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Abstract
We give a simple method to estimate the number of distinct copies of some classes of spanning subgraphs
in hypergraphs with a high minimum degree. In particular, for each k≥ 2 and 1≤ � ≤ k− 1, we show that
every k-graph on n vertices with minimum codegree at least⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(
1
2

+ o(1)
)
n if (k− �) | k,(

1
� k

k−�
�(k− �)

+ o(1)

)
n if (k− �) � k,

contains exp(n log n− �(n)) Hamilton �-cycles as long as (k− �) | n. When (k− �) | k, this gives a simple
proof of a result of Glock, Gould, Joos, Kühn, and Osthus, while when (k− �) � k, this gives a weaker count
than that given by Ferber, Hardiman, and Mond, or when � < k/2, by Ferber, Krivelevich, and Sudakov,
but one that holds for an asymptotically optimal minimum codegree bound.
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1. Introduction
A central problem in extremal graph theory is to find sufficient degree conditions that force the
containment of a given spanning subgraph, and here a classical result of Dirac [10] from 1952
states that every graph on n≥ 3 vertices with minimum degree at least n/2 contains a Hamilton
cycle. In 1995, Bollobás [4] and Bondy [5] asked for estimates of the number of distinct Hamilton
cycles in graphs satisfying Dirac’s condition. Sárközy, Selkow, and Szemerédi [32] used the regu-
larity method in 2003 to show that every graph with n≥ 3 vertices and minimum degree at least
n/2 contains at least cnn! Hamilton cycles, for some constant c> 0. This cannot be improved to
any c> 1/2, as for fixed p> 1/2, the typical random graph G(n, p) satisfies Dirac’s condition and
has (1− o(1))npnn! distinct Hamilton cycles (see [16]). In 2009, Cuckler and Kahn [8] obtained
precise estimates of the number of distinct Hamilton cycles in terms of the minimum degree of
the host graph. In particular, they showed that every n-vertex graph with minimum degree at least
n/2 contains at least ( 12 − o(1))nn! distinct Hamilton cycles, thus matching the bound given by
random graphs.

Our purpose here is to introduce a simple method to bound below the number of copies of
many different spanning subgraphs in graphs and hypergraphs with a high minimum degree and
apply this to give new counting results in dense hypergraphs (Theorems 1.2–1.4). However, let us
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Figure 1. A Hamilton cycle passing through the sets V1, V2, . . . , Vr in order.

already illustrate this method as it would apply to Hamilton cycles in an n-vertex graph G with
minimum degree δ(G)≥ ( 12 + ε)n with ε > 0 fixed and n large. Set r = μn with 1/n� μ � ε,
and partition V(G)=V1 ∪ . . . ∪Vr by choosing the location of each vertex independently and
uniformly at random. With probability at least e−n, the minimum degree of each subgraph G[Vi]
will be at least ( 12 + ε

2 )|Vi|, and there will be a disjoint collection of r edges in G connecting the
setsV1, . . . ,Vr in a cycle in order and connectingVr toV1 (see Fig. 1). Applying classical methods
to find a Hamilton path through each subgraph G[Vi] to connect these edges creates a Hamilton
cycle of G which passes through each of the sets V1, . . . ,Vr in order. As we will prove later, even
though the probability of success here is small, only at least e−n, for this to be true, it is easy to
show that Gmust contain at least cnn! distinct Hamilton cycles (for some fixed 0< c� ε).

For each i ∈ [r] in the above argument, we should expect δ(G[Vi])≥ ( 12 + ε
2 )|Vi| with some

constant probability close to 1 (as μ � ε), and so we would expect this to hold for all i ∈ [r]
with probability at least 2−r ≥ e−n (say) for n large. Because of the dependencies here, this is
not straightforward to prove, but we do this with an iterative partitioning argument inspired by a
technical aspect of the iterative absorption techniques introduced by Barber, Lo, Kühn, andOsthus
[2]. The result of this argument in the graph case for Hamilton cycles is much weaker than what
is already known, but this argument can be used easily in hypergraphs if the subgraph sought can
be constructed from pieces like the cycle in Fig. 1. This allows counting results to be inferred from
the extremal minimal degree for these pieces applied to each hypergraph induced on the sets Vi
in the partition (with some modification to make the required connections).

