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Abstract

Let G be a connected reductive group over an algebraically closed field &, and let Fl be the affine flag variety of G.
For every regular semisimple element y of G(k((¢))), the affine Springer fiber Fl, can be presented as a union of
closed subvarieties Fl?w, defined as the intersection of Fl, with an affine Schubert variety FISW,

The main result of this paper asserts that if elements w1y, ..., w, are sufficiently regular, then the natural map
H,v(U;?=1 Flf, i ) — H;(Fly) is injective for every i € Z. It plays an important role in our work [BV], where our
result is used to construct good filtrations of H;(Fl,). Along the way, we also show that every affine Schubert
variety can be written as an intersection of closures of semi-infinite orbits.
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Introduction

Let k be an algebraically closed field, K := k((t)) the field of Laurent power series over k, and
O = Ok = k[[1]] the ring of integers of K. Let G be a connected reductive group over k, and let G*° be
the simply-connected covering of the derived group of G. For an algebraic group H over K (resp. O),
we denote by LH (resp. L*(H)) the corresponding loop (resp. arc) group.

We fix a maximal torus 7 C G and an Iwahori subgroup scheme I € L*(G) suchthat INLT = L*(T),
and let Tgse € G5¢ and I C L*(G*°) be the corresponding maximal torus and the Iwahori subgroups of
G*°, respectively. Let W = W be the Weyl group of G, let A = X,.(Tgsc) be the group of cocharacters,
and let W := W x A be the affine Weyl group of G.

Denote by Fl = L(G*)/I*° the affine flag variety of G*¢. Then we have a natural embedding W <> FI.
For every w € W, we denote by FIS" C Fl the closure of the I*-orbit I**w C FI. Then each FI=" is
a closed projective subscheme of Fl, usually referred to as the affine Schubert variety, while Fl is an
inductive limit of the F1="s.

For a regular semi-simple element y € G(K), we denote by Fl, C Fl the corresponding affine
Springer fiber (i.e., the closed ind-subscheme of points g/I*¢ € Fl such that g"'yg € I).

Let G,, be the centralizer of y in G. It is a torus defined over K. Let S, C G,, be the maximal K-split
torus. We will always assume that S, is contained in Tk, where T denote the extension of scalars of T
to K.

For every ind-subscheme Z C Flg, we denote by Z, the intersection Z N Fl,. Then Fl,, is a union
of the Fliw; hence, each homology group H;(Fl,) is by definition the direct limit of the Hi(Flﬁw)’s.
The main result of this paper implies that the canonical map Hl-(Fliw) — H;(Fl,) is injective if w is
sufficiently regular.

More precisely, let 7 : W — V~V/W = A be the projection. For m € N, we say thatw € Wis m-regular
if [{@,m(w))| = m for every root @ of (G,T). The main goal of this paper is to prove the following
result used in our companion work [BV].

Theorem 0.1. There exists m € N (depending on ) such that for every finite set wi,...,w, of m-
regular elements of W, the natural map H[(U;?zl F1§Wf ) — H;(Fl,) is injective for every i € Z.

If the group G and element y are defined over [, the expression

n

n
B |(Fg)| = Tl B, | | FI5™
J=1

J=1

appears in computation of truncated orbital integrals.

As explained in [BV], Theorem 0.1 allows one to interpret Hi(U;?:l Fl; "7 as a term of a filtration
on H;(Fl,), which turns out to have favorable properties with respect to the affine Springer action: it
is a good filtration compatible with a natural filtration on the group ring of the affine Weyl group. This
provides a way to interpret a certain weighted orbital integral (or rather the closely related value of
the averaging of a distribution) in terms of H.(Fl,) equipped with an action of Frobenius and affine
Springer action.

Theorem 0.1 will be deduced from a more general result. For each Borel subgroup B 2 T of G,
we denote its unipotent radical by Up C G. For every w € W, we denote by FI52" C Fl the closure
of the Ug(K)-orbit Ug(K)w C Fl, which is called the semi-infinite orbit. Then FI<5" is a closed
ind-subscheme of FI.

We consider tuples w = {wpg}p of elements of W, where B runs over the set of all Borel subgroups
B 2 T of G. Most of the time will restrict ourselves to tuples, which are admissible (see Definition 1.3.1)
and m-regular (see Notation 1.3.9). In particular, the last assumption implies that each w g is m-regular.

For each tuple w, we denote by F1=" the reduced intersection () z FIS5"& . Each FI=" is a projective
scheme (see Corollary 2.1.7(c)).

https://doi.org/10.1017/fms.2025.5 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.5

Forum of Mathematics, Sigma 3

Theorem 0.1 follows from the following two results:

Theorem 0.2. For every w € W, there exists a unique admissible tuple w such that F~15W = FI=V.
Moreover, there exists r € N such that for every m € N and every (m + r)-regular w € W, the tuple w
is m-regular.

Theorem 0.3. There exists m € N (depending on y) such that for every finite set Wy, ..., wn of m-
regular admissible tuples, the natural map Hi(U;-lzl Fli "7y - H; (Fl,) is injective for all i.

Notice that Theorem 0.3 is vacuous if vy is elliptic. Indeed, in this case, the affine Springer fiber FIL,
is of finite type, so there exists an integer m such that for every m-regular admissible tuple w, we have
an equality FI5" = Fl,,.

To show the assertion in general, we use induction on the semisimple rank of G. Namely, if y is
not elliptic, then Fl, is equipped with an action of a nontrivial torus S, and the scheme of fixed points
Fli is naturally isomorphic to a disjoint union of affine Springer fibers corresponding to a proper Levi
subgroup M of G. Thus, an analog of Theorem 0.3 for Fli holds by induction hypothesis, and we use
finiteness properties of H;(Fl,) and localization theorem in equivariant cohomology to relate homology
of Fl,, with that of FI5.

The paper is organized as follows. In Section 1, we study orderings on affine Weyl groups and
introduce admissible tuples, which play a central role later. In Section 2, we study semi-infinite orbits
in affine flag varieties and their intersections, establish Theorem 0.2, and show technical results needed
later. In Section 3, we study geometric properties of the affine Springer fibers and establish a finiteness
property of its homology.

Finally, in Section 4, we prove Theorem 0.3 using results of the previous sections. Namely, we
review the localization theorem in the equivariant cohomology with compact support in subsection 4.1,
give a criterion of an injectivity of the map on homology in subsection 4.2, and complete the proof in
subsection 4.3.

The authors thank the anonymous referee for numerous corrections and suggestions that helped us
to improve the exposition.

1. Combinatorics of affine Weyl groups
1.1. Preliminaries

1.1.1. Roots

(a) Let V be a finite dimensional vector space over R, V* the dual space, and let @ C V* be a (reduced)
root system (see, for example, [Be] or [Bo, Section VI]J).

(b) We denote by C = Co the set of all Weyl chambers C € V of @. For each C € C, we denote by
O C D the set of C-positive roots, by A¢c C ®@¢ the set of C-simple roots, and by ¥¢ C V* the set of
C-fundamental weights.

(c) We set ® := ® x Z and call it the set of affine roots. Every a = (a, n) is identified with an affine
function @ : V — R, given by the rule a(x) = @(x) + n. In particular, we identify each root @ € ® with
affine root («,0) € ®. For a subset @’ C @ (resp. a Weyl chamber C € C), we denote by @’ (resp. Dc),
the set of all @ = (e, n) € @ such that @ € @’ (resp. @ € ®¢).

(d) Let W = Wg C Aut(V) be the Weyl group of @, let A C V be the subgroup generated by coroots
{d}ee, and let W := W x A be the affine Weyl group of ®. We will denote by & the natural projection
W - W/W=A.

(e) The lattice A acts on V by translations. Then the group W acts on V by affine transformations;
hence, it acts on ® by the rule w(a@)(x) = @(w~'(x)) for all x € V. In particular, for each u € A and
(a,n) € @, we have pla,n) = (a,n—a,u)).

(f) For each @ € @, the affine reflection sg satisfies s5(x) = x — @(x)a& for all x € V. In particular,
for all (a,n) € @, we have equality §q., = (—nd)sq € w.
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(g) For each @ € ®, we denote by W, C W the subgroup generated by reflections sz, with
a = (a,n),n ez

1.1.2. The fundamental Weyl chamber

(a) We fix a Weyl chamber Cy € C and denote by A the fundamental alcove such that A9 C Cy and
such that 0 € V lies in the closure of Ag.

(b) The choice of Cy defines the set of positive roots ®.¢ = @, C P and the set of positive affine
roots @ C ®. Explicitly, @ = (@, n) € ® is positive if and only if either n > 0, or n = 0 and @ > 0.

(c) Then Cj defines a set of simple reflection § € W, and A defines a set of simple affine reﬁecnons
ScW.In particular, a choice of Cyp defines length functions and Bruhat orders < on both W and w.

(d) Using Ap, we identify each w € W with the corresponding alcove w(Ag) C V. In particular,
we will say that w € W belongs to C € C, or w € C, if w(Ag) € C. Explicitly, this means that
(a,w(Ap)) = (W (@), Ag) > 0 for each @ € @, or, what is the same, w™! (®¢) C D.

1.1.3. Fundamental weights

(@ Weset¥ :=UcecPc CV*.Fory € ¥and C € C, we write C 3 ¢, if y € Y.

(b) Every ¢ € W gives rise to a fundamental coweight y € Ag := A ® Q C V. Namely, i is
characterized by condition that for every C € C such that y € W¢ and every @ € Ac, we have
(@, ) = (Y, &). In particular, for every C € C, we have i € W¢ if and only if i lies in the closure of C.

(c) For every ¢ € ¥, we denote by ®(y) (resp. ®¥) the set of @ € @ such that (a, ) > 0 (resp.
(@, §) = 0). Notice that ® is a root system, and there is a bijection C — C?¥ between Weyl chambers
C 3 ¢ of ® and Weyl chambers of ®¥. This bijection satisfies the property that (®¥)cy = ®c N DY,
We denote by W¥ € W and WY C W the Weyl group and the affine Weyl group of ®Y, respectively.

(d) For every ¢ € ¥, we fix a Weyl chamber C(‘)” of ®¥. As in Section 1.1.2(b), this choice defines

the set of positive affine roots E)fo C ®¥, and we denote by Wd/ C W the set of all w € W such that
w‘l(afo) C 5>0. Then for every w € W, there exists a unique decomposition w = w‘”w¢,, where
w¥ e WY and wy € Wy, (compare, for example, [BV, Lemma B.1.7(b)]). In other words, W, € Wisa
set of representatives of the set of left cosets VT/‘”\VT/.

1.1.4. Properties of the Bruhat order

(a) Let w',w” € W and s € S be such that w’ < w”. Then we have either w’s < w’’s (resp.
sw’ < sw”)orw’s < w” and w < w”s (resp. sw’ < w” and w’ < sw”’) or both (see, for example,
[BB, Pr0p051t10n 2.2. 7])

(b) Let w’,w"” € W and s € S be such that sw’ < w’ and sw’”” < w’’. Then, by part (a), we have
w’ < w' if and only if sw’ < sw”.

(c) Let w,w’ and w” be elements of W such that [(ww’) = [(w) + [(w’) and ww’ < ww”’. Then
w’ < w”.Indeed, if w = 5 € S, then the assertion follows from part (a). The general case follows by
induction on /(w). By a similar argument, if [(ww”’) = [(w) + [(w”) and w’ < w”, then ww’ < ww”’.

(d) For every u € A and u € W, we have I (upu~") = I(u). Indeed, it is enough to show the assertion
in the case u = s = s, for a simple root «. In this case, we have sus = y, if (@, u) = 0; su > pu > us if
{a, 1y > 0;and su < u < usif (@, u) < 0.

(e) Note that w € W belongs to Cy if and only if [(sw) > [(w) for every s € S. In other words,
W N Cy is the set of the shortest representatives of cosets W\W. In particular, for every w € W N Co and
u € W, we have [(uw) = [(u) + [(w), and for every u < u’ in W, we have uw < u’w. _

(f) The characterization of Cy given in part (e) implies that for every w € W N Cp and s € S with
ws < w, we have ws € Cy.

(g) For every u € W and every u € AN Cp, we have u < u. Indeed, it is enough to show that u <p u
(see [BB, Definition 3.1.1]). Hence, by [BB, Proposition 3.1.3], it is enough to show that for every affine
root @ > 0 such that u(a) < 0, we have u(a) < 0. If @ = (a,n) > 0 satisfies u(@) = (u(a),n) < 0,
then n = 0, and a > 0. Hence, u(a) = (@, —{a, u)) < 0 because u € Cy is regular; thus, (@, u) > 0.
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Lemma 1.1.5. Assume that w',w” € C N Wfor some C € Candw’ < w". Then

(a) for every u € W, we have uw’ < uw”’;

(b) there exists a sequence w’ < wy < ... < wy, =w" such that w; € C and [(w;) = l(w’) +i for
each i;

(c)foreveryue ANCandw € W N C, we have [(pw) =1(u) + L(w).

Proof. (a) By induction, it is enough to show that for every element s € S, we have sw’ < sw”’. By
Section 1.1.4(b), it is enough to show that w’ < sw’ if and only if w” < sw’. Let u € W be such
that C = u(Cy). Then it follows from Section 1.1.4(e) that each condition w’ < sw’ and w” < sw”’ is
equivalent to u < su.

(b) Using part (a) and Section 1.1.4(e), we may assume that C = Cy. If [(w"") — [(w’) = 1, there
is nothing to prove, so we can assume that /(w’’) — I[(w’) > 1. By induction, it is enough to show the
existence of w € Cp such that w’ <w < w”.

Choose s € S such that w”’s < w”’. Then w”’s € Cy by Section 1.1.4(f). If w’ < w”’s, thenw :=w"'s
does the job. If not, then by Section 1.1.4(a) we get w’s < w’ and w’s < w”’s. Then by Section 1.1.4(f),
we have w’s € Cy, so by induction on /(w’’), there exist w € Cy such that w's < w < w”’s.

If ws < w, then it follows from Section 1.1.4(a) that w’ < w < w’’s, contradicting our assumption.
Hence, we may assume that ws > w, in which case by Section 1.1.4(a) we have w’ < ws < w'’; thus, it
is enough to show that ws € Cy.

Assume that ws ¢ Cy. Since w € Cy, this would imply that there exists a simple root @ of Cy such that
ws = sow. Then we have w’ < s,w and w’ € Cy and therefore by Section 1.1.4(c) thatw’ < w < w"’s,
contradicting the assumption.

