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3Departamento de Matemática, Universidade Federal da Paráıba,
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Abstract We establish the multiplicity of positive weak solutions for the quasilinear Dirichlet problem
−Lpu + |u|p−2u = h(u) in Ωλ, u = 0 on ∂Ωλ, where Ωλ = λΩ, Ω is a bounded domain in R

N , λ is
a positive parameter, Lpu

.= ∆pu + ∆p(u2)u and the nonlinear term h(u) has subcritical growth. We
use minimax methods together with the Lyusternik–Schnirelmann category theory to get multiplicity of
positive solutions.
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1. Introduction

This paper is concerned with the existence of multiple positive solutions for a quasilinear
problem of the form

−Lpu + |u|p−2u = h(u), u ∈ W 1,p
0 (Ωλ), (Pλ)

where Ωλ = λΩ, Ω is a bounded domain in R
N , λ is a positive parameter, 2 � p < N ,

Lpu
.= ∆pu + ∆p(u2)u,

∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator and h : R → R is a C1-function
verifying the following conditions:

(H0) h(s) = 0 for s < 0 and h(s) = o(|s|p−1) at the origin;

(H1) lim|s|→∞ h(s)|s|1−q = 0 for some q ∈ (2p, 2p∗), where p∗ = Np/(N − p);
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(H2) there exists θ > 2p such that 0 < θH(s) � sh(s) for all s > 0, where

H(s) =
∫ s

0
h(t) dt;

(H3) the function s → h(s)/s2p−1 is increasing for s > 0.

A typical example of a function satisfying the conditions (H0)–(H3) is given by h(s) =
sµ for s � 0, with 2p − 1 < µ < q − 1, and h(s) = 0 for s < 0.

Throughout the paper, a function u : Ωλ → R is called a weak solution of (Pλ) if
u ∈ W 1,p

0 (Ωλ) ∩ L∞
loc(Ωλ) and∫

Ωλ

[(1 + 2p−1|u|p)|∇u|p−2∇u∇ϕ + 2p−1|∇u|p|u|p−2uϕ]dx

=
∫

Ωλ

[h(u) − |u|p−2u]ϕ dx for all ϕ ∈ C∞
0 (Ωλ). (1.1)

For p = 2, the solutions of (Pλ) are related to existence of standing wave solutions for
quasilinear Schrödinger equations of the form

i∂tψ = −∆ψ + V (x)ψ − h̃(|ψ|2)ψ − κ∆[ρ(|ψ|2)]ρ′(|ψ|2)ψ, (1.2)

where ψ : R × R
N → C, V = V (x) is a given potential, κ is a real constant and ρ, h̃ are

real functions. Quasilinear equations of the form (1.2) have been studied in relation to
some mathematical models in physics. For example, when ρ(s) = s, the above equation
is

i∂tψ = −∆ψ + V (x)ψ − κ∆[|ψ|2]ψ − h̃(|ψ|2)ψ. (1.3)

It was shown that a system describing the self-trapped electron on a lattice can be reduced
in the continuum limit to (1.3) and numerical results on this equation are obtained in [7].
In [12], motivated by nanotubes and fullerene-related structures, it was proposed and
shown that a discrete system describing the interaction of a two-dimensional hexagonal
lattice with an excitation caused by an excess electron can be reduced to (1.3) and
numerical results have been found for domains of disc type, cylinder type and sphere
type. The superfluid film equation in plasma physics also has the structure (1.2) for
ρ(s) = s [15].

The general equation (1.2) with various forms of quasilinear terms ρ(s) has been derived
as models of several other physical phenomena corresponding to various types of ρ(s). For
example, in the case ρ(s) = (1 + s)1/2, (1.2) models the self-channelling of a high-power
ultra-short laser in matter [6,21]. Equation (1.2) also appears in fluid mechanics [14],
in the theory of Heisenberg ferromagnets and magnons [24], in dissipative quantum
mechanics and in condensed-matter theory [19]. The semilinear case corresponding to
κ = 0 in the whole R

N has been studied extensively in recent years (see, for example,
[5,11,13] and references therein).

Setting ψ(t, x) = exp(−iFt)u(x), F ∈ R, in (1.3), we obtain the corresponding equation

−∆u − ∆(u2)u + V (x)u = h(u) in Ωλ, (1.4)
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where we have renamed V (x) − F as V (x), h(u) = h̃(u2)u and we assume, without loss
of generality, that κ = 1.

The quasilinear equation (1.4) in the whole R
N has received special attention in the

past few years; see, for example, [8–10,16–18,20] and references therein. These papers
present important results on the existence of non-trivial solutions of (1.4) and a good
insight into this quasilinear Schrödinger equation. The two main strategies used are the
following. The first consists in using a constrained minimization argument, which gives
a solution of (1.4) with an unknown Lagrange multiplier λ in front of the nonlinear term
(see, for example, [20]). The other consists in using a special change of variables to get
a new semilinear equation and an appropriate Orlicz space framework (for more details
see [8,9,17]). In [2], Alves et al . showed the existence of multiple solutions, by using the
Lyusternik–Schnirelmann category, for the following class of problems:

−εp∆pu − εp∆p(u2)u + V (x)|u|p−2u = h(u), u ∈ W 1,p(RN ),

for ε sufficiently small and the potential V (x) verifying some suitable assumptions.
Since in the literature we find few works where multiple solutions have been established

for problems involving the operator Lpu by using the Lyusternik–Schnirelmann category,
the present paper aims to show a class of problems involving the operator Lpu where
the Lyusternik–Schnirelmann category can be used to get multiple positive solutions.
Here we improve the main result proved in [1]; Alves established therein the existence
of multiple solutions by using the Lyusternik–Schnirelmann category for the following
problem:

−∆pu + |u|p−2u = h(u), u ∈ W 1,p
0 (Ωλ),

where h has subcritical growth and λ is large enough. The main result by Alves com-
pletes the study made in [3,4] for the case p � 2. The presence of the term ∆p(u2)u in
the operator Lpu implies that several estimates used in [1] cannot be repeated for the
functional energy associated to (Pλ). As observed in [22,23], there are some technical
difficulties in applying variational methods directly to the formal functional associated
to (Pλ) given by

Jλ(u) =
1
p

∫
Ωλ

(1 + 2p−1|u|p)|∇u|p dx +
1
p

∫
Ωλ

|u|p dx −
∫

Ωλ

H(u) dx,

where

H(s) =
∫ s

0
h(t) dt.

The main difficulty is related to the fact that Jλ is not well defined in all W 1,p
0 (Ωλ) for

N > p > 1. For example, if u ∈ C1
0 (Ωλ \ {0}) is defined by

u(x) = |x|(p−N)/2p for x ∈ Ωλ \ {0},

we have u ∈ W 1,p
0 (Ωλ), while the function |u|p|∇u|p does not belong to L1(Ωλ). To

overcome this difficulty, we use arguments developed in [22,23] which generalize some
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arguments found in [8, 17] for the case p = 2. More precisely, we make the change of
variables v = f−1(u), where f is defined by

f ′(t) =
1

(1 + 2p−1|f(t)|p)1/p
on [0, +∞),

f(t) = −f(−t) on (−∞, 0].

⎫⎪⎬
⎪⎭ (1.5)

Therefore, after the change of variables, the functional Jλ(u) can be rewritten as follows:

Iλ(v) .= Jλ(f(v)) =
1
p

∫
Ωλ

|∇v|p dx +
1
p

∫
Ωλ

|f(v)|p dx −
∫

Ωλ

H(f(v)) dx, (1.6)

which is well defined on the Banach space W 1,p
0 (Ωλ) endowed with the norm

‖v‖ = |∇v|p + inf
ξ>0

[
1
ξ

+
∫

Ωλ

|f(ξv)|p dx

]
.

In [22,23] the reader can find more details about the function f and the proof that ‖ · ‖
is a norm in W 1,p

0 (Ωλ). For this proof, the fact that the function |f(s)|p is convex for
p � 2 is crucial. A direct computation implies that ‖ · ‖ is an equivalent norm to the
usual norm of W 1,p

0 (Ωλ).
Under the conditions (H0)–(H2), a straightforward computation shows that the func-

tional Iλ : W 1,p
0 (Ωλ) → R is of class C1 with

〈I ′
λ(v), w〉 =

∫
Ωλ

[|∇v|p−2∇v∇w + |f(v)|p−2f(v)f ′(v)w]dx −
∫

Ωλ

h(f(v))f ′(v)w dx

for v, w ∈ W 1,p
0 (Ωλ). Thus, the critical points of Iλ correspond exactly to the weak solu-

tions of the quasilinear problem

−∆pv + |f(v)|p−2f(v)f ′(v) = h(f(v))f ′(v) in Ωλ,

v = 0 on ∂Ωλ.

}
(Dλ)

The problem above has a closed relation with problem (Pλ), because if v ∈ W 1,p
0 (Ωλ) ∩

L∞
loc(Ωλ) is a critical point of the functional Iλ, then u = f(v) is a weak solution of (Pλ).

In § 2, more precisely in Corollary 2.6, we shall show that each critical point v of Iλ

belongs to W 1,p
0 (Ωλ) ∩ L∞(Ωλ). Hence, we shall work to find non-trivial critical points

of Iλ.
Before stating our main result, we recall that if Y is a closed set of a topological space

X, we denote the Lyusternik–Schnirelmann category of Y in X by catX(Y ), which is the
least number of closed and contractible sets in X that cover Y . Hereafter, cat X denotes
catX(X). We are now ready to state the main result of this work.

Theorem 1.1. Assume that (H0)–(H3) hold. Then there exists λ∗ > 0 such that for
λ > λ∗ (Pλ) has at least cat Ωλ positive weak solutions.
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2. Preliminary results

In this section, we show some results that are essential in the following sections. We begin
by showing some properties of the change of variables f : R → R defined in (1.5), which
will be used below. The proof of the following lemma can be found in [22,23].

Lemma 2.1. The function f(t) and its derivative have the following properties:

(i) f is uniquely defined, C2 and invertible;

(ii) |f ′(t)| � 1 for all t ∈ R;

(iii) |f(t)| � |t| for all t ∈ R;

(iv) f(t)/t → 1 as t → 0;

(v) |f(t)| � 21/2p|t|1/2 for all t ∈ R;

(vi) f(t)/2 < tf ′(t) < f(t) for all t > 0;

(vii) f(t)/
√

t → a > 0 as t → +∞;

(viii) there exists a positive constant C such that

|f(t)| �
{

C|t|, |t| � 1,

C|t|1/2, |t| � 1;

(ix) |f(t)f ′(t)| � 1/2(p−1)/p for all t ∈ R.