Dirac’s theorem has been generalised to give minimum degree conditions implying the con-
tainment of many other spanning subgraphs, including F-factors [15, 25], trees with bounded
degree [7, 19, 21], powers of Hamilton cycles [22, 20], and, more generally, graphs with bounded
degree and sublinear bandwidth [6] (see also the excellent surveys [24, 31]). For hypergraphs,
much less is known, but we will recall the progress made for Hamilton �-cycles, powers of tight
cycles, and factors (in Section 1.1), before discussing previous counting results and our main the-
orems (in Section 1.2). Our technique may be applicable to other spanning subgraphs, and in
particular, we note that recent work of Gupta, Hamann, Müyesser, Parczyk, and Sgueglia [14]
classifies some hypergraphs our techniques may apply to.

1.1 Dirac-type problems in hypergraphs
A k-uniform hypergraph (or k-graph) is a hypergraph where every edge consists of exactly k ver-
tices. For a k-graph H and a subset of vertices S⊂V(H), the degree of S, denoted dH(S), is the
number of edges in H containing S. For 1≤ d ≤ k− 1, the minimum d-degree of H, denoted
δd(H), is the minimum of dH(S) over all subsets S⊆V(H) with |S| = d. When d = k− 1, this is
theminimum codegree, δ(H)= δk−1(H).

The first subgraphs we consider in hypergraphs are the Hamilton �-cycles, a well-studied gen-
eralisation of Hamilton cycles to hypergraphs. For k≥ 2 and 0≤ � ≤ k− 1, say that a k-graph C
is an �-cycle if there is a cyclic ordering v1, . . . , vt of V(C) such that every edge of C consists of k
consecutive vertices and every two consecutive edges intersect in exactly � vertices. If � = k− 1,
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then C is called a tight cycle, and if � = 0, then C is a matching. A k-graph H contains a Hamilton
�-cycle if there is an �-cycle C ⊆H withV(C)=V(H) (where it can only exist if k− � divides |H|).

The asymptotic minimum codegree required to guarantee a Hamilton �-cycle in an n-vertex
k-graph is known due to Rödl, Ruciński, and Szemerédi [30] if (k− �)|� and to Kühn, Mycroft,
and Osthus [23] if (k− �) � k, whose results together give the following theorem.

Theorem 1.1. For each γ > 0, k≥ 2, and 1≤ � < k, there exists n0 such that the following holds for
all n≥ n0 with (k− �) | n. If H is an n-vertex k-graph with δ(H)≥ (δk,� + γ )n, where

δk,� :=

⎧⎪⎪⎨
⎪⎪⎩

1
2

if (k− �) | k,
1

� k
k−�

�(k− �)
if (k− �) � k,

(1.1)

then H contains a Hamilton �-cycle.

Due to Theorem 1.1, we say the minimum codegree threshold for a k-graph to contain a Hamilton
�-cycle is δk,�. Note that a Hamilton tight cycle contains a Hamilton �-cycle for every � with
(k− �) | k. The results in Theorem 1.1 are tight in every case up to the ‘error term’ of γ n. For
more discussion of this, and the seemingly much more difficult problem for other degree bounds
δd(H), d < k− 1, see the survey by Kühn and Osthus [26].

We will also consider the powers of Hamilton tight cycles, where for each t ≥ k≥ 2, a k-graph
C is the (t − k+ 1)th power of a tight cycle if there is a cyclic ordering v1, . . . , vs of V(C) so that
{vi, . . . , vi+t−1} spans a k-uniform clique for all i ∈ [s] (working modulo s). When k= 2, this coin-
cides with the usual definition of powers of cycles in graphs, where for each t ≥ 2, the minimum
degree threshold for the containment of the (t − 1)th power of a Hamilton cycle was famously
shown to be t−1

t by Komlós, Sárközy, and Szemerédi [22, 20]. In 2020, Bedenknecht and Reiher
[3] proved that 3-graphs with minimum codegree at least (4/5+ o(1))n contain the square of a
tight Hamilton cycle (which corresponds to t = k+ 1 and k= 3), where it is known that the con-
stant 4/5 cannot be reduced below 3/4 for all n. This was recently widely extended by Pavez-Signé,
Sanhueza-Matamala, and Stein [28], who showed that, with γ > 0 fixed, if an n-vertex k-graph H
has minimum codegree

δ(H)≥
(
1− 1(t−1

k−1
)+ (t−2

k−2
) + γ

)
n, (1.2)

then H contains the (t − k+ 1)th power of a tight Hamilton cycle, provided that n is sufficiently
large. It is not known whether the bounds given in (1.2) are tight up to γ n, though this is true for
the cases t ≥ k= 2 and t = k≥ 2 which were already known [30, 22].