(¢) Using Sections 1.1.4(d),(e), we can assume that C = Cp. Now the proof goes by induction on
[(w). Choose s € S such that ws < w. Then ws € Cy by Section 1.1.4(f); hence, by the induction
hypothesis, we have

[(pws) =1(p) +1(ws) =1(u) +1(w) — 1.

Thus, it is enough to show that uws < uw.

Let a be a simple affine root such that s = s,. Then E = w(a) < 0 because ws < w, and we want to
show that u(B) = uw(a) < 0. Write f in the form (8, n), where B € ®. Then u(B) = B — (B, ), so it
remains to show that (8, u) > 0.

Since B < 0, we get n < 0; therefore, w™!(8) = @ — n > 0. This implies that 8 € @, because
w € Cy; hence, (B, u) > 0 because u € Cp. O

1.2. Orderings on affine Weyl groups

Notation 1.2.1. (a) Let @ € ® and w € W. We say that szw <z w if w™ (@) > 0.

(b) Let ®" C ® be a subset, and w’,w” € W. We say that w”’ <q w’ if there exist affine roots
@,...,an € ® such that S5, - Saw < Sa_, ..-Sgw foralli,andw” =s5 ...s5w . Fora € @,
we write w” <, w’ instead of w"’ <4} w'.

(c) Let @’ C @, and x’,x”" € V. We say that x” <¢ x’ if the difference x” — x”’ is a positive linear
combination of elements & with & € @’. For a € ®, we write x”’ <, x” instead of x"" <4} x".

(d) Foreach C € C, ¢ € ¥ (and ¢ € C), we write <c (resp. <y, resp. <cv) instead of <. (resp.

<@(y)» TESP. <q)n//(cz//)).

Lemma 1.2.2. (a) For each a = (a,n) € ® and w € W, we have sgw <g w (see Section 1.2.1(a)) if
and only if sgw(x) <q w(x) (see Section 1.2.1 (c)) for all x € Ay.

(b) For eacha € ® andw € W, we have w <o &w (see Section 1.2.1(b)).

(c) For each x',x"” € V and ¢ € ¥, we have x’ <y x"” (see Section 1.2.1(c)) if and only if

W, x") < (Y, x").

https://doi.org/10.1017/fms.2025.5 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.5

6 R. Bezrukavnikov and Y. Varshavsky

Proof. (a) Fix x € Ag. Then w™! (@) > 0 if and only if w=!(@)(x) = @(w(x)) > 0. Thus, szw <z w if
and only if sgw(x) = w(x) —a(w(x))d <q w(x).

(b) Let r € Z such that the affine root @ = (a,r) satisfies 0 < a(dw(x)) < 1. Using identity
a(sz(aw(x))) = —a(dw(x)), we get 0 < (a + 1)(sg(dw(x))) < 1. Thus, by the observation of
part (a), we have w = sg4155(aw) <g41 sg(aw) <z dw; hence, w <, aw.

(c) The ‘only if” assertion follows from definitions. To see the ‘if’ assertion, we choose a Weyl
chamber C 3 ¢, and let @y, € A be the simple root, corresponding to y. Then the difference x”” —x’ can
be (uniquely) written in the form 3. ,ca . co@ With ¢, € R, and the assumption that (¢, x") < (¥, x"")
implies that ¢4, > 0. Now the assertion follows from the observation that for every @ € Ac \ {@y }, we
have @ € ®(¢) and —a € D(¥). O

Corollary 1.2.3. (a) For eachw,w’ € W and a € ®, we have w <q W' ifand only if we have w € Waw’
and w(x) <q w'(x) for all x € Ay.

(b) For each ® C ® and w,w’ € W with w <¢ w’, we have w(x) <a w’(x) for each x € Ay;
hence, m(w) <q¢ m(w’) in the sense of Section 1.2.1(c).

(c) Let ®" C ® have a property that if u € A is a positive linear combination of elements & with
a € @7, then u is a finite sum of elements & with a € ®’. Then for every u,u’ € A, we have u <¢ p’ in
the sense of Section 1.2.1(b) if and only if u <q u’ in the sense of Section 1.2.1(c).

Proof. (a)If w <4 w/, thenw € Wow'’ (by definition), and w(x) <, w’(x) for all x € Ay (by Lemma
1.2.2(a)). Conversely, assume that w = uw’ with u € W, such that w(x) <q w’(x) forall x € Ag. Then
we have either u = s5 or u = @™ for some m € Zg. In the first case, we have w <, w’ by Lemma
1.2.2(a), while in the second one, we have w <, w’ by Lemma 1.2.2(b).

(b) By definition, it is enough to assume that w = sgw’ <z w’. In this case, the first assertion follows
from Lemma 1.2.2(a). Next, since O € V lies in the closure of Ag C V, the second one follows from the
equality 7(w) = w(0).

(c) Assume that £ <g¢r p’ in the sense of Section 1.2.1(c). By our assumption of ®’, we may assume
that u = u’ — & for some @ € @’. In this case, it follows from Lemma 1.2.2(b) that u <q p’ in the sense
of Section 1.2.1(b). The converse assertion follows from part (b). m|

Remarks 1.2.4. (a) Let®’ C @, letw € W, and let wg, € W be the image of w € W under the projection
W — W. Then it follows from definition that for every w' <¢ w”, we have ww’ <, (@) ww”. In
particular,
(i) for every u € A, we have w’ <q¢ w”’ if and only if uw’ <¢ uw’’;
(ii) for every u € W, we have w’ <g w” if and only if uw’ <, (¢) uw”.
(b) Note that for each a € @, the subset @’ := {«} satisfies the assumption of Corollary 1.2.3(c).
(c) Arguing as in Lemma 1.2.2(c), we see that for each ¢ € P, the subset ®" := ®(y) satisfies the
assumption of Corollary 1.2.3(c).

Proposition 1.2.5. Let w’,w” € W, and let C be a Weyl chamber.
Then w’ <c w” if and only if for every sufficiently regular u € AN C, we have uw’ < uw’’; that is,
there exists € A N C such that p’ uw’ < p’uw” for every i’ € AncC.

Proof. First, we claim that for every w’,w’”’ € WNCand @ € ® such that w’ = sgw’’, we have
w’ <c w” if and only if w’ < w”.

Replacing a by —a, if necessary, we may assume that @ = @ +n with @ € ®¢. Then w’ <¢ w”’ holds
if and only if w”~!(@) > 0. However, since w’, w” € C, we get that (w”)~'(a) > 0 and (w’)~'(a) > 0.
Since sg(@) = —a, we get s5(a) = —a — 2n; therefore,

W) ) = (W) sz(@) = -(w”) Ha) - 2n > 0.

This together with (w”)~' () > 0 implies that n < 0; thus, @ < 0. Therefore, w’ < w”’ holds if and
only if w”~!(a) > 0.
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Now we are ready to show our assertion. Assume that w’ <¢c w”’, and we are going to show that for
each sufficiently regular 4 € AN C, we have uw’ < uw”. By induction, we can assume that w’ = sgw”’
for some @ € ®. Choose u € ANC sufficiently regular so that uw’, uw”” € C. Then uw’ <¢c uw” (by
Remark 1.2.4(a)(i)), and uw’ = 5,z uw"’. Hence, by what is shown above, uw’ < uw”’.

Conversely, assume that for every sufficiently regular element u € A N C, we have uw’ < uw”’,
and we want to show that w’ <c w”’. Replacing w’ and w"’ by uw’ and puw’’, respectively, and using
Remark 1.2.4(a)(i), we may assume that w’,w” € C and w’ < w”. Then using Lemma 1.1.5(b), we
may assume in addition that w” = szw”’. Then, by what is shown above, w’ <¢c w”’. O

Corollary 1.2.6. Let w’,w"" € W, and let C be a Weyl chamber.
@Ifw <c w”andw’ € C, thenw’ <w”.
) Ifw’ < w” andw” € C, thenw’ <c w”.
©) Ifw',w” € C, thenw’ <c w" if and only if w’ < w".

Proof. (a) By Proposition 1.2.5, there exists u € A N C such that uw’ < pw”. Since pu,w’ € C, the
assertion follows from Lemma 1.1.5(c) and Section 1.1.4(c).

(b) Using Lemma 1.1.5(c) and Section 1.1.4(c), we conclude that uw’ < uw” forevery u € AN C.
Therefore, we get w” <¢ w'’ by Proposition 1.2.5.

(c) follows from parts (a) and (b). ]

Lemma 1.2.7. Lety € ¥, w',w” e W¥, C> ¢ andw € W.
(a) We have w"”w <c w'w if and only if w"”w <cu w'w.
(b) If w € Wy, then w"'w <c w'w if and only if w"’ <cv w’.

Proof. (a) Since (®¥)cv C ®c, the ‘if” assertion is obvious. Conversely, assume that w”’w <c w'w.
Then there exist affine roots

B =(Br,n1),....Br = (Br,ny) € Oc
suchthatw”w = Sg, - .SE]w’w,and Sg, - .s/;]w'w <5 Sg, - .s/;lw’w forall i. Then forevery x € Ao,
the difference w’w(x) — w”w(x) is a positive linear combination of the 8;’s (by Lemma 1.2.2(a)).
Since w”w € W¥w’w, we conclude that w’w(x) — w”w(x) is a linear combination of coroots of
®Y . Therefore, each B; is a root of ®¥; thus, 8; € (®¥)cw. But this implies that w”’w <cv w'w.
(b) By part (a), we have to show that w”’w <cy w’w if and only if w” <cv w’. Thus, we can assume
that w”’ = sﬁw' for some B € @Y. In other words, we have to show that w'~! () € &)fo if and only if

wl(w~1(B)) € ®-. But this follows from the assumption that w € VT/,/,. O

1.3. Admissible tuples

Definition 1.3.1. (a) We say that a tuple 7 = {uc }cec € VC is admissible (tesp. quasi-admissible, resp.
strictly admissible) if for every C € C and @ € Ac, the difference uc — s, (c) belongs to Ryod (resp.
Ra, resp. Ryod).

(b) A tuple w = {wc}c € WE is called admissible (resp. quasi-admissible, resp. strictly admissible)
if for every C € C and a € Ac, we have wy,(c) <o Wc (t€Sp. Wy, (C) € V~Vawc, resp. Wy, (C) <a WC)-

Remarks 1.3.2. (a) It follows from Corollary 1.2.3(b) that if w € W€ is (quasi)-admissible, then the
tuple 7(w) € A® C V¢ is (quasi)-admissible as well.

(b) Moreover, it follows from Corollary 1.2.3(c) and Section 1.2.4(b) that a tuple u € AC is (quasi)-
admissible as an element of W€ if and only if it is such as an element of VC.

(c) The notion of an admissible tuple in V¢ is not new. For example, it is called complementary
polyhedron in [Be, Definition 2.1]. However, we do not know whether admissible tuples in WC were
studied earlier.
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Notation 1.3.3. (a) For i, i’ € V€ (resp. w,w’ € WC), we will say that 7 < 71’ (resp. w < w’) if
Hc <c pg (resp. we <c wg) forall C € C.
(b) For 11 € V¢, we define by V=F the set of all x € V such that x <¢ uc for all C € C.

1.3.4. Quasi-admissible tuples in VC. (a) The set of quasi-admissible tuples in V¢ (resp. A°) can be
naturally identified with RY (resp. yASY

Indeed, for each quasi-admissible tuple 7z € VC and every y € ¥, the element 1z (y) := (¢, uc) does
not depend on C > . To see this, we observe that for every pair of Weyl chambers C,C’ 3 ¢, there
exists w € Wy such that C’ = w(C). Therefore, i defines a tuple {f () }yew € RY.

Conversely, every tuple {1z()} € R¥ gives rise to a quasi-admissible tuple zz € V¢ defined by the
rule pc = X g,en H(Wi)di, where §; € Wc is the fundamental weight corresponding to a; € Ac.

(b) The set of quasi-admissible tuples in V¢ (resp. A€) is a group with respect to the coordinatewise
addition in V (resp. A). Moreover, the identification of part (a) identifies this group with RY (resp. yASY
Also, the set of admissible tuples in VC (resp. A€) is a submonoid.

(c) The identification of part (a) preserves coordinatewise ordering. In other words, for every two
quasi-admissible tuples 1z, 77’ € VC, we have uc <¢ ug forall C € C if and only if (y) < ' (y) for
all y € W. In particular, for every quasi-admissible tuples 7 € V¢, the subset V=F C V (see Section
1.3.3(b)) consists of all x € V such that (¢, x) < u(y) forall y € P.

(d) From now on, we will not distinguish between a quasi-admissible tuple {xc }¢ in V€ (resp. A€)
and the corresponding tuple {zz()}, in RY (resp. Z¥). In particular, for every ¢ € ¥, we denote by
ey € A€ the quasi-admissible tuple, corresponding to the standard vector ey € Z¥, given by the rule

ey (') =0y,y.

Examples 1.3.5. (a) Every u € Cy C V gives rise to an admissible tuple 7 € V¢ defined by the rule
Hu(cy) = u(u) forallu € W.

(b) Consider the tuple wy € W€ ¢ VT/C, defined by the rule (w),(c,) = u. Then wy is admissible.
Indeed, by definition, we have to show that for every u € W and @ € ®,,(¢,), we have s, u <, u; that s,

u~'(a) > 0. Since u~! (@) € ®,, we are done.

(c) ) Using Remark 1.2.4(a)(i) and Lemma 1.2.2(b), for every (quasi)-admissible tuples u € A€ and
w € WC, the tuple i-w = {ucwclc € WE is (quasi)-admissible as well. In particular, for every u € A
and (quasi)-admissible tuple w € W€, the tuple uw := {uwc }c is (quasi)-admissible.

Notation 1.3.6. Arguing as in Section 1.3.4(a), for each quasi-admissible w € W€ and every ¢y € P,
the class [w¢] € W‘”\W and hence also element (wc)y € Wy, (see Section 1.1.3(d)) does not depend
on C > . We will denote this element by w .

The following characterization of admissible tuples will be crucial for the rest of the paper.

Lemma 1.3.7. A tuple w € we¢ (resp. 11 € VC) is admissible if and only if for all C,C’ € C, we have
we <¢r wer (resp. uc <c¢' 1cr)-

Proof. We will only prove the assertion for w, while the other case is similar, but easier. Assume first that
w is admissible, and we want to show that for every two Weyl chambers C and C’, we have we <cr wer.
Using Remark 1.2.4(a)(ii), we may assume that C’ = Cy. Let u € W be such that C = u(Cyp), choose
a reduced decomposition u = s;...s, of u, and for each j = 1,...,n, we set u; := s1...s; and
C; :=u;(Cp). It is enough to show that wc,,, <c, wc; foreach j = () .,n—1.

