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Abstract

Tachikawa’s second conjecture for symmetric algebras is shown to be equivalent to
indecomposable symmetric algebras not having any nontrivial stratifying ideals. The
conjecture is also shown to be equivalent to the supremum of stratified ratios being less
than 1, when taken over all indecomposable symmetric algebras. An explicit construc-
tion provides a series of counterexamples to Tachikawa’s second conjecture from each
(potentially existing) gendo-symmetric algebra that is a counterexample to Nakayama’s
conjecture. The results are based on establishing recollements of derived categories and
on constructing new series of algebras.
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1. Introduction

In this section we first recall the Nakayama conjecture and Tachikawa’s second conjecture, and
then give an introductory description of our main results on Tachikawa’s second conjecture for
symmetric algebras, on constructions of mirror-reflective algebras, and on derived recollements
and homological properties of these constructed algebras.

1.1 Homological conjectures and stratifying ideals
In the representation theory of algebras, the long-standing and not yet solved Nakayama con-
jecture says that a finite-dimensional algebra over a field with infinite dominant dimension
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Tachikawa’s second conjecture for symmetric algebras

is self-injective [Nak58]. This is one of the main homological conjectures in representation
theory. It is equivalent to the combination of the following two conjectures by Tachikawa
[Tac73, pp. 115–116].

(TC1) Let Λ be a finite-dimensional algebra over a field k and D := Homk(−, k). If
Extn

Λ(D(Λ),Λ) = 0 for all n ≥ 1, then Λ is a self-injective algebra.
(TC2) Let Λ be a finite-dimensional self-injective algebra over a field k andM a finitely generated

Λ-module. Then M is projective if it is self-orthogonal, that is, ExtnΛ(M,M) = 0 for all
n ≥ 1.

In this paper we deal with (TC2) for symmetric algebras and show that (TC2) is closely
related to stratifications of derived categories of algebras. Recall from [CPS96] that an ideal
AeA of an Artin algebra A generated by an idempotent element e ∈ A is called a stratifying ideal
in A if Ae⊗eAe eA � AeA and ToreAe

i (Ae, eA) = 0 for all i > 0. In this case, the canonical surjec-
tion λ : A→ A/AeA is a homological ring epimorphism, that is, the induced derived restriction
functor from the derived category D(A/AeA) of A/AeA to the derived category D(A) of A
is fully faithful, and therefore one has a recollement (D(A/AeA),D(A),D(eAe)) of unbounded
derived categories of algebras. Such a recollement of derived categories of algebras is called a
standard recollement. Stratifying ideals are also termed strong idempotent ideals in [APT92]
and homological ideals in [dlPX06]. Special examples of stratifying ideals are heredity ideals
which play an important role in the study of quasi-hereditary algebras introduced in [CPS88].
A heredity ideal of an algebra A is an ideal I such that I is idempotent (that is, I2 = I), AI is
projective as an A-module and EndA(AI) is semisimple.

An algebra Λ is said to be derived simple if its derived module category D(Λ) admits no
nontrivial recollements of derived module categories of algebras. Examples of derived simple
algebras include local algebras, blocks of group algebras and some indecomposable algebras with
two simple modules. One should not confuse the notion of derived simple algebras with that of
Db(mod)-derived simple algebras in the sense that the bounded derived categories (of finitely
generated modules) do not admit any nontrivial recollements of bounded derived categories of any
algebras (see [LY12]). Derived simple algebras are Db(mod)-derived simple, but the converse is
not true in general. By [LY12, Theorem 3.2], each indecomposable symmetric algebra is Db(mod)-
derived simple.

Our first main result reads as follows.

Theorem 1.1. Let k be a field.

(I) The following statements are equivalent.
(1) Tachikawa’s second conjecture holds for all symmetric k-algebras.
(2) No indecomposable symmetric k-algebra has a stratifying ideal apart from itself and 0.

(II) If each indecomposable symmetric k-algebra is derived simple, then Tachikawa’s second
conjecture holds for all symmetric k-algebras.

If an algebra A has a nontrivial stratifying ideal generated by an idempotent element e,
then there is a nontrivial recollement (D(A/AeA),D(A),D(eAe)). Thus, (II) follows from (I)
immediately.

That (1) implies (2) follows from the following elementary observation. Assume that (TC2)
holds for all symmetric algebras over k. Let S be an indecomposable symmetric k-algebra
and I a stratifying ideal of S. Then 0 = Exti

S/I(S/I, S/I) � Exti
S(S/I, S/I) for all i ≥ 1.

This means that SS/I is self-orthogonal. Then the S-module S/I is projective by (1), and
therefore SS � I ⊕ S/I. It follows from I2 = I that HomS(I, S/I) = 0. Since S is symmetric and
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SI is projective, HomS(S/I, I) � DHomS(I, S/I) = 0. Consequently, S � EndS(I) ⊕ EndS(S/I)
as algebras. Since S is indecomposable, either EndS(I) = 0 or EndS(S/I) = 0. In other words,
I = 0 or I = S. This implies that S has no stratifying ideal apart from itself and 0. So (1)
implies (2).

Thus, the crucial part of Theorem 1.1(I) is to prove that (2) implies (1). Our proof is based
on the new ideas and techniques to be discussed in the next subsection.

1.2 Derived recollements of gendo-symmetric algebras
In 1968, Müller investigated dominant dimensions of algebras and proved the following result in
[Mul68]:

Let Λ be a finite-dimensional k-algebra over a field k and M a finitely generated Λ-module.
Then, for a nonnegative integer n, the dominant dimension of EndΛ(Λ ⊕D(Λ) ⊕M) is at
least n+ 2 if and only if Extj

Λ(D(Λ) ⊕M,Λ ⊕M) = 0 for all 1 ≤ j ≤ n.

Thus, (TC2) holds for a self-injective algebra Λ if and only if the Nakayama conjecture
holds for the endomorphism algebras EndΛ(Λ ⊕M) for all finitely generated Λ-modules M .
This suggests considering the algebras A of the form EndΛ(Λ ⊕M) with Λ a self-injective alge-
bra and M an arbitrary finitely generated Λ-module. Such algebras are called Morita algebras
[KY13]. In the case that Λ is symmetric, they are called gendo-symmetric algebras and studied in
[FK11, CX16a, FK16]. In [CX22], self-orthogonal generators over a self-injective Artin alge-
bra have been discussed systematically from the viewpoint of recollements of (relative) stable
module categories. In particular, it is shown that the Nakayama conjecture holds true for
Gorenstein–Morita algebras [CX22, Corollary 1.4].

To prove that (2) implies (1) in Theorem 1.1, we assume that there is a gendo-symmetric
algebra which is a counterexample to Nakayama’s conjecture. Then we have to find a nontrivial
stratifying recollement, or a nontrivial stratifying ideal in some algebra related to the coun-
terexample. This is based on an inductive construction of a series of new algebras. Roughly
speaking, starting with a gendo-symmetric algebra A and an idempotent element e of A such
that the A-module Ae is faithful and projective-injective, we construct four families of algebras
inductively: Rn, Sn, An and Bn for n ≥ 1 (see Section 5.3 for details). They are called the nth
mirror-reflective, reduced mirror-reflective, gendo-symmetric and reduced gendo-symmetric alge-
bras of (A, e), respectively. These algebras are connected by derived recollements, as is shown
in the next result. Here, D−(A) and D(A) denote the bounded-above and unbounded derived
categories of A, respectively, and domdim(A) stands for the dominant dimension of A.

Theorem 1.2. Let (A, e) be a gendo-symmetric algebra and n a positive integer. Then the
following statements hold.

(1) There exist recollements of bounded-above derived categories of algebras induced by
stratifying ideals:

D−(An) �� D−(An+1) ��
��

��

D−(An) and
��

��

D−(B0) �� D−(Bn+1) ��
��

��

D−(Bn)
��

��

with B0 := (1 − e)A(1 − e).
(2) Let R0 = S0 := eAe. If domdim(A) = ∞, then there exist recollements of unbounded derived

categories of algebras induced by stratifying ideals:

D(An) �� D(Rn) ��
��

��
D(Rn−1) and

��

��
D(B0) �� D(Sn) ��

��

		
D(Sn−1).

��

��
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Thus, the dominant dimension of a gendo-symmetric algebra A being infinite means that A
is a potential counterexample to Nakayama’s conjecture. It is a counterexample if and only if the
second recollement in Theorem 1.2(2) becomes nontrivial for some n (or equivalently, for all n).
In this case, the algebra B0 
= 0. Hence, if (TC2) for symmetric algebras fails, that is, Nakayama’s
conjecture for gendo-symmetric algebras fails, then there are arbitrarily long nontrivial stratifying
chains or recollements. This explicit construction produces a series of counterexamples provided
there is at least one counterexample.

Motivated by Theorem 1.2(2), we introduce the stratified dimension of an algebra. This
measures how many steps an algebra can be stratified by its nontrivial stratifying ideals (see
Definition 4.7), or equivalently, the derived category of the algebra can be stratified by nontrivial
standard recollements of derived module categories. We also define the stratified ratio of an
algebra to be the ratio of its stratified dimension to the number of isomorphism classes of simple
modules (see Definition 4.10). Note that the iteration procedure of constructing An, Bn, Rn and
Sn gives standard recollements of derived module categories. The connection between (TC2) and
stratified dimensions (ratios) of algebras reads as follows.

Theorem 1.3. Tachikawa’s second conjecture holds for all symmetric algebras over a field k if
and only if the supremum of stratified ratios of all indecomposable symmetric algebras over k is
less than 1.

1.3 Mirror-reflective algebras and their homological properties
We now briefly outline the construction of mirror-reflective algebras and their homological
properties. The first step of the construction is given in a general context.

Let A be an associative algebra over a commutative ring k, e an idempotent element of A,
and Λ := eAe. For λ ∈ Z(Λ), the center of the algebra Λ, we introduce an associative algebra
R(A, e, λ), called the mirror-reflective algebra of A at level (e, λ), which has the underlying k-
module A⊕Ae⊗Λ eA, such that Ae⊗Λ eA is an ideal in R(A, e, λ) (see Section 3.1 for details).
The terminology ‘mirror-reflective’ can be justified by Example 3.10 in Section 3.2. Moreover,
the k-submodule of R(A, e, λ),

S(A, e, λ) := (1 − e)A(1 − e) ⊕Ae⊗Λ eA,

is closed under the multiplication of R(A, e, λ). This is a possibly nonunitary algebra. It is
called the reduced mirror-reflective algebra of A at level (e, λ). It has fewer simple modules
than R(A, e, λ) does, that is, the number of simple modules is reduced. The specializations of
R(A, e, λ) and S(A, e, λ) at λ = e are called the mirror-reflective algebra and reduced mirror-
reflective algebra of A at e, denoted by R(A, e) and S(A, e), respectively. Moreover, S(A, e) =
e0R(A, e)e0 for an idempotent element e0 in R(A, e).

Clearly, each A-module is an R(A, e)-module via the canonical surjective homomorphism
R(A, e) → A of algebras. Conversely, each R(A, e)-module restricts to an A-module via the
canonical inclusion from A into R(A, e). Remark that each module over (1 − e)A(1 − e) can
also be regarded as a module over S(A, e). So we have two basic constructions associated with
(A, e):

A(A, e) := EndR(A,e)(R(A, e) ⊕A(1 − e)), B(A, e) := EndS(A,e)(S(A, e) ⊕ (1 − e)A(1 − e)).

Now assume that A is a gendo-symmetric algebra over a field and e is an idempotent element
of A such that Ae is a faithful, projective-injective A-module. In this case, we write (A, e) for
the gendo-symmetric algebra A. If e′ is another idempotent element of A such that Ae′ is a
faithful, projective-injective A-module, then R(A, e) � R(A, e′) as algebras (see Lemma 3.6(1)).
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Hence, up to isomorphism of algebras, we can write R(A) for R(A, e) without referring to e, and
call it the mirror-reflective algebra of the gendo-symmetric algebra A.

An Artin algebra B is called an n-Auslander algebra (n ≥ 0) if gldim(B) ≤ n+ 1 ≤
domdim(B); or an n-minimal Auslander–Gorenstein algebra if idim(BB) ≤ n+ 1 ≤ domdim(B)
(see [Aus71, Iya07, CK16, IS18]), where gldim(B), domdim(B) and idim(BB) denote the global,
dominant and left injective dimensions of the algebra B, respectively. Clearly, n-Auslander
algebras are exactly n-minimal Auslander–Gorenstein algebras of finite global dimension
(see § 2).

Theorem 1.4. Let (A, e) be a gendo-symmetric algebra. Then:

(1) R(A, e, λ) is a symmetric algebra for λ in the center of eAe.
(2) min{domdim(A(A, e)),domdim(B(A, e))} ≥ domdim(A) + 2.
(3) Let n be a positive integer. If A is an n-Auslander (respectively, n-minimal

Auslander–Gorenstein) algebra, then A(A, e) is a (2n+ 3)-Auslander (respectively,
(2n+ 3)-minimal Auslander–Gorenstein) algebra.

Theorem 1.4(1) not only implies that Rn and Sn are symmetric algebras and that An and Bn

are gendo-symmetric algebras, but also lays a basis for the inductive construction of the series
of algebras An, Bn, Rn and Sn in Theorem 1.2, while Theorem 1.4(2) says that An and Bn

have higher homological dimensions: domdim(An+1) ≥ domdim(An) + 2 and domdim(Bn+1) ≥
domdim(Bn) + 2. Thus, 2n ≤ domdim(A) + 2(n− 1) ≤ min{domdim(An),domdim(Bn)}. For
the finitistic dimensions and algebraic K-groups of these algebras, we refer to Corollary 5.10.

1.4 Outline of the paper
The paper is structured as follows. In § 2 we recall the definitions of dominant dimensions, gendo-
symmetric algebras, higher Auslander and Auslander–Gorenstein algebras. In § 3 we introduce
(reduced) mirror-reflective algebras by reflecting a left (or right) ideal generated by an idempotent
element. Further, we describe explicitly the mirror-reflective algebras by quivers with relations
for algebras themselves presented by quivers with relations. This description explains visually the
terminology of mirror-reflective algebras. In § 4 we recall the definitions of recollements and strat-
ifying ideals (or strong idempotent ideals in other terminology). Also, we present the definitions
of stratified dimensions and ratios of algebras (see Definitions 4.7 and 4.10, respectively). We then
construct derived recollements from mirror-reflective algebras. In § 5 we first show Theorems 1.4
and 1.2. This relies on the fact that mirror-reflective algebras of gendo-symmetric algebras at any
levels are symmetric (see Proposition 5.2). By iteration of forming (reduced) mirror-reflective
algebras from a gendo-symmetric algebra, a series of recollements of derived module categories
is established. This not only gives proofs of Theorems 1.1 and 1.3, but also establishes a precise
relation between the numbers of simple modules over different mirror-reflective algebras (see
Corollary 5.10(2)–(3)). Moreover, this construction of mirror-reflective algebras provides a new
method to produce a series of n-minimal Auslander–Gorenstein algebras.