Corollary 2.2. The following properties involving the functions f and h hold:

(i) the function (f(t))p−1f ′(t)t1−p is decreasing for t > 0;

(ii) the function (f(t))2p−1f ′(t)t1−p is increasing for t > 0;

(iii) the function h(f(t))f ′(t)t1−p is increasing for t > 0.

Proof. By using Lemma 2.1 (vi), it is easy to see that f(t)/t is non-increasing for
t > 0. Thus,

d
dt

(
(f(t))p−1f ′(t)

tp−1

)
= (p − 1)

(
f(t)

t

)p−2 d
dt

(
f(t)

t

)
f ′(t) +

(f(t))p−1

tp−1 f ′′(t) < 0

for all t > 0, which shows (i).

To prove (ii), we observe that

d
dt

(
(f(t))2p−1f ′(t)

tp−1

)

=
1

t2(p−1) ((2p − 1)(f(t))2p−2(f ′(t))2tp−1

− 2p−1(f(t))3p−2(f ′(t))p+2tp−1 − (p − 1)(f(t))2p−1f ′(t)tp−2).
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Hence,

d
dt

(
(f(t))2p−1f ′(t)

tp−1

)
� f ′(t)(f(t))2p−2tp−2 (2p − 1)f ′(t)t − f ′(t)t − (p − 1)f(t)

t2(p−1) ,

and therefore

d
dt

(
(f(t))2p−1f ′(t)

tp−1

)
� f ′(t)(f(t))2p−2tp−2(p − 1)

2f ′(t)t − f(t)
t2(p−1) > 0

for all t > 0, where we have used (vi) and (ix) in Lemma 2.1. The last inequality
proves (ii).

The proof of (iii) follows by using (H3), (ii) and the equality

h(f(t))f ′(t)
tp−1 =

[
h(f(t))

(f(t))2p−1

][
(f(t))2p−1f ′(t)

tp−1

]
for t > 0.

�

The next proposition will be used in the proof of some results later.

Proposition 2.3. Let A be an open set of R
N , let B : A → R be a non-negative

measurable function and let (vn) be a sequence in W 1,p
0 (A) verifying∫

A

B(x)|f(vn)|p → 0 as n → ∞.

Then,

inf
ξ>0

{
1
ξ

+
∫

A

B(x)|f(ξvn)|p
}

→ 0 as n → ∞.

Proof. Since f is odd and f(t)/t is non-increasing for t > 0, for each ξ > 1, we have

1
ξ

+
∫

A

B(x)|f(ξvn)|p � 1
ξ

+ ξp

∫
A

B(x)|f(vn)|p.

Hence, for each δ > 0, fixing ξ∗ sufficiently large that 1/ξ∗ < δ/2, we get

inf
ξ>0

{
1
ξ

+
∫

A

B(x)|f(ξvn)|p
}

� 1
2δ + ξp

∗

∫
A

B(x)|f(vn)|p.

Thus,

lim sup
n→∞

(
inf
ξ>0

{
1
ξ

+
∫

A

B(x)|f(ξvn)|p
})

� 1
2δ for all δ > 0,

which proves the proposition. �

An immediate consequence of this proposition is the following corollary.
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Corollary 2.4. Let A be an open set and let (vn) ⊂ W 1,p
0 (A). Defining

QA(v) :=
∫

A

|∇v|p +
∫

A

|f(v)|p,

we derive that QA(vn) → 0 if and only if ‖vn‖ → 0.

An important result that we shall use in this work is related to the existence of a
positive ground-state solution for the problem

−∆pv + |f(v)|p−2f(v)f ′(v) = h(f(v))f ′(v) in R
N ,

v ∈ W 1,p(RN ),

v(x) > 0 for all x ∈ R
N ,

⎫⎪⎬
⎪⎭ (P∞)

that is, with the existence of a positive function w ∈ W 1,p(RN ) verifying

I∞(w) = c∞ and I ′
∞(w) = 0,

where
I∞(v) =

1
p

∫
RN

|∇v|p +
1
p

∫
RN

|f(v)|p −
∫

RN

H(f(v)),

and c∞ denotes the minimax level of the mountain-pass theorem associated to the func-
tional I∞. Furthermore, M∞ denotes the Nehari manifold associated to I∞. The theorem
below shows the existence of a ground-state solution for (P∞) and its proof can be found
in [2].

Theorem 2.5. Under hypotheses (H0)–(H3), problem (P∞) has a positive ground-
state solution v ∈ C1,α

loc (RN ) ∩ L∞(RN ) satisfying v(x) → 0 as |x| → ∞.

The arguments used in the proof of the above theorem can be repeated to prove the
following result.

Corollary 2.6. If v ∈ W 1,p
0 (Ωλ) is a solution of (Dλ), then v ∈ L∞(Ωλ). Hence, the

function u = f(v) is a solution for (Pλ).

