and the viscoelastic extra-stresses are not needed and cannot be
imposed. Inlet (or initial) conditions, however, are required when the equations are solved
numerically; more details are given in § 6. It will become clear below that the calculation
of many terms in the asymptotic perturbation series is of great importance because it
provides adequately information capable of demonstrating the convergence of the major
quantities of interest.
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K.D. Housiadas and A.N. Beris

The O(De) solution is

Ψ1 = 0, τzz,1 = 128
H6 ȳ2, τyz,1 = 128

H3

(
H′

H3

)
(2ȳ2 − 1)ȳ,

τyy,1 = 32(5 − 18ȳ2 + 17ȳ4)

(
H′

H3

)2

− 32(ȳ2 − 1)
2 H′′

H5 ,

τθθ,1 = 160(ȳ2 − 1)
2
(

H′

H3

)2

− 32(ȳ2 − 1)
2 H′′

H5 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.7)

where we have used the normalized radial coordinate ȳ = y/H(z) for brevity. Since Ψ1 =
0, the O(De) velocity field is zero as previously predicted by Boyko & Stone (2022) and
Housiadas & Beris (2023, 2024a) for the planar case, and according to the theorem of
Tanner & Pipkin (1969). Note that (6.7) is given in a suitable form in terms of the quantities
H′/H3 and H′′/H5 which for the hyperbolic function given by (2.30) are constants, i.e.
−(Λ2 − 1)/2 and 3(Λ2 − 1)2/4, respectively. This implies that H6τzz,1, H3τyz,1, τyy,1 and
τθθ,1 depend on ȳ only, i.e. there is not any axial evolution of the extra-stresses.

The O(De2) solution is

Ψ2 = ηȳ2(Ψ̂
(2)
2 (z) + ȳ2Ψ̂

(4)
2 (z) + ȳ4Ψ̂

(6)
2 (z) + ȳ6Ψ̂

(8)
2 (z)), (6.8a)

τzz,2 = 3072
H6

(
H′

H3

)
(1 − ȳ2)ȳ2, (6.8b)

τyz,2 = 256
H3 ȳ(τ̂ (1)

yz,2(z) + ȳ3τ̂
(3)
yz,2(z) + ȳ5τ̂

(5)
yz,2(z)), (6.8c)

τyy,2 = 128(τ̂
(0)
yy,2(z) + ȳ2τ̂

(2)
yy,2(z) + ȳ4τ̂

(4)
yy,2(z̄) + ȳ6τ̂

(6)
yy,2(z)), (6.8d)

τθθ,2 = 128(τ̂
(0)
θθ,2(z) + ȳ2τ̂

(2)
θθ,2(z) + ȳ4τ̂

(4)
θθ,2(z) + ȳ6τ̂

(6)
θθ,2(z)), (6.8e)

where Ψ̂
( j)
2 , τ̂

( j)
yz,2, τ̂

( j)
zz,2 and τ̂

( j)
θθ,2 are functions of the shape function and its derivative(s)

with respect to the axial coordinate. The precise form of these functions is provided in the
Appendix A. The higher-order solutions are too long to be printed here.

Finally, we confirm that for a hyperbolic pipe, at any order of the perturbation scheme,
i.e. for k = 0,1,2,. . . ,8, Ψk, H6τzz,k, H3τyz,k, τyy,k and τθθ,k depend on ȳ only (see the
Appendix A for k = 2), as well as that on the axis of symmetry of the pipe τzz,k(0, z) =
τyz,k(0, z) = 0.

6.1. Streamlines
The stream function is given with of the aid of ȳ ≡ y/H(z) and using the hyperbolic
shape function for H, i.e. (2.30), and its derivatives H′ = −(Λ2 − 1)H3/2 and H′′ =
3(Λ2 − 1)2H5/4. Thus, (6.8a) is simplified substantially because functions Ψ̂

(2j)
2 (z),

j = 1, 2, 3, 4, become constants, namely they turn out to be independent of z (see the
Appendix A):

Ψ = 2ȳ2 − ȳ4 + ηDe2
m(−1

3 ȳ2 + 1
2 ȳ4 − 1

6 ȳ8) + O(De3
m). (6.9)

Recall that Ψ ( ȳ = 0) = 0 (along the axis of symmetry) and Ψ ( ȳ = 1) = 1 (at the
wall) by construction. The shape of the streamlines, ys = ys(z) or ȳs ≡ ys(z)/H(z),
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Viscoelastic flow in a non-uniform pipe
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0.8

1.0
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c
0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8
c = 0, 0.25, 0.50, 0.75, 1

η De2
m = 0, 0.5, 1

1.0

ys

z

(a) (b)

Figure 3. (a) The solution of (6.10) for a Newtonian fluid (Dem = 0), and the two viscoelastic cases (η De2
m =

0.5 and 1) as function of c. Both the exact (solid lines) and approximate ((6.11); dashed lines) solutions are
shown. (b) The shape of the streamlines for a Newtonian fluid (solid lines) and a highly viscoelastic fluid with
η De2

m = 1 (dashed lines) as function of z; the arrow shows in the direction of increasing c.

can be determined from (6.9) by considering the new transformed variable Ȳs := ȳ2
s =

y2
s (z)/H2(z) and solving the equation

Ψ ≈ 2Ȳs − Ȳ2
s + η De2

m(−1
3 Ȳs + 1

2 Ȳ2
s − 1

6 Ȳ4
s ) = c 0 ≤ c ≤ 1, (6.10)

from which we can find Ȳs = Ȳs(c, η De2
m) ≥ 0. Notice that since z or H(z) do not appear in

(6.10), the z-dependence of the streamlines is hidden in Ȳs. Equation (6.10) has four roots,
two of which are complex conjugate, the third is negative and the fourth is positive. Thus,
the positive root is the relevant one for this problem, and although available analytically, is
too long to be printed here. A very good approximation, however, is given by the following
expression:

Ȳs ≈ 1 − √
1 − c + η De2

m

12
(4

√
1 − c − 4 + (4 − √

1 − c)c). (6.11)

Therefore, the streamlines are described by

ys(z) ≈ H(z)
√

Ȳs, (6.12)

Equation (6.12) shows that at the classic lubrication limit the shape of the streamlines is not
affected by viscoelasticity. The streamlines are determined exclusively by the hyperbolic
shape of the wall, while viscoelasticity influences only their position. In figure 3, we plot√

Ȳs ≡ ȳs as a function of c, for η De2
m = 0, 0.5 and 1. Both the full analytical solution

(solid lines) and its approximation given by (6.11)–(6.12) (dashed lines) are shown in
figure 3(a). One can hardly see the differences, and thus (6.11)–(6.12) are an excellent
approximation of the exact solution, at least in the range 0 ≤ η De2

m ≤ 1. Using the exact
solution, or the approximate one, we can draw the shape of the streamlines, ys, as function
of the distance from the inlet, z, for various values of the stream function, c, as illustrated
in figure 3(b).