Letaj,; € Ac, besuchthats; = Saj,,- By construction, we obtain that uj,1 = u;s;41 > u;; hence,
uj(aj) € ®Pc,. Also since a1 € ACO, we get that u;(@;+1) € Ac;. Since Cjy1 = suj(aj”)(Cj),
the admissibility assumption implies that wc;,, <u;(a;,) Wc;; thus, we have wc,,, <¢, wc, because
”j(a'j+1) € Oc,.

Conversely, assume that we <c» wer forall C, C” € C. Choose C € C, a € Ac, and set C’ = 54(C).
Since wer <¢ wc, there exist a tuple of affine roots ﬁ] (Bi,ni), . ﬁr = (By,n,) € CDC such that
wer = Sg o S Wes and Sg,---Sgwe <g, Sg,_, - SgWC for all i. Therefore, for each x € A, the
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difference w¢ (x) — wer(x) is a positive linear combination of the ﬁi’s (by Lemma 1.2.2(a)), and hence
a positive linear combination of C-simple coroots.

However, since we <¢v wcr, the difference we (x) — wer (x) is also a negative linear combination
of C’-simple coroots. Combining these two statements, we conclude that we (x) — wer (x) has to be a
positive multiple of &. Hence, all the §;’s have to be «; thus, wer <o wc. O

The following corollary seems to be known to specialists.

Corollary 1.3.8. Let 11 be an admissible tuple in VS, and let ¢y € .

(a) The subset V=F C V equals the convex hull of {uc}cec.

(b) If @ is strictly admissible, then for every C # y, we have (Y, uc) < u(y).

(c) If 1 is strictly admissible, then the intersection of V= and the set of x € V such that (¢, x) = 1 ()
equals the convex hull of {ic}csy.

Proof. (a) For every C € C, we have uc <¢r pc for every C’ € C (by Lemma 1.3.7); thus, uc € V<,
Since subset V<HF C V is convex, this implies that the convex hull of {uc¢ }cec is contained in VsH,

To show the opposite inclusion, it suffices to show that for every affine function / on V such that
I(ucr) < 0forall C’ € C and every x € V=F, we have [(x) < 0. Let 1 € V* be the vector part of / and
choose C € C such that @ € C. Since x <¢ uc, we get [(uc) — 1(x) = (4, uc) — (4, x) > 0; therefore,
I(x) < I(uc) <0.

(b) Since (Y, uc) < u(y) for every C € C, it suffices to show that for every C € C such that
W, uc) = u(y), we have € Wc. To show the result, we essentially repeat the first part of the proof of
Lemma 1.3.7.

Using Remark 1.2.4(a)(ii), we may assume that ¢y € ¥¢,, and let u € W be such that C = u(Cp).
It suffices to show that u € W¥. Let uj, Cj and a4 be as in the proof of Lemma 1.3.7. Since
u is strictly admissible, we get HCj <uj(ajn) HC; for every j = 0,...,n — 1. Moreover, since
¥ € Y, and uj(aji1) € ®c,, we conclude that (¢, u;(aj+1)) = 0. So the assumption that (¢, uc) =
1Y) = (¥, uc,) implies that for every j, we have (¢, u;(a;+1)) = 0; hence, u;(a;41) € ®¥ and thus
Suj(a;s) € WY. Therefore, u = 5y, | (ay) =+ Sy € WY, as claimed.

(c) is an immediate consequence of parts (a) and (b). m]

Notation 1.3.9. (a) Let m € R and C € C. We say that u € V is (C, m)-regular if {a, u) > m for every
a € ®¢c. We say that w € W is (C,m)-regular if m(w) = w(0) € A'is (C, m)-regular.

(b) Let m € R. We say that a tuple i € VC is m-regular if uc is (C, m)-regular for every C € C. We
say that a tuple &z € V¢ is regular if it is m-regular for some m > 0. A tuple w € WC is called m-regular
(resp. regular) if 7(w) € A€ C VC is m-regular (resp. regular).

(c) For every w € W€ and every ¢ € W, we define w¥ € (W¥)<” by the rule (w¥)cv = (we)¥ for
each C > y (see Section 1.1.3).

Lemma 1.3.10. (a) If w € W€ ( resp. 1 € VC) is quasi-admissible and regular, then it is strictly
admissible.

(b) If i € VC is quasi-admissible and regular, then for every y € ¥, we have fi(¢) > 0 (see Section
1.3.4(a)).

(c) If the tuple w € WC is admissible, then the tuple WY is admissible as well.

() Ifw € WC is (m + 1)-regular, then w¥ is m-regular.

Proof. (a) We will only show the assertion for w. Fix C € C, let @ € ®¢, and set C’ = 5,(C). We
want to show that wer <, we. Since w is quasi-admissible, we get wer € Wawc. Therefore, for every
x € Ag, we have wer (x) = we (x) —ad for some a € R. Since w is regular, we conclude (@, we (x)) > 0
and (@, wcr(x)) < 0. Thus, a > 0, and hence, wer <4 we (by Corollary 1.2.3(a)).

(b) Since u(y) = (Y, uc) for every Weyl chamber C > ¢ (by definition), we have {(a, uc) > 0 for
every @ € Ac (since u is regular), and ¥ = X yep . Ca@ With ¢ > 0 for all @ € Ac, the assertion
follows.

(c) follows from Lemma 1.2.7(b) and Lemma 1.3.7.
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(d) Let C > ¢ be a Weyl chamber. We have to show that if w is (C, m + 1)-regular, and ¢ € C, then
w¥ is (C¥, m)-regular.

Notice that if w is (C,m + 1)-regular, then for all @ € ®¢ and x € Aj, we have (w™!(a),x) =
{a,w(x)) > m, or equivalently, wl (@) —m € (5>0. Conversely, if (@, w(x)) > m for all @ € @, then
(a,w(0)) > m for all @ € ®; thus, wis (C, m)-regular.

Thus, it suffices to show that for every @ € (®¥)cu, we have w™!(a) —m € &)>0 if and only if
W) Y a)-m e 550. Since w = w¥w,, the assertion follows from the fact that w,, € W,. o

The following lemma will be used in Lemma 3.2.10.

Lemma 1.3.11. Let u € V€ be regular and quasi-admissible. Then for every x € V<F ¢ € ¥ and
@ € ® such that {a, ) > 0 and (¥, x) = 1(¥), we have (a,x) > 0.

Proof. By Lemma 1.3.10(a), the tuple u is strictly admissible. Then, by Corollary 1.3.8(c), the inter-
section of V=H with the set of x € V such that (¢, x) = () is equal to the convex hull of {gc}csy-
Therefore, it is enough to show that for every Weyl chamber C > ¢, we have (@, uc) > 0. Since
tuple  is regular, it is enough to show that (@, y) > 0 for some y € C C V*. But this follows from our
assumption (a, /) > 0 together with observation that i € C (see Section 1.1.3(b)). O

The following very important technical result will be used in Proposition 3.1.8.

Lemma 1.3.12. Let 1 € W€ be admissible, and y € . Then there exists m € N such that for every
m-regular admissible tuple w € WC and every pi € A such that puc <cw we for each C 3y, we have
uuc <c wc for each C.

Proof. First, we claim that there exists an admissible tuple 7 € AC such that ,ualuc <c ,ugucf for
every C,C’ € C. Indeed, u is admissible; hence, for each C € C, @ € A¢ and x € Ag, we have
uc(x) —us,(c)(x) = mc,q,x& for some constant mc o x > 0 (use Lemma 1.2.2(a)). Let m’ be the
supremum of the mc_q x’s, choose u € Co N A such that (@, u) > m’ forall @ € Ac,, and let 7 € A€
be the tuple, corresponding to u as in Section 1.3.5(a).

We claim that u'uc <¢ pgiuc: for every C,C’ € C. Indeed, arguing as in Lemma 1.3.7 word-by-
word, it is enough to check that ,ualuc <a ,ugucf forall C € C,a € Ac and C’ = 5,(C). Then by
Corollary 1.2.3(a), it is enough to check that ,ualuc (%) <o ,uEl,uc/ (x) for each x € Ap. By construction,
we have ,uguc/ (x) - ualuc(x) = ({a,uc) — mc,a.x)&, so the assertion follows from the fact that
mc,a,x < m’ < {a, uc).

Denote m to be the maximum of the (@, uc) + 1’s, taken over all C € C and @ € Ac. We claim that
such an m satisfies the required property.

To see this, we choose any m-regular admissible tuple w, and we claim that tuple /7_1 W= { /JEI wcte
is admissible. By Section 1.3.5(c), it is quasi-admissible, so by Lemma 1.3.10(a), it is enough to show
that it is regular. For every C € C, @ € A, we have («, MEIH(WC» = {a,m1(we)) —{a,uc) >0
because (@, m1(w¢)) = m by m-regularity of w, and {a, uc) < m — 1, by construction.

Let u € A be such that uuc <cv wce for each C > i, and let C’ € C be arbitrary. We want to show
that uuc <c» wer. Using Remark 1.2.4(a)(ii), it is enough to do it in the case C” = Cj, so using Remark
1.2.4(a)(i), we have to show that ll(_:éﬂ”Co <c ,ual)wco.

Choose u € W of minimal length such that ¢ := u~!(¢) belongs to ¥¢,, and set C := u(Cy).
Since 7! - W is admissible, we conclude from Lemma 1.3.7 that ,ualwc <co ,ual) wc,, while by our
construction, we get ,ua(l)uco <c, U¢'uc: hence, ,ual)/,tuco <c, ¢ puc (by Remark 1.2.4(a)(i)). Thus,
it is enough to show that ,ual Huc <c, ,ualwc, or, equivalently, that uuc <c, wc.

Since ¢y € Cyp, we get that i € C. Hence, by our assumption, uuc <c» wc. Therefore, to show that
uuc <c, wc, it suffices to check that (®¥)cy C ®c,.

If B € (®Y)cw, then u~!(B) € (tb‘”(’)C%. Since u € W is an element of minimal length such that

0

¥ = u(yy), we get that u((d)‘l’o)c¢(,) C @, . In particular, we have 8 = u(u='(B)) € ®c,. O
0
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2. Semi-infinite orbits in affine flag varieties
2.1. Definitions and basic properties

Notation 2.1.1. (a) Let k be an algebraically closed field, K := k((¢)) the field of Laurent power series
over k, and O = Ok = k[[t]] the ring of integers of K. For every affine scheme X over O (resp. K), we
denote by L*X (resp. LX) the corresponding arc- (resp. loop-) space.

(b) Let G be a semi-simple and simply connected group over k. Fix a maximal torus T € G, let
® = O(G,T) be the root system of (G, T), let W = W be the Weyl group of G, and W=N.g (LT)/L+T
the aﬂine Weyl group of G. Then, in the notation of Section 1.1.1, we have natural isomorphisms
A = X,(T) and We — W. Moreover, the map u — y(t) deﬁnes an embedding A — LT, which in
turn induces isomorphisms of groups A = LT/L*T and Wo — W.

Notation 2.1.2. (a) For every C € C, let Bc € G be the Borel subgroup containing 7 such that
@O (Bc,T) = D¢, and let Uc C B be the unipotent radical.

(b) Choose Cy € Co asin Section 1.1.2,letT € By = B¢, € G be the corresponding Borel subgroup,
let By 2 T be the opposite Borel subgroup, and let / € L*G be the Iwahori subgroup, defined as the
preimage of B; C G under the projection L*G — G.

(c) For every @ € @, we have a natural isomorphism exp,, : Lie U, 5 Uy . Fora = (a,n) € (T), we
set Uz :=exp, (t"LieU,) € L(Uy), and @’ := (—a, n).

(d) In the conventions of parts (b), (c), we get the equality I = L*T - [] Ug.

aed.
2.1.3. Affine flag varieties

(a) Denote by Fl = Flg the affine flag variety LG /I of G over k, and by Gr = Grg the affine
Grassmannian LG /L*G. We have a natural projection pr : FI — Gr. Note that both Fl and Gr are
equipped with an action of the ind-group scheme LG, and that projection pr is LG-equivariant.

(b) The embedding Ny (LT) — LG induces embeddings W < Fland A <> Gr, and we identity
W (resp. A) with its image in FI (resp. Gr). Furthermore, both Fl and Gr are equipped with the action
of T € L*(T) € LG, and these identifications identify w (resp. A) with the locus of T-fixed points FI7
(resp. Gr1).

(c) Note that FI decompose as a union Fl = | J,, . Iw of I-orbits, and for every w € W we denote
by F1=" C Fl the closure of the I-orbit Iw C Fl. Then FI=" is a reduced projective subscheme of Fl
called the affine Schubert variety.

(d) Fix any C € C. Then we have decompositions Fl = U e L(Uc)w and Gr = UﬂeA L(Uc)u by
L(Uc)-orbits. For every w € w (resp. u € A), we denote by F15¢" C Fl (resp. Gr=c# C Gr) the closure
of the L(U¢)-orbit L(Uc)w C Fl (resp. L(Uc)u € Gr). We also set FISc# := pr!(Grsc#) c Fl.
Notice that FISCW | Gr=c# and FISc" are closed reduced ind-subschemes.

(e) For every tuple w € W€ (resp. it € A€), we denote by FI=" (resp. Gr=F) the reduced intersection
Ne FISEYC (resp. N Grsckc), and set FIS# := pr~!(Gr=F).

The following simple lemma will play a central role later.

Lemma 2.1.4. Let Z C Fl (resp. Z C Gr) be a closed reduced T-invariant ind-subscheme, C a Weyl
chamber, and w € W (resp. u € A). Then Z N L(Uc)w # 0 if and only if w € Z (resp. u € Z).

Proof. We will show the assertion for Z C Fl and w € VT/ while the proof of the second assertion is
identical.

Clearly, if w € Z, then Z N L(Uc)w # 0. Conversely, let z be an element of Z N L(Uc)w,
and pick u € L(Uc¢) such that z = uw. For any v € A = Hom(G,,,T) and a € G,,, we have
v(a)(z) = (v(a)uv(a)~")(w) because w € Fl is T-invariant; hence, (v(a)uv(a)~')(w) € Z because Z
is T-invariant. Next, for v € A N C, the morphism a — (v(a)uv(a)~')(w) : G,, — Z C Fl extends to
the morphism A' — FI, which sends 0 to w. Since Z C Fl is closed, we conclude that w € Z. O

Lemma 2.1.5. Let w,w’ € W, and let C be a Weyl chamber.
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(a) We have w’ € FI=" if and only if w’ < w.
(b) If w € C, then Iw C Flis contained in L(Uc)w C Fl.
@ IfIwNL(Uc)w’ # 0, thenw’ < w.