3. A compactness result

In this section we establish a compactness result on the Nehari manifold involving mini-
mizing sequences. For this, we must first recall some definitions. Let V be a Banach space,
let V be a C1-manifold of V and let I : V → R be a C1-functional. We say that I restricted
to V satisfies the Palais–Smale (PS) condition at level c if any sequence (un) ⊂ V such
that I(un) → c and ‖I ′(un)‖∗ → 0 contains a convergent subsequence. Here, we denote
by ‖I ′(u)‖∗ the norm of the derivative of I restricted to V at the point u [27, § 5.3].

Lemma 3.1 (a compactness lemma). Let (vn) ⊂ M∞ be a sequence of non-
negative functions satisfying I∞(vn) → c∞. Then,

(i) (vn) has a subsequence strongly convergent in W 1,p(RN ) or

(ii) there exists a sequence (yn) ⊂ R
N such that, up to a subsequence, |yn| → +∞,

v̄n(x) := vn(x + yn) converges strongly in W 1,p(RN ).

In particular, there exists a minimizer for c∞.
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Proof. Applying the Ekeland variational principle (see [27, Theorem 8.5]), we may
suppose that (vn) is a (PS)c∞ condition for I∞ in M∞, that is, I∞(vn) → c∞ and
‖I ′

∞(vn)‖∗ = on(1). Then, there exists (γn) ⊂ R such that

I ′
∞(vn) = γnJ ′

∞(vn) + on(1), (3.1)

where J∞ : W 1,p(RN ) → R is given by

J∞(v) =
∫

RN

|∇v|p +
∫

RN

|f(v)|p−2f(v)f ′(v)v −
∫

RN

h(f(v))f ′(v)v.

Note that

〈J ′
∞(vn), vn〉 = p

∫
RN

|∇vn|p + (p − 1)
∫

RN

|f(vn)|p−2[f ′(vn)]2[vn]2

+
∫

RN

|f(vn)|p−1f ′′(vn)[vn]2 +
∫

RN

|f(vn)|p−1f ′(vn)vn

−
∫

RN

h′(f(vn))[f ′(vn)]2[vn]2 −
∫

RN

h(f(vn))f ′′(vn)[vn]2

−
∫

RN

h(f(vn))f ′(vn)vn.

Since (vn) ⊂ M∞, we derive∫
RN

|∇vn|p +
∫

RN

|f(vn)|p−1f ′(vn)vn =
∫

RN

h(f(vn))f ′(vn)vn. (3.2)

Using Lemma 2.1 (vi), it follows that∫
RN

|f(vn)|p−2[f ′(vn)]2[vn]2 �
∫

RN

|f(vn)|(p−1)f ′(vn)vn.

Now, combining (3.2) and the above inequality, we get

〈J ′
∞(vn), vn〉 �

∫
RN

|f(vn)|p−1f ′′(vn)[vn]2 + (p − 1)
∫

RN

h(f(vn))f ′(vn)vn

−
∫

RN

h′(f(vn))[f ′(vn)]2[vn]2 −
∫

RN

h(f(vn))f ′′(vn)[vn]2.

From Lemma 2.2 (iii), we know that h(f(t))f ′(t)t1−p is increasing for t > 0. Therefore,

(p − 1)h(f(t))f ′(t) − h′(f(t))(f ′(t))2t − h(f(t))f ′′(t)t � 0 for t � 0,

which implies that

〈J ′
∞(vn), vn〉 �

∫
RN

|f(vn)|p−1f ′′(vn)[vn]2.
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Since f ′′(t) = −2p−1(f(t))p−1(f ′(t))p+2 for t � 0, from the latter inequality we have

〈J ′
∞(vn), vn〉 � −2p−1

∫
RN

|[f(vn)]2f ′(vn)|p.

From this, we can assume that 〈J ′
∞(vn), vn〉 → l � 0. If l = 0, the inequality above yields∫

RN

|[f(vn)]2f ′(vn)|p → 0. (3.3)

On the other hand, from (H0) and (H1), for each δ > 0 there exists Cδ > 0 such that

0 � h(t) � δtq−1 + Cδt
p for t � 0

and so

0 � h(f(vn))f ′(vn)vn

� δ|f(vn)|q−1f ′(vn)vn + Cδ|f(vn)|p−2f2(vn)f ′(vn)vn

� δ|f(vn)|q + Cδ|vn|p−1f2(vn)f ′(vn).

This, together with the boundedness of (vn) in W 1,p(RN ), yields

0 �
∫

RN

h(f(vn))f ′(vn)vn � δC + Ĉδ

( ∫
RN

|[f(vn)]2f ′(vn)|p
)1/p

.

Now, using (3.3) we have

lim sup
n→∞

∫
RN

h(f(vn))f ′(vn)vn � δC for all δ > 0,

showing that ∫
RN

h(f(vn))f ′(vn)vn → 0.