The results for the Newtonian (η De2
m = 0) and a highly viscoelastic fluid (η De2

m = 1)
are shown for values of the steam function from zero to one in increments of 0.25, i.e.
for c = 0, 0.25, 0.50, 0.75 and 1. As expected, the differences between the Newtonian and
viscoelastic fluids are minute. The streamlines are slightly pushed towards the wall, but
the displacement is inconsequential.
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K.D. Housiadas and A.N. Beris

6.2. Average pressure-drop
Based on the series expansion in terms of De, the solution for the pressure gradient is

P′(z) ≈ P′
N(z) + η

8∑
k=1

P̂′
k(z) Dek, (6.13)

where ηP̂′
k(z) ≡ P′

k(z), k = 1,2, . . . ,8. The individual components are provided below up
to O(De4), while the higher-order components are too long to be printed here,

P′
N = − 16

H4 , (6.14a)

P̂′
1 = −256

H′

H7 = 128
3

(
1

H6

)′
, (6.14b)

P̂′
2 = 768

(
H′′

H9 − 19
3

H′2

H10

)
, (6.14c)

P̂′
3 = 3072

(
−152

3
H′3

H13 + 296
15

H′H′′

H12 − 16
15

16H′′′

15H11 + η

5

(
52

H′3

H13 − 59
3

H′H′′

H12 + H′′′

H11

))
,

(6.14d)

P̂′
4 = −840H′4

H16 + 1586H′2H′′

3H15 − 85H′′2

3H14 − 46H′H′′′

H14 + 5H(4)

3H13

+ η

(
9221H′4

20H16 − 2729H′2H′′

10H15 + 109H′′2

8H14 + 133H′H′′′

6H14 − 89H(4)

120H13

)

+ η2

(
−136H′4

H16 + 1178H′2H′′

15H15 − 11H′′2

3H14 − 94H′H′′′

15H14 + H(4)

5H13

)
,

(6.14e)

where the explicit dependence on the axial coordinate is omitted for simplicity. For
a hyperbolic pipe, i.e. when the shape function is given by (2.30), (4.2) gives up to
eighth-order

�Π

�ΠN
= 1 − 2η Dem + 5η

2
De2

m + η

(
−14

5
+ 3η

5

)
De3

m + η

(
3 − 49

20
η + 4

5
η2

)
De4

m

+
8∑

k=5

ηδk(η) Dek
m, (6.15)

where �ΠN is given in (4.14b), and δk = δk(η), k = 5, 6, 7, 8, are given by

δ5(η) = −22
7

+ 653
105

η − 506
105

η2 + 8
7
η3, (6.16a)

δ6(η) = 13
4

− 4399
350

η + 9049
525

η2 − 4849
525

η3 + 12
7

η4, (6.16b)
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Viscoelastic flow in a non-uniform pipe

�Π/�ΠN O(1) O(Dem) O(De2
m) O(De3

m) O(De4
m) O(De5

m) O(De6
m) O(De7

m) O(De8
m)

η = 0.4 1 −0.8 1 −1.024 0.859 −0.541 0.173 0.103 −0.171
η = 1 1 −2 2.5 −2.2 1.35 −0.6 0.396 −0.534 0.448

Table 1. The coefficients of the O(Dek
m) terms, k = 0, 1, 2, . . . . , 8, in (6.15).

δ7(η) = −10
3

+ 4649
210

η − 16 609
350

η2 + 270 569
6300

η3 − 5512
315

η4 + 8
3
η5, (6.16c)

δ8(η) = 17
5

− 6397
180

η+ 2 095 259
18 900

η2 − 56 720 593
378 000

η3+ 791 519
7875

η4 − 259 843
7875

η5+ 64
15

η6.

(6.16d)

It is interesting, and somehow unexpected, that the final series for the reduced average
pressure drop can be recast in terms of Dem ≡ 4(Λ2 − 1)De, and the polymer viscosity
ratio, η, only. A similar formula for �Π/�ΠN holds for the planar case, studied
theoretically previously by Boyko & Stone (2022) and Housiadas & Beris (2023), albeit
these authors did not report the corresponding formula; the latter can be found in
Housiadas & Beris (2024a) though.

To get more insight about the results, we consider η = 4/10 and η = 1 and we calculate
the coefficients of the O(Dek

m) terms, k = 0, 1, 2, . . . , 8, in (6.15); the results are reported
in table 1. We notice that the numerical coefficients for η = 0.4 are smaller than those
for η = 1, as well as that the magnitude of the coefficients decreases very slowly. Thus,
and to increase the accuracy of our eighth-order formula, (6.15), we proceed by applying
a technique that rearranges nonlinearly the terms of a truncated series. Specifically, we
apply the diagonal [M/M] Padé approximants (Padé 1892) on (6.15), where M = 1, 2, 3
and 4 and we derive new, transformed, analytical solutions. We remind the reader that the
diagonal [M/M] Padé approximant of a function f = f (δ) agrees with the corresponding
Taylor series of f about the point δ = 0 up to O(δ2M). The successive approximants for
M = 1, 2, 3 and 4 can be used to check the convergence of the transformed solutions.

In figure 4(a), we present the reduced pressure drop, �Π/�ΠN , for η = 4/10 up
to second-, fourth-, sixth and eighth-order perturbation solutions as functions of Dem.
Convergence of the results is clearly observed gradually as more terms are included in
the series, and we safely claim that the radius of convergence of the series is at least
0.85. The results show a decrease of �Π/�ΠN , as previously predicted for a hyperbolic
symmetric channel (Boyko & Stone 2022; Housiadas & Beris 2023, 2024a). Furthermore,
the accelerated (transformed) solutions which are depicted in figure 4(b), clearly show
the convergence of the perturbation results. The convergence is achieved when at least
five terms in the series are taken into account for the construction of the Padé [M/M]
diagonal approximant (i.e. for M = 2). Indeed, the curves with M = 2, 3 and 4, which are
constructed using the first five, seven and nine terms in the series (6.15), respectively, are
indistinguishable.

In figure 5, we present the individual contributions to the average pressure drop, i.e.
γ̇w and τ (see (4.12)) normalized by the Newtonian value �ΠN , as function of the
modified Deborah number for a polymer viscosity ratio η = 4/10. First, we notice the
clear convergence of both contributions to the average pressure drop. We also see that
with increasing Dem, an increase of the magnitude of the positive viscous contribution at
the wall (γ̇w > 0) is predicted, as well as the increase of the magnitude of the negative
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Figure 4. Reduced pressure drop versus Dem for the Oldroyd-B model with η = 0.4. (a) Perturbation solutions:
solid (black) line, second-order solution; dashed (red) line, fourth-order solution; dotted (blue) line, sixth-order
solution; dot–dashed (magenta) line, eighth-order solution. (b) Accelerated solutions: solid (black) line, up to
second order; dashed (red) line, up to fourth order; dotted (blue) line, up to sixth order; dot–dashed (magenta)
line, up to eighth order. The accelerated solutions up to fourth, sixth and eighth orders are indistinguishable.
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Figure 5. Decomposition of the average pressed drop, ��, based on (4.12), or (4.13), in (a) wall shear stress
contribution, γ w, (b) viscoelastic extra-stress contribution, τ , and (c) surface (Sel) and volume (Vel) viscoelastic
contributions. All contributions are normalized by ��N (4.14b) and the viscosity ratio is η = 4/10. Solid
(black), dashed (red) and dotted (blue) lines are acceleration formulae up to O(De4), O(De6) and O(De8),
respectively.

viscoelastic contribution (τ < 0). However, it appears that the negative viscoelastic
contribution overwhelms the positive viscous contribution leading to a decrease in the
average pressure drop. Similar results were observed for the planar case too (Housiadas &
Beris, 2023, 2024a). The viscous and viscoelastic contributions are also given up to fourth
order in Dem,

γ̇ w

�ΠN
= 1 + η

2
De2

m + η

5
(3η − 4) De3

m + η
(

1 + η

20
(16η − 37)

)
De4

m + O(De5
m),

(6.17)

and

τ

�ΠN
= 2η Dem

(
−1 + Dem − De2

m +
(

1 − 3η

10

)
De3

m

)
+ O(De5

m). (6.18)

In order to identify the terms responsible for the decrease of �Π , it is helpful to
further analyse the viscoelastic component, τ , as defined in (4.12)–(4.13), in terms of a net
surface contribution between the inlet and the outlet, Sel ≡ I(0) − Λ2I(1), and a volume
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Viscoelastic flow in a non-uniform pipe

contribution, Vel ≡ (Λ2 − 1)
∫ 1

0 I(z) dz, resulting in

τ = Sel + Vel. (6.19)

Based on the high-order analytical solution, we report these quantities up to O(De4
m),

Sel

�ΠN
= −3η Dem

(
1 − Dem + De2

m −
(

1 − 3η

10

)
De3

m

)
+ O(De5

m), (6.20)

and
Vel

�ΠN
= η Dem

(
1 − Dem + De2

m −
(

1 − 3η

10

)
De3

m

)
+ O(De5

m). (6.21)

Note also, in reference to (4.13), that the analytical solution at the entrance region gives
I(0−) = 32De, while the high-order analytical solution in the hyperbolic section gives
I(0+) = 32De + O(De2).