Finally, we will consider factors in hypergraphs. For a k-graph F, a k-graph H contains an
F-factor if it contains a collection of vertex-disjoint copies of F covering every vertex in H. Thus,
a necessary condition for an F-factor in H is that |F| divides |H|. For 1≤ d ≤ k− 1, then, let
μk,d(F) be the smallest number such that for every γ > 0, there is n0 such that if H is an n-vertex
graph with n≥ n0 divisible by |F| and δd(H)≥ (μk,d(F)+ γ )

( n
k−d
)
, then H contains an F-factor.

In contrast to the graph case, where the threshold is known (with moreover a much stronger error
term) for all fixed F due to Komlós, Sárközy, and Szemerédi [15] and Kühn and Osthus [25], for
most cases, we do not have good bounds even in the case d = k− 1 (see the survey by [33] and
references therein).
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1.2 Counting spanning hypergraphs
As in Cuckler and Kahn’s work on Hamilton cycles [8], it is reasonable to believe that an n-vertex
k-graph H with δ(H)≥ δn, for (k− �) | n and δ > δk,�, should contain at least

(1− o(1))n · �k,�(n, δ) (1.3)

distinct Hamilton �-cycles, where �k,�(n, δ) denotes the expected number of distinct Hamilton
�-cycles in the binomial random k-graph on n vertices with edge probability δ. In 2016, Ferber,
Krivelevich, and Sudakov [12] showed that the lower bound (1.3) is correct for every δ > 1/2 and
1≤ � ≤ k/2 and asked if this can be extended to 1≤ � ≤ k− 1 and δ > δk,�. This was partially
answered by Glock, Gould, Joos, Kühn, and Osthus [13], who showed that for every δ > 1/2 and
1≤ � ≤ k− 1, the number of distinct Hamilton �-cycles is exp(n log n− �(n)), which is tight up
to the �(n) error term in the exponent. This result was recently improved by Ferber, Hardiman,
and Mond [11], who proved that the lower bound (1.3) holds for every δ > 1/2 and 1≤ � ≤ k− 2,
thus settling the problem for every 1≤ � ≤ k− 2 such that (k− �) | k. Our contribution is to use
the simple method outlined above to get a bound matching that in [13] that holds for any δ > δk,�
(with δk,� as defined in [1.1]), thus giving a new result when (k− �) � k and � > k/2, as follows.

Theorem 1.2. For each k≥ 2, 1≤ � ≤ k− 1, and γ > 0, there exist n0 and C such that the following
holds for any n≥ n0 with (k− �) | n. Any n-vertex k-graph H with δ(H)≥ (δk,� + γ )n (see [1.1])
contains at least exp(n log n− Cn) distinct Hamilton �-cycles.

No previous bounds on the count of powers of Hamilton tight cycles in hypergraphs with large
codegree have been shown (including in graphs), and here, we use our technique to similarly get
a bound tight up to �(n) error term in the exponent, as follows.

Theorem 1.3. For each t ≥ k≥ 2 and γ > 0, there exist n0 and C such that the following holds
for any n≥ n0. Any n-vertex k-graph H satisfying (1.2) contains at least exp(n log n− Cn) distinct
copies of the (t − k+ 1)th power of a Hamilton tight cycle.

Finally, we consider counting F-factors in dense hypergraphs. When F is a single edge and k|n,
the number of F-factors in a k-graph H with n≥ 3k vertices is equal to the number of Hamilton
0-cycles multiplied by a factor of ((n/k)− 1)!/2. Thus, from the results of Ferber, Krivelevich, and
Sudakov [12] described above, if k | n, then any n-vertex k-graph H with δ(H)≥ δn has at least
(1− o(1))n�k,�(n, δ)/(n/k)! F-factors (with �k,�(n, δ) as defined in [1.3]). In each case as part of
wider work, for 1≤ d ≤ k− 1, Kang, Kelly, Kühn, Osthus, and Pfenninger [18] and Pham, Sah,
Sawhney, and Simkin [29] showed that if F is again a single edge, and k | n, then any n-vertex
k-graph H with δd(H)≥ (μk,d(F)+ γ )

( n
k−d
)
contains at least c−n exp((1− 1/k)n log n) F-factors

where c� γ is fixed, and this result is tight up to the constant c. When d = k− 1, Kang, Kelly,
Kühn, Osthus, and Pfenninger [18] even managed to remove the error term in the minimum
degree condition.