2. Dominant dimensions and gendo-symmetric algebras

Let k be a commutative ring. All algebras considered are associative k-algebras with identity.
Let A be a k-algebra. We denote by A-Mod the category of all left A-modules, and by A-mod

the full subcategory of A-Mod consisting of finitely generated A-modules. The global dimension of
A, denoted by gldim(A), is defined to be the supremum of projective dimensions of all A-modules.
The finitistic dimension of A, denoted by findim(A), is defined to be the supremum of projective
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dimensions of those A-modules which have finite projective resolutions by finitely generated
projective modules. The projective and injective dimensions of an A-module M are denoted
by pdim(AM) and idim(AM), respectively. If f : X → Y and g : Y → Z are homomorphisms
of A-modules, we write fg for the composition of f with g, and (x)f for the image of x ∈ X
under f .

For an additive category C, let C (C) denote the category of all complexes over C with chain
maps, and K (C) the homotopy category of C (C). We denote by C b(C) and K b(C) the full
subcategories of C (C) and K (C), respectively, consisting of bounded complexes over C. When C
is abelian, the (unbounded) derived category of C is denoted by D(C), which is the localization
of K (C) at all quasi-isomorphisms. The full subcategory of D(C) consisting of bounded-above
complexes over C is denoted by D−(C). As usual, we simply write K (A) for K (A-Mod), D(A)
for D(A-Mod), and D−(A) for D−(A-Mod). Also, we identify A-Mod with the full subcategory
of D(A) consisting of all stalk complexes in degree 0.

For an Artin algebra, we denote by #(A) the number of isomorphism classes of simple
A-modules, and by D the usual duality of an Artin algebra.

Now let A be a finite-dimensional algebra over a field k.

Definition 2.1. The dominant dimension of an algebra A, denoted by domdim(A), is the
maximal natural number n or ∞ such that the first n terms I0, I1, . . . , In−1 in a minimal injective
resolution 0 → AA→ I0 → I1 → · · · → Ii → · · · of A are projective.

A module M ∈ A-mod is called a generator if AA ∈ add(M); a cogenerator if D(AA) ∈
add(M); or a generator-cogenerator if it is both a generator and a cogenerator. By
[Mul68, Lemma 3], if AM is a generator-cogenerator, then domdim(EndA(M)) = sup{n ∈ N |
Exti

A(M,M) = 0, 1 ≤ i ≤ n} + 2.
Algebras of the form EndA(A⊕M) with A an algebra and M an A-module have the double

centralizer property and have been studied for a long time. Following [FK16], such an algebra is
called a gendo-symmetric algebra if A is a symmetric algebra. If A is symmetric, then so is eAe
for e = e2 ∈ A.

Lemma 2.2 [FK11, Theorem 3.2]. The following statements are equivalent for an algebra A over
a field.

(1) A is a gendo-symmetric algebra.
(2) domdim(A) ≥ 2 andD(Ae) � eA as eAe-A-bimodules, where e ∈ A is an idempotent element

such that Ae is a faithful projective-injective A-module.
(3) HomA(D(A), A) � A as A-A-bimodules.
(4) D(A) ⊗A D(A) � D(A) as A-A-bimodules.

In the rest of the paper, we write (A, e) for a gendo-symmetric algebra with e an
idempotent element in A such that Ae is a faithful projective-injective A-module. The cate-
gory add(Ae) coincides with the full subcategory of A-mod consisting of projective-injective
A-modules.

An algebra A is called an Auslander algebra if gldim(A) ≤ 2 ≤ domdim(A). This is equivalent
to saying that A is the endomorphism algebra of an additive generator of a representation-finite
algebra over a field (see [Aus71]). A generalization of Auslander algebras is the so-called n-
Auslander algebras. Let n be a positive integer. Following [Aus71, Iya07, IS18], A is called an
n-Auslander algebra if gldim(A) ≤ n+ 1 ≤ domdim(A); or an n-minimal Auslander–Gorenstein
algebra if idim(AA) ≤ n+ 1 ≤ domdim(A). Clearly, n-Auslander algebras are n-minimal
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Auslander–Gorenstein, while n-minimal Auslander–Gorenstein algebras of finite global dimen-
sion are n-Auslander. Moreover, these algebras can be characterized in terms of left or right
perpendicular categories. For M ∈ A-mod and m ∈ N, we define

⊥mM := {X ∈ A-mod | Exti
A(X,M) = 0, 1 ≤ i ≤ m},

M⊥m := {X ∈ A-mod | Exti
A(M,X) = 0, 1 ≤ i ≤ m }.

An A-module N is said to be maximal (n− 1)-orthogonal or n-cluster tilting if add(AN) =
⊥n−1N = N⊥n−1 . A generator-cogenerator M ∈ A-mod is said to be (n− 1)-ortho-symmetric
or n-precluster tilting if add(AM) ⊆ ⊥n−1M = M⊥n−1 . The algebra A is n-Auslander if and
only if there are an algebra Λ and a maximal (n− 1)-orthogonal Λ-module ΛX such that A =
EndΛ(X) by [Iya07, Proposition 2.4.1], and is n-minimal Auslander–Gorenstein if and only if
there are an algebra Λ and an (n− 1)-ortho-symmetric generator-cogenerator ΛX such that A =
EndΛ(X) by [IS18, Theorem 4.5] or [CK16, Corollary 3.18]. Moreover, by [IS18, Proposition 4.1],
if A is n-minimal Auslander–Gorenstein, then either A is self-injective or idim(AA) = n+ 1 =
domdim(A). In the latter case, idim(AA) = n+ 1 = domdim(A), and therefore A is (n+ 1)-
Gorenstein.

An A-module M is said to be m-rigid if Exti
A(M,M) = 0 for all 1 ≤ i ≤ m. Over symmetric

algebras, ortho-symmetric modules have been characterized as follows.

Lemma 2.3 [CK16, Corollary 5.4]. Let A be a symmetric algebra and N a basic A-module
without any nonzero projective direct summands. For a natural number m, the A-module A⊕N
is m-ortho-symmetric if and only if N is m-rigid and Ωm+2

A (N) ∼= N .

3. Mirror-reflective algebras

In this section we introduce (reduced) mirror-reflective algebras and describe them explicitly by
quivers with relations.

3.1 Definition of mirror-reflective algebras
Throughout this subsection, assume that A is an algebra over a commutative ring k. Let M be
an A-A-bimodule and α : AM ⊗A M →M be a homomorphism of A-A-bimodules, such that the
associative law holds:

((x⊗ y)α⊗ z)α = (x⊗ (y ⊗ z)α)α for x, y, z ∈M. (♥)

We define a multiplication on the underlying abelian group A⊕M by setting

(a,m) · (b, n) := (ab, an+mb+ (m⊗ n)α) for a, b ∈ A, m, n ∈M.

Then A⊕M becomes an associative algebra with the identity (1, 0), denoted by R(A,M,α).
In the following, we identify A with (A, 0), and M with (0,M) in R(A,M,α). Thus, A is a
subalgebra of R(A,M,α) with the same identity, and M is an ideal of R(A,M,α) such that
R(A,M,α)/M � A.

We now consider a special case of the above construction. Let e = e2 ∈ A, Λ := eAe and
Z(Λ) be the center of Λ. For λ ∈ Z(Λ), let ωλ be the composition of the natural maps:

(Ae⊗Λ eA) ⊗A (Ae⊗Λ eA) �−→ Ae⊗Λ (eA⊗A Ae) ⊗Λ eA
�−→ Ae⊗Λ Λ ⊗Λ eA

Id⊗(·λ)⊗Id−→ Ae⊗Λ Λ ⊗Λ eA→ Ae⊗Λ eA,

where (·λ) : Λ → Λ is the multiplication map by λ. Then ωλ satisfies the associative law (♥).
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Let R(A, e, λ) := R(A,Ae⊗Λ eA, ωλ). Then the elements of R(A, e, λ) are of the form

a+
n∑

i=1

aie⊗ ebi for a, ai, bi ∈ A, 1 ≤ i ≤ n ∈ N.

Multiplication, denoted by ∗, is explicitly given by

(a+ be⊗ ec) ∗ (a′ + b′e⊗ ec′) := aa′ + (ab′e⊗ ec′ + be⊗ eca′ + becb′e⊗ λec′)

for a, b, c, a′, b′, c′ ∈ A, and can be extended linearly to elements of general form. In particular,

(ae⊗ eb) ∗ (a′e⊗ eb′) = aeba′eλ⊗ eb′ = ae⊗ λeba′eb′. (♦)

Now consider the k-submodule S(A, e, λ) := (1 − e)A(1 − e) ⊕Ae⊗Λ eA of R(A, e, λ). It can
be checked that S(A, e, λ) is closed under the multiplication of R(A, e, λ). In general, S(A, e, λ)
may not have an identity. However, S(A, e, e) has the identity e0 := (1 − e) + e⊗ e.

Definition 3.1. The algebra R(A, e, λ) defined above is called the mirror-reflective algebra of
A at level (e, λ). The algebra S(A, e, λ) is called the reduced mirror-reflective algebra of A at
level (e, λ).

The algebra R(A, e, e) is then called the mirror-reflective algebra of A at e, denoted by
R(A, e). The algebra S(A, e, e) is called the reduced mirror-reflective algebra of A at e, denoted
by S(A, e).

Compared with R(A, e), S(A, e) has fewer simple modules. So it is termed the reduced
mirror-reflective algebra.

Example 3.2. Let A be an algebra over a field k presented by the quiver with a relation:

1•
α




•2,

β

�� αβ = 0.

The composition αβ of arrows α and β means that α comes first and then β follows. If k
is of characteristic 2, then A is just the Schur algebra S(2, 2). Let e be the idempotent of
A corresponding to the vertex 2. Then R(A, e) is isomorphic to the algebra presented by the
following quiver with relations:

2•
β

�� 1•
α




α

��
•2,

β

�� αβ + αβ = βα = βα = 0.

The algebra S(A, e) is isomorphic to the algebra presented by the quiver with relations:

2•
β

�� •1,
α

��
αβα = βαβ = 0.

A general description of mirror-reflective algebras presented by quivers with relations will be
given in Section 3.2.

The following lemma is obvious.
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Lemma 3.3.

(1) R(A, e, λ)/(Ae⊗Λ eA) � A as algebras.
(2) If μ ∈ Z(Λ) is an invertible element, then R(A, e, λ) � R(A, e, λμ) as algebras.

For simplicity, let R := R(A, e), S := S(A, e) and ē := e⊗ e ∈ R. Then ē = ē2, eē = ē = ēe,
and {ē, e− ē, 1 − e} is a set of pairwise orthogonal idempotent elements in R. We define

π1 : R −→ A, a+
n∑

i=1

aiēbi �→ a, and π2 : R −→ A, a+
n∑

i=1

aiēbi �→ a+
n∑

i=1

aiebi

for a, ai, bi ∈ A and 1 ≤ i ≤ n. Then π1 and π2 are surjective homomorphisms of algebras. Let

I := Ker(π1), J := Ker(π2) and e0 := (1 − e) + e ∈ R.

Lemma 3.4.

(1) I = RēR, J = R(e− ē)R, IJ = 0 = JI, I + J = ReR and S = e0Re0.
(2) As an A-A-bimodule, ARA has two decompositions: R = A⊕ I = A⊕ J .
(3) The map φ : R→ R, defined by a+

∑n
i=1 aiēbi �→ a+

∑n
i=1 ai(e− ē)bi, is an automorphism

of algebras with φ2 = IdR, such that π2 = φπ1, and the restriction of φ to I induces an
isomorphism I → J of A-A-bimodules.

(4) Both π1 and π2 induce surjective homomorphisms of algebras

π′1 : S −→ (1 − e)A(1 − e) and π′2 : S −→ A,

respectively. Moreover, Ker(π′1) = I and Ker(π′2) = (1 − e)J(1 − e) = J ∩ S.

Proof. (1) Clearly, I = Ae⊗Λ eA = AēA = RēR. Since (e− ē)π2 = 0, we have e− ē ∈ Ker(π2) =
J and R(e− ē)R ⊆ J . Conversely, if r := a+

∑n
i=1 aiēbi ∈ J , then a+

∑n
i=1 aiebi = (r)π2 = 0,

that is, a = −
∑n

i=1 aiebi. Consequently, r = −
∑n

i=1 aiebi +
∑n

i=1 aiēbi = −
∑n

i=1 ai(e− ē)bi ∈
R(e− ē)R. Thus, J = R(e− ē)R = A(e− ē)A. Note that I + J = RēR+R(e− ē)R = ReR. For
any x, y, x′, y′ ∈ A, since (xēy)(x′(e− ē)y′) = xēyx′ey′ − xēyx′ey′ = 0, we have IJ = 0. Similarly,
(x′(e− ē)y′)(xēy) = 0, and therefore JI = 0. Since I is an ideal of R and IJ = JI = 0, it follows
that S = e0Re0.

(2) R contains A as a subalgebra with the same identity, and the composition of the inclusion
A ⊆ R with πi, for i = 1, 2, is the identity map of A. Thus, (2) follows.

(3) By (2), I � R/A � J as A-A-bimodules. More precisely, the isomorphism from I to J is
given by

ϕ′ : I −→ J,
n∑

i=1

aiēbi �→
n∑

i=1

ai(e− ē)bi.

Further, the map φ : R = A⊕ I → R = A⊕ J is induced from ϕ′, and therefore is a well-defined
isomorphism of A-A-bimodules. Moreover, φ preserves the multiplication of R and φ2 = IdR.
Thus, φ is an automorphism of algebras. The equality π2 = φπ1 follows from the definitions of
π1, π2 and φ.

(4) By the left and right multiplications by e0 of π1 and π2, we then get (4) by (1). �
The annihilator of an R-module M is defined as AnnR(M) := {r ∈ R | rM = 0}. It is an

ideal of R.

Lemma 3.5.

(1) If the right A-module eAA is faithful, then J = AnnRop(I). Dually, if AAe is faithful, then
J = AnnR(I).
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(2) π2 induces isomorphisms of abelian groups,

Rē
�−→ Ae, ēR

�−→ eA and ēRē
�−→ eAe,

while the map π′2 : S → A in Lemma 3.4(4) induces isomorphisms of abelian groups,

Sē
�−→ Ae, ēS

�−→ eA and ēSē
�−→ eAe.

(3) π1 induces isomorphisms of abelian groups:

R(e− ē) �−→ Ae, (e− ē)R �−→ eA and (e− ē)R(e− ē) �−→ eAe.

Proof. (1) Clearly, J ⊆ AnnRop(I). This is due to IJ = 0 by Lemma 3.4(1). We show J ⊇
AnnRop(I). In fact, since J = Ker(π2), it suffices to prove that (x)π2 = 0 for x ∈ AnnRop(I).
Let y := (x)π2. It follows from Ix = 0 that 0 = (Ix)π2 = (I)π2y = AeAy. This implies eAy = 0.
Since eAA is faithful, we must have y = 0, and therefore x ∈ Ker(π2) = J . Thus, J = AnnRop(I).
We show the second identity similarly.