The results for Vel/�ΠN and Sel/�ΠN are shown in figure 5(c) as function of Dem.
An interesting finding from our analysis that is worth mentioning is that the surface
contribution is minus three times the positive volume contribution:

Sel = −3Vel. (6.22)

By verifying that (6.22) holds up to O(De8
m), we conjecture that is exact, although we

can neither explain its origin, nor we have proved it formally. Equations (6.17), (6.20)
and (6.21) reveal that both the pure viscous contribution along the wall of the tube and
the volume viscoelastic contribution result to an increase of the pressure drop required
to drive the flow, while the net surface contribution due to viscoelastic has the opposite
effect, namely it facilitates the transport of the fluid through the tube.

6.3. First normal stress difference and Trouton ratio
As far as the exact solution for the Trouton ratio, given by (3.18b), is concerned
we need to emphasize that the regular perturbation scheme in terms of De employed
above cannot be applied directly on (3.18b). The reason is that the function ϕ(z) =
exp

(−De−1 ∫ z
0 u−1(x) dx

)
which appears in (3.18a,b) goes to zero faster than any power of

the Deborah number, namely ϕ = o(Den) for any n = 0, 1, 2, 3, . . . as De → 0+. Provided
that the fluid velocity on the axis of symmetry, u = u(z), is a continuous and strictly
positive function for any z ∈ [0, 1], ϕ is smooth and zero over an infinitely long interval, i.e.
for 0 < De < ∞, and yet non-zero, but it cannot be described by a Taylor series because
it is not holomorphic.

However, and even if we are aware that the exact solution cannot be approximated by a
simple power series in terms of De, we ignore this information and proceed by going one
step back, i.e. we start from (3.9b) and apply the lubrication expansion,

N1 = 3(1 − η)u′
(0) + η

De

(czz(0)

ε2 + czz(2) − cyy(0)

)
+ O(ε2) at y = 0, (6.23)

where we retain the lubrication subscript to avoid confusion, u′
(0) ≡ ∂U(0)/∂z|y=0 and the

equations that govern czz(0)(0, z), czz(2)(0, z) and cyy(0)(0, z) are found from (3.10) and
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(3.11). For completeness, we give the leading-order velocity profile of the fluid on the axis
of symmetry, u(0), which, interestingly, can be recast as follows:

u(0) = u(0)N(z)q[n](η, Dem), q[n] = 1 + q̂2(η) De2
m + · · · + q̂n(η) Den

m, (6.24a,b)

where u(0)N = 4/H2 = 4(1 + (Λ2 − 1)z), and therefore u′
(0) = 4(Λ2 − 1)q[n](η, Dem);

recall that a prime denotes differentiation with respect to the axial coordinate. The first
three functions q̂k, k = 2, 3, 4 are

q̂2 = −η

6
, q̂3 = η

30
(11 − 7η), q̂4 = − η

300
(170 − 283η + 104η2). (6.25a–c)

First, the initial value problem that determines czz(0)(0, z) is

czz(0) + De(u(0)c′
zz(0) − 2czz(0)u′

(0)) = 0 0 < z ≤ 1,

czz(0)(0, z = 0) = 0,

}
(6.26)

where an unstretched inlet condition for the polymer molecules is used in accordance with
the analytical solution at the entrance region, (4.5). The perturbation solution of (6.26) in
terms of De (or Dem), up to any order, is

czz(0)(0, z) = 0 0 ≤ z ≤ 1. (6.27)

Using (6.27), we find that the initial value problem that determines czz(2)(0, z) is

czz(2) + De(u(0)c′
zz(2) − 2czz(2)u′

(0)) = 1 0 < z ≤ 1,

czz(2)(0, z = 0) = 1.

}
(6.28)

Unexpectedly, we see that the solution for czz(2)(0, z) can be found using only u(0). The
solution of (6.28) up to fourth order in Dem is

czz(2)(0, z) = 1 + 2Dem + 4De2
m +

(
8 − η

3

)
De3

m

+
(

16 − 1
15

η(9 + 7η)

)
De4

m + O(De5
m). (6.29)

Similarly, the initial value problem that determines cyy(0)(0, z) is

cyy(0) + De(u(0)c′
yy(0) + cyy(0)u′

(0)) = 1 0 < z ≤ 1,

cyy(0)(0, z = 0) = 1

}
. (6.30)

The solution for cyy(0)(0, z) up to fourth order in Dem is

cyy(0)(0, z) = 1 + De2
m + 1

6(η − 6) De3
m + 1

30(30 + 7(η − 3)η) De4
m + O(De5

m). (6.31)

We reiterate, however, that czz(0), czz(2), cyy(0) and u′
(0)N are independent of z. Based on

(6.23), the leading-order first normal stress difference is

N1(0) = 3(1 − η)u′
(0) + η

De
(czz(2) − cyy(0)). (6.32)

By substituting all known quantities (czz(2), cyy(0) and u′
(0)) into (6.32) and simplifying the

result, we find the Trouton ratio in the lubrication limit, Tr ≡ N1(0)/u′
(0):

Tr = 3
(

1 + η Dem + 3η De2
m + η

6
(30 − η) De3

m + η

30
(330 − 19η − 7η2) De4

m

)
+ O(De5

m). (6.33a)

999 A7-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

84
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.848


Viscoelastic flow in a non-uniform pipe

Instead, if the Newtonian strain rate on the symmetry axis is used, we form the quantity
Tr∗ ≡ N1(0)/u′

(0)N and find

Tr∗ = 3
(

1 + η Dem + 17
6

η De2
m + η

30
(161 − 17η) De3

m

+ η

300
(3130 + 53η − 244η2) De4

m

)
+ O(De5

m). (6.33b)

As previously observed for �Π given by (6.15), the perturbation solutions for the Trouton
ratio are expressed in terms of Dem and η only. For the UCM model, i.e. for η = 1, we find
up to O(De8

m),

Tr ≈ 3
(

1 + Dem + 3De2
m + 29

6
De3

m + 152
15

De4
m + 1933

100
De5

m + 34 019
900

De6
m

+ 3 235 319
44 100

De7
m + 200 133

1400
De8

m

)
, (6.34a)

and

Tr∗ ≈ 3
(

1 + Dem + 17
6

De2
m + 24

5
De3

m + 2939
300

De4
m + 5647

300
De5

m + 1 621 259
44 100

De6
m

+ 6 297 799
88 200

De7
m + 1 103 656 411

7 938 000
De8

m

)
. (6.34b)

The first two terms in (6.34a) and (6.34b) are the same but at higher orders in Dem the
coefficients are slightly different (as it should be expected). Also, in contrast to (6.15),
all terms in (6.33a,b) and (6.34a,b) are positive which is indicative of the existence of
a function irregularity at a critical value of Dem. Unlike the coefficients of (6.15), the
magnitude of the coefficients of Dem in (6.33a,b) and (6.34a,b) increases. Applying the
lowest-order diagonal [M/M] Padé approximant (the case with M = 1) in the truncated
series (6.33a) and (6.33b) shows that the approximants become singular at the critical
value Dem,c = 1/3 and Dem,c = 6/17, respectively. Increasing the parameter M does not
eliminate the singular point but pushes it towards 1/2 (for M = 2, one finds Dem,c ≈ 0.507
for both (6.33a) and (6.33b)). This shows the consistency of the approximants and implies
that accurate predictions as the Dem = 1/2 is approached cannot be expected.