By (3.2), the last limit implies that QRN (vn) → 0, and by Corollary 2.4 it follows that
vn → 0 in W 1,p(RN ). However, it is not difficult to check that there exists C > 0 such
that

C � ‖v‖ for v ∈ M∞, (3.4)

from whence it follows that ‖vn‖ � C for all n ∈ N; in this way we obtain a contradiction.
Thus, l �= 0 and γn = on(1). From (3.1) and by the fact that ‖J ′

∞(vn)‖ is bounded,
I ′
∞(vn) = on(1). Therefore, (vn) is a (PS)c sequence for I∞. Thus, going to a subsequence

if necessary, we have that vn ⇀ v weakly in W 1,p(RN ) and it is standard to show that
I ′
∞(v) = 0.
If v �= 0, we can use the fact that [f(t)]p − [f(t)]p−1f ′(t)t and (1/p)h(f(t))f ′(t)t −

H(f(t)) are non-negative functions for t � 0 together with Fatou’s Lemma to conclude
that v is a ground-state solution of the autonomous problem (P∞), that is, I∞(v) = c∞.
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If v ≡ 0, applying the same arguments employed in the proof of [2, Lemma 3.5], there
exists a sequence (yn) ⊂ R

N with |yn| → +∞ satisfying

v̄n ⇀ v̄ in W 1,p(RN ),

where v̄n = vn(x + yn). Therefore, v̄n is also a (PS)c∞ sequence of I∞ and v̄ �≡ 0, and so
v̄ is a ground-state solution of the autonomous problem (P∞). �

Lemma 3.2. The functional Iλ satisfies the Palais–Smale condition on W 1,p
0 (Ωλ).

Proof. Let (vn) ⊂ W 1,p
0 (Ωλ) be a sequence such that

Iλ(vn) → c and I ′
λ(vn) → 0.

Thus,

C1 + on(1)‖vn‖ � Iλ(vn) − 2
θ
〈I ′

λ(vn), vn〉

�
(

1
p

− 2
θ

) ∫
Ωλ

|∇vn|p +
1
p

∫
Ωλ

|f(vn)|p −
∫

Ωλ

H(f(vn))

− 2
θ

∫
Ωλ

|f(vn)|p−2f(vn)f ′(vn)vn +
2
θ

∫
Ωλ

h(f(vn))f ′(vn)vn.

From (H2) and Lemma 2.1 (vi),

C1 + on(1)‖vn‖ �
(

1
p

− 2
θ

) ∫
Ωλ

|∇vn|p +
(

1
p

− 2
θ

) ∫
Ωλ

|f(vn)|p, (3.5)

where on(1) → 0 as n → ∞. Recalling that |∇vn|p � 1 + |∇vn|pp, we obtain

C1 + on(1)‖vn‖ � C2

(
|∇vn|p − 1 +

∫
Ωλ

|f(vn)|p
)

(3.6)

and therefore

C3 + on(1)‖vn‖ � C

(
|∇vn|p + 1 +

∫
Ωλ

|f(vn)|p
)

� C‖vn‖, (3.7)

which yields that (vn) is bounded in W 1,p
0 (Ωλ). Since (W 1,p

0 (Ωλ), ‖ · ‖) is reflexive, there
is a subsequence of (vn), still denoted by (vn), and v ∈ W 1,p

0 (Ωλ) such that vn ⇀ v in
W 1,p

0 (Ωλ) and vn → v in Ls(Ωλ), with p � s < p∗. Thus,

0 �
∫

Ωλ

|∇vn − ∇v|p

�
∫

Ωλ

〈|∇vn|p−2∇vn − |∇v|p−2∇v,∇vn − ∇v〉

=
∫

Ωλ

|∇vn|p −
∫

Ωλ

|∇vn|p−2∇vn∇v + on(1),
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where

on(1) =
∫

Ωλ

|∇v|p −
∫

Ωλ

|∇v|p−2∇v∇vn.

From the definition of I ′
λ,

0 �
∫

Ωλ

|∇vn − ∇v|p � 〈I ′
λ(vn), vn〉 − 〈I ′

λ(vn), v〉 + Rn + Tn + on(1),

where

Rn =
∫

Ωλ

|f(vn)|p−2f(vn)f ′(vn)vn −
∫

Ωλ

|f(vn)|p−2f(vn)f ′(vn)v

and

Sn =
∫

Ωλ

h(f(vn))f ′(vn)v −
∫

Ωλ

h(f(vn))f ′(vn)vn.

Once we have established that 〈I ′
λ(vn), vn〉 = 〈I ′

λ(vn), v〉 = on(1), we may obtain

0 �
∫

Ωλ

|∇vn − ∇v|p � Rn + Tn + on(1).

Combining (v) and (vi) in Lemma 2.1 with the subcritical growth of h, Lebesgue’s The-
orem implies that Rn = Tn = on(1). Hence,

∫
Ωλ

|∇vn − ∇v|p = on(1).

Since the norm ‖ · ‖ is equivalent to the usual norm in W 1,p
0 (Ωλ), the above equality

yields vn → v in W 1,p
0 (Ωλ). Consequently, Iλ satisfies the Palais–Smale condition. �

Proposition 3.3. The functional Iλ satisfies the Palais–Smale condition on Mλ.

Proof. Let (vn) be a (PS)c sequence for Iλ in Mλ. Thus, Iλ(vn) → c and ‖I ′
λ(vn)‖∗ =

on(1). Arguing as in Lemma 3.1, we can suppose that (vn) is a Palais–Smale sequence
for Iλ in W 1,p

0 (Ωλ) and the result follows from Lemma 3.2. �

Corollary 3.4. If v is a critical point of Iλ on Mλ, then v is a non-trivial critical
point of Iλ on W 1,p

0 (Ωλ).