(2) Due to (ē)π2 = e, the restriction f2 : Rē→ Ae of π2 to Rē is surjective. As Ker(f2) =
Rē ∩ J ⊆ JI = 0 by Lemma 3.4(1), f2 is an isomorphism. Dually, the restriction ēR→ eA of π2

to ēR is also an isomorphism. Consequently, π2 induces an isomorphism of algebras from ēRē to
eAe.

Since IJ = JI = 0 by Lemma 3.4(1), we have Se = Re and eS = eR. Clearly, eSe = eRe.
Thus, the second statement in (2) holds.

(3) This follows from (2) and Lemma 3.4(3)–(4). �

Consequently, Lemmas 3.4(1) and 3.5(2) imply that #(R) = #(A) + #(eAe).
To discuss the decomposition of R as an algebra and to lift algebra homomorphisms, we

show the following result. For a homomorphism α : A→ Γ of algebras, denote by Homα-Alg(R,Γ)
the set of all algebra homomorphisms β : R→ Γ such that the restriction of β to A coincides
with α.

Lemma 3.6.

(1) If u = u2 ∈ A such that add(AAu) = add(AAe), then R � R(A, u, u) as algebras.
(2) If AAe is a generator, then R � A×A as algebras.
(3) Let α : A→ Γ be a homomorphism of algebras and define f := (e)α. Then there is a bijection

Homα-Alg(R,Γ) �−→ {x ∈ fΓf | x2 = x, (c)αx = x(c)α for c ∈ Λ}, α �→ (e)α.

Proof. (1) Let U := uAu and P1(Ae) be the full subcategory of A-Mod consisting of all modules
X such that there is an exact sequence P1 → P0 → X → 0 of A-modules with P0, P1 ∈ Add(Ae),
where Add(Ae) is the full subcategory of A-Mod consisting of direct summands of direct sums
of copies of Ae. We identify the functor HomA(Au,−) : A-Mod → U -Mod with the functor u· :
A-Mod → U -Mod, given by the left multiplication of u. Let μ : Au⊗U u(−) → Id be the counit
of the adjunction of the adjoint pair (Au⊗U −, u·). Then, for an A-module X, the map μX is an
isomorphism if and only if X ∈ P1(Au). Applying Ae⊗Λ − to a projective presentation of ΛeA,
we obtain an exact sequence P1 → P0 → Ae⊗Λ eA→ 0 of A-modules with P1, P0 ∈ Add(Ae).
This shows Ae⊗Λ eA ∈ P1(Ae). Due to add(AAu) = add(AAe), we have Ae⊗Λ eA ∈ P1(Au),
and therefore μAe⊗ΛeA : Au⊗U u(Ae⊗Λ eA) → Ae⊗Λ eA is an isomorphism of A-A-modules.
Since the multiplication map ρ : Ae⊗Λ eA→ A, ae⊗ eb �→ aeb for a, b ∈ A, satisfies eKer(ρ) =
0 = eCoker(ρ), it follows from add(AAu) = add(AAe) that uKer(ρ) = 0 = uCoker(ρ). Then uρ :
u(Ae⊗Λ eA) → uA is an isomorphism of U -A-bimodules, and uρu : u(Ae⊗Λ eA)u→ uAu is an
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isomorphism of U -U -bimodules. Consequently, there is an isomorphism of A-A-bimodules

IdAu ⊗U uρ : Au⊗U u(Ae⊗Λ eA) �−→ Au⊗U uA.

Thus, ψ := (IdAu ⊗U uρ)−1μAe⊗ΛeA : Au⊗U uA→ Ae⊗Λ eA is an isomorphism of A-A-
bimodules. In fact, if xi ∈ uAe and yi ∈ eAu with 1 ≤ i ≤ n such that

∑n
i=1 xiyi = u, then

(a(u⊗ u)b)ψ = a(
∑n

i=1 xi ⊗ yi)b. This induces an isomorphism of A-A-bimodules:

IdA ⊕ ψ : R(A, u, u) = A⊕Au⊗U uA −→ R = A⊕Ae⊗Λ eA,

(a, x⊗ y) �→ (a, (x⊗ y)ψ) for a ∈ A, x ∈ Au, y ∈ uA.

It can be verified that this is an isomorphism of algebras
(2) Suppose that AAe is a generator. Then add(AAe) = add(AA). Let B := R(A, 1, 1). By

(1), R � B as algebras. Now, identifying A⊗A A with A, we get B = A⊕A with multiplication
given by

(a1, a2)(b1, b2) := (a1b1, a1b2 + a2b1 + a2b2) for a1, a2, b1, b2 ∈ A.

Clearly, (1, 0) is the identity of B and (1,−1) is a central idempotent element of B. Thus, the
map B → A×A, (a1, a2) �→ (a1, a1 + a2), is an algebra isomorphism. Thus, R � B � A×A as
algebras.

(3) The algebra Γ can be regarded as an A-A-bimodule via α, and any A-A-bimodule can
be considered as a module over the enveloping algebra Ae := A⊗k A

op
. Define F = Ae⊗Λ −⊗Λ

eA : Λe-Mod → Ae-Mod and G = e(−)e : Ae-Mod → Λe-Mod. Then there are isomorphisms of
k-modules

HomAe(Ae⊗Λ eA,Γ) � HomAe(F (Λ),Γ) � HomΛe(Λ, G(Γ)) = HomΛe(Λ, (e)αΓ(e)α)

= HomΛe(Λ, fΓf) = {y ∈ fΓf | (c)α y = y(c)α for any c ∈ Λ} =: Γ′.

Let α ∈ Homα-Alg(R,Γ) and x := (e)α ∈ Γ. Since the restriction of α to A equals α, the restriction
of α to Ae⊗Λ eA is an homomorphism of A-A-bimodules. By e2 = e, we have x2 = x and (ae⊗
eb)α = (a)αx (b)α for any a, b ∈ A. This means that x ∈ Γ′ and α is determined by α and x.
Thus, the map in (3) is well defined and injective.

Conversely, let y ∈ Γ′ and let h : Ae⊗Λ eA→ Γ be the homomorphism of A-A-bimodules
sending ae⊗ eb to (a)α y(b)α. Define h := (α, h) : R→ Γ. Then h is an algebra homomorphism
if and only if ((ae⊗ eb) ∗ (a′e⊗ eb′))h = (ae⊗ eb)h(a′e⊗ eb′)h for any a, a′, b, b′ ∈ A if and only
if y(ba′)α y = (eba′)α y for any b, a′ ∈ A. Now suppose y2 = y. Since α is an algebra homo-
morphism and fy = y = yf , we see that (eba′)α y = (eba′e)α y = (eba′e)α y2 = y(eba′e)αy =
y(ba′)α y. Thus, h is an algebra homomorphism with y = (e)h = (e)h̄. This shows that the map
in (3) is surjective. Hence, (3) holds. �
Proposition 3.7. Let A be an indecomposable algebra. Then:

(1) R is a decomposable algebra if and only if AAe is a generator. In this case, R � A×A as
algebras.

(2) If add(Ae) ∩ add(A(1 − e)) = 0 and (1 − e)A(1 − e) is an indecomposable algebra, then S is
an indecomposable algebra.

Proof. (1) If AAe is a generator, then R � R(A, 1, 1) � A×A as algebras by Lemma 3.6(2),
and therefore R is decomposable. Conversely, assume that R is a decomposable algebra.
Then there is an element z = z2 ∈ Z(R) of R such that z 
= 0, 1. Since π1 : R→ A is a sur-
jective homomorphism of algebras, it restricts to an algebra homomorphism Z(R) → Z(A).
This implies (z)π1 ∈ Z(A). Since A is indecomposable, we have (z)π1 = 0 or 1. If (z)π1 = 0,
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then z ∈ Ker(π1) = I. If (z)π1 = 1, then 1 − z ∈ I. Similarly, by the surjective homomorphism
π2, we know z ∈ J or 1 − z ∈ J . Assume z ∈ I. If z ∈ J , then z = z2 ∈ IJ = 0 by Lemma 3.4(1).
This is a contradiction. Thus, 1 − z ∈ J and 1 = z + (1 − z) ∈ I + J = ReR by Lemma 3.4(1).
This shows ReR = R. It then follows from π1 that AeA = A. Hence, AAe is a generator. For the
case 1 − z ∈ I, we can show similarly that AAe is a generator.

(2) Let J1 := S ∩ J . In the proof of (1), we replace π1 and π2 with π′1 : S → (1 − e)A(1 − e)
and π′2 : S → A (see Lemma 3.4(4)), respectively, and show similarly that if (1 − e)A(1 − e) is
indecomposable and S is decomposable, then S = I + J1. In this case, the equality A = AeA still
holds because π′2 is surjective with Ker(π′2) = J1 and (e)π′2 = e. Consequently, AAe is a generator,
and therefore the assumption add(Ae) ∩ add(A(1 − e)) = 0 forces e = 1. Thus, S = I � A as
algebras. This contradicts A being indecomposable. �

3.2 Examples of mirror-reflective algebras: quivers with relations
In this subsection we describe explicitly the mirror-reflective algebras for algebras presented
by quivers with relations. This explains the terminology ‘mirror-reflective algebras’ (see
Example 3.10 below).

Throughout this subsection we assume that k is a field.
Let Q := (Q0, Q1) be a quiver with the vertex set Q0 and arrow set Q1. For an arrow α :

i→ j, we denote by s(α) and t(α) the starting vertex i and the terminal vertex j, respectively.
Composition of an arrow α : i→ j with an arrow β : j → m is written as αβ. A path of length
n ≥ 0 in Q is a sequence p := α1 · · ·αn of n arrows αi in Q1 such that t(αi) = s(αi+1) for
1 ≤ i < n ∈ N. Set s(p) = s(α1) and t(p) = t(αn). In the case where n = 0, we understand the
trivial path as an vertex i ∈ Q0, denoted by ei, and set s(ei) = i = t(ei). We write P(Q) for the
set of all paths of finite length in Q. For a field k, we write kQ for the path algebra of Q over k.
Clearly, it has P(Q) as a k-basis.

A relation σ on Q over k is a k-linear combination of paths pi of length at least 2. We may
assume that all paths in a relation have the same starting vertex and terminal vertex, and define
s(σ) = s(pi) and t(σ) = t(pi). If ρ = {σi}i∈T is a set of relations on Q over k with T an index
set, the pair (Q, ρ) is called a quiver with relations over k. In this case, we have a k-algebra
k(Q, ρ) := kQ/〈ρ〉, the quotient algebra of the path algebra kQ modulo the ideal 〈ρ〉 generated
by the relations σi, i ∈ T .

Lemma 3.8. Let B be a k-algebra, {fi | i ∈ Q0} a set of orthogonal idempotent elements in
B with 1B =

∑
i∈Q0

fi, and {fα | α ∈ Q1} a set of elements in B. If fs(α)fα = fα = fαft(α) for
α ∈ Q1, then there is a unique algebra homomorphism f : kQ→ B which sends ei �→ fi and
α �→ fα for i ∈ Q0 and α ∈ Q1.

Let Q′ := (Q′
0, Q

′
1) be a full subquiver of Q, that is, Q′

0 ⊆ Q0 and Q′
1 = {α ∈ Q1 | s(α), t(α) ∈

Q′
0}. Define

A := k(Q, ρ), V0 := Q0 \Q′
0 and e :=

∑
i∈V0

ei ∈ A.

We shall explicitly describe the quiver and relations for the mirror-reflective algebra R(A, e).
Let Q be a copy of the quiver Q, say Q0 = {̄i | i ∈ Q0} and Q1 = {ᾱ | α ∈ Q1}, with s(ᾱ) = ī

and t(ᾱ) = j̄ if s(α) = i and t(α) = j. Consider Q′ as a full subquiver of Q by identifying ī with
i for i ∈ Q′

0, and ᾱ with α for α ∈ Q′
1. So Q0 ∩Q0 = Q′

0 and Q1 ∩Q1 = Q′
1. Let Δ := (Δ0,Δ1)

be the pullback of the quivers Q and Q over Q′, that is,

Δ0 := Q0∪̇(Q0 \Q′
0) and Δ1 := Q1∪̇(Q1 \Q′

1).
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We define a map (−)+ : {ei | i ∈ Q0} ∪Q1 → kΔ by

e+i :=
{
ei, i ∈ Q′

0,
ei + ei, i ∈ V0,

α+ :=
{
α, α ∈ Q′

1,
α+ α, α ∈ Q1 \Q′

1.

Since e+s(α)α
+ = α+ = α+e+t(α) for any α ∈ Q1, it follows from Lemma 3.8 that (−)+ can be

extended to an algebra homomorphism

(−)+ : kQ −→ kΔ, p �→ p+ := α+
1 · · ·α+

n for p = α1 · · ·αn ∈ P(Q).

Given a relation σ :=
∑n

i=1 aipi on Q with ai ∈ k, pi ∈ P(Q) for 1 ≤ i ≤ n ∈ N, and
s(σ), t(σ) ∈ Q′

0, we define

σ+ :=
∑

1≤j≤n, pj∈P(Q′)

ajpj +
∑

1≤i≤n, pi /∈P(Q′)

ai(pi + pi) = σ +
∑

1≤i≤n, pi /∈P(Q′)

aipi.

Now let ψ := ψ1 ∪ ψ2 ∪ ψ3 ∪ ψ4 with

ψ1 := {apb, apb | a, b ∈ Q1, s(a), t(b) ∈ V0, p ∈ P(Q′), apb ∈ P(Q)},
ψ2 := {σ ∈ ρ | s(σ) ∈ V0 or t(σ) ∈ V0},
ψ3 := {σ | σ ∈ ψ2},
ψ4 := {σ+ | σ ∈ ρ, s(σ), t(σ) ∈ Q′

0}.
Then ψ is a set of relations on Δ over k, and we consider the k-algebra k(Δ, ψ).

Proposition 3.9.

(1) The homomorphism (−)+ : kQ→ kΔ of algebras is injective and induces an injective
homomorphism μ : A→ k(Δ, ψ) of algebras.

(2) There exists an isomorphism θ : R(A, e) �−→ k(Δ, ψ) of algebras such that (ei ⊗ ei)θ = ei for
i ∈ V0, and the restriction of θ to A coincides with μ in (1).

Proof. (1) For a subset U ⊆ kΔ, let 〈U〉 be the ideal of kΔ generated by U . Set E := {ei | i ∈ V0}
and denote by δ : kΔ → kΔ/〈E〉 the canonical surjection. Then kΔ/〈E〉 ∼−→ kQ as algebras and
there are homomorphisms of algebras

kQ
(−)+−→ kΔ δ−→ kΔ/〈E〉 ∼−→ kQ

such that their composition is the identity map of kQ. This shows that (−)+ is injective. We
define

ρ+ := {σ+ | σ ∈ ρ} and ψ′ := ρ+ ∪
( ⋃

i,j∈V0

(eikΔej ∪ ejkΔei)
)
.