In figure 6, we present the Trouton ratio as predicted by (6.33a) and increasing gradually
the number of terms that are included in the series (shown with dashed lines), the
corresponding Padé approximants with M = 2, 3 and 4 (shown with solid lines), along with
the solution for the pure homogeneous steady uniaxial extension, Trh, (dotted red line) as
indicated in (5.4b). First, we observe that the Padé approximants are indistinguishable,
as well as that they diverge near Dem ≈ 1/2. Second, we see that the homogeneous
solution is practically the same as the transformed/accelerated solutions (i.e. with the
Padé approximants for M = 2, 3 and 4). Third, we see that the perturbation solutions
converge slowly and only for Dem < 1/2. This information in conjunction with the
convergence of the successive Padé approximants implies that the radius of convergence
of the perturbation series for the Trouton ratio, (6.33a), is less than one half. Moreover, in
figure 6(b) we compare the accelerated solution up to O(De8

m) with the exact solution based
on the Newtonian velocity u(0)N ≡ UN(0, z), i.e. (5.3a) or (5.3b), for different values of the
contraction ratio Λ. It is seen that for Dem > 0.3 approximately, the accelerated solution
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Figure 6. Trouton ratio along the cenreline at the exit of the pipe as function of Dem = 4(Λ2 − 1)De for
η = 4/10. (a) The perturbation solutions are calculated up to O(De2), O(De4), O(De6) and O(De8) (dashed
lines), while the accelerated solutions are constructed based on the perturbation solutions up to O(De4)
and O(De8). (b) The Trouton ratio evaluated from the exact solution (3.18b), is shown with the velocity
approximated by the Newtonian lubrication solution ((4.6) at y = 0), at the exit of the hyperbolic section of the
pipe (z = 1) and for Λ = 2 (solid), 4 (dashed) and 8 (dot–dashed). For comparison, the accelerated evaluation
of the eighth-order perturbation solution is also shown and indicated with a solid (blue) line.
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Figure 7. The Trouton ratio at the exit of the pipe as function of Dem = 4(Λ2 − 1)De for η = 4/10, using
(a) the Newtonian velocity profile ((4.6) at y = 0), i.e. (5.4b), solid (black) lines; the viscoelastic velocity
profile up to O(De8) with acceleration, dashed (red) lines, (b) the Newtonian velocity profile ((4.6) at y = 0),
solid (black) line; the Newtonian velocity profile at y = 0 up to O(ε4) ((6.39a)), dashed (red) line; the Newtonian
velocity profile at y = 0 up to O(ε4) with Padé acceleration (6.39b), dotted (blue) line.

cannot follow closely the exact solution as it should be expected due to its divergence near
Dem = 1/2; recall that when Tr is expressed in terms of Dem, � does not appear explicitly
in (6.33a), or in (6.33b).

In figure 7, we investigate the sensitivity of the Trouton ratio, Tr ≡ N1/u′(z) where
N1 is given by (3.18b), on the velocity profile on the axis of symmetry. Reiterating that
(3.18b) is exact, we consider two cases, both of which have the same base velocity, i.e. the
Newtonian velocity profile at the classic lubrication limit. In the first case, we consider
higher-order corrections due to viscoelasticity, namely in terms of the Deborah number,
and in the second we consider higher-order corrections due to variations in geometry,
namely in terms of the square of the aspect ratio of the tube.

In the first case, the starting point of the analysis is (6.24a), u(0) ≈ u(0)N(z)q[2M](η, Dem),
and its corresponding transformed formula based on the Padé [M/M] approximant,

999 A7-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

84
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.848


Viscoelastic flow in a non-uniform pipe

u(0) ≈ u(0)N(z)q[M/M](η, Dem) where M = 1, 2, 3, 4; recall that q[M/M](η, Dem) agrees
with q[2M](η, Dem) up to O(De2M

m ). When these two approximate velocity profiles are
substituted into (3.18b), gives

Tr = 3(1 − η) + η

a

(
1 − 2a(1 + (Λ2 − 1)z)2−1/.a

1 − 2a
− 1 + a(1 + (Λ2 − 1)z)−1−1/a

1 + a

)
,

(6.35a)
or, after some rearrangement to show there is no singularity as a → 0+,

Tr = 3
(

1 + η
(1 + 2a)a

(1 − 2a)(1 + a)

)

− η

(
(1 + (Λ2 − 1)z)2−1/a

1 − 2a
− (1 + (Λ2 − 1)z)−1−1/.a

1 + a

)
, (6.35b)

where
a ≡ Demq[2M](η, Dem) or a ≡ Demq[M/M](η, Dem). (6.36a,b)

At the exit of the pipe, (6.35b) reduces to

Trex = 3
(

1 + η
(1 + 2a)a

(1 − 2a)(1 + a)

)
− η

(
Λ2(2−1/a)

1 − 2a
− Λ−2(1+1/a)

1 + a

)
. (6.37)

The first expression for a, (6.36a), is based on the truncated perturbation series up to
O(De2M

m ), while the second expression, (6.36b), is based on the corresponding Padé [M/M]
approximant. Notice that (6.35a,b) are identical with (5.3a,b), respectively, and (6.37) is
identical with (5.4b), with the only difference that a is in place of Dem. Obviously, a
is a new dimensionless group which combines both viscoelastic (through De and η) and
geometric effects (through Λ) and therefore is a quantity that characterizes better and more
accurately, compared with Dem, the steady viscoelastic flow in the hyperbolic pipe. Notice,
however, that due to (6.24a,b) and (6.25),

a = Dem − η De3
m/6 + O(η De4

m), (6.38)

namely the higher-order corrections are very small (for the typical parameters Dem = 1/2
and η = 4/10, a ≈ 1/2 − 1/120 ≈ 0.4916). The Trouton ratio as function of Dem is
depicted in figure 7(a) for η = 4/10 and Λ= 2 and 3. Clearly, the differences between
the results are inconsequential.

In the second case, we use the Newtonian velocity profile on the axis of symmetry,
uN(z) ≡ UN( y = 0, z), up to O(ε4) as previously found by Housiadas & Tsangaris (2022)
and further studied recently up to O(ε20) by Sialmas & Housiadas (2024), as well as the
corresponding Padé [2/2] approximant:

uN = u(0) + ε2u(2) + ε4u(4) + O(ε6), uN[2×2] = u(0) +
ε2u2

(2)

u(2) − ε2u(4)

. (6.39a,b)

For the hyperbolic pipe, the velocity components in (6.39a,b) are

u(0) = 4
H2 , u(2) = 1

3
H4(Λ2 − 1)2, u(4) = 1

9
H10(Λ2 − 1)4. (6.40a–c)

Using the velocity profiles shown in (6.39a,b)–(6.40), and η = 4/10, Λ= 3, we present the
results for the Trouton ratio as function of the modified Deborah number in figure 7(b).
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Figure 8. Contributions to the pressure drop based on the total mechanical energy of the system. The results
are shown as function of Dem for the viscous dissipation, �v , elastic dissipation, �el, and inlet/outlet work
done by the elastic forces, Wel. Solid lines, η = 8/10; dashed lines, η = 4/10.

The results are shown at the classic lubrication (ε2 → 0) and for aspect ratio ε = 0.15;
note that for ε ≤ 0.1 no observable differences are predicted. It is seen that the as the
aspect ratio increases, the Trouton ratio drops, as well as that the differences between uN
and the corresponding Padé approximant cause very small differences on the Trouton ratio
too.

Based on the sensitivity analysis conducted here and the results presented in figures 6
and 7, we conclude that the exact analytical solution for the Trouton ratio, which is
extracted with the aid of (3.18b) and is based on the velocity profile on the axis of
symmetry of the pipe, is insensitive to small changes from the Newtonian velocity
field. Therefore, the approximate analytical solution(s) at the classic lubrication limit,
(5.3a,b) and (5.4a,b), can safely be used for viscoelastic fluids in axisymmetric hyperbolic
pipes with ε ≤ 0.1. More comments and discussion on the theoretical features of the
perturbation solution can be found in § 8.