Proof. (a)is a standard. _ _
(b) In the notation of Section 2.1.2(c), for every @ € ® and w € W, we have wUzw™! = Uy (@ and
w(a’) = w(a)’. Combining this with Section 2.1.2(d), we see that for every w € W, we have

Iw = l—[ Ug Iw. 2.1

a>0,w-1(@)<0

Using formula (2.1), it remains to check that every @ = (@, n) > 0 such that w™! (@) < 0 satisfies
Uz C L(Uc); thatis, — € ®¢. However, n > 0 because @ > 0. Therefore, w™! (@) = w™' (@) —n < 0.
Thus, w‘l(—a) > 0; hence, —a € ®¢ because w € C.

(©) If Iw N L(Uc)w’ # 0, then FI=" NL(Uc)w’ # 0. Since FI=" C Flis closed and T-invariant, we
get w’ € FI5" (by Lemma 2.1.4); thus, w’ < w (by part (a)). o

The following proposition gives a geometric interpretation of the ordering <., generalizing the well-
known result (see, for example, [MV, Proposition 3.1]) for the affine Grassmannian.

Proposition 2.1.6. For each w’,w’ € W and every Weyl chamber C € C, we have w' <¢ w”’ if and
only if w’ € FI=¢%",

Proof. Assume that w’ <¢c w”’. Then by Proposition 1.2.5, there exists 4 € ANC such that uw’ < uw”’
and uw” € C. Then puw’ € Fl lies in the closure of /uw” C Fl (by Lemma 2.1.5(a)), and thus in the
closure of L(Uc)uw” C Fl (by Lemma 2.1.5(b)). Since U is normalized by 7, this implies that w” € FI
lies in the closure of u~ ' L(Uc)uw”’ = L(Uc)w” C Fl; that is, w’ € FIS¢"”,

Conversely, assume that w’ € Fl lies in the closure of L(Uc)w” C FI. Then there exists a closed
subgroup scheme U’ C L(U¢) such that w’ € Fllies in the closure of U’'w”” C Fl. Then uw’ € Fl lies in
the closure of uU’'w” = (uU’u~")uw” for every u € A. However, if u € A N C is sufficiently regular,
then uU’u~" C I; thus, uw’ € Fl lies in the closure of Iuw’’ C Fl. This implies that uw’ < uw” (by
Lemma 2.1.5(a)); thus, w’ <¢ w”’ (by Proposition 1.2.5). O

Corollary 2.1.7. (a) A tuple w € WC is admissible if and only if for every C € C the intersection
L(Uc)we NFI=Y is nonempty.

(b) For a tuple u and an admissible tuple w, we have FI=Y C FI=* if and only if w < .

(¢c) For a tuple w, we have an inclusion FI=" C | FI=V¢. In particular, each FI=" C Flis a closed
subscheme of finite type.

(d) Let Z C Flbe a closed T-invariant ind-subscheme. For every z € Z, consider tupleu = u(z) € we¢
defined by the rule that z € L(U¢)uc for all C € C. Then the tuple i is admissible, and uc € W N Z for
allC € C.

(e) In the situation of part (d), we have an inclusion Z € (¢ (U, ciwny F15™).

(f) For every tuple u € A, we have an equality FISH = FISEWa (compare Sections 1.3.5(b),(c)).

Proof. (a) By Lemma 1.3.7 and Proposition 2.1.6, a tuple w € WC€ is admissible if and only if
we € FI5Y = N e FISEY¢ for each C € C. Since FI=" C Fl s closed and T-invariant, the assertion
now follows from Lemma 2.1.4.

(b) The “if’ assertion follows from Proposition 2.1.6. Conversely, if FI<" C FI<¥ then we € FISW C
FI=* (as in part (a)); hence, we € F15¢4“C for every C. Therefore, we <c uc by Proposition 2.1.6.

(c) Let z be any element of FISW  letu € W be such that z € [ u, and let C € C be such that u € C.
We want to show that u < w¢, and thus z € FI="¢.

By Lemma 2.1.5(b), we get z € Tu C L(Uc)u. However, we have z € FI" C FIS¢"¢  Therefore,
by Proposition 2.1.6, we get that u <¢ w¢, which by Corollary 1.2.6(a) implies that u < wc.
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(d) By construction, z € F1=% NL(Uc)uc for all C € C; hence, u is admissible by part (a). Since
z€ L(Uc)uc NZ, we getuc € Z by Lemma 2.1.4.

(e) follows immediately from part (d).

(f) It is enough to show that for every C € C, the preimage pr~' (Gr<c#c) equals FI=¢ (Hc(w)c)
Using Proposition 2.1.6, we have to check that for every u € A and u € W, we have u <¢ uc if and
only if pu <c pc(wsc-

The ‘only if” assertion follows from Corollary 1.2.3(b). Conversely, if 4 <¢ puc, then uu <¢ pcu
by Lemma 1.2.2(b). So by Remark 1.2.4(a)(i), it is enough to show that u <¢ (wg)c. Since wy is
admissible and u = (Wg)u(c,), the assertion follows from Lemma 1.3.7. ]

2.2. Proof of Theorem (.2

2.2.1. Let m € N. Recall that w € W is called m-regular if 7(w) € A is m-regular; that is, we have
[{a, m(w))| = mforall @ € ®. For eachw € W, we denote by W=" the set of w’ € W such that w’ < w.

The following result is a more precise version of Theorem 0.2.

Theorem 2.2.2. (a) For each w € W, there exists a unique admissible tuple w such that the Schubert
variety FI=" equals FI=".

Moreover, w = {wc}c is characterized by the condition that w¢ is a unique maximal element of
W=" with respect to the ordering <c.

(b) Furthermore, there exists r € N such that for every m € N and every (m +r)-regular w € W, the
tuple w is m-regular.

Proof. (a) Denote by X(w) the closed ind-subscheme (¢ (U, <y FISc"') C FI (compare Corol-
lary 2.1.7(c)), and we claim that X(w) equals FI=". Indeed, the inclusion FI"¥ < X(w) fol-
lows from Corollary 2.1.7(e), while the opposite inclusion X(w) < FI1=" follows from identity
X(w) = Uspre(imewye FI5"" and Corollary 2.1.7(c).

Next, since FI<" = UW/E(VT,SW)C FISV is irreducible, there exists a tuple w = {wc}e € (WSW)C
such that FI=" = FI=".

Then for each w’ < w and C € C, we have w’ € FIS" C FI5¢"¢ Thus, by Proposition 2.1.6, we
have w’ <¢ wc; that is, we is the biggest element of W=" with respect to ordering <¢. In particular,
for every other Weyl chamber C’, we have w¢r <¢ wc. Thus, by Lemma 1.3.7, we conclude that w is
admissible.

The uniqueness of w follows immediately from Corollary 2.1.7(b).

(b) Choose any u € AN Cy, and let r be the maximum of the 2(y, u)’s, taken over ¥ € ¥¢,. We
claim this r satisfies the required property; that is, for every m € N and every (m + r)-regular w € W,
the tuple w is m-regular. In other words, we claim that wy,(c,) is (#(Cp), m)-regular or, equivalently,
that u™'wy(cy) is (Co, m)-regular for all u € W.

Claim 2.2.3. Let w € W, and let w := {wc}cec be the tuple from Theorem 2.2.2(a).

(a) If w = wow,, where wo € W is the longest element, and w, € W N Cy, then wy,(¢,) = uw, for all
uew.

d) Ifw e Ww, withw, € wn Cy, then for all u € W, we have inequalities

-1 -1
W Wy Scp U Wy (Cy) SCp W

Proof. (a) Fix u € W. We will show that w < wou‘lwu(co) < w, which will imply that wou‘lwu(co) =
wow., and thus w,(c,) = uwy.

Since u < wq, we get uw; < wowy = w (use Section 1.1.4(e)). Therefore, by the characterization
of w, given Theorem 2.2.2(a), we get uw. <y (c,) Wu(Cy)- Hence, w = wow. <y (co) Wolt ™ 'wi(cy) (by
Remark 1.2.4(a)(ii)); thus, w < wou"wu(co) (by Corollary 1.2.6(a)). However, w, (c,) < W = wowy;
thus, using Section 1.1.4(e), we conclude that wou_lwu(co) <w.
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(b) By Remark 1.2.4(a)(ii), it is enough to show that

-1
UL Wi S4(Co) Wu(Co) Su(Co) UW+-

Consider element w’ := wow,. Then w < w’ (use Section 1.1.4(e)), and thus, we have wy,(c,) < w'.
Hence, wy(cy) <u(cy) w’u (Co) (by the characterization of w; (Co)? given in Theorem 2.2.2(a)); thus,
Wu(Cy) Su(cy) Uws (by part (a)). To show the other inequality, it is enough to show that u/flw+ < w.
Since w and hence also w is (m + r)-regular, our definition of r implies that u~'w, € W N Cy. Since
u < p (by Section 1.1.4(g)), and I(w,) = I(u) + [(u~'w,) (by Lemma 1.1.5(c)), we conclude from

Section 1.1.4(c) and part (e) that u(u™'w,) < w, < w. |

Let us come back to the proof of the Theorem. By Claim 2.2.3(b) and Corollary 1.2.3(b), we have
p' m(wa) <cp 1 Waicy) <cp m(wa).

Hence, we have n(u‘lwu(co)) =m(wy) — ZQEACO mad, such that 0 < my < (Yo, ), where y, € e,
is the fundamental weight corresponding to @ for each & € A, . In particular, for each @ € A¢,, we have

(a,n(u_]wu(c(,)» > (a,m(wy)) —2mg = (m+r)—r=m

because w, is (m + r)-regular, and 2m o < 2(Y o, u) < r. O

2.3. Technical lemmas

Notation 2.3.1. Fix ¢ € V.

(a) Denote by Py, 2 T the parabolic subgroup of G such that (P, T) = ®(¥) (see Section 1.1.3(c)),
by My, 2 T the Levi subgroup of Py, by Uy, C P, the unipotent radical, by M f; the simply connected
covering of the derived (=commutator) group of My,. Let P, — M, be the natural projection, and set
PSC — P X MSC

y T L My Yy, - ! ,

(b) Note that we have a natural homomorphism P:; — Py C G; thus, the loop group L(P;f) acts on

Fl. For every w € W, we denote by FI=** C Fl the closure of the L(Pf;)—orbit L(P;f)w C Fl. For every

1 € A, we denote by Gr=¢# C Gr the closure of the L(Pf;)—orbit L(Pf;),u C Gr.

Lemma 2.3.2. (a) For w’,w” € W and ¢ € ¥, we have w’ <y w"ifand only ifw’' € F1=o"”,
(b) Foru € W, y € ¥ and an admissible tuple w € W€, we have FI=" C FI**“ if and only if
Wy <y U (compare Section 1.3.6).

Proof. (a) Assume first that w’ <, w”, and we want to prove that L(Pf;)w' C Fl is contained in the

closure of L(P5¢)w” C Fl. By definition, we can assume that w’ = S,EW’, <z w’’, where E = (B,m),
and (B, ¥) > 0. Then there exists a Weyl chamber C 3  such that 8 € ®¢. Then w’ <¢ w’’; hence, by
Proposition 2.1.6, w” lies in the closure of L(Uc)w”” C Fl. Since L(U¢) € L(P%), the assertion follows.

Conversely, assume that w’ belongs to the closure of L(P$)w” C Fl. Choose any Weyl chamber
C > . Then L(Pf/f)w” is a union of orbits | J,, .i7» L(Uc)ww". Therefore, w’ belongs to the closure
of L(Uc)ww” C Fl for some w € wY. Hence, by Proposition 2.1.6, we get w’ <¢c ww”’, and thus
w’ <, ww'’. However, since w € WY, we also getww” <y w”.

(b) Choose any Weyl chamber C 3 . Then we € W¥W,; hence, we have Wy, <, u if and only if
wc Sy U.

Assume first that we <y u. Then by part (a) we have FIs¢¥c C FI=v“, However, we always
have inclusions FIS" C F1S¢"¢ C FI*v“¢ _ which imply that FI=" C FI=¢“. Conversely, since W is
admissible, we get we € FIS" by Lemma 1.3.7. Therefore, if FIS" C FI<*“, we get we € FISvX,
Hence, by part (a), we have we <y u. O
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The remaining results of this subsection will be only used in Section 4.3.

Corollary 2.3.3. (a) For i/, i’ € A and € ¥, we have '’ € Gr=v*" if and only if (W, i’y < (¥, u”’).
(b) For m € Z and € Y, there exists a unique closed reduced ind-subscheme Gr=*" C Gr such
that Gr=v™ = Gr=¢* for every u € A and € ¥ such that (4, u) = m.
(c) For every admissible tuple m € AS, we have an equality of reduced subschemes
Grsf = N, ey Gr=vHW) C Gr (compare Section 1.3.4(a)).

Proof. (a) Using equality pr~! (Gr=v#") = ,, oy FI*#"", we see that y’ € Gr=v*" if and only if
uoe FI=“#"% for some w € W. Hence, by Lemma 2.3.2(a), this happens if and only if we have
u <y p'w for some w € W. Since w(u"’w) = p”, it thus follows from Corollary 1.2.3(b),(c) and
Section 1.2.4(c) that this happens if and only if u’ <, u” in the sense of Section 1.2.1(c). Now the
assertion follows from Lemma 1.2.2(c).

(b) follows immediately from part (a).

(c) Notice that for every C € C and ¢ € ¥, the inclusion Uc C prc implies the inclusion

GrscHe ¢ GrSvke = Gr=vHW) | from which the inclusion ‘C” follows.
Conversely, for every y € (), cw Gr=v#¥) and C € C, let v € A be such that y € L(Uc)v, and we
want to show that v <c uc. Since the ind-subscheme ),y Gr=**¥) C Gr is closed and T-invariant,

it follows from Lemma 2.1.4 that v € ey Gr=v#¥) Hence, by part (a), we have (¢, v) < u(y) for
each ¢ € ¥, from which inequality v <¢ uc follows from Section 1.3.4(c). m

Lemma 2.3.4. (a) For all w',w"" € W, there exist admissible tuples W . . ., Wy from WE such that the
reduced intersection FIS% N FISY equals | J}_, FI=Wr,

(b) Forallw € Wc, Yy eWYandu € V~V, there exist admissible tuples w1 ..., w, from W€ such that
the reduced intersection F1= N FI=¥" equals Ur, FI=Wr,

Proof. We denote by Z the reduced intersection FIS% NFI="" in the case (a), and FIS¥ N FIS¢* in the
case (b). Then, by Corollary 2.1.7(c), in both cases, Z is a closed T-invariant subscheme of Fl of finite
type; thus, the intersection W N Z is finite.