We shall show 〈ψ′〉 = 〈ψ〉 in kΔ.
In fact, let ϕ =

⋃
i,j∈V0

(eikΔej ∪ ejkΔei) ⊆ ψ′. Clearly, 〈ϕ〉 = 〈ψ1〉. Now consider the image
of a path under (−)+.

(i) For p ∈ P(Q) of length at least 1, we have the following statements.
(1) If p ∈ P(Q′), then p+ = p.
(2) If p 
∈ P(Q′), then p+ = p+ p+ p′ with p′ in the k-space kϕ generated by elements

of ϕ.
(ii) For σ ∈ ρ, we write σ =

∑s
i=1 aipi +

∑n
j=s+1 ajpj with pi a path in kQ for 1 ≤ i ≤ n

such that pi ∈ P(Q′) for 1 ≤ i ≤ s and pj 
∈ P(Q′) for s+ 1 ≤ j ≤ n. It follows from (i)
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that

σ+ =
s∑

i=1

aip
+
i +

n∑
j=s+1

ajp
+
j =

s∑
i=1

aipi +
n∑

j=s+1

aj(pj + pj + p′j)

= σ +
n∑

j=s+1

ajpj +
n∑

j=s+1

ajp
′
j . (∗)

If σ ∈ ψ2, then s = 0 and σ+ = σ + σ +
∑n

j=1 ajp
′
j with σ ∈ ψ3, and therefore σ+ ∈ 〈ψ〉.

If σ 
∈ ψ2, that is, s(σ), t(σ) ∈ Q′
0, then σ+ ∈ ψ4 and σ+ = σ+ +

∑n
j=s+1 ajp

′
j ∈ 〈ψ〉. Thus,

〈ψ′〉 ⊆ 〈ψ〉 in kΔ.

Conversely, pick up τ ∈ ψ, we show τ ∈ 〈ψ′〉. If τ = σ+ ∈ ψ4, then τ = σ+ −
∑n

j=s+1 ajp
′
j ∈

〈ψ′〉. If τ = σ ∈ ψ2 and s(σ) ∈ V0, then es(σ)σ = 0 and therefore σ = es(σ)σ = es(σ)σ
+ −

es(σ)

∑n
j=1 ajp

′
j ∈ 〈ψ′〉. If τ = σ ∈ ψ2 and t(σ) ∈ V0, then σet(σ) = 0 and σ = σet(σ) = σ+et(σ) −∑n

j=1 ajp
′
jet(σ) ∈ 〈ψ′〉. If τ = σ ∈ ψ3 with σ ∈ ψ2, then σ = σ+ − σ −

∑n
j=1 ajp

′
j . By what we

have just proved, σ ∈ 〈ψ′〉, and therefore σ ∈ 〈ψ′〉. Thus, 〈ψ〉 ⊆ 〈ψ′〉, and therefore 〈ψ′〉 = 〈ψ〉
and k(Δ, ψ′) = k(Δ, ψ).

Since ϕ ⊆ 〈E〉, it is clear that 〈ψ′〉 ⊆ 〈ρ+ ∪ E〉. By the third equality in (∗) and the fact
that

∑n
j=s+1 ajpj and

∑n
j=s+1 ajp

′
j belong to 〈E〉, we obtain 〈ρ+ ∪ E〉 = 〈ρ ∪ E〉 in kΔ. Thus,

kΔ/〈ρ+ ∪ E〉 = kΔ/〈ρ ∪ E〉 � kQ/〈ρ〉 = A as algebras. Moreover, since 〈ρ+〉 ⊆ 〈ψ′〉 ⊆ 〈ρ+ ∪
E〉 ⊆ kΔ, the homomorphisms (−)+ and δ induce algebra homomorphisms μ : A→ kΔ/〈ψ′〉 and
δ : kΔ/〈ψ′〉 → kΔ/〈ρ+ ∪ E〉, respectively. Now we identify kΔ/〈ρ+ ∪ E〉 with A. Then μδ = IdA

and μ is injective.
(2) We first construct a map θ by applying Lemma 3.6(3). For simplicity, let

R := R(A, e), S := k(Δ, ψ), x :=
∑
i∈V0

ei ∈ S.

Then x2 = x. By (1), (e)μ = e+ =
∑

j∈V0
(ej + ej). Since e+ei = ei = eie

+, we have e+x = x =
xe+ and x ∈ e+Se+. Recall that ejSei = eiSej = 0 for i, j ∈ V0, due to the relation set ψ1. Thus,
for s ∈ S, we have

e+se+x = e+sx =
∑
j∈V0

∑
i∈V0

(ej + ej)sei =
( ∑

j∈V0

ej

)
s

( ∑
i∈V0

ei

)
,

xe+se+ = xse+ =
∑
i∈V0

∑
j∈V0

eis(ej + ej) =
( ∑

i∈V0

ei

)
s

( ∑
j∈V0

ej

)
.

This shows e+se+x = xe+se+. Since Λ = eAe and (Λ)μ ⊆ e+Se+, we have (c)μx = xe+(c)μ for
any c ∈ Λ. By Lemma 3.6(3), there is a unique algebra homomorphism θ : R→ S such that the
restriction of θ to A equals μ and (e)θ = x. Let ei := ei ⊗ ei ∈ R. Then ei = eieei and (ei)θ =
e+i xe

+
i = e+i (

∑
i∈V0

ei)e
+
i = ei.

Next, we prove that θ is surjective. It suffices to show that Δ1 ⊆ Im(θ) and et ∈ Im(θ) for
t ∈ Δ0.

In fact, if t ∈ Q′
0, then (et)θ = (et)μ = et; if t ∈ V0, then (et)θ = et and (et − et)θ = et + et −

et = et. This implies that et belongs to Im(θ) for any t ∈ Δ0. Now let α : u→ v be an arrow
in Q1. If u, v ∈ Q′

0, then (α)θ = α. If u ∈ V0 or v ∈ V0, then (α)θ = (α)μ = α+ α. In the case
where u ∈ V0, we get

(euα)θ = (eu)θ(α)θ = eu(α)μ = eu(α+ α) = α and (α− euα)θ = α.
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In the case where v ∈ V0, we have (αev)θ = α and (α− αev)θ = α. Thus, Q1 ⊆ Im(θ) and Q1 \
Q′

1 ⊆ Im(θ).
Finally, we construct an algebra homomorphism π : S → R such that θπ = IdR, the identity

map of R. This means that θ is injective. Hence, it is bijective.
We define a map {et | t ∈ Δ0} ∪ Δ1 → R by ei �→ ei − ei, ei �→ ei for i ∈ V0; ej �→ ej for

j ∈ Q′
0; and for α ∈ Q1,

i
α−→ j �→

⎧⎨
⎩
α i, j ∈ Q′

0,
α− αej , i ∈ Q0, j ∈ V0,
α− eiα, i ∈ V0, j ∈ Q0;

i
α−→ j �→

{
αej , i ∈ Q0, j ∈ V0,
eiα, i ∈ V0, j ∈ Q0.

Note that eiα = ei ⊗ α = α⊗ ej = αej inR for i, j ∈ V0. By Lemma 3.8, the map can be extended
to a unique homomorphism γ : kΔ → R of algebras. Clearly, γ preserves the idempotent elements
corresponding to the vertices in Q′

0 and also the arrows in Q′
1. Further, if i ∈ V0, then (e+i )γ =

(ei + ei)γ = ei; if α ∈ Q1 \Q′
1, then (α+)γ = (α+ α)γ = α. This implies (σ+)γ = σ for any σ ∈

ρ. Moreover, by Lemma 3.4(1),

(eikΔej)γ ⊆ (ei − ei)Rej ⊆ (e− e)Re = 0 and (ejkΔei)ϕ ⊆ ejR(ei − ei) ⊆ eR(e− e) = 0

for any i, j ∈ V0. Consequently, we have 〈ψ′〉 ⊆ Ker(γ), and therefore γ induces an algebra homo-
morphism π : S → R. Now let g := θπ : R→ R and h := (−)+ γ : kQ→ R. Since the restriction
of θ to A equals μ, the restriction g|A : A→ R of g to A is induced from h. As γ preserves
the idempotent elements corresponding to the vertices in Q0 and also the arrows in Q1, we see
that g|A has its image in A and factorizes through IdA. Since (ei)g = (ei)π = ei for i ∈ V0 and
e =

∑
i∈V0

ei, we have (e)g = e. Thus, g = IdR by Lemma 3.6(3). �
Let us now illustrate the construction of R(A, e) by an example.

Example 3.10. Suppose that A is an algebra over a field k presented by the quiver with relations:

1

α




β

��

4
δ��

σ

��
2

γ

��

τ �� 5 η ,��

θ����
��

��
��

η2 = ση = τη = αγ = δβτ = 0, βγ = βτθ.

3

Let Q′ be the full subquiver of Q consisting of the vertex set {1, 2, 3} and let e = e4 + e5. By
Proposition 3.9(2), the algebra R(A, e) is isomorphic to the algebra presented by the following
quiver with relations:

4
δ ��

σ
��

1

α

��
β

��

4
δ��

σ

��
5η ��

θ ���
��

��
��

� 2

γ

��

τ�� τ �� 5 η ,��

θ����
��

��
��

3

δβτ = δβτ = δατ = δατ = 0,
η2 = ση = τη = δβτ = 0,
η2 = σ η = τ η = δβ τ = 0,
αγ = 0, βγ = βτθ + βτ θ.

This quiver is the mirror reflection of that of A along the full subquiver Q′ of Q.
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4. Derived recollements

In this section we start by recalling recollements of triangulated categories, introduced by Beilin-
son, Bernstein and Deligne in [BBD82], and introduce the notion of stratified dimensions of
algebras. We also construct recollements of mirror-reflective algebras.

4.1 Stratifying ideals and recollements
Definition 4.1. Let T , T ′ and T ′′ be triangulated categories. T admits a recollement of T ′

and T ′′ (or there is a recollement among T ′′, T and T ′) if there are six triangle functors

T ′′ i∗=i! �� T
j!=j∗

��

i!

��

i∗

��
T ′

j∗

��

j!

��

among the three categories such that the following four conditions are satisfied.

(1) (i∗, i∗), (i!, i!), (j!, j!) and (j∗, j∗) are adjoint pairs.
(2) i∗, j∗ and j! are fully faithful functors.
(3) j!i! = 0 (and thus also i!j∗ = 0 and i∗j! = 0).
(4) For an object X ∈ T , there are triangles i!i!(X) → X → j∗j∗(X) → i!i

!(X)[1] and j!j!(X) →
X → i∗i∗(X) → j!j

!(X)[1] induced by the counits and units of the adjunctions, where [1] is
the shift functor of T .

Recollements of derived module categories of rings are called derived recollements. Quasi-
hereditary algebras, introduced by Cline, Parshall and Scott (see [CPS88, CPS96]), provide such
a special class of derived recollements. For a heredity ideal I of an algebra A over a commu-
tative ring, we have Exti

A/I(X,Y ) � Exti
A(X,Y ) for (A/I)-modules X,Y and i ≥ 0. A slight

generalization of heredity ideals is the n-idempotent ideals defined in [APT92].

Definition 4.2 [APT92]. Let A be an algebra, I an ideal of A, and n a positive integer. The
ideal I of A is said to be n-idempotent if, for X,Y ∈ (A/I)-Mod, the canonical homomorphism
Exti

A/I(X,Y ) → Exti
A(X,Y ) of k-modules is an isomorphism for all 1 ≤ i ≤ n.

The ideal I is said to be a strong idempotent ideal if I is n-idempotent for all n ≥ 1. In this
case, if I = AeA for an idempotent element e ∈ A, then e is called a strong idempotent element
of A.

A strong idempotent ideal generated by an idempotent element is precisely a stratifying
ideal as introduced in [CPS96, Definition 2.1.1]. We use the term ‘stratifying ideals’ throughout
the paper. To emphasize the idempotent elements considered, we also retain the terminology of
strong idempotent elements of algebras.

By a trivial strong idempotent element of A we mean the idempotent element 0 or an
idempotent element e with AeA = A. Clearly, an ideal I is 1-idempotent if and only if I is
idempotent. Moreover, stratifying ideals are closely related to homological ring epimorphisms.
A ring homomorphism λ : A→ B is called a homological ring epimorphism if the multiplica-
tion map B ⊗A B → B is an isomorphism and TorA

i (B,B) = 0 for all i ≥ 1. This is equivalent
to saying that the derived restriction functor D(λ∗) : D(B) → D(A), induced by the restriction
functor λ∗ : B-Mod → A-Mod, is fully faithful. Note that an ideal I of A is a stratifying ideal if
and only if the canonical surjection A→ A/I is a homological ring epimorphism.

Lemma 4.3 [APT92]. Let I = AeA for an idempotent element e in A.
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(1) Let n be a positive integer. Then I is (n+ 1)-idempotent if and only if the multiplication
map

Ae⊗eAe eA −→ I, ae⊗ eb �→ aeb, a, b ∈ A

is an isomorphism of A-A-bimodules and ToreAe
i (Ae, eA) = 0 for all 1 ≤ i ≤ n− 1.

(2) If I is 2-idempotent, then

sup{n ∈ N | Exti
A(A/I,A/I) = 0, 1 ≤ i ≤ n}

≥ sup{n ∈ N | ToreAe
i (Ae, eA) = 0, 1 ≤ i ≤ n} + 2.

Proof. (1) Although all the results in [APT92] are stated for finitely generated modules over
Artin algebras, many of them, such as Theorem 2.1, Lemma 3.1 and Propositions 2.4 and 3.7(b),
hold for arbitrary modules over rings if we modify Pn in [APT92, Definition 2.3] as follows.

Let Pn(Ae) be the full subcategory of A-Mod consisting of all modulesX such that there is an
exact sequence Pn → · · · → P1 → P0 → X → 0 of A-modules with Pi ∈ Add(Ae) for 0 ≤ i ≤ n,
where Add(Ae) is the full subcategory of A-Mod consisting of direct summands of direct sums
of copies of Ae.

By [APT92, Theorem 2.1], I := AeA is (n+ 1)-idempotent if and only if I ∈ Pn(Ae).
In particular, I is 2-idempotent if and only if I ∈ P1(Ae). By [APT92, Lemma 3.1], the
adjoint pair (Ae⊗eAe −,HomA(Ae,−)) between (eAe)-Mod and A-Mod induces additive equiv-
alences between (eAe)-Mod and P1(Ae). Note that HomA(Ae, I) � eI = eA. Thus, I ∈ P1(Ae)
if and only if the multiplication map Ae⊗eAe eA→ AeA is an isomorphism of A-A-bimodules.
Assume now that I is 2-idempotent. By [APT92, Proposition 3.7(b)], I ∈ Pn(Ae) if and only if
ToreAe

i (Ae, eA) = 0 for all 1 ≤ i < n. This shows (1).
(2) If I is (n+ 1)-idempotent, then ExtiA(A/I,A/I) � Exti

A/I(A/I,A/I) = 0 for all 1 ≤ i ≤
n+ 1. Now (2) follows from (1). �

Corollary 4.4.