6.4. Mechanical energy decomposition
In figure 8, we present the individual contributions on the pressure-drop resulting from the
mechanical energy decomposition of the flow system as given in (4.15), i.e. the viscous
dissipation, Φv , elastic dissipation, Φel, and the work done by the elastic forces, Wel, as
defined in (4.16a,b,c), respectively. Based on the high-order perturbation scheme, Φv , Φel
and Φv are

ΦV

(1 − η)�ΠN
= 1 + η2

12
De4

m + O(De5
m), (6.41a)

Φel

η �ΠN
= 1 − 1

2
De2

m + 4
5

De3
m +

(
−1 + 4η

15
+ η2

12

)
De4

m + O(De5
m), (6.41b)

Wel

η�ΠN
= −2Dem + 3De2

m + 1
5
(−18 + 3η) De3

m +
(

4 − 14η

5
+ 4

5
η2

)
De4

m + O(De5
m).

(6.41c)

Equation (6.41a) shows that the energy lost due to viscous dissipation of the flow is
affected at fourth order in Dem, and thus Φv remains almost constant with respect to Dem
(for η = 4/10 Φv increases from 1 at the Newtonian limit to 1.0133 at Dem = 1), (6.41b)
shows that the leading-order contribution to Φel is positive with the first correcting term
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being O(De2
m) and negative, and (6.41c) shows that the leading-order term is negative.

Note also that the asymptotic series for Φel is alternating for all values of the polymer
viscosity ratio, 0 < η ≤ 1.

The high-order asymptotic solutions up to O(De8
m) for Φv , Φel and Φv have been

processed with the Padé [M/M] approximant with M = 2, 3 and 4 to achieve convergence,
and the results are shown as function of the modified Deborah number for polymer
viscosity ratios 4/10 and 8/10. As previously revealed by (6.41a–c), both Φv and Φel are
dissipative, with Φv being practically constant in the range of Dem covered in the figure,
and Φel decreasing slightly with increasing Dem. On the contrary, Wel is negative and
decreases substantially with the increase of the modified Deborah number leading to the
decrease of the total pressure drop required to maintain the constant flowrate through the
pipe.

Regarding our conjecture that for this type of flow Φel is strictly positive, i.e. purely
dissipative, we mention that the Padé [M/M] approximants for Φel reveal that indeed,
Φel > 0 for any value of Dem and η. For instance, for M = 2, we find

Φel

η�ΠN

∣∣∣∣
[2×2]

= 1 + 8
5 Dem + 1

150(9 + 80η + 25η2) De2
m

1 + 8
5 Dem + 1

150(84 + 80η + 25η2) De2
m

. (6.42)

Similarly, for M = 3 and 4 the approximants, which are too lengthy to print here, are strictly
positive. Therefore, although a formal proof for the dissipative character of the elastic
contribution to the system’s total mechanical energy cannot be provided, the analytical
accelerated formulae clearly indicate this.

6.5. A note on the purely elastic instabilities
It is known that flow instabilities occur in the motion of non-Newtonian polymeric liquids
even in the absence of inertia (Re → 0) (Shaqfeh 1996). Pakdel & McKinley (1996)
developed a dimensionless criterion that characterizes the critical conditions for onset of
elastic instabilities in two-dimensional, single-phase isothermal viscoelastic flows. The
instabilities arise due to perturbations which cause the polymer molecules to stretch
non-uniformly and deviate from their base state motion along a curvilinear streamline.
Pakdel & McKinley (1996) investigated in detail the lid-driven cavity flow problem of two
different ideal elastic fluids, while McKinley et al. (1996) extended the analysis of Pakdel
& McKinley (1996) in order to describe the geometric and rheological sensitivity that has
been observed in a variety of purely elastic instabilities.

Using the notation of the present work, the proposed dimensionless criterion of
McKinley et al. (1996) is represented in the general form,

Mcr =
√
λ∗u∗

c

�∗
τ ∗

tt

(η∗
s + η∗

p)(u∗
c/h∗

0)
⇔ Mcr =

√
1

(�∗/h∗
0)

λ∗τ ∗
tt

(η∗
s + η∗

p)
, (6.43)

where �∗ is a characteristic radius of curvature of the streamlines, and we have used that
the characteristic value for the local deformation of the flow is u∗

c/h∗
0 . Also, τ ∗

tt is the
tensile extra-stress tangentially to the streamlines, i.e. τ ∗

tt ≡ (τ ∗ · ts) · ts with ts being the
tangential unit vector along a streamline. Both �∗ and ts can be found provided that the
shape of the streamlines is known. Indeed, following the analysis in § 6.1, and in particular
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(6.12) in dimensional form, i.e. y∗
s (z) ≈ H∗(z∗)Ȳ1/2

s where Ȳs is given by (6.11), we find

ts ≈ ez + H∗′Ȳ1/2
s ey

1 + (H∗′)2Ȳs
, �∗ ≈ (1 + (H∗′)2Ȳs)

3/2

H∗′′Ȳ1/2
s

(6.44a,b)

or

ts ≈ ez + εH′Ȳ1/2
s ey

1 + ε2H′2Ȳs
,

�∗

h∗
0

≈ (1 + ε2H′2Ȳs)
3/2

ε2H′′Ȳ1/2
s

. (6.45a,b)

Using the definition of τ ∗
tt , as well as (6.45a,b), and after some algebraic manipulations,

we find (6.43) at the lubrication limit,

Mcr =
√

η De Ȳ1/2
s H′′τzz, (6.46)

where the zero subscript has been dropped from τzz in accordance with the notation in § 4
and the present § 6. However, due to the hyperbolic shape function H′′ = 3(Λ2 − 1)2H5/4,
while the leading-order term of τzz is given in (6.7) as τzz ≈ 128 De ȳ2/H6. Substituting
H′′ and τzz in (6.46), using ȳ2 ≡ Ȳs along a streamline and taking into account that H ≤ 1
gives

Mcr = Dem

√
6ηȲ3/2

s

H
≤

√
6 Ȳ3/4

s

√
η De2

m. (6.47)

Recall that Ȳs varies in the range [0, 1], as well as that Ȳs = Ȳs(η De2
m). We emphasize

that it is not possible to know in advance Mcr for the steady-state flow studied here.
This requires a linear stability analysis to be determined. However, if we consider Pakdel
& McKinley’s (1996) heuristic criterion, we find that the elastic instability may appear
for η De2

m > min(M2
cr/(6Ȳ3/2

s )) ≈ 74.7 where Mcr ≈ 21.17; of course this limit is much
beyond the range of parameters of interest which is covered in the present analysis
(0 ≤ De2

m ≤ 1 and 0 ≤ η ≤ 1).