Proof. The proof follows by using arguments similar to those explored in Proposi-
tion 3.3. �
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4. Behaviour of minimax levels

In this section, we study the behaviour of some minimax levels in relation to the param-
eter λ. To this end, we need to make some definitions. For each x ∈ R

N and R > r > 0,
let us denote by AR,r,x the following set:

AR,r,x = BR(x) \ B̄r(x);

when x = 0, let us denote by AR,r the set AR,r,0. Following ideas found in [4], for
v ∈ W 1,p(RN ), whose positive part v+ = max{v, 0} is non-zero and has a compact
support, we can define the centre of mass of v+, denoted by β(v+) ∈ R

N , as follows:

β(v) =
∫

RN

x(v+)p

( ∫
RN

(v+)p

)−1

.

Moreover, for each x ∈ R
N , let us denote by a(R, r, λ, x) the following number:

a(R, r, λ, x) = inf{Îλ,x(v) : v ∈ M̂λ,x and β(v) = x},

where
Îλ,x(v) =

1
p

∫
AλR,λr,x

|∇v|p +
1
p

∫
AλR,λr,x

|f(v)|p −
∫

AλR,λr,x

H(f(v)) (4.1)

and
M̂λ,x = {v ∈ W 1,p

0 (AλR,λr,x) \ {0} : 〈Î ′
λ,x(v), v〉 = 0}.

Next, let us denote by a(R, r, λ) the number a(R, r, λ, 0), let Îλ denote the functional
Îλ,0 and let M̂λ denote the set M̂λ,0.

Proposition 4.1. The number a(R, r, λ) satisfies

lim inf
λ→∞

a(R, r, λ) > c∞.

Proof. From the definition of a(R, r, λ) and c∞, we get

a(R, r, λ) � c∞.

Assume, by contradiction, that there exist λn → ∞ and vn ∈ M̂λn
verifying

β(vn) = 0 and a(R, r, λn) → c∞.

A direct computation shows that we can assume that vn � 0 for all n ∈ N. Moreover,
since vn = 0 on ∂AλnR,λnr, we can set vn = 0 on Ac

λnR,λnr. Consequently,

vn ⇀ 0 in W 1,p(RN ), I∞(vn) = a(R, r, λn) → c∞ and vn ∈ M∞.

Recalling that c∞ > 0, we obtain that (vn) is not strongly convergent. From Lemma 3.1,
we reach

vn(x) = wn(x) + Ψ(x − yn),
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where (wn) ⊂ W 1,p(RN ) is a sequence converging strongly to 0 ∈ W 1,p(RN ), (yn) ⊂ R
N

is such that |yn| → ∞ and Ψ ∈ W 1,p(RN ) is a positive function verifying

I∞(Ψ) = c∞ and I ′
∞(Ψ) = 0.

Since Iλ is rotationally invariant, we can assume that

yn = (y1
n, 0, 0, . . . , 0)

and y1
n < 0.

Now we set
M =

∫
RN

|Ψ |p.

Clearly, M > 0. Since ‖wn‖ → 0, it follows that∫
Brλn/2(yn)

|wn + Ψ(· − yn)|p → M,

from which we obtain ∫
Θn

|vn|p → M,

where Θn = Brλn/2(yn) ∩ [BλnR(0) \ Bλnr(0)], and hence∫
Υn

|vn|p → 0, (4.2)

where Υn = [BλnR(0) \ Bλnr(0)] \ Bλnr/2(yn). Since β(vn) = 0, we get

0 =
∫

AλnR,λnr

x1|vn|p =
∫

Θn

x1|vn|p +
∫

Υn

x1|vn|p.

Thus,

−( 1
2rλn)(M + on(1)) + Rλn

∫
Υn

|vn|p � 0

with on(1) → 0. Then, ∫
Υn

|vn|p � rM

2R
− on(1)

and this contradicts (4.2). �

Henceforth, let us denote by bλ the minimax level of the mountain-pass theorem of the
energy functional Iλ,B : W 1,p

0 (Bλ) → R given by

Iλ,B(v) =
1
p

∫
Bλr

|∇v|p +
1
p

∫
Bλr

|f(v)|p −
∫

Bλr

H(f(v)),

where Bλr = Bλr(0), and denote by Mλ,B the Nehari manifold related to Iλ,B given by

Mλ,B = {v ∈ W 1,p
0 (Bλr) \ {0} : 〈I ′

λ,B(v), v〉 = 0}.
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Using Corollary 2.2, it is easy to check that

bλ = inf
v∈Mλ,B

Iλ,B(v).

Moreover, cλ and Mλ denote the minimax level and the Nehari manifold related to the
functional Iλ, respectively. From now on, we shall assume without loss of generality that
0 ∈ Ω. Furthermore, let us fix a real number r > 0 such that the sets

Ω+ = {x ∈ R
N ; d(x, Ω̄) � r}

and

Ω− = {x ∈ Ω; d(x, ∂Ω) � r}

are homotopically equivalent to Ω.

Proposition 4.2. The numbers bλ and cλ verify the limits

lim
λ→∞

cλ = c∞ and lim
λ→∞

bλ = c∞.