(1) Let e and f be idempotent elements of A such that ef = e = fe. If AeA is an (n+ 1)-
idempotent ideal of A for a positive integer n, then fAeAf is an (n+ 1)-idempotent ideal
of fAf . In particular, if e is a strong idempotent element of A, then it is also a strong
idempotent element of fAf .

(2) Let {e, e1, e2} be a set of pairwise orthogonal idempotent elements of A such that e is a
strong idempotent element of A. Define f := e+ e1, g := e+ e1 + e2 and A := A/AeA. Let
f := f +AeA denote the image of f in A. If f is a strong idempotent element of gAg, then
f is a strong idempotent element of gAg.

Proof. (1) Transparently, e ∈ fAf , efAfe = eAe, fAeAfe = fAe and efAeAf = eAf . If
Ae⊗eAe eA � AeA, then fAe⊗eAe eAf � fAeAf . Since Ae = fAe⊕ (1 − f)Ae and eA =
eAf ⊕ eA(1 − f), we see that the abelian group ToreAe

i (fAe, eAf) is a direct summand of
ToreAe

i (Ae, eA) for i ∈ N. Then (1) follows from Lemma 4.3(1).
(2) Clearly, AeA ⊆ AfA ⊆ AgA, and gAg � gAg/gAeAg and gAg/gAfAg � gAg/gAfAg as

algebras. Suppose that f is a strong idempotent element of gAg. Then the canonical surjection
π2 : gAg/gAeAg → gAg/gAfAg is homological. Since e is a strong idempotent element of A and
ge = e = eg, the canonical surjection π1 : gAg → gAg/gAeAg is also homological by (1). Observe
that compositions of homological ring epimorphisms are again homological ring epimorphisms.
Thus, π1π2 : gAg → gAg/gAfAg is homological. This implies that f is a strong idempotent
element in gAg. �
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Let e = e2 ∈ A. If AeA is a stratifying ideal in A, then the recollement of derived module
categories of algebras,

D(A/AeA) �� D(A) ��
��

��
D(eAe)

��

��
,

is called a standard recollement induced by AeA. If AAeA or AeAA is projective (for
example, AeA is a heredity ideal in A), then AeA is a stratifying ideal in A. In the case where
AAeA is projective, the recollement restricts to a recollement (D−(A/AeA),D−(A),D−(eAe))
of bounded-above derived categories.

For constructing finitely generated (one-sided) projective idempotent ideals of the endomor-
phism algebras of objects in additive categories (see [CX16b, Lemmas 3.2 and 3.4]), we have the
following lemma.

Lemma 4.5. Suppose that R is an algebra and I is an ideal of R.

(1) Let A := EndR(R⊕ R/I) and e2 = e ∈ A correspond to the direct summand R/I of the R-
module R⊕ R/I. Then AeAA is finitely generated and projective, and there is a recollement
(D(R/AnnRop(I)),D(A),D(R/I)), with AnnRop(I) := {r ∈ R | Ir = 0}.

(2) Let B := EndR(R⊕ I) and f = f2 ∈ B correspond to the direct summand I of the R-module
R⊕ I. If I is idempotent, then BBfB is finitely generated and projective, and there is a
recollement (D(R/I),D(B),D(EndR(I))).

Another way to produce finitely generated projective ideals comes from Morita context
algebras, as explained below.

Let R be an algebra and let I and J be ideals of R with IJ = 0. Define

Ml(R, I, J) :=
(

R I
R/J R/J

) (
respectively, Mr(R, I, J) :=

(
R R/I
J R/I

))
,

which is the Morita context algebra with the bimodule homomorphisms given by the canonical
ones:

I ⊗R/J (R/J) � I ↪→ R, (R/J) ⊗R I � I/JI � (I + J)/J ↪→ R/J

(respectively, (R/I) ⊗R/I J � J ↪→ R, J ⊗R (R/I) � J/JI � (I + J)/I ↪→ R/I). Note that
Mr(R, I,AnnRop(I)) � EndR(R⊕R/I) as algebras. Moreover, if RR is injective and I2 = I,
then Ml(R, I,AnnRop(I)) � EndR(R⊕ I) as algebras. This is due to HomR(I,R/I) = 0.

Let

e :=
(

0 0
0 1 + J

)
∈Ml(R, I, J), f :=

(
0 0
0 1 + I

)
∈Mr(R, I, J).

Then the next lemma is easy to verify.

Lemma 4.6. Let A := Ml(R, I, J) and B := Mr(R, I, J). Then AAeA and BfBB are finitely
generated and projective. Moreover, there are recollements (D(R/I),D(A),D(R/J)) and
(D(R/J),D(B),D(R/I)).

4.2 Stratified dimensions of algebras
Now, we introduce stratified dimensions of algebras over a commutative ring, which measure how
many steps the given algebras can be stratified by their nontrivial strong idempotent elements.

Definition 4.7. By an idempotent stratification of length n of an algebra A, we mean a set
{ei | 0 ≤ i ≤ n} of n+ 1 nonzero (not necessarily primitive) pairwise orthogonal idempotent
elements of A satisfying the following conditions:
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(a) 1 =
∑n

j=0 ej and ei+1 /∈ Ae≤iA (or equivalently, Ae≤iA � Ae≤(i+1)A) for all 0 ≤ i ≤ n− 1,
where e≤m :=

∑m
j=0 ej for 0 ≤ m ≤ n; and

(b) e≤i is a strong idempotent element of the algebra e≤(i+1)Ae≤(i+1) for 0 ≤ i ≤ n− 1.

The stratified dimension of A, denoted by stdim(A), is defined to be the supremum of the
lengths of all idempotent stratifications of A.

Clearly, stdim(A) = 0 if and only if A has no stratifying ideal apart from itself and 0. If
stdim(A) = n > 0, then there are nontrivial standard recollements (D(Ai/Ii),D(Ai),D(Ai−1)),
1 ≤ i < n+ 1, where A0 := e0Ae0, Ai := e≤iAe≤i and Ii := e≤iAe≤(i−1)Ae≤i are as defined
in Definition 4.7. Moreover, for any two algebras Γ1 and Γ2, stdim(Γ1 × Γ2) = stdim(Γ1) +
stdim(Γ2) + 1. This implies that the stratified dimension of the direct product of countably
many copies of a field k is infinite.

Stratifications of algebras in the sense of Cline, Parshall and Scott are idempotent stratifi-
cations. But the converse is not true. Following [CPS96, Chapter 2], a stratification of length
n+ 1 of an algebra A is a chain of ideals, 0 = U−1 � U0 � U1 � · · · � Un−1 � Un = A, generated
by idempotent elements such that Ui/Ui−1 is a stratifying ideal in A/Ui−1 for 0 ≤ i ≤ n. In this
case, A is said to be CPS stratified. If {ei | 0 ≤ i ≤ n} is a complete set of nonzero primitive
pairwise orthogonal idempotent elements of A and Ui = Ae≤iA for 0 ≤ i ≤ n, then A is called
a fully CPS-stratified algebra. Standardly stratified algebras with respect to an order of simple
modules are fully CPS stratified.

Lemma 4.8. Let {ei | 0 ≤ i ≤ n} be a set of nonzero pairwise orthogonal idempotent elements
of A satisfying condition (a) in Definition 4.7. Define Ui := Ae≤iA for 0 ≤ i ≤ n and U−1 := 0. If
Ui/Ui−1 is a stratifying ideal in A/Ui−1 for 0 ≤ i ≤ n, then condition (b) in Definition 4.7 holds.

Proof. Since Ui/Ui−1 is a stratifying ideal in A/Ui−1 by assumption, the canonical surjection
A/Ui−1 → A/Ui is homological. As the composition of homological ring epimorphisms is still a
homological ring epimorphism, the canonical surjection A→ A/Ui is homological. This implies
that e≤i is a strong idempotent element of A. By Corollary 4.4, e≤i is a strong idempotent
element of e≤(i+1)Ae≤(i+1). Thus, Definition 4.7(b) holds. �
Proposition 4.9. Let A be an Artin algebra over a commutative Artin ring k. Then:

(1) stdim(A) ≤ #(A) − 1.
(2) If A has a stratification of length n+ 1 with n ∈ N, then stdim(A) ≥ n. In particular, if A

is a fully CPS-stratified algebra, then stdim(A) = #(A) − 1.
(3) If stdim(A) ≥ 1, then stdim(A) = supe∈A{stdim(eAe) + stdim(A/AeA) + 1}, where e runs

over all nonzero strong idempotent elements of A with AeA 
= A.
(4) If k is a field and B is a finite-dimensional k-algebra, then

stdim(A⊗k B) ≥ (stdim(A) + 1)(stdim(B) + 1) − 1.

Proof. (1) This is clear by Definition 4.7(a).
(2) The first part of (2) follows from Lemma 4.8. If A is a fully CPS-stratified algebra, then

it has a stratification of length #(A) − 1. By (1), we obtain stdim(A) = #(A) − 1.
(3) An Artin algebra has only finitely many nonisomorphic, indecomposable, projective

modules. This implies:

(∗) If f is an idempotent element of A and I is an idempotent ideal of A such that AfA ⊆ I,
then there is an idempotent element f ′ of A which is orthogonal to f such that I = A(f +
f ′)A.

2722

https://doi.org/10.1112/S0010437X24007395 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007395


Tachikawa’s second conjecture for symmetric algebras

Now let n := stdim(A) ≥ 1. On the one hand, since e≤n−1 in Definition 4.7(b) is
a strong idempotent element of A, we have stdim(A) = stdim(e≤n−1Ae≤n−1) + 1 and
stdim(A/Ae≤n−1A) = 0 by (∗) and Corollary 4.4(2). On the other hand, for each nontriv-
ial strong idempotent element e of A, it follows again from (∗) and Corollary 4.4(2) that
stdim(eAe) + stdim(A/AeA) + 1 ≤ n. Thus, (3) holds.

(4) Let m := stdim(B) and � := n+m. If � = 0 (that is, n = 0 = m), then the inequality
obviously holds. Let � ≥ 1. Without loss of generality, suppose n ≥ 1. By the proof of (3), there
is a nonzero strong idempotent element e of A with AeA 
= A such that stdim(eAe) = n− 1
and stdim(A/AeA) = 0. Then the canonical surjection π : A→ A/AeA is homological. For two
homological ring epimorphisms λi : Ri → Si of algebras over the field k with i = 1, 2, the tensor
product λ1 ⊗k λ2 : R1 ⊗k R2 → S1 ⊗k S2 is again a homological ring epimorphism. This is due
to the isomorphism

TorR1⊗kR2
j (S1 ⊗k S2, S1 ⊗k S2) �

⊕
p+q=j

TorR1
p (S1, S1) ⊗k TorR2

q (S2, S2) for all j ∈ N.

Now let C := A⊗k B and e′ := e⊗ 1 ∈ C. Then the surjection π ⊗ 1 : C → (A/AeA) ⊗k B
is homological. Clearly, there are algebra isomorphisms (A/AeA) ⊗k B � C/(AeA⊗k B) �
C/Ce′C. It follows that the canonical surjection C → C/Ce′C is homological, and there-
fore e′ is a nontrivial strong idempotent element of C. By (3), stdim(C) ≥ stdim(eAe⊗k

B) + stdim((A/AeA) ⊗k B) + 1. Moreover, by induction, stdim(eAe⊗k B) ≥ (stdim(eAe) +
1)(stdim(B) + 1) − 1 and stdim((A/AeA) ⊗k B) ≥ stdim(B). Thus, stdim(C) ≥ (n+ 1)
(m+ 1) − 1. �

Definition 4.10. Let A be an Artin algebra over a commutative Artin ring k. The rational
number stdim(A)/#(A) is called the stratified ratio of A and denoted by sr(A).

By Proposition 4.9(1), sr(A) ∈ Q ∩ [0, 1). Let An denote the product of n copies of A. Then

lim
n→∞ sr(An) = lim

n→∞
n(stdim(A)) + n− 1

n #(A)
=

stdim(A) + 1
#(A)

≤ 1.

In particular, if stdim(A) = #(A) − 1 (for example, A is quasi-hereditary or local), then
limn→∞ sr(An) = 1. In § 5, for a gendo-symmetric algebra with infinite dominant dimension,
we construct a series of indecomposable symmetric algebras Sn such that limn→∞ sr(Sn) = 1
(see Corollary 5.12 for details).

4.3 Construction of recollements from mirror-reflective algebras
In this subsection we construct explicitly derived recollements from mirror-reflective algebras.

Throughout this subsection we retain all notation in Section 3.1. Recall that R := R(A, e),
S := S(A, e) and ē := e⊗ e ∈ R.

Proposition 4.11. Let A2 := EndR(R⊕R/I) and B2 := EndS(S ⊕ S/I). Suppose that the
right A-module eAA is faithful. Then the following statements hold true.

(1) There are standard recollements of derived module categories

D(A) �� D(A2) ��
��

		
D(A),

��

		
D(A) �� D(B2) ��

��

		
D((1 − e)A(1 − e))

��

��

induced by idempotent ideals that are finitely generated and projective as right modules
over A2 and B2, respectively.

(2) stdim(A2) ≥ 2stdim(A) + 1 and stdim(B2) ≥ stdim(A) + stdim((1 − e)A(1 − e)) + 1.
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(3) gldim(Aop) ≤ gldim(Aop
2 ) ≤ 2gldim(Aop) + 2,

findim(Aop) ≤ findim(Aop
2 ) ≤ 2findim(Aop) + 2.

Proof. (1) Let e2 be the idempotent of A2 corresponding to the direct summand R/I of
the R-module R⊕R/I. Then e2A2e2 � R/I and A2/A2e2A2 � R/AnnRop(I) as algebras.
By Lemma 4.5(1), the Aop

2 -module A2e2A2 is finitely generated and projective. This implies that
e2 is a strong idempotent of A2.

Let f2 be the idempotent of B2 corresponding to the direct summand S/I of the S-module
S ⊕ S/I. Similarly, by Lemma 4.5(1), f2B2f2 � S/I and B2/B2f2B2 � S/AnnSop(I) as algebras,
the Bop

2 -module B2f2B2 is finitely generated and projective, and thus f2 is a strong idempotent
of B2.

Since eAA is faithful, J = AnnRop(I) by Lemma 3.5(1). Note that I is an ideal of S and
AnnSop(I) = S ∩ AnnRop(I) = S ∩ J . By Lemma 3.4(4), there are algebra isomorphisms A �
R/I � R/J � S/(S ∩ J) and S/I � (1 − e)A(1 − e), and therefore

e2A2e2 � A � A2/A2e2A2, f2B2f2 � (1 − e)A(1 − e) and B2/B2f2B2 � A.