By Corollary 2.1.7(d), each z € Z defines an admissible tuple u = u(z) € we¢ satisfying uc € wnz
for each C € C. It follows that the set of tuples {u(z) }, <~ is finite, so it will suffice to show the equality

z=|Jp=,

zZ€Z

One inclusion follows from the fact that z € FI*() for every z € Z. To show the converse, it is enough
to show that if 7 € W€ satisfies uc € Z for all C € C, then FIS¥ C Z. Using definition of Z, it remains
to show the corresponding assertion in the cases Z = FI=" and Z = FI=*“. In the first case, we have
uc € FISEWC: hence, FISCH“C C FISEWE for all C € C, and thus, FIS* € FISY. In the second case, the
assertion follows from Lemma 2.3.2(b). m]

We will need the following ‘effective’ version of Lemma 2.3.4.

Lemma 2.3.5. (a) There exists r’ € N such that for every m € N and every two (m + r’)-regular
admissible tuples W', w"’ € WC, there exist m-regular admissible tuples W ..., w, € WC such that
FIsV nFISY = L, RIS,

(b) There exists r’ € N such that for every m,d € N, every (m + 2d + r’)-regular admissible tuple
w € W and every u € W, satisfying (¥, m(u)) = n(w)(¥) — d, there exist m-regular admissible tuples
Wi...,W, € WC such that

FISW NFISv* = | |FISW: |

n
t=1
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The proof is based on the following two claims:

-

Claim 2.3.6. (a) For every two quasi-admissible tuples i’, 7"’ € AC, there exists a unique maximal
quasi-admissible tuple z € AC such that @ < 17" and 7 < 11”’. Moreover, [ is m-regular if both 77’ and
1 are m-regular.

(b) For every ¢ € ¥, m,d € N and every (m + 2d)-regular quasi-admissible tuple 1z € A, the tuple
V= u — dey is m-regular.

Proof. (a) Notice that z < @’ if and only if u(y) < u’(y) for all € . Thus, a maximal z satisfies
() = min{a’ (y), 7" (¢)} for all y € W. This shows the first assertion.

For the second one, choose C € C, let ay,...,a, be the simple roots of C, and let ¥y,..., ¥,
be the corresponding fundamental weights. We want to show that (@, uc) > m for all j. Without
loss of generality, we may assume that (¢ ;) = 1’ (). Recall that we have uc = Y.1_, ()& and
Mg = 2y 1 (Yi)d;. Since (a;, &) =2 > 0,u(y;) = @' (¥;) and (@}, &) < 0, 1(y;) < @' (y;) for all
i # j, we conclude that (@, uc) > (@;, ug) = m.

(b) Let C,@; and y; be as in the proof of part (a). Then for every j, the pairing (o}, uc) equals
(aj, pc)y—d{aj, &) > (m+2d)-2d = m,ify = ¢;, and equals (@}, uc) > m+2d > m,otherwise. O

Claim 2.3.7. (a) There exists r € N such that for every C € C, every root @ € ®¢ with corresponding
fundamental weight ¢ € W, and every elements w, w’ € W with w <c w’, we have either dw <c w’
or (Y,m(w') —m(w)) <r.

(b) There exists r € N such that for every ¢y € ¥, @ € ® and w,w’ € W such that w <y w' and
(¢, a) = 1, we have either ¢w <, w’ or (Y, m(w’) —(w)) <r.

Proof. Since W is finite, in both cases (a) and (b), it will be enough to find r to satisfy the condition for
w € Au and w’ € Au’, where u,u’ € W are fixed. Moreover, using Remark 1.2.4(a)(ii), we may assume
that w’ = u’. Similarly, we fix C € C, and @ € ®¢ with corresponding i € ¥c.

In the case (a), we consider the set S¢ of all u € A such that uu <¢ u’. Then, by Corollary 1.2.3(b),
every u € Sc satisfies u = m(uu) <c n(u’) = 0; hence, the set S&™* of all maximal elements of S¢
with respect to the ordering <c is finite and nonempty. We take r € N to be the maximum of all — (i, u)
taken over all p € ST*.

In the case (b), we consider the set S, of all u” € A suchthat u’u <y u’. Thenevery u’ € Sy, satisfies
1’ <y 05 hence, the set S“lp‘ax of all maximal elements of S, with respect to the ordering <, is a finite

and nonempty union of cosets of AY := {u € A| (¥, u) = 0}. We take r € N to be the maximum of all
—(¥, u’), taken over all u’ € Siax.

Then in both cases, r satisfies the required property. Indeed, assume that 4 € Sc (resp. u € Sy)
while du ¢ Sc, (resp. &u ¢ Sc), and we want to check that (¢, u) > —r. Choose any u" € S&** (resp.
u e S;‘ax) to be such that u” >c p (resp. p’ 2y p.) Then p’ — p = Ygea, mlgﬁv and m, > 0. Since
au ¢ Sc (resp. &u ¢ Sy), we have m,, = 0; thus, (Y, u) = (¥, u') > —-r. O

Now we are ready to prove Lemma 2.3.5.

2.3.8. Proof of Lemma 2.3.5. (a) Letr € N be as in Claim 2.3.7(a). We will show that r’ := 2r satisfies
the required property. Let w', w" € WC be (m + r’)-regular admissible tuples. Then, by Lemma 2.3.4,
there exist admissible tuples #; . .., W, € W€ such that FIS" nFI=V = " FISWe

Using Corollary 2.1.7(b), one can assume that each w; is a maximal admissible tuple, satisfying
w; <w’,w”, and we have to show that each w; is m-regular.

Let w € W€ be a maximal quasi-admissible tuple, satisfying w < w’,w”’. It is enough to show that
such a w is m-regular. Indeed, Lemma 1.3.10(a) then would imply that w is admissible.

Setu’ := n(w’), and @’ := n(w"), and let 1z be the maximal tuple such that 7 < " and z < "
Then @ is (m + r’)-regular by Claim 2.3.6(a), and 7(w) < @ by Corollary 1.2.3(b).

It is enough to show that 7(w)(y) > u(¥) — r for every ¢ € W. Indeed, if this is shown, then for
every C € C with simple roots a1, . . ., @,, we have 1(w¢c) = uc — 2; ri¢; and 0 < r; < r for all i. Then
(a;j,m(we)) = {a;, uc) — 2r; = (m +2r) — 2r = m. Thus, w is m-regular.
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Assume that there exists € ¥ such that 7(w) () < u(¢¥) — r. Consider the quasi-admissible tuple
ey defined by e, (') := 64,y (see Section 1.3.4(d)). Then the quasi-admissible tuple e, W (see Section
1.3.5(c)) satisfies identities (eyw)c = wc if ¢ € Yc, and (eyw)c = awc if ¢ € Yc and @ € Ac
corresponds to .

Since w < W’ and w < W, the assumption (W) () < () — r together with Claim 2.3.7(a)
implies that e, w < W’ and e, w < w”. Since w < e, w, this contradicts the maximality of w.

(b) The proof is similar to that of part (a). Let r € N to satisfy both Claim 2.3.7(a),(b), and set
r’ = 2r. Assume that w € W€ is (m +2d + r’)-regular, u € W satisfies (¢, 7(u)) = 7(w)(¥) — d, and
let W’ be a maximal quasi-admissible tuple satisfying W’ < w and wy, <y u.

Using Lemma 2.3.4(b) and Lemma 2.3.2(b), and arguing as in part (a), it is enough to show that
(W) (W) = J(W') - r for every y’ € .

Assume that there exists ¢’ € ¥ such that 7(w)(¢’) < u(¥’) —r, and let ey w be as in part (a).
Again, to get a contradiction, it is enough to show that e,-w < w’ and (e, W)y, <, u. The proof of the
first inequality is identical to that of part (a). Next, if ¢ # ¢, then (eyw)y = Wy <, u by assumption.
Finally, if ' = y, the inequality (e, w)y <, u follows from Claim 2.3.7(b). O

Lemma 2.3.9. There exists r € N such that for every m € N and every (m +r)-regular w € WE, there
exists an m-regular X € A€ such that FI=* C FI=".

Proof. Choose any u € AN Co, let 1 € A€ be the admissible tuple defined by Hu(cy) = ul(p) (see
Section 1.3.5(a)), and let r be the maximum of the (@, u)’s, where @ runs over all of A¢,. We claim that
this r satisfies the required property.

Namely, to every (m + r)-regular admissible tuple w € WE, we associate a quasi-admissible tuple
X := 1 'm(w) (see Section 1.3.4(b)). We claim that X is m-regular, and FI=* C FI=7,

To show that X is m-regular, we note that for every u € W, C = u(Cy) € C and a € Ac, we have
(@.xc) = (@, 7(we)) = (e, u(w) = (m+7) = r =m.

Next, we observe that FIS* = FIS* "st (use Corollary 2.1.7(f)). So it remains to show that X - wy < W
or, what is the same, xcu <¢ w¢ for each C = u(Cp) € C. Unwinding the definitions and using
Section 1.2.4(a), it is enough to show that for every u € W, we have 1 <¢, pu. By Corollary 1.2.6,
it remains to show that uu € W N Cy; that is, for every @ € ®c, we have (uu)~'(a) > 0. But

(uu) ™" (@) = u ' (u (@) = (u (), (a, 1)) > 0 because (a, u) > 0. O
Lemma 2.3.10. There exists r € N such that for every m € Z and every (m + r)-regular tuple X € A€,
there exists a sequence X = Xo < X1 < ... in A such that sequence {x;()}; tends to infinity for all

Y €Y, each X; is m-regular, and x; = X;_1 + ey, for some y; € ¥ and all i.

Proof. Choose u € AN Cp, and let @ € A€ be the tuple Hu(cy) = u(p) from Section 1.3.5(a). Then
1 is regular and admissible. Let y € N¥ be the corresponding tuple (see Section 1.3.4(a) and Lemma
1.3.10(b)). Choose a sequence y, = 0,¥,...,y, =y in N¥ such that y; — ¥,_, = €, for all i and some
Y; € ¥, and continue it to all i by the rule y;,,, :=y; + .

Define r to be the maximum of the —{(y;)c,a)’s, takenoveri = 1,...,n, C € C and @ € Ac. Then
the sequence x; := X +y; satisfies the required property. O

2.4. Stratification of the affine flag variety

Notation 2.4.1. (a) Let k, K and O be as in Section 2.1.1, let G be a connected reductive group over k,
and let 7 € G be a maximal torus.

(b) Let G*° be the simply connected covering of the derived group of G, and let 7gs« € G*°
be the corresponding maximal torus — that is, the pullback of T C G. Let @ be the root system
D(G,T) = D(G*,Tgse) of G*, let ¥ be the set of fundamental weights of G*¢, and let W be the affine
Weyl group of G*¢.

(c) Choose an Iwahori subgroup scheme I C LG as in Section 2.1.2, set I := IN L(G*®) C L(G*%),
and let Fl = Flgse := L(G%¢)/I*° be the affine flag variety of G*°.
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Notation 2.4.2. In the situation of Section 2.4.1, fix y € ¥ C X*(Tgs).

(a)Let Py, My, Uy, Mf[f and P be as in Section 2.3.1(b). Notice that groups M;°, Uy, and Pf; would
not change if we replace group G by G*.

(b) Note that Ips, := 1N L(My) € L(My) is an Iwahori subgroup scheme, let IMJ/c c L(Mf;) be
the preimage of Iys, C L(M), and set FlM.s; = L(M(S;)/IM;c.

(c) As in Section 2.3.1(b), we have a natural homomorphism Pf; — G*¢; thus, the loop group L(Pf;')
acts on Fl. For every w € W, we denote by FIS¥" C Fl the closure of the L(Pf/f)—orbit L(Pf;')w Cc FL.

(d) As in Section 2.1.1, we have an equality A = X, (Tgsc). As in Section 1.1.3(b), the coweight zﬁ
belongs to Ag. We denote by T, C T the one-dimensional subtorus such that X, (T,) C A equals
(Zy) N A € Ag.

(e) Alternatively, T, can be defined as the connected center of the Levi subgroup (My)gs of G*°,
where (My)gs € G* is the pullback of My, C G.

2.4.3. Stratification _

(a) For each v € Wy, we set Z, := FI=¥"\ Uy<yr FI=*”". Then each Z, C Fl is a reduced locally
closed L(Pf;)—invariant ind-subscheme. Moreover, since V~V¢ is a set of representatives of the set of
cosets W¥\W (see Section 1.1.3(d)), the set {Zv}ve%,

(b) For each v € WW’ we consider I, = vIv~! C LG, Ip,v =L N L(Py) € L(Py) and
Iy, = I, N L(Uy) S L(Uy). Let IPlSIlC’V c L(Pf;) be the preimage of Ip,,, S L(Py), and set
Flrgo = LP)/Irg

(c) Note that for each v € Wy, we have an equality Iy, = I, N L(My) C L(My). Therefore,
isomorphism Uy X My, — Py : (u,m) — um induces isomorphisms

forms a stratification of Fl.

Iy, X In, = Ip,.v, Uy X My = P and Iy, ., X vy S Ips .
Moreover, the embedding and the projection MIS; — Pf/f - M f/f induce morphisms

Ly, Py.v
FlM.j/C — Fle;,V — FIM;C .

(d) By Lemma 2.3.2(a), each Z,, C Fl is an L(Pf;)-orbit of v € Fl. Moreover, the group ind-scheme
L(Pf;) ~ L(Mf/f) x L(Uy) is reduced (see [BD] if k is of characteristic zero, and [Fa] in general), so
the morphism [/4] + Av induces an isomorphism ¢,, : Flpzc,,, 5 Z,.

(e) Since Tgse normalizes PS¢ and fixes v € Fl, the orbit Z, C Fl is Tgs-invariant; hence, Z, is
Ty-equivariant. Furthermore, the isomorphism ¢, of part (d) identifies the Ty -action on Z, with the
Ty-action on Flp;c,v given by the formula t[um] = [tut'm] for u € L(Uy) and m € L(Mf[f). In
particular, the isomorphism ¢, induces an isomorphism Jv Rl My = 7% [m] = mv, where Z
denotes the locus of T, -fixed points.

(f) Since FlM(s; is ind-proper, we conclude that FIM:; C Fl is closed. So it follows from part (e)

. T, . . . .
that each ind-subscheme Z,” C F1¥ is closed. Moreover, F17¥ is reduced because Fl is such. Since

. L . T, T, .
set-theoretically FI7# decomposes as a disjoint union | | Z,” , we conclude that each Z,” € F17v is

open and closed.