Proof. Here, we shall prove only the first limit, because the second limit follows from
the same type of argument. Let Φ be a function in C∞

0 (RN ) defined by Φ(x) = 1 in B1(0),
Φ(x) = 0 in Bc

2(0) and 0 � Φ(x) � 1 for all x ∈ R
N . For each R > 0, let us consider the

functions ΦR(x) = Φ(x/R) and wR(x) = ΦR(x)w(x), where w is a ground-state solution
of problem (P∞). Since 0 ∈ Ω, there exists λ∗ > 0 such that B2R(0) ⊂ Ωλ for λ � λ∗.
Let tR > 0 such that

Iλ(tRwR) = max
t�0

Iλ(twR) = max
t�0

I∞(twR).

Thus, 〈I ′
λ(tRwR), tRwR〉 = 0, which implies that tRwR ∈ Mλ. Then

cλ � Iλ(tRwR) = I∞(tRwR) for all λ � λ∗.

Once R is proved to be independent of λ, we obtain that tR is also independent of λ.
Hence, taking the limit when λ → ∞, we obtain

lim sup
λ→∞

cλ � I∞(tRwR).

Now, we shall show that

lim
R→∞

tR = 1. (4.3)

Indeed, from the definition of tR we obtain∫
RN

|∇wR|p =
∫

RN

[h(f(tRwR))f ′(tRwR)t1−p
R − |f(tRwR)|p−2f(tRwR)f ′(tRwR)t1−p

R ]wR.
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From Corollary 2.2, the right-hand side in the equality above is non-negative for t � 0,
because it is increasing. Thus, for R > 1, we derive∫

RN

|∇wR|p �
∫

B1(0)
h(f(tRa))f ′(tRa)t1−p

R a −
∫

B1(0)
|f(tRa)|p−2f(tRa)f ′(tRa)t1−p

R a,

where a = min|x|�1 wR(x). Note that (tR) is bounded, because if there exists Rn → ∞
with tRn → ∞, we have ∫

RN

|∇wRn
|p → ∞ or ‖wRn

‖ → ∞,

which is absurd. Therefore, (tR) is bounded. Note also that tR � 0, because if there
exists Rn → ∞ with tRn

→ 0, we have, by (H1) and (H2),

0 �
∫

RN

h(f(tRnwRn))f ′(tRn
wRn)tRnwRn

� ε

∫
RN

|f(tRn
wRn

)|p−1|f ′(tRn
wRn

)|tRn
wRn

+ Cε

∫
RN

|f(tRn
wRn

)|q−1|f ′(tRn
wRn

)|tRn
wRn

.

From (ii), (iii) and (v) in Lemma 2.1, we get

0 �
∫

RN

h(f(tRnwRn
))f ′(tRnwRn)tRnwRn

� εtpRn

∫
RN

|wRn |p + Cεt
(q+1)/2
Rn

∫
RN

|wRn |(q+1)/2.

Since wRn
→ w in W 1,p(RN ), the above inequality implies that tR � 0. Thus, tR → t0 >

0 and∫
RN

|∇w|p =
∫

RN

h(f(t0w))f ′(t0w)t1−p
0 w −

∫
RN

|f(t0w)|p−2f(t0w)f ′(t0w)t1−p
0 w.

By Corollary 2.2, t0 = 1 and I∞(tRwR) → I∞(w) = c∞ as R → ∞, and therefore

lim sup
λ→∞

cλ � c∞.

Using the definition of cλ and c∞, we reach

cλ � c∞ for all λ > 0,

which implies that
lim inf
λ→∞

cλ � c∞,

from which we conclude that
lim

λ→∞
cλ = c∞.

�
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Proposition 4.3. There exists λ̂ > 0 such that if Iλ(v) � bλ and v ∈ Mλ, then

β(v+) ∈ λΩ+ for all λ � λ̂.

Proof. Assume that there exist λn → ∞, vn ∈ Mλn and Iλn(vn) � bλn with

xn = β(v+
n ) /∈ λnΩ+.

Without loss of generality, we can assume that vn � 0 for all n ∈ N, and hence

xn = β(vn) /∈ λnΩ+.

Fixing R > diam(Ω), we have that

AλnR,λnr,xn
⊃ Ωλn ,

and so,
a(R, r, λn, xn) � Iλn

(vn) � bλn .

Using the fact that a(R, r, λn, xn) = a(R, r, λn) we have

a(R, r, λn) � bλn . (4.4)

Talking the limit of n → ∞ in (4.4) and using Proposition 4.2, it follows that

lim sup
n→∞

a(R, r, λn) � c∞,

which is a contradiction of Proposition 4.1. �

Proposition 4.4. The problem associated to the functional Iλ,B has a ground-state
solution vλ,r that is radially symmetric at the origin.

Proof. For simplicity, in this proof we denote by I the functional Iλ,B . Repeating
the arguments used in the proof of Theorem 2.5, there exists v ∈ W 1,p

0 (Bλr(0)), a non-
negative function, such that

I(v) = bλ and I ′(v) = 0.