7. Numerical solution of the lubrication equations

Equations (6.2) and (4.4a–d) consist of an initial (in the axial direction, z) and boundary
(in the radial direction, y) value problem accompanied with the boundary conditions given
in (6.4) and appropriate initial conditions. For the numerical solution of this system, first
we introduce new coordinates (ξ, ζ ) that map the varying boundary of the flow domain
into a fixed one,

ξ = −1 + 2y
H(z)

, ζ = z ⇔ y = ξ + 1
2

H(ζ ), z = ζ. (7.1a,b)

Thus, the shape function H appears into the governing equations and the domain of
definition of the lubrication equations becomes Ω̄ = {(ξ, ζ )| − 1 < ξ < 1, 0 < ζ ≤ 1}.
Based on (7.1) the first-order partial differential operators are transformed as follows:

∂

∂y
= 2

H(ζ )

∂

∂ξ
,

∂

∂z
= ∂

∂ζ
− (1 + ξ)H′(ζ )

H(ζ )

∂

∂ξ
, (7.2a,b)

where we have used ∂H/∂y = 0 to show that H = H(ζ ) only. Using (7.2) we find the
higher-order derivatives with respect to y and/or z in terms of derivatives with respect
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Viscoelastic flow in a non-uniform pipe

to ξ and ζ . Substituting the transformed derivatives and the rescaled components of the
conformation tensor into (6.2) and (4.4a–d) gives the final equations for Ψ , czz, cyy and
cyz defined on Ω̄; notice that we prefer to solve for the conformation tensor components
instead of the components of the viscoelastic extra-stress tensor. Based on the stream
function and the new coordinates, the material derivative is transformed as follows:

D
Dt

≡ 4
(1 + ξ)H2

(
∂Ψ

∂ξ

∂

∂ζ
− ∂Ψ

∂ζ

∂

∂ξ

)
. (7.3)

Similarly, the velocity components are given as

U = 4
(1 + ξ)H2

∂Ψ

∂ξ
, V = 2

H

(
H′

H
∂Ψ

∂ξ
− 1

(1 + ξ)

∂Ψ

∂ζ

)
. (7.4a,b)

Finally, the velocity gradients are

∂U
∂z

= 4
(1 + ξ)H2

(
∂2Ψ

∂ξ ∂ζ
− H′

H
∂Ψ

∂ξ
− H′

H
∂2Ψ

∂ξ2 (1 + ξ)

)
, (7.5)

∂U
∂y

= 8
(1 + ξ)H3

(
∂2Ψ

∂ξ2 − 1
(1 + ξ)

∂Ψ

∂ξ

)
, (7.6)

∂V
∂z

= − 2
(1 + ξ)H

{
∂2Ψ

∂ζ 2 −
((

H′′

H
− 2H′2

H2

)
∂Ψ

∂ξ
+ 2H′

H
∂2Ψ

∂ζ ∂ξ

)
(1 + ξ)

+ H′2

H2
∂2Ψ

∂ξ2 (1 + ξ)2

}
. (7.7)

Note that ∂V/∂y is eliminated with the aid of the continuity equation, i.e. ∂V/∂y =
−∂U/∂z − V/y. As far as the initial conditions are concerned, the solution at the entrance
region, i.e. for z ≤ 0, is imposed for the stream function,

Ψ ( y, 0) ≡ Ψen = y2(2 − y2),
∂Ψ

∂z
( y, 0) ≡ ∂Ψen

∂z
( y, 0) = 0, (7.8a,b)

and, similarly, for the rescaled components of the conformation tensor (for τzz, τyz and τyy
see § 4.1):

czz( y, 0) = 128De2y2, cyz( y, 0) = −8De y, cyy( y, 0) = 1. (7.9a–c)

We emphasize that (7.8b) requires special treatment in the new coordinate system (see
(7.2) with H(0) = 1)

∂Ψ

∂ζ
(ξ, 0) = H′(0+)(1 + ξ)Ψ ′

en(ξ). (7.10)

The integration along ζ is performed by discretizing the computational domain in N + 1
equidistant grid points, ζn = n�ζ = n/N, n = 0, 1, 2, 3, . . . , N. We use the A-stable and

999 A7-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

84
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.848


K.D. Housiadas and A.N. Beris

first-order accurate finite-difference formula for ∂f /∂ζ ,

∂f
∂ζ

(ξ, ζn) ≡ ∂f
∂ζ

∣∣∣∣
(n)

≈ f(n) − f(n−1)

�ζ
, (7.11a)

where f = Ψ , czz, cyz and cyy, while for ∂2Ψ/∂ζ 2 we use the first-order accurate formula,

∂2Ψ

∂ζ 2 (ξ, ζn) ≡ ∂2Ψ

∂ζ 2

∣∣∣∣
(n)

≈ 1
�ζ

(
∂Ψ

∂ζ

∣∣∣∣
(n)

− ∂Ψ

∂ζ

∣∣∣∣
(n−1)

)
. (7.11b)

In the above formulae, n ≥ 1 and a subscript in parenthesis denotes value at the
corresponding grid ζ -point, i.e. f(n) ≡ f (ξ, ζn). This is achieved by developing a
pseudospectral method. The field variables are given as series of Chebyshev orthogonal
polynomials in terms of ξ , as follows:

f(n) ≡ f (ξ, ζn) =
M∑

k=0

f̂ 2k(ζn)T2k(ξ), f = Ψ, czz, cyy, cyz. (7.12)

The Chebyshev orthogonal polynomials are defined as Tk(ξ) = cos(k cos−1(ξ)), k =
0, 1, 2, . . . , M in the domain ξ ∈ [−1, 1]. The spectral coefficients, namely the quantities
with a hat in (6.12), are calculated pseudospectrally based on the Gauss–Lobatto points
(Hesthaven, Gottlieb & Gottlieb 2007) {ξj}M

j=0 = {−cos( jπ/M)}M
j=0, at which the unknown

physical values fj,(n) ≈ f (ξj, ζn) are assigned. The partial derivatives of f with respect
to ξ at the Gauss–Lobatto points are evaluated effectively based on the differentiation
matrices (Hesthaven, Gottlieb & Gottlieb 2007). Then, fj,(n) are calculated according to the
discretized version of the governing equations and accompanied boundary conditions at
the Gauss–Lobatto points. The resulting strongly nonlinear system of algebraic equations
is solved iteratively using a Newton scheme at each n-step yielding the solution for fj,(n);
this scheme converges quadratically (as it should) with an absolute relative criterion 10−12

within two or three iterations.
The accuracy of the solution calculated by our pseudospectral code is checked

by monitoring the magnitude of the spectral coefficients for the stream function. In
figure 7(a), |�Ψ̂ k| is shown in logarithmic plot for k = 1, 2, . . . , M, where M = 15, for
ζ = 0.2, ζ = 0.5 (at the middle of the pipe) and ζ = 1 (at the outlet) for the case with
η = 0.4 and Dem = 0.45. First, however, we report that Ψen and ΨN have the same form
when are expressed in terms of the new coordinates

Ψen(ξ) = ΨN(ξ) = 1
16 (1 + ξ)2(7 − 2ξ − ξ2), (7.13)

as well as that there is no dependence on the ζ -coordinate. From (7.13) one can trivially
confirm that Ψj(−1) = Ψ ′

j (−1) = Ψ ′′′
j (−1) = 0, Ψj(1) = 1, Ψ ′

j (1) = 0 where j = ‘en’ or
‘N’, and also to calculate the corresponding spectral coefficients:

{Ψ̂en,k}4
k=0 = {Ψ̂N,k}4

k=0 =
{

61
128

,
9
16

,
1
32

, − 1
16

, − 1
128

}
. (7.14)

Figure 9(a) shows that the magnitude of the spectral coefficients of �Ψ ≡ Ψ (ξ, ζ ) −
ΨN(ξ) drops fast, almost down to machine accuracy, revealing that the stream function is
fully resolved. The very small magnitude of |�Ψ̂ k|, k = 0, 1, 2, . . . , 15, reveals that the
stream function, and consequently the velocity field, only slightly changes compared with
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Figure 9. Simulations results for η = 4/10 and Dem = 0.45. (a) The magnitude of the spectral coefficients
for ��; circles, ζ = 0.2, squares, ζ = 0.5; diamonds, ζ = 1. (b) Here �� =� −�N as a function of the
transformed radial coordinate ξ .