VEW¢
2.4.4. Retraction. Let Y be an ind-scheme, and let Z C Y be a locally closed ind-subscheme. A
morphism p : Y — Z is called a retraction if the restriction p|z is the identity.

~ . . L . T,
Lemma 2.4.5. For every v € Wy, there is a unique Ty -equivariant retraction p, : Z, — Z,". More-
over, under an isomorphisms of Sections 2.4.3(d)—(f), the retraction p, corresponds to the projection
Dy FIPISI/C,V — FlMls; : [um] — [m].
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Proof. To see the existence of aretraction and its relation to p ,,, we note that ¢, induces an isomorphism
T, ~ T, . N

FlM;/c’,, = FIP'%’V — Z,”, and that Py, - Flp;\;’v — FlMls;,,, is a Ty-equivariant retract. To see the

uniqueness, we note that for every S-point 7 : S — Fl P> the morphism 7g,, : G, X § — Fl Py

defined by (a, x) — ¢ (a)n(s), extends uniquely to the morphism 77,1 : Al x S — FIP;/C’V, and we have

an equality py. ., (17) = 1741 l{0)xs- o

3. Affine Springer fibers
3.1. Geometric properties

Assume that we are in the situation Section 2.4.1.

3.1.1. Set-up. (a) Let y € G(K) be a compact regular semi-simple element, and let G € G* be the

centralizer of y inside G*°. In particular, (Gi,c)0 C G*° is a maximal torus defined over K.

(b) Let S, € G be the maximal K-split torus of G¥, and let A, := X.(S,) be the group of

cocharacters. The map p +— () identifies A, with a subgroup of S, (K).

(c) Let Fl,, € Fl be the affine Springer fiber. Explicitly, Fl, consists of cosets gI*° € L(G*¢)/I*° such
that g~'yg € I. Then the group A, acts on FL,. Moreover, it is known that the reduced ind-scheme
Fly req is a scheme of finite type over k, and there exists a closed reduced subscheme Y C Fl, of finite
type over k such that Fl, req = A, (Y).

(d) For every ind-subscheme Z C Fl, we set Z, := Z N Fl,,.

(e) Main assumption: We always assume that we have an inclusion S, C Tgs, and hence an
inclusion A, € A = X, (Tgs).

Remark 3.1.2. Note that it follows from [St, Theorem 8.2] (or its particular case [St, Corollary 8.5])
that the centralizer nyc is connected. However, we do not need this fact.

Lemma 3.1.3. Suppose that we are in the situation of Section 3.1.1. Then the centralizer G C G* is
. Y
a Levi subgroup, and S, is the connected center of chy

Proof. Indeed, the centralizer ch is split over K because G*° and S, are split over K; therefore, the
Y
connected center Z(GY )0 of GY is split over K as well. Moreover, since (G;C)0 is a maximal torus of
Y Y
G*¢, it is a maximal torus of G;C , and hence contains Z(G;C )0. Therefore, the assertion follows from
Y Y

the assumption that S, C (Giyc)0 is the maximal K-split torus. O

3.1.4. Observations. Fix ¢ € V.
(a) An inclusion (Gy)o C€ My, is equivalent to the inclusion (Gsyc)0 C (My)gs, hence to the inclusion
Ty C (Giyc)O (by Section 2.4.2(e)), and thus to the inclusion T, C S, .
(b) Set (Ay)g := Ay ®z Q. By Section 2.4.2(d), an inclusion 7y, € S, holds if and only ifj e (Ay)q-
(c) It follows from parts (a) and (b) that if J € (Ay)g, then element y belongs to

(Gy)*(K) € My(K) C Py(K).

(d) It follows from Lemma 3.1.3 that if y ¢ (A, )q, then there exists aroot @ € @ suchthata € (A,)*,
but (e, J) # 0.

Notation 3.1.5. Assume that s € W satisfies y € (Ay)q-
(a) By Section 3.1.4(c), we have y € M, (K) C Py (K), and thus, we can consider the affine Springer
fibers F1 Py C Fl Py and Fl Mgy S Fl M- Explicitly, Fl Pev.y (resp. Fl M;/c’y) consists of all elements

gIP‘S//C’V € L(P?;)/IPISI,C’V (resp. glyy € L(MIS;)/IMS::) such that g7lyg € Ip, .y (resp. g lyg e Im,).
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(b) By construction, the isomorphism ¢, : Fl Py > Z, from Section 2.4.3(e) restricts to isomor-
. ~ T, ~ T,
phisms ¢,y : Flpsx ., — Z, , and 0y Flpgse — Z,%.

3.1.6. Affine bundle. A morphism f : X — Y of (ind-)schemes is called an affine bundle if locally
étale on Y it is isomorphic to the projection ¥ X A" — Y and all transition maps are affine.

Proposition 3.1.7. Assume that we are in the situation of Section 3.1.5. Then for every v € Ww, the

L . T, . . T,
Ty-equivariant retraction p, : Z, — Z,” of Lemma 2.4.5 induces a retraction Dvy P Zyy — Z,,'f’y.
Furthermore, p, , is a composition of affine bundles.

Proof. To make the argument more structural, we will divide it into steps.

Step 1. By Lemma 2.4.5 and the observations of Section 3.1.5, it suffices to show that the projection
Dy,v : Fl Py = FlMds/c restricts to the projection

Py.v.y  Flpe .y — Flage

and that py , , is a composition of affine bundles.

Step 2. Let Uy, =Up 2 U; 2 ... 2 Uy—1 2 U, = {1} be the lower central series of Uy. Then each U;
is a normal subgroup of Py, and we set P; := Py /U; and P = Pf/f/Ui. In particular, Py = M, and
P, =Py.

For every i = 0,...,n, let y; € L(P;) be the image of y € L(Py), and denote by Ip, , € L(P;)
(resp. Ipx, C L(P;°)) the image of Ip,,,, (resp. IPLSI,C’V). We set Flps , := L(P;°)/Ipx,y, and denote by
Fl Pevy C Flp;c,,, the corresponding affine Springer fiber — that is, the collection of all g € L(P3°)/I P,y
such that g™'y;g € Ip, , .

For everyi =0,...,n — 1, we have a natural projection

Piy: FlPisi],v,'yH] - FlPl.Sc,v,yia
and it remains to show that each p; ,, is an affine bundle.
Step 3. Let ﬁp;c’y’yi C L(P°) be the preimage of Flpsx , 5, C Flpx ,, under the natural projection
L(P}) = L(P{)/1ps,y, and set

— ~
FlPisil’V’VHl = FIP:'SC’V’Y" XF]PFC.V.Vi FlPl'Si]"”yi*l :

—~, —
It is enough to show that each projection FI =3 — Flps ,, ,, is an affine bundle.
i+ i

SV Yitl
We set ﬁ[ :=U;/U;41. Then ﬁ,- C Piy1 = Py /Uiy is anormal subgroup, and we have P; = P;y /U,-.
Set Iz, =1Ip,,»v N L(U;). Then Fl;"fip"%H can be identified with the locus of all g € L(P})) /15, ,

such that g‘lymg €lp,, v

Step 4. Recall that the projection p; : P;y; — P;, viewed as a morphism of algebraic varieties, has
a section s. Indeed, the isomorphism P, S My x Uy from Section 2.4.3(c) induces an isomorphism
P, 5 My x (Up/U;). Choose an ordering of the all roots of G lying in Lie Uy/Lie U;. Then the map

(xq)a P 14 xo defines an isomorphism [, U, 5 Uy/U;, where U, is the root space of @. We define
s to be the composition

Pi 5 My x (Up/U;) = My x ]—[ Uq = My X (Ug/Uis1) = Piy1.
a

-~/
By construction, we have s(P{°) C P}, so using s, we identify Fl P v, yin with the space of pairs
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(g,u), where g € L(P;) and u € L(Ui)/lﬁi,v’ satisfying

(s(g)u)7]7i+1(s(g)”) €lp, v 3.1

Moreover, equation (3.1) implies that g~'y;g € Ip, ,, and thus g € l:‘.:lPiSC’V’,yi C L(PY).
Step 5. Foreach g € IF:‘V‘IP?C‘V’%, we set g 1= 5(g) 1yip1s(g) € L(P},)- Then p;(g) = ¢ 'yig € Ip, , 50
there exists a unique ug € L(U;) such that g = u;ls(g_ly,- g). Hence, we have an equality

(s(9)w) yinr (s(@u) = u™'gu = u™" (gug ' s(g™ yig).

Let m € Iy, S L(My) be the image of g lyig e Ip, . Since U, lies in the center of Uy/Uj,1,
we have gug~' = mum™". Moreover, since g € Flps , ,, we get that ¢”'y;g € Ip, . Hence, by our
construction of s, we have s(g’lyig) € Ip,,, v, and thus, our condition (3.1) can be rewritten as

u N (mum ™) € ugly .
1>

Step 6. Since U, is abelian, we have a canonical isomorphism U; 5 Lie U,. Therefore, each ug € L(ﬁi)

— ~
gives rise to an element n, € Lie L(U;), and Fl P, is identified with the moduli space of pairs
i+

SV Yi+l

(g, n), consisting of g € F~1pisc’,,m and n € Lie L(U;)/Lie Ig.., such that

(Ad7ii —1)(n) € ng + Lie g7, . (3.2)

Step 7. Since y € M, (K) € G(K) is regular semisimple, the operator Ady — 1 is invertible on
Lie U;(K), and we set d := valdet(Ady — 1, Lie U;(K)). Since each 7 is an M, (K)-conjugate of y, we
conclude that the valuation of determinant of Ad m — 1 on Lie U;(K) is d; thus, the linear transformation
of Lie L(U;)/Lie 1U,~, ,» induced by Ad m — 1, has a kernel of dimension d. Hence, equation (3.2) implies
that Flps: .

yi,, is an affine subbundle of ﬁp;’c,y’yi x (Lie L(U;)/Lie IU,»,V) of dimension d. O

Proposition 3.1.8. Assume that we are in the situation of Section 3.1.5. Let w € WC be an admissible
tuple, y € ¥, v :=wy € Wy, and let Z,, C Fl as in Section 2.4.3(a). Then exists m € N such that if w
is m-regular, then

(a) the reduced intersections Z,, N FlﬁfW and Z, N (mwec Fl§c WC) are equal;

(b) the isomorphism Z:‘” 5 Fl M from Sections 2.4.3(e),(f) induces an isomorphism between the

W

reduced intersection ZS"’ n Fl;w and FI=Y, y (see Section 1.3.9(e));

MSC
.1/ ’ p— p—
(c) we have an inclusion of sets p;,' (p, (FI¥ NZ, ,)) € FI=".

Proof. (a) Let Y C Fl, be a closed subscheme of finite type such that Fl, = A, (Y) (see Section
3.1.1(c)). Then using, for example, Corollary 2.1.7(d),(e), there exists a finite stratification ¥ = | i Y;

such that for every j, there exists a tuple u € WE such that Y; € L(Uc)uc for each C € C.
Thus, it is enough to show that Z, N (Ay(Y;))=" equals Z, N (ﬂ09¢ Ay(Yj)SCwC) for each j. In

other words, we have to show that for every u € A, € A and y € Y; such that u(y) € FIS¢¢ for every
C 3y and u(y) € Z,, we have u(y) € FIS¢"¢ for every C € C.

Let i be a tuple of elements of W such that y € L(Uc)uc for every C. Then y € FIS¥, and it follows
from Corollary 2.1.7(d) that u is admissible. By the assumption, for every C > i, we have yuc <¢c wc¢
and also (uu)y =v =Wwy,.
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By Lemma 1.2.7(a), this implies that uuc <cv wc for every C > ¢. Hence, it follows from Lemma
1.3.12 that if w is sufficiently regular, then uuc <c wc for every C € C; thus, u(y) € (Ncec FISC"C,
as claimed.

(b) By part (a), the reduced intersections zv ﬁFl?W and Z* N (ﬂc9 v Flf,cwc) are equal. Therefore,

. . . T, ~ . . :
it suffices to show that the isomorphism Z,” — FlMds/c induces an isomorphism between the reduced

. T < . . L
intersection Z,” N FI1S¢™¢ and FlMif e’ for all C 5 y. Since FISC™C is a closed L(Uc)-invariant
v

ind-subscheme of Fl, we conclude that a closed ind-subscheme ZZ‘” N FI=cWe of ZI‘” corresponds to
aclosed L(Uc) N L(MIS;) = L(Ucv)-invariant ind-subscheme of FlM;c. Using Proposition 2.1.6, the

question is equivalent to the assertion that if w’ € WY, then w'w, <c w¥w, if and only if w’ <cu w¥.
But this was shown in Lemma 1.2.7(b).

(c) By part (a), it is enough to show that p;! (p, (FI=¢"¢ nZ, ,)) € FIS¢¥ for each C 5 y. Since
every fiber of p, lies in a single L(U,)-orbit, the assertion follows from the inclusion U, C Uc. O

3.2. Finiteness of homology

3.2.1. Homology. We fix a prime number ¢ different from the characteristic of k.

(a) For a scheme Y of finite type over k and F € D2(Y,Q,), one can form the homology groups
H;(Y,F) := (H' (Y, F))*. We also set H;(Y) := H; (Y, Q).

(b) A closed embedding ¢ : X — Y induces a morphism

CoH (Y, F) > H(Y, ' F) = H(X, ' F) = H (X, Flx),

and hence a morphism ¢, : H; (X, Flx) — H;(Y,F).
(c) By part (b), a closed embedding ¢ : X < Y induces a morphism ¢, : H;(X) — H;(Y). Therefore,
for every ind-scheme Y = colim; Y; over k, one can form a homology H;(Y) := colim; H;(Y;).

The main goal of this section is to show the following finiteness property of homology of affine
Springer fibers:

Proposition 3.2.2. In the situation of Section 3.1.1(e), there exists an integer r such that for every tuple
x € Z¥ and every ¢ € W, we have an equality of kernels

Ker(Hi (FIE¥) - Hi(FlfﬂrEw)) _ Ker(Hi(Fl;’f) 5 Hi(Fl.f'ﬂ(Hl)E*”)). (3.3)

In order to prove this, we need to introduce certain notation, generalizing [BV, Sections A.4.2 and
3.1.2].