If v∗ is the Schwarz symmetrization of v, we have that v∗ ∈ W 1,p
0 (Bλr(0)), v∗ � 0 and

satisfies ∫
Bλr(0)

|∇v∗|p �
∫

Bλr(0)
|∇v|p. (4.5)

Moreover, since H ◦ f and t �→ |f(t)|p are continuous and increasing functions with
(H ◦ f)(0) = 0 and f(0) = 0, we derive∫

Bλr(0)
H(f(αv∗)) =

∫
Bλr(0)

H(f(αv)) for all α > 0 (4.6)
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and ∫
Bλr(0)

|f(αv∗)|p =
∫

Bλr(0)
|f(αv)|p for all α > 0. (4.7)

Using the fact that v ∈ Mλ,B , we obtain

〈I ′(v), v〉 = 0 and I(v) = max
t�0

I(tv).

From (H1) and (H2), there exists a unique t∗ > 0 such that t∗v∗ ∈ Mλ,B . Thus, by
(4.5)–(4.7),

bλ � I(t∗v∗) � I(t∗v) � max
t�0

I(tv) = I(v) = bλ,

that is,
bλ = I(t∗v∗) and t∗v∗ ∈ Mλ,B .

From the latter equality, t∗v∗ is a critical point of I on Mλ,B , so t∗v∗ is a critical point
of I in W 1,p

0 (Bλr) and thus

I(t∗v∗) = bλ and I ′(t∗v∗) = 0.

�

In what follows, we denote by uλ,r the ground-state solution t∗v∗ given in Propo-
sition 4.4. For λ > 0 and r > 0, we define the operator Ψr : λΩ− → W 1,p

0 (Ωλ) given
by

[Ψr(y)](x) =

{
uλ,r(|x − y|) for x ∈ Bλr(y),

0 for x ∈ Ωλ \ Bλr(y).

Note that for every y ∈ λΩ− we have

β(Ψr(y)) = y.

In the next result, we denote by Ibλ

λ the following set:

Ibλ

λ = {u ∈ Mλ : Iλ(u) � bλ}.

Proposition 4.5. For λ � λ̂, we have

cat Ibλ

λ � cat Ωλ.

Proof. Assume that cat Ibλ

λ = n. This means that n is the smallest positive integer
such that

Ibλ

λ = A1 ∪ · · · ∪ An,

where Aj , j = 1, . . . , n, is closed and contractible in Ibλ

λ , i.e. there exists hj ∈
C([0, 1] × Aj , I

bλ

λ ) such that

hj(0, u) = u for all u ∈ Aj and hj(1, u) = wj for all u ∈ Aj ,
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for some wj ∈ Ibλ

λ fixed. Consider Bj = Ψ−1
r (Aj), 1 � j � n. The sets Bj are closed and

λΩ− = B1 ∪ · · · ∪ Bn.

Using the deformation gj : [0, 1] × Bj → λΩ+ given by

gj(t, y) = β((hj(t, Ψr(y)))+),

we have that, for all y ∈ Bj ,

gj(0, y) = β((hj(0, Ψr(y)))+) = β(Ψr(y)) = y

and

gj(1, y) = β((hj(1, Ψr(y)))+) = β(w+
j )

for some β(wj) ∈ λΩ+ fixed. From this, we see that Bj is contractible in λΩ+ for
1 � j � n, which implies that catλΩ+(λΩ−) � n. On the other hand, since Ω+ and
Ω− are homotopically equivalent to Ω, it follows that catΩλ = catλΩ+(λΩ−), and so
cat Ωλ � n. �

Proof of Theorem 1.1. Since Iλ satisfies the Palais–Smale condition on Mλ, apply-
ing the Lyusternik–Schnirelmann theory and Proposition 4.5, we find that Iλ on Mλ has
at least catΩλ

(Ωλ) critical points whose energy is less than bλ for λ � λ̂. Moreover, all
solutions obtained are positive by the maximum principle [25,26]. �
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Matemática and CNPq 620150/2008-4, 303080/2009-4. The work of G.M.F. was sup-
ported by CNPq/PQ 300705/2008-5. The work of U.B.S. was supported by the INCT-
Mat, PROCAD-CAPES 024/2007 and CNPq 620108/2008-8.

References

1. C. O. Alves, Existence and multiplicity of solution for a class of quasilinear equations,
Adv. Nonlin. Studies 5 (2005), 73–87.

2. C. O. Alves, G. M. Figueiredo and U. B. Severo, Multiplicity of positive solutions
for a class of quasilinear problems, Adv. Diff. Eqns 14 (2009), 911–942.

3. V. Benci and G. Cerami, The effect of the domain topology on the number of positive
solutions of nonlinear elliptic problems, Arch. Ration. Mech. Analysis 114 (1991), 79–83.

4. V. Benci and G. Cerami, Multiple positive solutions of some elliptic problems via the
Morse theory and the domain topology, Calc. Var. PDEs 02 (1994), 29–48.

5. H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I, Existence of a
ground state, Arch. Ration. Mech. Analysis 82 (1983), 313–346.

6. A. Borovskii and A. Galkin, Dynamical modulation of an ultrashort high-intensity
laser pulse in matter, JETP 77 (1983), 562–573.

7. L. Brizhik, A. Eremko, B. Piette and W. J. Zakrzewski, Static solutions of a D-
dimensional modified nonlinear Schrödinger equation, Nonlinearity 16 (2003), 1481–1497.

https://doi.org/10.1017/S001309151000043X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151000043X


A result of multiplicity of solutions for a class of quasilinear equations 309

8. M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual
approach, Nonlin. Analysis 56 (2004), 213–226.
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