Since e2 is a strong idempotent of A2 and f2 is a strong idempotent of B2, (1) holds.
(2) By the proof of (1), e2 and f2 are strong idempotents in A2 and B2, respectively. Thus,

stdim(A2) ≥ 1 and stdim(B2) ≥ 1. Then (2) follows from Proposition 4.9(3).
(3) This will be shown by some general formulas on the global and finitistic dimensions of

rings.
Let Γ be a ring and f a strong idempotent element of Γ. By Definition 4.2, we have

(a) gldim(Γ/ΓfΓ) ≤ gldim(Γ).

Applying [CX17, Theorem 3.17(2)] to the standard recollement

D(Γ/ΓfΓ)
i∗ �� D(Γ) ��

��

��
D(fΓf),

��

j!

��

where i∗ is the derived restriction functor induced from the canonical surjection Γ → Γ/ΓfΓ and
j! is the left-derived functor Γf ⊗L

fΓf −, we obtain

(b) gldim(Γ) ≤ gldim(fΓf) + gldim(Γ/ΓfΓ) + pdim(ΓΓ/ΓfΓ) + 1.

Moreover, by [CX17, Corollary 3.12], if ΓΓ/ΓfΓ has a finite projective resolution by finitely
generated projective Γ-modules, then

(c) findim(Γ/ΓfΓ) ≤ findim(Γ) ≤ findim(fΓf) + findim(Γ/ΓfΓ) + pdim(ΓΓ/ΓfΓ) + 1.

Let Γ := Aop
2 and f := eop2 . Then fΓf � Aop � Γ/ΓfΓ as rings. By the proof of (1) (see the

first paragraph), the Γ-module ΓfΓ is finitely generated and projective, and the element f is a
strong idempotent of Γ. Thus, (a) and (b) imply (3) on global dimensions, while (c) gives (3) on
finitistic dimensions. �

We now consider n-idempotent and stratifying ideals of mirror-reflective algebras.

Proposition 4.12.

(1) The ideals I and J of R are 2-idempotent.
(2) Let n ≥ 1 be an integer. Then I is (n+ 2)-idempotent if and only if so is J if and only if

ToreAe
i (Ae, eA) = 0 for all 1 ≤ i ≤ n.
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(3) If ToreAe
i (Ae, eA) = 0 for all i ≥ 1, then there are standard recollements of derived module

categories induced by I := RēR:

D(A) �� D(R) ��
��

		
D(eAe) and

��

��
D((1 − e)A(1 − e)) �� D(S) ��

��

��
D(eAe).

��

��

Proof. (1) There is a commutative diagram

Re⊗eRe eR
μ

��

π2⊗π2

��

ReR = Ae⊗eAe eA

π2

��
Ae⊗eAe eA

μ′
�� AeA

where μ and μ′ are the multiplication maps. By Lemma 3.5(2), π2 ⊗ π2 is an isomorphism.
Note that the composition of the inverse of π2 ⊗ π2 with μ is the identity of Ae⊗eAe eA. Thus, μ
is an isomorphism. This shows that I is 2-idempotent by Lemma 4.3(1). Similarly, we can show
that J is 2-idempotent by using the idempotent element e− e and the algebra homomorphism π1.

(2) By Lemma 3.4(3), I is (n+ 2)-idempotent if and only if so is J . Since I is 2-idempotent by
(1), it follows from Lemma 4.3(1) that I is (n+ 2)-idempotent if and only if ToreRe

i (Re, eR) = 0
for 1 ≤ i ≤ n. By Lemma 3.5(2), π2 induces isomorphisms of abelian groups ToreRe

i (Re, eR) �
ToreAe

i (Ae, eA) for all i ∈ N. Thus, I is (n+ 2)-idempotent if and only if ToreAe
i (Ae, eA) = 0 for

1 ≤ i ≤ n.
(3) By (2), I is a stratifying ideal in R if and only if ToreAe

i (Ae, eA) = 0 for all i ≥ 1.
According to Corollary 4.4(1), if I is a stratifying ideal in R, then e0Ie0 is a stratifying ideal in S.
By Lemmas 3.4 and 3.5(2), e0Ie0 = I, S/I � (1 − e)A(1 − e), R/I � A and eRe � eAe � eSe.
Thus, the recollements in (3) exist. �

5. Iterated mirror-reflective algebras and Tachikawa’s second conjecture

This section is devoted to proofs of all results stated in the introduction. We first show
that mirror-reflective algebras of gendo-symmetric algebras at any levels are symmetric (see
Proposition 5.2). Based on this result, we construct not only gendo-symmetric algebras of
strictly increasing dominant dimensions and higher minimal Auslander–Gorenstein algebras
(see Theorem 1.4), but also recollements of derived module categories of these algebras (see
Theorem 1.2). The recollements constructed are then applied to give a new formulation of
Tachikawa’s second conjecture for symmetric algebras in terms of stratified dimensions and
ratios (see Theorem 5.13). Consequently, a sufficient condition is given for the conjecture to hold
for symmetric algebras (see Theorem 1.1(II)).

Throughout this section all algebras considered are finite-dimensional algebras over a field k.

5.1 Relations among mirror-reflective, symmetric and gendo-symmetric algebras
Let A be an algebra, e2 = e ∈ A and Λ := eAe. Suppose that there is an isomorphism ι : eA→
D(Ae) of Λ-A-bimodules. Let ιe := (e)ι ∈ D(Ae) = Homk(Ae, k). Then ιe = eιe = ιee. Moreover,
ι is nothing other than the left multiplication map by ιe. Define ζ : Ae⊗Λ eA→ k to be the
composition of the maps

Ae⊗Λ eA
id⊗ι−→ Ae⊗Λ D(Ae) ev−→ k

where ev stands for the evaluation map: ae⊗ f �→ (ae)f for a ∈ A and f ∈ D(Ae). Then ζ is
given by (ae⊗ eb)ζ = (bae)ιe = (ebae)ιe for a, b ∈ A. To any element λ ∈ Z(Λ), two maps of
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k-spaces are associated:

χ : R(A, e, λ) = A⊕Ae⊗Λ eA −→ k,

a+
n∑

i=1

aie⊗ ebi �→
n∑

i=1

(aie⊗ ebi)ζ =
n∑

i=1

(ebiaie)ιe for ai, bi ∈ A,

γ : Ae⊗Λ eA −→ D(A),

ae⊗ eb �→ [a′ �→ (eba′ae)ιe for a, a′, b ∈ A].

Lemma 5.1.

(1) For any r1, r2 ∈ R(A, e, λ), (r1 ∗ r2)χ = (r2 ∗ r1)χ, where ∗ denotes the multiplication of
R(A, e, λ).

(2) The map γ is a homomorphism of A-A-bimodules. It is an isomorphism if and only if the map
(·e) : EndAop(A) → EndΛop(Ae) induced from right multiplication by e is an isomorphism of
algebras.

(3) If ε : D(A) → k denotes the map sending f ∈ D(A) to (1)f , then ζ = γ ε.

Proof. (1) It suffices to show ((a1 + ae⊗ eb) ∗ (a2 + a′e⊗ eb′))χ = ((a2 + a′e⊗ eb′) ∗ (a1 + ae⊗
eb))χ for any a, a′, b, b′, a1, a2 ∈ A. Indeed, this follows from (a′(ae⊗ eb))ζ = ((ae⊗ eb)a′)ζ and
((ae⊗ eb) ⊗ (a′e⊗ eb′))ωλζ = ((a′e⊗ eb′) ⊗ (ae⊗ eb))ωλζ, by the definitions of ζ and ωλ in
Section 3.1.

(2) There is a canonical isomorphism ϕ : Ae⊗Λ D(Ae) → D(EndΛop(Ae)), ae⊗ f �→ [g �→
(ae)gf ] for a ∈ A, f ∈ D(Ae) and g ∈ EndΛop(Ae). Let ϑ : A→ EndAop(A) be the isomorphism
which sends a to (a·). Then the composition of the maps

Ae⊗Λ eA
Ae⊗ι−→ Ae⊗Λ D(Ae)

ϕ−→ D(EndΛop(Ae))
D(·e)−→ D(EndAop(A))

D(ϑ)−→ D(A)

coincides with γ. Clearly, all the maps above are homomorphisms of A-A-bimodules. Thus, γ is
a homomorphism of A-A-bimodules. Since D : k-mod → k-mod is a duality, γ is an isomorphism
if and only if the map (·e) in (2) is an isomorphism of algebras.

(3) This follows from (ae⊗ eb)ζ = (ebae)ιe for a, b ∈ A. �

From now on, let (A, e) be a gendo-symmetric algebra. Then add(Ae) coincides with the full
subcategory of A-mod consisting of projective-injective A-modules. If e′ is another idempotent
element of A such that add(Ae) = add(Ae′), then the mirror-reflective algebras R(A, e) and
R(A, e′) are isomorphic as algebras by Lemma 3.6(1). So, for simplicity, we write R(A) for
R(A, e).

In the following, we describe R(A) as a deformation of the trivial extension of A. Let Λ :=
eAe and ι : eA→ D(Ae) be an isomorphism of Λ-A-bimodules (see Lemma 2.2(2)). Then Λ
is symmetric and eA is a generator over Λ. Moreover, there are algebra isomorphisms A �
EndΛ(eA) and Aop � EndΛop(Ae). By Lemma 5.1(2), there is an isomorphism of A-A-bimodules:
γ : Ae⊗Λ eA

�−→ D(A). Since A � EndΛ(eA) and eA is a generator over Λ, the functor e(−)e :
Ae-Mod → Λe-Mod between the categories of bimodules induces an algebra isomorphism Z(A) →
Z(Λ). So, for λ ∈ Z(Λ), there exists a unique element λ′ ∈ Z(A) such that eλ′e = λ. Define
ωe := (γ ⊗ γ)−1ωeγ : D(A) ⊗A D(A) �−→ D(A) and F = Ae⊗Λ −⊗Λ eA : Λe-Mod → Ae-Mod.
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We obtain the following commutative diagram.

(Ae⊗Λ eA) ⊗A (Ae⊗Λ eA)
ωe

�
��

γ⊗γ

��

Ae⊗Λ eA
F (·λ)

��

γ

��

Ae⊗Λ eA

γ

��
D(A) ⊗A D(A)

ωe �� D(A)
(·λ′)

�� D(A)

Define ωλ := ωe(·λ′) : D(A) ⊗A D(A) −→ D(A). We now extend ωλ to a multiplication on the
direct sum A⊕D(A) by setting

(A⊕D(A)) × (A⊕D(A)) −→ A⊕D(A), ((a, f), (b, g)) �→ (ab, ag + fb+ (f ⊗ g)ωλ)

for a, b ∈ A and f, g ∈ D(A). Denote by A�λ D(A) the abelian group A⊕D(A) with the above-
defined multiplication. By Lemma 3.3(1), A�λ D(A) is an algebra with an algebra isomorphism

γ :=
(

IdA 0
0 γ

)
: R(A, e, λ) �−→ A�λ D(A).

Compared with the trivial extension A�D(A), the following result, suggested by Kunio
Yamagata, shows that A�λ D(A) is also a symmetric algebra for any λ.

Proposition 5.2. If (A, e) is a gendo-symmetric algebra, then R(A, e, λ) is symmetric for λ ∈
Z(Λ).

Proof. Let R := R(A, e, λ). Applying χ : R→ k, we define a bilinear form χ̃ : R×R→ k,
(r1, r2) �→ (r1 ∗ r2)χ for r1, r2 ∈ R. By Lemma 5.1(1), χ̃ is symmetric. To show that R is a
symmetric algebra, it suffices to show that χ̃ is nondegenerate.

Let T := A�λ D(A) and ψ := γ−1χ : T → k. Since γ : R→ T is an algebra isomorphism,
ψ induces a symmetric bilinear form ψ̃ : T × T → k, (t1, t1) ∈ T × T �→ (t1t2)ψ. Clearly, χ̃ is
nondegenerate if and only if so is ψ̃. Further, by Lemma 5.1(3), ψ is given by (a, f) �→ (1)f for
a ∈ A and f ∈ D(A). This implies that ((a, f), (b, g))ψ̃ = (a)g + (b)f + (1)(f ⊗ g)ωλ for b ∈ A
and g ∈ D(A). We now show that ψ̃ is nondegenerate.

Let (a, f) 
= 0. Then a 
= 0 or f 
= 0. If f 
= 0, then there is an element b ∈ A such that
(b)f 
= 0, and therefore ((a, f), (b, 0))ψ̃ = (b)f 
= 0. If f = 0 and a 
= 0, then the canonical iso-
morphism A � DD(A) implies that there is an element g ∈ D(A) such that (a)g 
= 0. In this
case, ((a, 0), (0, g))ψ̃ = (a)g 
= 0. Thus, ψ̃ is nondegenerate. �

Compared with R(A), the algebra S(A, e) depends on the choice of e, that is, if f = f2 ∈ A
such that (A, f) is gendo-symmetric, then S(A, e) and S(A, f) do not have to be isomorphic in
general. The following result collects basic homological properties of S(A, e).

Proposition 5.3. Let S := S(A, e) and B0 := (1 − e)A(1 − e). Then:

(1) S is a symmetric algebra.
(2) B0 can be regarded as an S-module via the surjective homomorphism S → S/SeS � B0 and

contains no nonzero projective S-modules as direct summands.
(3) If add(AAe) ∩ add(AA(1 − e)) = 0, then #(S) = #(A). Moreover, if B0 is indecomposable

as an algebra, then so is S.

Proof. (1) Let R := R(A), ē := e⊗ e ∈ R and e0 := (1 − e) + e ∈ R. Since R is symmetric by
Proposition 5.2(1) and S = e0Re0 by Lemma 3.4(1), S is symmetric.

(2) Since π1 induces a surjective algebra homomorphism π′1 : S → B0 such that S/SeS � B0

(see Lemma 3.4 for notation), B0 can be regarded as an S-module. Assume that the S-module B0
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contains an indecomposable projective direct summand X. Then there is a primitive idempotent
element f ∈ A such that 1 − e = f + f ′ with f and f ′ orthogonal idempotent elements in A, and
X � Sf as S-modules. Clearly, SeSf = 0, (f)π′2 = f , (1 − e)π′2 = 1 − e and (SeSf)π′2 = AeAf .
Consequently, HomA(Ae,Af) � eAf = 0, and therefore HomA(Af,Ae) � DHomA(Ae,Af) = 0.
By Lemma 2.2(2), Af can be embedded into (Ae)n for some n ≥ 1. This implies Af = 0, a
contradiction.

(3) Since ēSē � eAe by Lemma 3.5(2), it follows from (2) that #S(A) = #(eAe) + #(B0).
Due to add(Ae) ∩ add(A(1 − e)) = 0, we have #(A) = #(eAe) + #(B0) and #S(A) = #(A).
The second assertion in (3) follows from Proposition 3.7(2). �

5.2 Mirror-reflective algebras and Auslander–Gorenstein algebras
In this subsection we construct new gendo-symmetric algebras from minimal Auslan-
der–Gorenstein algebras. Consequently, there is a series of algebras such that in each step the
dominant dimensions increase at least by 2. This is based on study of mirror-reflective algebras.
Finally, we will give a proof of Theorem 1.4, which will be partially used to prove Theorem 1.2(2).