In the graph case (k= 2), Pham, Sah, Sawhney, and Simkin [29] very recently showed that if
F =Kt is the t-vertex complete graph, and t | n, then any n-vertex graph G with δ(G)≥ (1− 1/t)n
contains c−n exp((1− 1/t)n log n) F-factors for some fixed constant c. The degree bound here is
the famously tight Hajnal-Szemerédi bound from [15], and the bound on the number of F-factors
is tight up to the constant c. This proved a recent conjecture of Allen, Böttcher, Corsten, Davies,
Jenssen, Morris, Roberts, and Skokan [1].

Here, our contribution again is to apply our methods to easily match these weaker bounds of
c−n exp((1− 1/|F|)n log n) under the stronger approximate minimum degree condition but to do
this for F-factors for any fixed graph F and all degree bounds, as follows.

Theorem 1.4. For each k≥ 2, 1≤ d ≤ k− 1, and each k-graph F on t ≥ k vertices, there exists n0
and C such that the following holds for any n≥ n0 with t | n. Any n-vertex k-graph H with δd(H)≥
(μk,d(F)+ γ )

( n
k−d
)
contains at least exp

(
(1− 1

t )n log n− Cn
)
distinct F-factors.
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2. Proofs
A k-graph H has vertex set V(H) and edge set E(H) and |H| = |V(H)|. For any U, S⊂V(H) with
|U| ≤ k− 1, d(U, S) is the degree of U in S, that is, the number of edges of H containing U whose
vertices not in U are all in S. The hypergraphH[S] induced by S⊂V(H) has vertex set S and edge
set consisting of all those edges in H contained in S. For a set X and 1≤ � ≤ |X|, let (X

�

)
denote

the collection of subsets of X of size �, and let (X)� denote the set of tuples x= (x1, . . . , x�) ∈ X�

of distinct elements in X. We will use bold letters to denote elements from (X)� or X�. For a, b ∈
(0, 1], we will write a� b to denote that, given b, we can choose a sufficiently small so that the
subsequent statements hold.

2.1 Our main partitioning lemma
Here we prove our main lemma, showing that in any linear (in |H|) minimum degree hypergraph
H, there are many partitions of V(H) into sets with chosen sizes whose induced subgraphs from
H have high minimum degree relative to their sizes (see Lemma 2.3). We need a slightly stronger
condition to connect the subgraphs than found in these induced subgraphs, which motivates the
following definition of a good partition.

Definition 2.1. Let k≥ 2, δ ∈ [0, 1], and n= (n1, . . . , nr) ∈Nr . For an n-vertex k-graph H, we say
that a partition V(H)=V1 ∪ . . . ∪Vr is (n, δ)-good if (working modulo r in the indices) we have

P1 |Vi| = ni for each i ∈ [r], and
P2 for each i ∈ [r] and U ⊆Vi−1 ∪Vi ∪Vi+1 with |U| = k− 1, d(U,Vi)≥ δ|Vi|.
To find many good partitions, we will choose an appropriate distribution n for the size of the

subsets and partition V(H)=V1 ∪ . . . ∪Vr uniformly at random subject to P1. We then show
(for the parameters we use and with n large) that P2 holds with probability at least e−n, a relatively
small probability but still enough to show that many partitions are good. For any fixed i ∈ [r],
P2 will hold with constant probability, and the only difficulty here is to show that (despite many
dependencies) this is true for all i ∈ [r] with probability at least e−n. To do this, we form the
random partition iteratively, each time dividing the subsets in two and tracking how theminimum
degree condition (or more precisely something akin to P2) changes in the subgraphs induced on
the sets. This is inspired by part of the analysis in the work by Barber, Lo, Kühn, and Osthus [2]
introducing iterative absorption, and we use some similar calculations to those in [2].

For our analysis, we need the following standard concentration result for hypergeometric
random variables (see, e.g. [17] for the standard definition of such a variable with parameters
N, n, andm).

Theorem 2.2 (see, e.g. Theorem 2.10 in [17]). Let X be a hypergeometric random variable with
parameters N, n, and m. Then, for any t > 0,

P(|X −EX| ≥ t)≤ 2e−2t2/n.