3.2.3. Filtrations. Let I" be an ordered monoid — that is, a monoid and a partially ordered set such that
ot <co’'t'foreachoc <o’andt < 7.
(a) By a I'-filtered set (or a set with a I'-filtration), we mean a set X together with collections of
subsets { Xy }oer such that X, € X, forallo < 7,and X = |, X
(b) By aI'-filtered group we mean a group A with a I'-filtration such that 1 € Ajand A, -A; C Ayr-
(c) Let A be a I'-filtered group, and X is a set equipped with an A-action and a I"-filtration. We say
that I"-filtration on X is compatible with a filtration of A if for every o-,7 € I' we have A, (X;) C X4 +.
(d) In the situation of (c), we will say that the I'-filtration on X is finitely generated over A if there
exists a finite subset Iy C I' such that {X, } »cr is generated by {X s} »cr,; that is, for every o € I, we

have X = U{(T,U'/)EFXFO |To'=0} Az (Xo).

3.2.4. Rees algebras and modules. Let L be a field, and assume that we are in the situation of Section
3.2.3.
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(a) For a I'filtered group A, the group algebra L[A] is also equipped with a I-filtration L[A], :=
Span; (A.), and we denote by R(L[A]) := €, ;- L[A]o the corresponding Rees algebra. Note that
R(L[A]) is the monoid algebra of the monoid R(A) := {(a,0) € AXT'|a e As}.

(b) Let X be a scheme locally of finite type over k equipped with an action of A. Assume that A is a
I'-filtered group, and that X is equipped with a I'-filtration compatible with I'-filtration on A and such
that X, C X is a closed subscheme of finite type over k for each o € T".

(c) For every A-equivariant element F € D2(X ,Q,), we can form a I'-graded R(Q,[A])-module
R(H;(X,F)) := P, Hi(Xs, FIx,,) for every i € Z. Explicitly, the action of a € A; on X defines a
closed embedding a : X, < X;4, and hence a homomorphism H; (X, F |x,) — Hi(Xz6, F |x,.,)
(see Section 3.2.1(b)). . .

In particular, we form a I'-graded R(Q,[A])-module R(H;(X)) := R(H;(X,Qy)).

Lemma 3.2.5. In the situation of Section 3.2.4(b), assume that

(i) the group A acts on the set of irreducible components of X with finite stabilizers;

(i) the filtration {X ;- } - is finitely generated over A;

(iii) the Rees algebra R(Q[A]) is Noetherian. .

Then for every A-equivariant object F € Db (X, Q) andi € Z, the R(Q;[A])-module R(H; (X, F))
is finitely generated.

Proof. The argument is identical to that of [BV, Lemma 3.1.3], where the case of I' = Z is treated. O

Example 3.2.6. (a) Let I" be an ordered monoid ZZ’O, which we identify with a corresponding submonoid
of the group of quasi-admissible tuples in A via the correspondence of Section 1.3.4(a),(b).

(b) Let A” C A be a subgroup. Consider a I'-filtration on A’, where for every x € I', we set
AL=A'N V=X where V=* is defined in Section 1.3.9(d). Then {A/Y}y is a I'-filtered semigroup.

(c) Note that R(A") = {(u,x) € A’ X Z‘fo | (¥, uy < x(¢) for every yy € W}. Therefore, by Gordan’s
lemma (see, for example, [Ew, Lemma 3.4, page 154]), R(A’) is a finitely generated commutative
monoid. Therefore, the Rees algebra R(Q/[A’]) = Q/[R(A")] is a finitely generated commutative
algebra over Q,; hence, it is Noetherian.

(d) We apply the construction of part (b) to A" := A, and equip the ind-scheme X = Fl, (resp.
X = Gr,) with a I'filtration Flfi (resp. Gr?y). Then it follows from definitions that this filtration is
compatible with a I'-filtration on A,

Lemma 3.2.7. The I'-filtrations {GI')S,Y}Y on Gr,, and {Fl,fly}y on Fl,, are finitely generated over A, .

Proof. Since the filtration {Flff}; on Fl, is defined to be the preimage of the filtration {Gr?y}; on
Gr,, it will suffice to show the assertion for {Grij}y.

Notice that for every A, -invariant subset of X C Gr,,, the I'-filtration on Gr,, induces a I'-filtration
on X. Moreover, if Gr, is a finite union (J; X; of A,-invariant subsets, then the filtration on Gr, is
finitely generated if and only if the corresponding filtration on each X is finitely generated.

Recall that there exists a closed subscheme of finite type ¥ C Gr,, such that Gr,, = A, (Y). Moreover,
using Corollary 2.1.7(d), there exists a finite decomposition Y = [ J; ¥; such that for each j, there exists
atuple y =y, such that Y; € L(Uc)yc for all C € C. Then Gry = J; Ay(Y;), and it suffices to show

that the filtration {A, (Y;) <X1- on each A, (Y;) is finitely generated over A, .

Note that for every X € I', we have an equality A, (Y;)<* = A;Y_yj (Y;). Indeed, it follows from
[MV, Proposition 3.1] (or can be deduced from Proposition 2.1.6) that for every 1 € A, and z € ¥},
we have uz € A, (Y;)=* if and only if uyc <c xc for all C € C. Hence, uz € A, (Y;)=* if and only if

e A;x_yj, as claimed.
Therefore, it is enough to show that the I'-filtration {(Ay);_y,_ }x is finitely generated over A,,. Since

R(Q, [A,]) is a finitely generated Q,-algebra (by Section 3.2.6(c)), the assertion follows. O
Corollary 3.2.8. The Rees module R(H;(Fl,)) is a finitely generated R (@[ [A,])-module.

https://doi.org/10.1017/fms.2025.5 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.5

24 R. Bezrukavnikov and Y. Varshavsky

Proof. Since Rees algebra R(@g [A,]) is Noetherian (see Section 3.2.6(c)), the assertion follows from
Lemmas 3.2.5 and 3.2.7. O

Now we are ready to prove Proposition 3.2.2.

3.2.9. Proof of Proposition 3.2.2. Since YV is finite, it will suffice to show the existence of r for a fixed ¢.
For every r € N, the embeddings FI=¥ < FIS™®v for all X induce a homomorphism of R(@(; [Ay])-
modules ¢z, : R(H;(Fly)) — R(H;(Fly)), and Proposition 3.2.2 asserts that Ker¢,z, = Kert(-+1yz,
for some r. .

Since {Kerz, }, is an increasing sequence of R(Q;[Ay])-submodules of R(H;(Fly)), the Rees
algebra R(@g[/\y]) is Noetherian (by Section 3.2.6(c)), while R(H;(Fl,)) is finitely generated (by
Corollary 3.2.8), this sequence stabilizes. O

The following lemma will be used in the proof of Theorem 0.3.

Lemma 3.2.10. There exists m € N such that for every m-regular tuple X € Z¥ and every ¢ € ¥ such
that § ¢ (Ay)q, we have I3 * = FL3 .

Proof. Our argument is similar to that of Lemma 3.2.7. It is enough to show that GrﬂfY = Griﬂg"’. Let
Y,Yj and y; be as in the proof of Lemma 3.2.7, and choose m € N such that for every m-regular X, the
tuples x —y; + ey is regular. We claim that this m satisfies the required property.

It suffices to show that A, (Y;)=% = A,(Y;)<"** for each j. For this, it suffices to show that

A7 = AT I other words, we have to show that every g € A7 \ AS¥Y) does not
belong to A,

We are going to deduce the assertion from Lemma 1.3.11(b). Since i ¢ (Ay)qg, it follows from Section
3.1.4(d) that there exists aroot @ € ® such that @ € (A,)* and (e, ¥y > 0. Since (¢, p) = (X=yj+ey)y,
and the tuple X —y; + ¢y, is regular by assumption, we conclude from Lemma 1.3.11(b) that {(a, ) > 0.
Therefore, u ¢ A, because a € (Ay)*. O

4. Proof of Theorem 0.3
4.1. Localization theorem for equivariant cohomology

In this section we will review basic facts about equivariant cohomology (with compact support),
including a version of a localization theorem.

4.1.1. Total cohomology of Artin stacks. For an Artin stack X of finite type over kand F € D% (X, @5),
we denote by H* (X, F) := @i H'(X, F) its total cohomology, and set H*(X) = H*(X, @[).

(a) Note that H*(X') = Ext’, (@[, @5) is a graded @f-algebra, and identification F[e] = @g [o] ®g, F
give to H* (X, F) anatural structure of a graded H*(X’)-module.

(b) Every morphism F; — F, in D2 (X, Q,) induces a homomorphism H*(X, F;) — H*(X, F)
of graded H*® (X')-modules.

(c) For every homomorphism f : X — Y of Artin stacks of finite type over k, the pullback
f*: H*(Y) — H*(X) is ahomomorphism of graded Q,-algebras. Moreover, for every F € D% (), Q;)
the pullback f* gives rise to a homomorphism

H*(X) ®y+y) H* (Y, F) — H*(X, f*F)

of graded H*®(X')-modules.

4.1.2. Equivariant cohomology (compare [BL, GKM, Ac, AF]). Let G be an algebraic group over k,
let X be a separated scheme of finite type over k equipped with a G-action, set pt := Spec k, let [pt/G]
be the classifying stack of G, and let pry : [X/G] — [pt/G] be the natural projection.
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(a) For every F € ch’ ([X/G], @(;), we define its equivariant cohomology
Hg (X, F) .= H'([X/G]. F)) = H* ([pt/G]. R(pry).(F)).
equivariant cohomology with compact support
H; (X, F) = H*([pt/G], R(pryx):(F)),

and set Hy; (X) = Hg; (X, Q) and H? ;(X) = H? (X, Q).

(b) By Section 4.1.1(a), H, (pt) is a graded Q- algebra while both H, (X, F) and H‘ (X, F) have
natural structures of graded H 7e & (pt)-modules.

(c) Note that HZ,(X) = Ext}y GJ(@[,@(;) is a graded @g—algebra; hence, both HE (X, F) and

[(x/
H® G(X ) have natural structures of graded Hg, (X)-modules.

(d) Note that the structures of HZ, (X, F) and H * (X, F) of graded HZ, (pt)-modules from part (b)
are obtained from structures of graded HE (X)- modules from part (c) by the homomorphism

(px)™ : Hg(pt) = H*([pt/G]) — H*([X/G]) = H;(X)

of graded @g-algebras from Section 4.1.1(c).

4.1.3. Simple properties. Let G, X and F be as in Section 4.1.2.
(a) Using Section 4.1.1(b), for each closed G-invariant subscheme Z C X, the long exact sequence
for cohomology with compact support naturally upgrades to an exact sequence

HY (Z)[-1] 5 HY (X \ Z) = HY (X) — H.(2) > HY (X \ 2)[1]

of graded H, (pt)-modules, functorial in (X, Z).
(b) If G acts trivially on X, then we have canonical isomorphism

HZ (X) = Hg (pt) ®, He (X)

of graded Hg, (pt)-modules, functorial in X. Indeed, since [X/G] ~ X X [pt/G], the assertion follows

from Kiinneth formula. Alternatively, choose a compactification j : X < X of X, and apply [Ac,
Proposition 6.7.5] for H‘] %G (X x pt, (j1Q,) ® Qp).

(c) Using observation of Section 4.1.1(c) applied to the pI'OJeCthH 7 : pt — [pt/G] and an object
R(px)i(F) € D5([pt/G], Q[) we have a homomorphism 7* : HZ,(pt) — H*®(pt) = Q[ of graded

Qg—algebras and a homomorphism
Q¢ ®nz (o HY (X, F) > H(X, F) @.1)

of graded vector spaces (compare [Ac, equation (6.7.2)]).

Moreover, if H ((X,F) is a free graded Hg (pt)-module, then morphism (4.1) is an isomorphism.
Indeed, as in the proof of [Ac, Lemma 6.7.4], one first reduces to the case X = pt in which case the
assertion follows from [Ac, Lemma 6.7.3].

4.1.4. Localization theorem (compare [GKM, AF]). Let S be an algebraic torus acting on a separated
scheme X of finite type over k.
(a) Recall that graded Q,-algebra Hg(pt) is canonically isomorphic with the symmetric algebra

Sym:@ (X*(S) ®2 Q,(~1)[-2]), where X*(S) denote the group of characters of S, while [-2] indicates
4 —_—
that the vector space X*(S) ®z Q,(—1) is placed in degree 2 (see, for example, [Ac, Theorem 6.7.7]).
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We fix an isomorphism of Q[ -vector spaces Q[( 1) ~ Q{, thus, we can view X*(S) as a subset of
Symz (X*(S) €z Q) = Symg (X*(S) €z Qe (=1)) = Hy(pv).

(b) By Section 4.1.2(b), both H' (X, F) and HY (X, F) are graded Hg(pt)-modules for every
F € D%([X/S],Q;). We claim that 1f XS = 0, then there exists 1 € X*(S) C HZ (pt), which acts on
each H; ¢ (X, F) and H (X, F) as zero.

Indeed, by a particular case of the localization theorem (see, for example, [AF, Chapter 7, Theorem
1.1]), there exists 4 € X*(S) such that the image of 4 under the pullback (px)* : Hg(pt) — Hg(X) is
zero, so the assertion follows by the observation of Section 4.1.2(d).

(c) The pullback H;,s (X, F) — H;,s (XS, Flys) induces an isomorphism of localizations

(X*(S)'H? (X, F) = (X*(8)) ' H? (X5, Flxs).

Indeed, by part (b), we have (X* (S))_IH; (X XS, F) =0, so the assertion follows from the exact
sequence of Section 4.1.3(a).
(@ If H; S (X, F) is a free (or, more generally, torsion free) H; (pt)-module, then the restriction map

H} (X, F) — H; S(XS , Flxs) is injective. Indeed, our assumption implies that the canonical map
H ¢ (X, F) - (xX* (S))‘IH;’S(X, F) is injective, so the assertion follows from part (c) and Section
4.1.3(b).

4.2. Criterion of injectivity

4.2.1. Borel-Moore homology. To every scheme X of finite type over k, one associates the Borel-Moore
homology groups H; g (X) := H.(X,Q,)*. In particular, we have H; gy (X) = H;(X) if X is proper
over k. Also for every closed subscheme Z C X, we have a long exact sequence

— H;pm(Z) = H; pp(X) = Hi gy (X \ Z) = Hi_1 gy (Z) —

Lemma 4.2.2. Let X be a closed subscheme of Y, and let v : H; ppr (X) — H; gy (Y) be the natural map.
(a) The map 1 is injective if there exists a closed subscheme Z C X such that

Ker(H; gm (Z) — H; pm (X)) = Ker(H; gy (Z) — Hi pm (X) — Higm (Y)),

and the map H; gy (X \ Z) — H; gy (Y \ Z) is injective.
(b) The map 1 is injective if there exists a closed subscheme Z C Y containing Y \ X such that the
natural map H; gy (Z N X) — H; gy (Z) is injective.