By Lemma 3.4, we have an algebra automorphism φ : R(A) → R(A) and two surjective alge-
bra homomorphisms π1, π2 : R(A) → A such that π2 = φπ1. Through π1 we regard A-modules
as R(A)-modules in the following discussion. Thus, A-mod is a Serre subcategory of R(A)-mod,
that is, it is closed under direct summands, submodules, quotients and extensions in R(A)-mod.
Let

φ∗ : R(A)-mod −→ R(A)-mod and (π2)∗ : A-mod −→ R(A)-mod

be the restriction functors induced by φ and π2, respectively. Then φ∗ is an auto-equivalence and
φ∗(X) = (π2)∗(X) for X ∈ A-mod.

Lemma 5.4. Suppose that Λ is a symmetric algebra and N is a basic Λ-module without nonzero
projective direct summands. Let A := EndΛ(Λ ⊕N), e be an idempotent element of A corre-
sponding to the direct summand Λ of Λ ⊕N , and R := R(A, e). If ΛN is m-rigid for a natural
number m, then the following statements hold.

(1) The R-module A(1 − e) is (m+ 2)-rigid and there are isomorphisms of R-modules:

Ωm+3
R (A(1 − e)) � Ωm+2

R (φ∗(Ae⊗Λ N)) � φ∗(HomΛ(eA,Ωm+2
Λ (N))).

(2) If Ωm+2
Λ (N) � N , then Ωm+3

R (A(1 − e)) � φ∗(A(1 − e)) and the R-module A(1 − e) is (2m+
4)-rigid. In this case, Ω2m+6

R (A(1 − e)) � A(1 − e).

Proof. (1) By the proof of Proposition 4.12(2), π2 induces an isomorphism ToreRe
i (Re, eR) �

TorΛi (Ae, eA) for all i ≥ 1. Since Λ is symmetric and D(Ae) � eA by Lemma 2.2(2), we have

DTorΛi (Ae, eA) � Exti
Λ(eA,D(Ae)) � Exti

Λ(eA, eA) = Exti
Λ(Λ ⊕N,Λ ⊕N) � Exti

Λ(N,N).

As ΛN is m-rigid, we have ToreRe
i (Re, eR) = 0 for 1 ≤ i ≤ m. By Proposition 4.12(1), I := ReR

is 2-idempotent. Therefore, I is (m+ 2)-idempotent by Lemma 4.3(1). Further, it follows from
Lemma 4.3(2) that RR/I is (m+ 2)-rigid. Since R/I � A as R-modules, RA is (m+ 2)-rigid.
Note that RA � R(e− e) ⊕A(1 − e) by Lemma 3.5(2). As R is symmetric by Proposition 5.2,
we see that R(e− e) is projective-injective. Consequently, RA(1 − e) is (m+ 2)-rigid.

The proof of Proposition 4.12(1) implies I � Re⊗eRe eR as R-R-bimodules. By
Lemma 3.5(2), π2 restricts to an algebra isomorphism eRe→ Λ and also an isomorphism
Re→ Ae of abelian groups. Via the algebra isomorphism, we can regard Re as an R-Λ-bimodule.
Then Re � (π2)∗(Ae) = φ∗(Ae) as R-Λ-bimodules. This gives a natural isomorphism
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Re⊗Λ − �−→ φ∗(Ae) ⊗Λ − of functors from Λ-proj to R-proj. Since N has no nonzero pro-
jective direct summands, add(AAe) ∩ add(AA(1 − e)) = 0. From A⊗R Re � Ae � Re and A⊗R

R(1 − e) � A(1 − e), we obtain add(Re) ∩ add(R(1 − e)) = 0. Since I(1 − e) is isomorphic to
Re⊗eRe eR(1 − e), which is a quotient module of (Re)n for some n, we deduce that I(1 − e)
does not contain nonzero direct summands in add(R(1 − e)). Thus, the surjection RR(1 −
e) → A(1 − e) induced by π1 is a projective cover of the R-module A(1 − e), and therefore
ΩR(A(1 − e)) = I(1 − e). Since π2 induces an isomorphism eR→ eA and sends 1 − e to 1 − e by
Lemma 3.5(2), we have eR(1 − e) � eA(1 − e) and

ΩR(A(1 − e)) � Re⊗eRe eA(1 − e) � Re⊗Λ eA(1 − e) � φ∗(Ae) ⊗Λ N = φ∗(Ae⊗Λ N).

Let · · · → Qm+1
∂−→ Qm → · · · → Q1 → Q0 → N → 0 be a minimal projective resolution of ΛN .

Then it follows from eA(1 − e) = N and TorΛi (Ae,N) � DExti
Λ(N,N) = 0 for 1 ≤ i ≤ m that

the sequence

Ae⊗Λ Qm+1
Ae⊗∂−→ Ae⊗Λ Qm −→ · · · −→ Ae⊗Λ Q1 −→ Ae⊗Λ Q0 −→ Ae⊗Λ N −→ 0

is exact. As the composition of AAe⊗Λ − with (e·) is isomorphic to the iden-
tity functor of Λ-mod, we have Ωm+2

A (Ae⊗Λ N) � Ker(Ae⊗ ∂). Note that Ae⊗Λ − �
HomΛ(eA,−) : Λ-proj �−→ add(AAe) since Ae = HomΛ(Λ ⊕N,Λ). This shows Ker(Ae⊗ ∂) �
HomΛ(eA,Ker(∂)) = HomΛ(eA,Ωm+2

Λ (N)), and therefore

Ωm+3
R (A(1 − e)) � Ωm+2

R (φ∗(Ae⊗Λ N)) � φ∗(Ωm+2
R (Ae⊗Λ N)) � φ∗(HomΛ(eA,Ωm+2

Λ (N))).

(2) Let X := A(1 − e). Suppose Ωm+2
Λ (N) � N . Then Ωm+3

R (X) � φ∗(HomΛ(eA, eX)). Since
the functor (e·) : A-mod → Λ-mod induces an algebra isomorphism EndA(A) � EndΛ(eA), we
have X � HomA(A,X) � HomΛ(eA, eX). It follows that Ωm+3

R (X) � φ∗(X). Since φ is an alge-
bra isomorphism with φ2 = IdR by Lemma 3.4(3) and since ΩR commutes with φ∗, we obtain
Ω2m+6

R (X) � X. It remains to show that RX is (2m+ 4)-rigid.
Since R is symmetric, the stable module category R-mod of R is a triangulated cate-

gory with the shift functor [1] = Ω−
R : R-mod → R-mod, where Ω−

R is the cosyzygy functor on
R-mod. Clearly, Extn

R(X1, X2) � HomR(X1, X2[n]) for all n ≥ 1 and X1, X2 ∈ R-mod, where
HomR(X,Y ) denotes the morphism set from X to Y in R-mod. Since the Auslander–Reiten
translation on R-mod coincides with Ω2

R, it follows from the Auslander–Reiten formula that
there is a natural isomorphism DHomR(X1, X2) � HomR(X2, X1[−1]). Consequently, for i ∈ N,
there are isomorphisms

Extm+3+i
R (X,X) � HomR(Ωm+3

R (X), X[i]) � HomR(φ∗(X), X[i])

� DHomR(X[i], φ∗(X)[−1]).

By Lemma 3.4(3), φ is an algebra isomorphism with φ2 = IdR. Thus,

HomR(X[i], φ∗(X)[−1]) � HomR(φ∗(X)[i], X[−1]) � HomR(Ωm+3
R (X), X[−1 − i])

� Extm+2−i
R (X,X)

for 0 ≤ i ≤ m+ 1. This implies Extm+3+i
R (X,X) � DExtm+2−i

R (X,X) for 0 ≤ i ≤ m+ 1. Since
X is (m+ 2)-rigid by (1), it is actually (2m+ 4)-rigid. �

Proposition 5.5. Suppose that Λ is a symmetric algebra and N is a basic Λ-module without
nonzero projective direct summands. Let A := EndΛ(Λ ⊕N), e be an idempotent element of A
corresponding to the direct summand Λ of Λ ⊕N , and R := R(A, e).
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(1) If ΛΛ ⊕N is m-rigid, then RR⊕A(1 − e) is (m+ 2)-rigid.
(2) If ΛΛ ⊕N is m-ortho-symmetric, then RR⊕A(1 − e) is (2m+ 4)-ortho-symmetric.
(3) If ΛΛ ⊕N is maximal m-orthogonal, then RR⊕A(1 − e) is maximal (2m+ 4)-orthogonal.

Proof. (1) Since R is a symmetric algebra by Proposition 5.2, (1) follows from Lemma 5.4(1).
(2) By assumption, ΛN is basic and contains no nonzero projective direct summands.

This implies that AA(1 − e) is basic and contains no nonzero projective-injective direct sum-
mands. We claim that RA(1 − e) contains no nonzero projective direct summands. In fact, by
the proof of Lemma 5.4(1), RR(1 − e) is a projective cover of RA(1 − e). If RA(1 − e) contains
an indecomposable projective direct summand Y , then Y is a direct summand of R(1 − e). Since
R is symmetric, RY must be projective-injective. However, since A-mod ⊆ R-mod is a Serre
subcategory, AY is also a nonzero projective-injective direct summand of AA(1 − e). This is a
contradiction and shows that the above claim holds. Then (2) follows from Lemmas 5.4 and 2.3.

(3) Maximal orthogonal modules over an algebra B are exactly ortho-symmetric B-modules
such that their endomorphism algebras have finite global dimension. Let A1 := EndR(R⊕
A(1 − e)). By (2), to show (3), it suffices to show that gldim(A1) <∞ if gldim(A) <∞

Let B1 := EndR(R⊕A). Since RA � R(e− e) ⊕A(1 − e) by the proof of Lemma 5.4(1), we
know that A1 and B1 are Morita equivalent, and therefore gldim(A1) = gldim(B1). Since the
right A-module eAA is faithful, it follows from Proposition 4.11(3) that if gldim(A) <∞ then
gldim(B1) = gldim(Bop

1 ) <∞. Hence, gldim(A1) <∞. �

Proof of Theorem 1.4. The statement (1) follows from Proposition 5.2. Let R := R(A) and S :=
S(A, e). Then R and S are symmetric by (1) and Proposition 5.3(1). Let A2 := A(A, e) and
B2 := B(A, e). Then A2 and B2 are gendo-symmetric.

Next, we show that (2) and (3) hold for A2. In fact, since A is gendo-symmetric, we can iden-
tify A with EndΛ(Λ ⊕X), where Λ := eAe is symmetric and X = eA(1 − e). As global, dominant
and injective dimensions are invariant under Morita equivalences, the classes of minimal Auslan-
der–Gorenstein algebras and of higher Auslander algebras are closed under Morita equivalences.
Moreover, for a self-injective algebra Γ and M ∈ Γ-mod, it follows from [Mul68, Lemma 3] that
domdim(EndΓ(Γ ⊕M)) equals the maximal natural number n ≥ 2 or ∞ such that M is (n− 2)-
rigid. So, for a basic module X that has no nonzero projective direct summands, the inequality
domdim(A2) ≥ domdim(A) + 2 and the statement (3) follow immediately from Proposition 5.5.
Further, for an arbitrary module X, the consideration can be reduced by a series of Morita
equivalences, as shown below.

We take a direct summand N of X such that N is basic, has no nonzero projective direct
summands and satisfies add(Λ ⊕N) = add(Λ ⊕X). Let B := EndΛ(Λ ⊕N) and f2 = f ∈ A
correspond to the direct summand Λ ⊕N of Λ ⊕X. Then AAf is a progenerator (that is, a
projective generator), and therefore B = fAf is Morita equivalent to A. Since ef = e = fe, we
have R(B) = fAf ⊕ fAe⊗Λ eAf = fRf . Due to R⊗A Af � Rf , the module RRf is a progen-
erator. Thus, R and R(B) are Morita equivalent. Now let H := EndR(B)(R(B) ⊕B(f − e)). If A
is n-minimal Auslander–Gorenstein (respectively, n-Auslander), then so is B, and therefore, so is
H by the case proved above. Next, we shall show that A2 and H are Morita equivalent. Actually,
the restriction of π1 to A is the identity map of A. This implies A⊗R Rf = Af as R-modules,
and therefore add(RA) = add(RAf). Let A′

2 := EndR(Rf ⊕A(1 − e)f) = EndR(Rf ⊕A(f − e)).
Then A2 and A′

2 are Morita equivalent. Since the functor (f ·) : R-mod → R(B)-mod is an
equivalence and f(Rf ⊕A(f − e)) = R(B) ⊕B(f − e), there is an algebra isomorphism A′

2 � H.
Hence, A2 and H are Morita equivalent. Thus, (2) and (3) hold true for A2.
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It remains to show domdim(B2) ≥ domdim(A) + 2. Up to Morita equivalence, we assume
A = EndΛ(Λ ⊕N). If ΛΛ ⊕N is m-rigid for some m ∈ N, then it follows from the first part of
the proof of Lemma 5.4(1) that I is an (m+ 2)-idempotent ideal of R. Let e0 := (1 − e) + e ∈ R.
By Lemma 3.4, we have ee0 = e = e0e, I := ReR = SeS and S/I � (1 − e)A(1 − e) as algebras.
Thanks to Corollary 4.4(1), I is an (m+ 2)-idempotent ideal of S. Further, by Lemma 4.3(2),
SS/I is (m+ 2)-rigid, and therefore SS ⊕ S/I is (m+ 2)-rigid since S is symmetric by
Proposition 5.3(1). Thus, domdim(B2) ≥ domdim(A) + 2, due to [Mul68, Lemma 3]. �

5.3 Recollements of mirror-reflective algebras and Tachikawa’s second conjecture
In this subsection we study the iterated process of constructing (reduced) mirror-reflective
algebras from gendo-symmetric algebras and prove Theorems 1.1 and 1.2.

Throughout this subsection, let (A, e) be a gendo-symmetric algebra over a field. For n ≥ 1,
we inductively define

A1 = B1 := A, R1 := R(A1, e1), S1 := S(A1, f1),

An+1 := EndRn(Rn ⊕An(1An − en)), Rn+1 := R(An+1, en+1),

Bn+1 := EndSn(Sn ⊕ (1Bn − fn)Bn(1Bn − fn)), Sn+1 := S(Bn+1, fn+1),

where e1 = f1 := e, and for n ≥ 1, en+1 ∈ An+1 is the idempotent element corresponding to
the direct summand Rn of the Rn-module Rn ⊕An(1An − en), and fn+1 ∈ Bn+1 is the idem-
potent element corresponding to the direct summand Sn of the Sn-module Sn ⊕ (1Bn − fn)Bn

(1Bn − fn). In other words,

An+1 = A(An, en), Bn+1 = B(Bn, fn) for n ≥ 1

(see Section 1.3 for notation). For convenience, we set

R0 = S0 := eAe and B0 := (1 − e)A(1 − e).