We can now state and prove our key lemma (see also Lemma 2.11 for a stronger result for � = 0).

Lemma 2.3. Let 1≤ � < k and let 1/n� 1/m� δ, γ , 1/k satisfy (k− �) | n. Then, there exists a
tuple n= (n1, . . . , nr) with

∑
i∈[r] ni = n and, for each i ∈ [r], m≤ ni ≤ 5m and (k− �) | ni, such

that the following holds. If H is an n-vertex k-graph with δ(H)≥ (δ + γ )n, then the number of
(n, δ + γ /2)-good partitions of V(H) is at least e−n( n

n1,...,nr
)
.

Proof. Let s satisfy 2m≤ n/2s < 4m and let r = 2s. Since (k− �) | n, we can choose integers ni,
i ∈ [r], so thatm≤ ni ≤ 5m and (k− �)|ni, for each i ∈ [r],

∑
i∈[r] ni = n, and |ni − nj| ≤ 2k for all
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1≤ i< j≤ r. We will show that the lemma holds with n := (n1, . . . , nr), so let H be any n-vertex
k-graph with δ(H)≥ (δ + γ )n.

We start by iteratively partitioning V(H) in 2 at random. For each 0≤ i≤ s, let ri = 2i, and for
each 0≤ i≤ s and j ∈ [ri], let

mi,j =
j·2s−i∑

i′=(j−1)·2s−i+1

ni′ . (2.1)

Let V0,1 =V(H). Iteratively, do the following for each i ∈ [s]. For each j ∈ [ri−1], uniformly at
random divide Vi−1,j into two sets Vi,2j−1 and Vi,2j so that |Vi,2j−1| =mi,2j−1 and |Vi,2j| =mi,2j,
noting that

|Vi−1,j| =mi−1,j =
j·2s−i+1∑

i′=(j−1)·2s−i+1+1

ni′ =
(2j−1)·2s−i+1∑

i′=(2j−2)·2s−i+1

ni′ +
2j·2s−i+1∑

i′=(2j−1)·2s−i+1

ni′ =mi,2j−1 +mi,2j.

Note that this process ends with the partitionV(H)=Vs,1 ∪Vs,2 ∪ . . . ∪Vs,r with |Vs,i| =ms,i = ni
for each i ∈ [r], whose distribution is that of a partition of V(H) chosen uniformly at random
subject to these set sizes.

Now, for each 0≤ i≤ s and j ∈ [ri], let Ei,j be the event where, for every U ⊂Vi,j−1 ∪Vi,j ∪
Vi,j+1 (with, as in later occurrences, addition modulo ri in the second subscript), if |U| = k− 1,
then

d(U,Vi,j)≥
(
δ + γ − 2m−1/4

i,j

)
mi,j. (2.2)

For each 0≤ i≤ s, let Ei be the event that Ei,j holds for all j ∈ [ri], noting that E0 holds because
δ(H)≥ (δ + γ )n. We will now show that the lemma is implied by the following claim.

Claim 2.4. For each i ∈ [s], P(Ei|Ei−1)≥ exp(−ri−1).

Note that if Es holds, then (Vs,1, . . . ,Vs,r) is (n, δ + γ /2)-good as ms,i = ni ≥m for each i ∈
[r] and 1/m� γ . Thus, considering the distribution of the random partition V(H)=Vs,1 ∪Vs,2
∪ . . . ∪Vs,r , the number of (n, δ + γ /2)-good partitions of V(H) is at least P(Es) · n!

n1!...nr ! so that
the lemma follows from the claim as

P(Es)≥
∏
i∈[s]

P(Ei|Ei−1)≥ exp
(
−
∑
i∈[s]

ri−1
)

≥ exp(−rs)= exp(−2s)≥ exp(−n/2m)≥ exp(−n).

Thus, it is only left to prove the claim.

Proof of Claim 2.4. Fix i ∈ [s]. For each j ∈ [ri−1], let Fi−1,j be the event that, for every U ⊂
Vi−1,j−1 ∪Vi−1,j ∪Vi−1,j+1 with |U| = k− 1, we have

d(U,Vi,2j−1)≥ (δ + γ − 2m−1/3
i,2j−1)mi,2j−1 and d(U,Vi,2j)≥ (δ + γ − 2m−1/3

i,2j )mi,2j.