Proof. Both assertions follow from a straightforward diagram chase. Namely, assertion (a) follows from
the commutative diagram

Higm(Z) — Hipm(X) —— Hipm (X \Z)
Hipy(Y) —— Hipu (Y \Z)
with an exact first row, while assertion (b) follows from the commutative diagram with exact rows

Hiy1am(Z\ (ZN X)) —— Hipgu(ZNX) —— H; pu(2)

H l l

Hiqpu(Y\X) —— Hipu(X) —— H;pu(Y).
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4.2.3. Acyclic morphisms. (a) We say that a scheme X of finite type over k is acyclic if the canonical
morphism Q, — RI'(X, Q,) is an isomorphism.

(b) We say that a morphism f : X — Y between schemes of finite type over k is acyclic if it is smooth
and all geometric fibers of f are acyclic.!

(c) Note that if f : X — Y is acyclic, then for every connected component Y’ of Y, the restriction
fly' : f71(Y") — Y’ is smooth of some relative dimension N, and we have R f; (@[)hf’ ~ @5 [2N](N)
(use, for example, [BKV, Lemma 1.1.3]).

The following result uses notation of Section 4.1.

Lemma 4.2.4. (a) Let S be a torus, let Y be an S-equivariant scheme of finite type over k, and let X C Y
be a closed S-invariant subscheme. Assume that
(i) the restriction map He(YS) — H2(XS) is surjective and
(ii) both H® S(X) and H‘ S(Y \ X) are free graded HZ(pt)-modules.
Then H® oS Y ) is afree graded H (pt)-module, and the resmctwn map H: (Y ) — HZ(X) is surjective.
(b) Assume that Y has a finite S invariant filtration 0 =Yy C Y; C C Y, =Y by closed reduced
subschemes such that for each j = 1,...,n—1,
(i) the restriction map H.. (YJS ) — H; (YJ{]) is surjective and
(ii) there exists an S-equivariant acyclic morphismm; : Y; \Y;_1 — (¥; \ Yj_l)S.
Then H;’S(Y) is a free graded Hg(pt)-module.

Proof. (a) By Section 4.1.3(a), we have a commutative diagram

H (X) —2 H (Y \X)[1]

l l

H? ((Y5) —— HY (X5) —20 HY (¥S\ X5)[1]

of graded H (pt)-modules with exact bottom row, where vertical arrows are induced by the inclusion
YS < Y. By Section 4.1.3(b), we have canonical isomorphisms

H; 5(Y%) = Hy(pt) ®5, Ho(Y®) and HY (X°) = H5(pt) ®5, He(X)

of Hg(pt)-modules. Hence, by assumption (i), the map H;’ Y Sy - H;’ s (XS) is surjective; therefore,
the connecting homomorphism 6, is zero.

By assumption (ii) and the localization theorem (see Section 4.1.4(d)), the right vertical map is
injective; hence, the connecting homomorphism ¢; is zero as well. Thus, by Section 4.1.3(a), we get a
short exact sequence

0— H;,S(Y\X) — H;’S(Y) — H;’S(X) -0

of graded Hg (pt)-modules; hence, H; ((Y) is a free graded Hg(pt)-module by assumption (ii). In this
case, we have canonical isomorphisms

HZ(Y) = Q¢ ®pz oy He s(Y) and H(X) = Q ®pz(py HE 5(X)

of graded vector spaces (see Section 4.1.3(c)); therefore, surjectivity of the map H(Y) — HZ(X)
follows from the surjectivity of H? ¢(Y) — H_ ((X).

(b) We are going to show the assertion by induction on n. Assume first that n = 1. Then 7 := 7} :
Y ->YS is an S-equivariant acyclic morphism, so we conclude from Sections 4.1.3(b) and 4.2.3(c) that
H;,s (Y,Qp) = H;’S (YS,Rm Q) is a free graded H (pt)-module.

In [BKYV, Section 1.1.2], such morphisms are called unipotent.
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Now assume thatn > 1,and set X :=Y,,_;. By the induction hypothesis, both H ((X)and H® ((Y\X)
are free graded Hg (pt)-modules. Therefore, by assumption (i), all assumptions of part (a) are satisfied;
thus, H? ((Y) is a free graded Hg(pt)-module. O

Lemma 4.2.5. Let Y be an ind-scheme of ind-finite type over k equipped with an action of a torus S, let
p Y — Y5 be an S-equivariant acyclic morphism such that its restriction plys is the identity, and let
X C Y beareduced locally closed ind-subscheme such that we have an inclusion of sets p~' (p(X)) C X.

Then X is equal to the schematic preimage p~'(XS) C Y. In particular, X is S-invariant, and p
induces an S-equivariant acyclic morphism px : X — XS such that px|ys is the identity.

Proof. Notice that since the inclusion p~'(p(X)) 2 X always holds, we have an equality of sets
p~'(p(X)) = X; thus, the ind-subscheme X C Y is S-invariant.

Next, we claim that we have an equality of sets p(X) = X°. Indeed, plys is the identity, we get
p(X5) = X% and p(X) € p~'(p(X)). Therefore, we have inclusions

S=pX5HcpX)cptpX)nyScxnys=x5.

By the proven above, we have an equality of sets p~! (X5) = p~!(p(X)) = X, and from this, the assertion
follows: Indeed, since X is reduced and S is a torus, we conclude that X° is reduced. Since p is smooth,
the schematic preimage p~'(X5) is reduced, so the equality of reduced ind-subschemes p~!(X5) = X
follows from the corresponding equality of the underlying sets. O

Corollary 4.2.6. Let Z be an S-equivariant ind-scheme of ind-finite type over k, {Z, }, <= an S-invariant
stratification of Z, Y C Z an S-invariant locally closed subscheme of finite type over k, and X C Y an
S-invariant closed subscheme.
Assume that for each v € E,
(a) the stratum Zf is an open and closed ind-subscheme of zS;
(b) the map H; gpi (X N Z3) — H; pp (Y N Z3) is injective for all i;
(c) there exists an S-equivariant acyclic morphism p, : Y 0 Z, — Y N Z5 between reduced
intersections such that pv|sz§ is the identity, and we have an inclusion of sets p,' (p, (XN Z,)) C X.
Then the map H; ppr(X) — H; pp (Y) is injective for all i.

Proof. We are going to apply the criterion of Lemma 4.2.4(a).

It follows from assumption (a) that Y5 (resp. X¥) is a disjoint union of the ¥ N Z;? ’s (resp. X N Zf ’S).
This observation together with assumption (b) implies that the map H; g M(XS ) — Hip M(YS) is
injective for all 7, which by duality implies that the map H2(YS) — H2(X5) is surjective.

It thus suffices to show that both H? s(X ) and H s(Y \ X) are free graded H*(S)-modules. Indeed,
Lemma 4.2.4(a) then would imply that the restr1ct10n map HX(Y) — H:(X) is surjective, from which
our assertion would follow by duality.

We are going to apply the criterion of Lemma 4.2.4(b):

By assumption (a), the disjoint union Y = [[,,(¥Y N Z5) is of finite type; hence, the set Zy := {v €

2ZlYn ZS # 0} is finite. However, by assumption (c), we have Ey = {v € E|Y N Z,, # 0}. Define a
standard partial order on g requiring that @ < 8 if and only if Z, € Z - Denote the cardinality of Zo by

n, and write Z in the form Eo = {v1, ..., v,} such that v; is a minimal element of the set {v;,...,v,}
forallj=1,...,n )
Foreach j = 1,...,n, we denote by Y; the reduced intersection Y’ N (Uf:1 Z,,). Then by construction,

eachY; CYisclosed, Y, =Y,and Y; \Y;,_; =Y N Z,,. It suffices to show that the induced filtrations
X;=XnY;jof Xand (Y \ X); :=Y; n (Y \ X) of Y \ X satisfy the assumptions of Lemma 4.2.4(b).
Since Y5 isa disjoint union of the (¥;\Y;_; )S°s (by assumption (a)), assumption (i) of Lemma 4.2.4(b)
follows. Next, since Y;\Y;—1 = YNZ, , we get X;\X;-1 = XNZ,, and (Y\X);\(Y\X);-1 = (Y\X)NZ,,.
Hence, it remains to construct S-equivariant acyclic morphisms XNZ,, — XN Z;?f and (Y\X)NZ,, —
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Y\X)n ZS But both morphisms are induced from acyclic morphism p,, : Y N Z,, - Y N Z;f/_ from
assumption (c) using Lemma 4.2.5. ' O

4.3. The proof
Now we are ready to prove our main result (Theorem 0.3).
Theorem 4.3.1. There exists m € N (depending on y) such that for all m-regular admissible tuples

Wi, ..., Wy € WE, the natural map H,-(U;?:1 Fljw") — H;(Fl,) is injective for all i € Z.

Proof. Set Z' := '}, F1="i C Fl. We want to show that if each w ; is sufficiently regular, then the
natural map H;(Z}) — H;(Fl,) is injective for all i € Z. To make the proof more structural, we will
divide it into steps.

Step 1. Let Xy € A€ be an admissible tuple constructed in Lemma 2.3.9 and such that FI='¥ ¢ FI=%1,
and let {x;};>0 be a sequence of admissible tuples from Lemma 2.3.10. Moreover, it follows from
Lemmas 2.3.9 and 2.3.10 that each x; is sufficiently regular if w, is sufficiently regular.

Notice that {Fl«f’x’ }1z0 form an exhausting increasing union of closed subsets of Fl,; hence, it is
enough to show that for every / > 0, the map

H{(Z], UFI; ™) — H;(Z}, UFIS ™)
is injective for all /. Using inclusion
(Z3, UFL ™)\ (2, UFL; ) CFIE ™,
we conclude from Lemma 4.2.2(b) that it suffices to show that the map
H;((Z, NFI5 ™) UFLS ™) — H; (FI5 ™)
is injective. We set X := X;_1. Then X; = X + e, for some ¢ € ¥, and we want to show that the map

H;((Z, nFL; ey y FI5¥) — H;(FL, ey
is injective.

Step 2. If / ¢ (A, )g, then we have an equality Flff = Flf“ew (by Lemma 3.2.10), so the assertion is
tautological.

From now on, assume that i € (Ay)g. Let r € N be as in Proposition 3.2.2. Then, by Lemma
4.2.2(a), it is enough to show that the map

Hepu ([(Z, 0FL ) URIST\ B ™) Hy g (L T \FL YY)
is injective.

Step 3. We are going to apply the criterion of Corollary 4.2.6 in the case Z = Fl, § =T,

X = [(Z, nF; “) URIS T\ Ry © 7,
<'x+e <'X-re,
Y = FI; Y \FI;
2.4.3.
Since X and Y are locally closed subschemes of Z of finite type over k, it remains to show that X and

Y are S-invariant and properties (a)—(c) of Corollary 4.2.6 are satisfied. Property (a) was mentioned in
Section 2.4.3(g).

,and {Z,}, W, is the stratification of Fl by L(Pf;)—orbits, considered in Section
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Step 4. We claim that the reduced intersections ¥ N Z, and X N Z, are either empty or are of the form
" (FI3"" NZ,), where each #, is sufficiently regular, and (i,)y = v.
First, we claim that it follows from Corollary 2.3.3 that for every stratum Z,, such that Y N Z,, # 0,

we have
XW) —r <{,n(v) <x(¥) +1. (4.2)
Indeed, our assumption implies that pr(Z,) N (Gr<**¢» \Gr=*7"¢) % . Then, us-
ing equality pr(Z,) = L(Pf;)(fr(v)) C Gr, we conclude from Corollary 2.3.3(c) that
7(v) belongs to Gr=v*W+1\ Gr=v*(¥)=" " from which inequalities (4.2) follow from Corollary
2.3.3(a),(b).
Similarly, we claim that we have equalities
YNZ, = (IS nFIS) 0 Z, o, if X)) —r < (W, 7(v)) <TW) + 1; (4.3)
XNz, =FXNEY)NZ,,, ifXW) —r < @, 7(») <x(W); (4.4)
XNZ,=(Z nFE¥ RIS 0 Z,,, if (¢, 7(v)) =X(¥) + 1. (4.5)

For this, we have to show that our assumption on v in (4.3) (resp (4.4), resp. (4.5)) 1mphes that
Z, NFIS¥7¢ = ¢ (resp. Z, NFIS¥ = Z, nFI<¥ and Z, N FIS¥7 =@, resp. Z, N FI=~ = 0).
But this follows from Corollary (a),(c).

Next, using inequalities (4.2), we deduce from a combination of Lemma 2.3.5(a),(b) and Corol-
lary 2.1.7(f), that the reduced intersections FI=**¢¥ NFI=¢” FIS* N FI=*” and Z’ N F1= %" A FlSv”
decompose as finite unions | J, F1=% | where each #, is sufficiently regular. Therefore, using formulas
(4.3)-(4.5) and Lemma 2.3.2(a), we see that the reduced intersections X N Z, and Y N Z, are of the form
Ut(Flf,”’ NZ,), where each u; is sufficiently regular, and (u;)y = v.

Step 5. Now we are going to show property (b) of Corollary 4.2.6. It is enough to show that the
composition

Higm(XNZS) = Hipu(Y N ZS) — H; pp (25 (4.6)

v y)
is injective.

Bya combination of Step 4 and Proposition 3.1.8(b), the reduced intersection X N Z5 is of the form
U Fl;/pt and each u u, e WY is sufficiently regular (by Lemma 1.3.10(d)).

By 1nduct10n on the semisimple rank of G, we can assume that Theorem 4.3.1 holds for the Levi
subgroup My,. Therefore, the map

i BM(U Fl_ ) = Hipm (Flaze )

is injective, from which the injectivity of (4.6) and hence property (b) of Corollary 4.2.6 follows.

Step 6. It remains to show X and Y are S-invariant and satisfy property (c) of Corollary 4.2.6. Recall

that in Proposition 3.1.7, we constructed an S-equivariant retraction p, ,, : Z, , — ZV o which is a
composition of affine bundles; hence, it is acyclic.
By Lemma 4.2.5, it is enough to show that p,, , satisfies inclusions of sets
Py y(pv y(¥NZ,))cYnZ, andp, 'y(pV y(XNZ))cXnZ,. 4.7)

By Step 4, it suffices to show that for every sufficiently regular admissible tuple i, such that (i, )y = v, we

have an inclusion of sets py!, (py.,, (FI5* NZ, ,)) € FI=*. But this follows from Proposition 3.1.8(c).
O
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