Definition 5.6. For n ≥ 1, the algebras Rn, Sn, An and Bn are called the nth mirror-reflective,
reduced mirror-reflective, gendo-symmetric and reduced gendo-symmetric algebras of (A, e),
respectively.

By Propositions 5.2 and 5.3(1), the algebras Rn and Sn are symmetric. Thus, An and Bn are
gendo-symmetric. They are characterized in terms of Morita context algebras in § 4, just before
Lemma 4.6. Moreover, it follows from Theorem 1.4(2) that domdim(An+1) ≥ domdim(An) + 2
and domdim(Bn+1) ≥ domdim(Bn) + 2. Thus, min{domdim(An),domdim(Bn)} ≥ domdim(A) +
2(n− 1) ≥ 2n.

In the next result we describe the relation between the families An and Bn on the one hand
and the families Rn and Sn on the other hand by derived and stable equivalences of Morita type.
For the definitions and constructions of derived and stable equivalences of Morita type, we refer
to the survey article [Xi18].

Lemma 5.7.

(1) Let In := RnenRn and Jn := Rn(en − en)Rn with en = en ⊗ en ∈ Rn for n ≥ 1. Then An+1

is derived equivalent and stably equivalent of Morita type to the Morita context algebra
Ml(Rn, In, Jn).

(2) Let Kn := SnfnSn and Ln := Sn ∩ (R(Bn)(fn − fn)R(Bn)) for n ≥ 1. Then Bn+1 is
derived equivalent and stably equivalent of Morita type to the Morita context algebra
Ml(Sn,Kn, Ln).
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Proof. (1) There is a surjective algebra homomorphism π1,n : Rn → An with Ker(π1,n) = In
which induces an isomorphism Rn(en − en) � Anen of Rn-modules. Thus, In � ΩRn(An) ⊕Qn

with Qn a projective Rn-module, and Anen is a projective Rn-module. Hence, An+1 is Morita
equivalent to A′

n+1 := EndRn(Rn ⊕An). Let Cn+1 := EndRn(Rn ⊕ In). By [HX13, Corollary 1.2],
for any self-injective algebra Λ and M ∈ Λ-mod, the algebras EndΛ(Λ ⊕M) and EndΛ(Λ ⊕
ΩΛ(M)) are almost ν-stable derived equivalent. Since Rn is symmetric, it follows that A′

n+1

and Cn+1 are almost ν-stable derived equivalent. By [HX10, Theorem 1.1], each almost ν-stable
derived equivalence between finite-dimensional algebras over a field gives rise to a stable equiv-
alence of Morita type. Consequently, An+1 and Cn+1 are both derived equivalent and stably
equivalent of Morita type. It remains to show Cn+1 �Ml(Rn, In, Jn) as algebras.

In fact, since I2
n = In, the inclusion λn : In ↪→ Rn induces EndRn(In) � HomRn(In, Rn).

As Rn is symmetric and Jn = AnnRop
n

(In) by Lemma 3.5(1), we get Rn/Jn � EndRn(In) as
algebras via the restriction of λn. This yields a series of isomorphisms

Cn+1 �
(

Rn In
HomRn(In, Rn) EndRn(In)

)
�

(
Rn In

EndRn(In) EndRn(In)

)

�
(

Rn In
Rn/Jn Rn/Jn

)
,

of which the composition is an isomorphism from Cn+1 to Ml(Rn, In, Jn) of algebras. This
shows (1).

(2) By Lemma 3.4(4), Kn = R(Bn)fnR(Bn) and Sn/Kn � (1Bn − fn)Bn(1Bn − fn). By the
proof of Proposition 4.11(1), AnnSop

n
(Kn) = Ln. Similarly, since Sn is symmetric, we can show

that Bn+1 and EndSn(Sn ⊕Kn) are both derived equivalent and stably equivalent of Morita
type, and that EndSn(Sn ⊕Kn) is isomorphic to Ml(Sn,Kn, Ln) as algebras. �
Remark 5.8. By the proof of Lemma 5.7, Bn+1 and EndSn(Sn ⊕ Sn/Kn) are isomorphic,
while An+1 and EndRn(Rn ⊕An) are Morita equivalent. It follows from Proposition 4.11(1)
that there are recollements of derived module categories (D(An),D(An+1),D(An)) and
(D(Bn),D(Bn+1),D(B0)), which are induced by finitely generated and right-projective idem-
potent ideals of An+1 and Bn+1, respectively.

Proof of Theorem 1.2. We retain all the notation introduced in Lemma 5.7 and its proof.
(1) By Lemma 4.6, there is a recollement (D(Rn/In),D(Ml(Rn, In, Jn)),D(Rn/Jn)) induced

by a finitely generated, left-projective idempotent ideal of Ml(Rn, In, Jn). Thus, the recollement
restricts to a recollement of bounded-above derived categories. Since Rn/In � An � Rn/Jn as
algebras and since An+1 and Ml(Rn, In, Jn) are derived equivalent by Lemma 5.7(1), there is a
recollement (D−(An),D−(An+1),D−(An)).

Similarly, we can apply Lemmas 5.7(2) and 4.6 to show the existence of the recollement
(D−(Sn/Kn),D−(Bn+1),D−(Sn/Ln)). Note that there are isomorphisms of algebras Sn/Ln �
Bn and

Sn/Kn � (1Bn − fn)Bn(1Bn − fn) � (1Bn−1 − fn−1)Bn−1(1Bn−1 − fn−1) � · · ·
� (1 − f1)B1(1 − f1) = B0.

This implies the existence of the second recollement in (1).
(2) Note that R0 is symmetric, A � EndR0(eA) and D(eA) � Ae. Suppose domdim(A) =

∞. By [Mul68, Lemma 3], Exti
R0

(eA, eA) = 0 for all i ≥ 1. It follows from Exti
R0

(eA, eA) �
Exti

R0
(eA,D(Ae)) � DTorR0

i (Ae, eA) that TorR0
i (Ae, eA) = 0 for all i ≥ 1. By

Proposition 4.12(3), the recollements in (2) exist for n = 1. If n ≥ 1, then Rn and Sn are
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symmetric algebras, while An and Bn are gendo-symmetric algebras. Moreover, domdim(An) =
∞ = domdim(Bn) by Theorem 1.4(2) and (1Bn − fn)Bn(1Bn − fn) � B0 as algebras. Thus, by
induction we can show the existence of recollements for n ≥ 1. �

Theorem 1.2 can be applied to investigate homological dimensions and higher algebraic
K-groups. As usual, for a ring R and m ∈ N, we denote by Km(R) the mth algebraic K-group
of R in the sense of Quillen, and by nKm(R) the direct sum of n copies of Km(R) for n ≥ 0. If
R is an Artin algebra, then K0(R) is a finitely generated free abelian group of rank #(R).

Lemma 5.9. Let R be a ring with f2 = f ∈ R such that I := RfR is a stratifying ideal in R.
Suppose that one of the following conditions holds.

(a) Either RI or IR is finitely generated and projective.
(b) There is a ring homomorphism λ : R/I → R such that the composition of λ with the

canonical surjection R→ R/I is an isomorphism. Then Kn(R) � Kn(fRf) ⊕Kn(R/I) for
n ∈ N.

Proof. When (a) holds, the isomorphisms of algebraic K-groups in Lemma 5.9 follow from
[CX16b, Corollary 1.3] or [CX12, Corollary 1.2].

Let π : R→ R/I be the canonical surjection. Clearly, π is the universal localization ofR at the
map 0 → Rf . Since I is a stratifying ideal in R, π is a homological ring epimorphism (also called
stably flat in [NR04]). By [NR04, Theorem 0.5] and [CX16b, Lemma 2.6], the tensor functors
Rf ⊗fRf − : (fRf)-proj → R-proj and (R/I) ⊗R − : R-proj → (R/I)-proj induce a long exact
sequence of algebraic K-groups of rings

· · · → Kn+1(R/I) → Kn(fRf) → Kn(R) → Kn(R/I) → · · · → K0(fRf) → K0(R) → K0(R/I).

Suppose (b) holds. Then the composition of the functors R⊗R/I − : (R/I)-proj → R-proj
with (R/I) ⊗R − : R-proj → (R/I)-proj is an equivalence. This implies that the composi-
tion of the mapsKn(R⊗R/I −) : Kn(R/I) → Kn(R) withKn((R/I) ⊗R −) : Kn(R) → Kn(R/I)
induced from tensor functors is an isomorphism. Consequently, 0 → Kn(fRf) → Kn(R) →
Kn(R/I) → 0 is split-exact. Thus, Kn(R) � Kn(fRf) ⊕Kn(R/I). �
Corollary 5.10. Let n be a positive integer. Then:

(1) findim(An) ≤ findim(An+1) ≤ 2findim(An) + 2 and

findim(B0) ≤ findim(Bn+1) ≤ findim(B0) + findim(Bn) + 2.

Thus,

findim(An+1) ≤ 2n findim(A) + 2n+1 − 2 and

findim(Bn+1) ≤ findim(A) + n(findim(B0) + 2).

Analogous inequalities hold true when finitistic dimension is replaced by global dimension.
(2) K∗(An+1) � 2nK∗(A) and K∗(Bn+1) � nK∗(B0) ⊕K∗(A) for ∗ ∈ N.
(3) If domdim(A) = ∞, then K∗(Rn) � K∗(Λ) ⊕ (2n − 1)K∗(A) and K∗(Sn) � K∗(Λ) ⊕

nK∗(B0) for any ∗ ∈ N.

Proof. (1) By Lemma 5.7(1), An+1 and Ml(Rn, In, Jn) are stably equivalent of Morita type. Since
global and finitistic dimensions are invariant under stably equivalences of Morita type, An+1 and
Ml(Rn, In, Jn) have the same global and finitistic dimensions. Then the statements on An+1 in
(1) hold by (c) in the proof of Proposition 4.11(3) (or by applying [CX17, Corollary 3.12 and
Theorem 3.17] to the recollement (D(Rn/In),D(Ml(Rn, In, Jn)),D(Rn/Jn)) in Theorem 1.2(1)).
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In a similar way, we show the statements on Bn by the recollement (D(B0),D(Bn+1),D(Bn)) in
Theorem 1.2(1).

(2) Derived equivalent algebras have isomorphic algebraic K-groups (see [DS04]). By
Lemma 5.9(a) and the proof of Theorem 1.2(1), we have

K∗(An+1) � K∗(Ml(Rn, In, Jn)) � K∗(Rn/In) ⊕K∗(Rn/Jn) � 2K∗(An)

and

K∗(Bn+1) � K∗(Ml(Sn,Kn, Ln)) � K∗(Sn/Kn) ⊕K∗(Sn/Ln) � K∗(B0) ⊕K∗(Bn).

Starting with A1 = A = B1, we can show the isomorphisms in (2) by induction.
(3) By Lemma 5.9(b) and Theorem 1.2(2), K∗(Rn) � K∗(Rn−1) ⊕K∗(An) and K∗(Sn) �

K∗(Sn−1) ⊕K∗(B0) for n ≥ 1. Together with (2), we can show the isomorphisms in (3) by
induction. �
Remark 5.11. Without assuming domdim(A) = ∞, the isomorphisms in Corollary 5.10(3) still
hold for ∗ = 0. This follows from Corollary 5.10(2) and the fact that if R is a finite-dimensional
algebra over a field and f2 = f ∈ R, then K0(R) � K0(fRf) ⊕K0(R/RfR). Thus, #(Rn) =
#(Λ) + (2n − 1) #(A) and #(Sn) = #(Λ) + n #(B0).

As a consequence of Theorem 1.2, we obtain bounds for the stratified dimensions and ratios
of iterated mirror-reflective algebras of gendo-symmetric algebras which are not symmetric. This
provides a new approach to attacking Tachikawa’s second conjecture.

Corollary 5.12. Let n be a positive integer, and let (A, e) be a gendo-symmetric algebra with
domdim(A) = ∞. If A is not symmetric, then the following statements hold.

(1) 2n − 1 ≤ stdim(eAe) + (2n − 1)(stdim(A) + 1) ≤ stdim(Rn) ≤ #(eAe) + (2n − 1) #(A) − 1
and

n ≤ stdim(eAe) + n(stdim(B0) + 1) ≤ stdim(Sn) ≤ #(eAe) + n#(B0) − 1.

(2) (stdim(A) + 1)/#(A) ≤ limn→∞ sr(Rn) ≤ 1 and

(stdim(B0) + 1)/#(B0) ≤ lim
n→∞

sr(Sn) ≤ 1.

In particular, if B0 is local, then limn→∞ sr(Sn) = 1, where lim means the limit inferior.

Proof. (1) By Theorem 1.2(2) and Proposition 4.9(3), stdim(Rn) ≥ stdim(Rn−1) + stdim(An) +
1 and stdim(Sn) ≥ stdim(Sn−1) + stdim(B0) + 1. Similarly, by Remark 5.8 and
Proposition 4.9(3), we have stdim(An+1) ≥ 2 stdim(An) + 1, that is, stdim(An+1) + 1 ≥
2(stdim(An) + 1). Moreover, by Proposition 4.9(1), stdim(Rn) ≤ #(Rn) − 1 and stdim(Sn) ≤
#(Sn) − 1. Combining these inequalities with Remark 5.11, we get (1) by induction.

(2) This follows from (1) and Remark 5.11. �
Finally, we state the promised connections between (TC2) and stratified dimensions of

algebras in the following theorem, which is the combination of Theorems 1.1(1) and 1.3.

Theorem 5.13. Let k be a field. The following statements are equivalent.

(1) (TC2) holds for all symmetric k-algebras.
(2) No indecomposable symmetric k-algebra has a stratifying ideal apart from itself and 0.
(3) The supremum of stratified ratios of all indecomposable symmetric k-algebras is less than 1.

Proof. (1) ⇒ (2) This is shown in Introduction.
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(2) ⇒ (3) An algebra S has no stratifying ideal apart from itself and 0 if and only if
stdim(S) = 0 if and only if sr(S) = 0. Thus, (3) follows.

(3) ⇒ (1) Suppose that (TC2) does not hold for an indecomposable symmetric algebra S over
k. Then there exists an indecomposable, nonprojective self-orthogonal S-module M . Then A :=
EndS(S ⊕M) is a gendo-symmetric, but not a symmetric algebra. Let Sn be the nth reduced
mirror symmetric algebra of A for n ≥ 1. Then Sn is symmetric by Proposition 5.3(1). As M is
indecomposable, EndS(M) is local. Since M contains no nonzero projective direct summands, S1

is indecomposable by Proposition 5.3(3). Further, by the proof of Theorem 1.2(1), EndS(M) �
(1Bn − fn)Bn(1Bn − fn) as algebras for any n ≥ 1. Combining this fact with Proposition 5.3(2),
we show that Sn is indecomposable by induction. SinceM is self-orthogonal, we see domdim(A) =
∞ by [Mul68, Lemma 3]. It follows from Corollary 5.12(2) that limn→∞ sr(Sn) = 1. Thus, the
supremum in (3) must be 1, a contradiction to the assumption (3). This shows that (3) implies (1).

�
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