Dem 0.10 0.20 0.30 0.40 0.45 0.55 0.60

�Π/�ΠN 0.9292 0.8730 0.8280 0.7916 0.7760 0.7491 0.7379
�Π/�ΠN |[1/1] 0.9289 0.8720 0.8255 0.7867 0.7696 0.7393 0.7257

(0.03%) (0.12%) (0.26%) (0.62%) (0.83%) (1.32%) (1.65%)
�Π/�ΠN |[2/2] 0.9291 0.8730 0.8281 0.7917 0.7760 0.7488 0.7369

(0.01%) (*) (0.01%) (0.01%) (*) (0.05%) (0.13%)
�Π/�ΠN |[3/3] 0.9291 0.8730 0.8281 0.7916 0.7760 0.7487 0.7368

(0.01%) (*) (0.01%) (0.01%) (*) (0.05%) (0.13%)
�Π/�ΠN |[4/4] 0.9291 0.8730 0.8281 0.7917 0.7760 0.7487 0.7369

(0.01%) (*) (0.01%) (0.01%) (*) (0.05%) (0.13%)

Table 2. Comparison of �Π/�ΠN calculated numerically and analytically (rounded in four significant digits)
using the Padé [M/M] diagonal approximants with M = 1, 2, 3 and 4. The percentage relative absolute error is
given in parenthesis; a star indicates error less than 0.01 %.

the Newtonian velocity field (or compared with the solution for the straight pipe at the
entrance region). The difference �Ψ is also shown as function of the transformed radial
coordinate near the inlet (ζ = 0.2), at the middle of the pipe (ζ = 1/2) and at the outlet
(ζ = 1) in figure 9(b).

In table 2, we compare the results obtained with our pseudospectral method with
the accelerated analytical solutions. The excellent agreement between the numerical and
analytical results reveals the validity and accuracy for both the theoretical and numerical
results up to at least Dem ≈ 1. The same accuracy is also achieved for the individual
contributions to the normalized pressure-drop (shown in figure 5), and for the Trouton
ratio (shown in figure 7a).

Last, in figure 10, we present results for the rescaled components of the conformation
tensor, H6czz, H3cyz and cyy as functions of the transformed radial coordinate, ξ . It is
seen that these quantities remain practically the same for any ζ > 0; the curves for ζ = 0
correspond to the initial condition at the inlet. In other words, there is no evolution of the
rescaled components of the conformation tensor with the distance from the inlet. Indeed,
this is fully consistent with the perturbation solution found here up to O(De8

m); see (6.7)
and (6.8b–e) along with the corresponding functions given in the Appendix A. The results
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Figure 10. Simulations results for Λ = 3 and Dem = 0.45 as function of the transformed radial coordinate, ξ :
(a) H6czz; (b) H3cyz; (c) cyy. All curves for ζ > 0 (shown with dashed lines) collapse.

reveal that czz � czz,N = 0 and that the magnitude of czz is much larger that the magnitudes
of cyz and cyy. These clearly indicate that czz (and the corresponding extra-stress
τzz) is the leading contribution to the pressure drop due to the viscoelasticity of the
fluid.

8. Discussion

We showed above that the high-order asymptotic formulae for the Trouton ratio, (6.33a)
and (6.33b), requires special attention. The main reason is that for the hyperbolic geometry
the normal component of the conformation tensor, czz, (or τ zz) shows a peculiar behaviour
at Dem = 1/2; consequently, this peculiarity affects the Trouton ratio at Dem = 1/2 too.
Thus, it did not come as a surprise that the perturbation solutions and the corresponding
transformed formulae diverge near that point, which clearly poses an upper bound for
their validity. These results are closely related to the known deficiency of the Oldroyd-B
model which predicts an infinite Trouton ratio in homogeneous uniaxial extensional flow
at a finite extension rate which corresponds to Dem = 1/2 (Bird et al. 1987; Tanner 2000;
Housiadas 2017; Housiadas & Beris 2024b).

The explanation for this peculiar behaviour of the Trouton ratio at Dem = 1/2 is given
with the aid of the exact analytical solution for Czz(0, z) (see (5.3a)) and its limit as Dem →
1/2 given by (5.5). These solutions directly affect the Trouton ratio at the exit of the
pipe and its limit as Dem → 1/2 given by (5.4b) and (5.6), respectively. It is important
to mention, however, that the exact solutions for Czz(0, z) and Tr are well-behaved for
any Dem > 0. The formula around which the exact solution for Tr was developed, (3.18b)
reveals the presence of a power law term with exponent proportional to the inverse of the
original Deborah number (see (3.16)). This term is not amenable to a representation in
terms of a regular perturbation series with respect to De, causing the series to diverge at
infinity at the same modified Deborah number as the exact solution for pure homogeneous
uniaxial extensional flow (i.e. at Dem = 1/2).

One can therefore naturally ask the following question. Suppose we do not know the
well-behaved for any Dem > 0 exact solution, is it possible, using a regular perturbation
scheme, to provide reasonable and/or accurate predictions for the Trouton ratio at Dem
values larger than 1/2? Although a strict and formal answer to this important issue cannot
be given, previous work by Housiadas (2017) on pure homogeneous elongational flows
showed that using only a series developed asymptotically as Dem → 0+, this is not
possible. Even worse, the use of more realistic (and highly nonlinear with respect to the
polymer extra-stress tensor) models like the Giesekus, FENE-P (Bird et al. 1987) and PTT
(Tanner 2000) models does not circumvent or resolve this issue.
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However, recent work by Housiadas (2023) revealed that a possible answer to this
question is to consider both limits (low and high Deborah numbers), in deriving asymptotic
solutions. Then, use of convergence acceleration methods (like, for instance, two-point
Padé approximants) followed by the development of uniformly valid approximations,
can resolve this problem. The performance of this method, which depends on the
available number of analytical terms at both limits, can be amazing. Another possible
answer to this question may be to consider advanced perturbation schemes, such as the
exponential asymptotics presented by Kataoka & Akylas (2022), that may capture more
efficiently the anomaly/peculiar behaviour of the constitutive model at Dem = 1/2. This
issue requires further in-depth investigation because for a long time is believed that the
regular perturbation schemes in terms of the Deborah or the Weissenberg numbers are the
only ones that should be used for developing asymptotic solutions for weakly viscoelastic
flows (Bird et al. 1987).

9. Conclusions

We studied theoretically the steady viscoelastic flow of an Oldroyd-B fluid under creeping
conditions in a long axisymmetric tube with variable cross-section, focusing on the
hyperbolic contracting pipe. First, we developed the general theoretical framework for the
evaluation of the average pressure drop, required to maintain a constant flow rate through
the pipe. Second, we proved that the velocity field along the axis of symmetry of the
pipe is a pure uniaxial extensional field, and we found the exact analytical solution for the
components of the constitutive model on the axis of symmetry in terms of the fluid velocity
only. The exact solution for the constitutive model along with the observation that the
flow velocity changes little with viscoelasticity along the axis of symmetry (at least in the
limit of a small aspect ratio, less than 0.1 approximately) allowed for a robust and accurate
evaluation of the first normal stress difference up to high Deborah numbers, through which
the dimensionless elongational viscosity of the fluid (or Trouton ratio, Tr) was extracted.
For a hyperbolic contracting pipe and approximating the velocity with that for a Newtonian
fluid under the same conditions and geometry, we showed that the Trouton ratio increases
with increasing the Deborah number, polymer viscosity ratio and contraction ratio. The
calculation of the Trouton ratio based on the exact analytical solution of the constitutive
model along the centreline, (3.18a,b), is a major achievement of this work. It not only
provides the correct result for the Trouton ratio for any Dem > 0, but also reveals the reason
for the failure of the perturbation series for the Trouton ratio (and their corresponding
transformed formulae) for Dem ≥ 1/2.

Further analytical progress was achieved by invoking the classic lubrication
approximation and solving the final equations for an arbitrary shape function, using a
high-order asymptotic scheme in terms of the original Deborah number, De, valid for any
value of the polymer viscosity ratio, i.e. for 0 ≤ η ≤ 1. In this case, the entrance and exit
regions of the tube do not play any role in the analysis, and consequently they do not
affect the results. The lubrication equations were solved analytically up to eighth-order
in the Deborah number, resulting in analytical formulae for all the field variables, the
average pressure drop, �Π , and the Trouton ratio, Tr; we reiterate that the latter is defined
and is meaningful only when the flow is purely extensional, i.e. only along the axis of
symmetry of the pipe. For the hyperbolic case, we revealed that the high-order perturbation
solutions, when reduced by their corresponding Newtonian values, namely �Π/�ΠN
and Tr given by (6.15) and (6.33a), respectively, can be recast in terms of Dem and η

only. The convergence of the perturbation series was checked and enhanced by deriving
transformed solutions using Padé diagonal approximants. The latter showed convergence
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for �Π/�ΠN , for any Dem > 0, revealing a monotonic decrease with increasing Dem
and/or η. On the contrary, the transformed solutions for Tr converged only in the window
0 < Dem < 1/2, showing an increase of the Trouton ratio with increasing Dem and/or η,
and diverging near Dem ≈ 1/2.

This deficiency/divergence was traced to the very peculiar dependence of the exact
analytical solution for the Trouton ratio on Dem and z which changes continuously from
an algebraic type dependence for 0 < Dem < 1/2, to a logarithmic type dependence at
Dem = 1/2, and back to the algebraic type for Dem = 1/2. Therefore, the transformed
perturbation solution(s) for the Trouton ratio can be used only for 0 < Dem < 1/2 while
the new developed exact formula ((3.18a) or (3.18b)) allows us to get well-behaved and
accurate predictions even for Dem = 1/2 given of course that a good approximation for
the fluid velocity is available. We were also able to show that even the Newtonian velocity
profile can give a sufficiently accurate result, which fully justifies this approach followed
by many researchers in the literature. Thus, the corresponding formula for the Trouton
ratio given by (5.3a,b), valid for a long hyperbolic axisymmetric pipe, represents the
best theoretical predictions for Boger-type fluids (i.e. viscoelastic fluids with negligible
shear thinning behaviour). Moreover, comparison of (5.3a), or (5.3b), with the high-order
perturbation solution for Tr, postprocessed with the Padé diagonal transformation, revealed
that the formulae agree very well in the range 0 < Dem < 0.3, approximately. Note that
these observations and predictions are in full accordance with the well-known singularity
of the Oldroyd-B model in homogeneous uniaxial extensional flow at a finite rate of
extension which corresponds to Dem = 1/2.

Two different decompositions for the average pressure drop were also performed with
the aid of the total force balance and the total mechanical energy of the flow system in the
hyperbolic section of the pipe. Both decompositions revealed the individual contributions
to the pressure drop, confirming the correctness of the high-order analytical solution and
highlighting important features of the flow. It was shown that the viscous stresses at the
wall and the viscoelastic contribution in the bulk increase the pressure drop, while the
net viscoelastic contribution between the inlet and outlet is responsible for the decrease
of the pressure drop with increasing the fluid viscoelasticity. It was also revealed that
the energy loss due to viscous dissipation remains almost constant with the increase of
Deborah number, as well as the dissipative nature of viscoelasticity, and the fact that
the work done by the normal viscoelastic forces gives energy to the fluid facilitating
the transport of the fluid through the pipe. We also emphasize that all contributions
to the total force balance and total mechanical energy of the system converge when at
least the first five terms in the asymptotic solutions are taken into account in order to
generate the Padé [2/2] approximant. Using more terms in the series and generating
higher-order Padé approximants results in no visible differences in the illustrated
outcomes.

Finally, we mention that our theoretical predictions, the analytical formulae, as well
as their transformed (accelerated) solutions were checked for their accuracy and validity
through comparison with numerical results obtained using pseudospectral methods to
solve the lubrication equations. The comparison revealed excellent agreement between the
solutions clearly demonstrating the accuracy, robustness and suitability of the theoretical
methods and techniques used here. In conclusion, our high-order asymptotic results in
terms of Dem and our pseudospectral numerical results are valid and very accurate in the
parameters range 0 ≤ ε ≤ 0.1, 0 ≤ Dem ≤ 1 and 0 ≤ η ≤ 1.
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Appendix A. Functions that appear in the O(De2) solution of the lubrication
equations

Functions Ψ̂
(2k)
2 = Ψ̂

(2k)
2 (z), k = 1, 2, 3, 4, are

Ψ̂
(2)
2 = 64

3

(
H′′

H5 − 4
H′2

H6

)
, Ψ̂

(4)
2 = 176

H′2

H6 − 48
H′′

H5 ,

Ψ̂
(6)
2 = 32

H′′

H5 − 96
H′2

H6 , Ψ̂
(8)
2 = 16

3
H′2

H6 − 16
3

H′′

H5 .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A1)

Functions τ̂
(2k+1)
yz,2 = τ̂

(2k+1)
yz,2 (z), k = 0, 1, 2 are

τ̂
(1)
yz,2 = −15

H′2

H6 + 3H′′

H5 + η

2

(
11

H′2

H6 − 3H′′

H5

)
,

τ̂
(3)
yz,2 = 42

H′2

H6 − 6
H′′

H5 + 3η

(
H′′

H5 − 3
H′2

H6

)
,

τ̂
(5)
yz,2 = −27

H′2

H6 + 3
H′′

H5 + η

(
H′2

H6 − H′′

H5

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A2)

Functions τ̂
(2k)
yy,2 = τ̂

(2k)
yy,2 (z), k = 0, 1, 2, 3 are

τ̂
(0)
yy,2 = 40

H′3

H9 − 17
H′ H′′

H8 + H′′′

H7 + η

(
−32

3
H′3

H9 + 5
H′ H′′

H8 − 1
3

H′′′

H7

)
,

τ̂
(2)
yy,2 = −180

H′3

H9 + 63
H′ H′′

H8 − 3
H′′′

H7 + η

(
165
2

H′3

H9 − 147
4

H′ H′′

H8 + 9
4

H′′′

H7

)
,

τ̂
(4)
yy,2 = 264

H′3

H9 − 75
H′ H′′

H8 + 3
H′′′

H7 + η

(
−90

H′3

H9 + 85
2

H′ H′′

H8 − 5
2

H′′′

H7

)
,

τ̂
(6)
yy,2 = −124

H′3

H9 + 29
H′ H′′

H8 − H′′′

H7 + η

(
49
6

H′3

H9 − 35
4

H′ H′′

H8 + 7
12

H′′′

H7

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A3)
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Functions τ̂
(2k)
θθ,2 = τ̂

(2k)
θθ,2(z), k = 0, 1, 2, 3 are

τ̂
(0)
θθ,2 = 40

H′3

H9 − 17
H′ H′′

H8 + H′′′

H7 + η

(
−32

3
H′3

H9 + 5
H′ H′′

H8 − 1
3

H′′′

H7

)
,

τ̂
(2)
θθ,2 = −120

H′3

H9 + 51
H′ H′′

H8 − 3
H′′′

H7 + η

(
55
2

H′3

H9 − 49
4

H′ H′′

H8 + 3
4

H′′′

H7

)
,

τ̂
(4)
θθ,2 = 120

H′3

H9 − 51
H′ H′′

H8 + 3
H′′′

H7 + η

(
−18

H′3

H9 + 17
2

H′ H′′

H8 − 1
2

H′′′

H7

)
,

τ̂
(6)
θθ,2 = −40

H′3

H9 + 17
H′ H′′

H8 − H′′′

H7 + η

(
7
6

H′3

H9 − 5
4

H′ H′′

H8 + 1
12

H′′′

H7

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A4)

For a hyperbolic pipe H′/H3 = −(Λ2 − 1)/2, H′′/H5 = 3(Λ2 − 1)2/4 and H′′′/H5 =
−15(Λ2 − 1)3/8, which implies that the above functions merely reduce to quantities that
depend on the square of the contraction ratio, Λ2, and the polymer viscosity, η, only.
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