Note that, for each j ∈ [ri−1], as Vi−1,j =Vi,2j−1 ∪Vi,2j, if Fi−1,j holds, then both Ei,2j−1 and Ei,2j
hold. Furthermore, once we have chosen the partition V(H)=Vi−1,1 ∪Vi−1,2 ∪ . . . ∪Vi−1,ri−1 ,
the events Fi−1,j, j ∈ [ri−1], are independent. We will show that if we choose a partition V(H)=
Vi−1,1 ∪Vi−1,2 ∪ . . . ∪Vi−1,ri−1 for which Ei−1 holds, then, for each j ∈ [ri−1], the probability that
Fi−1,j holds is at least e−1, and thus the probability that every such Fi−1,j, j ∈ [ri−1], and hence
Ei holds is at least exp(−ri−1). If this holds for every partition V(H)=Vi−1,1 ∪Vi−1,2 ∪ . . . ∪
Vi−1,ri−1 for which Ei−1 holds, we then have that P(Ei|Ei−1)≥ exp(−ri−1), as required.

Suppose then that we have chosen our partition V(H)=Vi−1,1 ∪Vi−1,2 ∪ . . . ∪Vi−1,ri−1 and
that Ei−1 holds, and let j ∈ [ri−1]. Let U ⊂Vi−1,j−1 ∪Vi−1,j ∪Vi−1,j+1 satisfy |U| = k− 1. Note
that d(U,Vi,2j−1) has a hypergeometric distribution with parameters N′ := mi−1,j, n′ := mi,2j−1,
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andm′ := d(U,Vi−1,j). Furthermore, as Ei−1, and hence Ei−1,j holds, we have that

E[d(U,Vi,2j−1)]= mi,2j−1

mi−1,j
· d(U,Vi−1,j)

(2.2)≥
(
δ + γ − 2m−1/4

i−1,j

)
mi,2j−1.

Therefore, by Theorem 2.2, we have

P
(
d(U,Vi,2j−1)≤

(
δ + γ − 2m−1/4

i−1,j

)
mi,2j−1 −m2/3

i,2j−1

)
≤ 2 exp(−2m1/3

i,2j−1). (2.3)

Now, for each i′, j′ ∈ [s], we have |ni′ − nj′ | ≤ 2k≤ ni′/10 and hence ni′ ≤ 11nj′/10. Thus, by (2.1)
we havemi,2j−1 ≤ 11mi−1,j/20 and hence

2m−1/4
i−1,j ·mi,2j−1 +m2/3

i,2j−1 ≤ ( 1120 )
1/4 · 2m3/4

i,2j−1 +m2/3
i,2j−1 ≤ 2m3/4

i,2j−1, (2.4)

asmi,2j−1 ≥m and 1/m� 1. In combination, (2.3) and (2.4) give us that

P
(
d(U,Vi,2j−1)≤

(
δ + γ − 2m−1/4

i,2j−1

)
mi,2j−1

)
≤ 2 exp

(
−2m1/3

i,2j−1

)
.

Similarly, this holds withVi,2j andmi,2j in place ofVi,2j−1 andmi,2j−1. Furthermore, from (2.1) and
that ni′ ≤ 11nj′/10 for all i

′, j′ ∈ [s], it follows that |Vi−1,j−1 ∪Vi−1,j ∪Vi−1,j+1| ≤ 66mi,2j−1/10 and
≤ 66mi,2j/10. Therefore, using a union bound over all U ⊂Vi−1,j−1 ∪Vi−1,j ∪Vi−1,j+1 satisfying
|U| = k− 1, we have that Fi−1,j holds with probability at least

1− (7mi,2j−1)k−1 · 2 exp(−2m1/3
i,2j−1)− (7mi,2j)k−1 · 2 exp(−2m1/3

i,2j )≥ e−1,

as required, where we have used thatmi,2j−1,mi,2j ≥m and 1/m� 1. �

2.2 Counting Hamilton �-cycles
We say that a k-graph P with t vertices is an �-path, where 1≤ � < k, if (k− �) | (t − �), and there
exists an ordering v1, . . . , vt ofV(P) such that every edge of P consists of k consecutive vertices and
such that every two consecutive edges intersect in exactly � vertices. We will usually identify an
�-path P with a corresponding ordering v1, . . . , vt . The ends of an �-path P = v1 . . . vt are
the tuples v= (v1, . . . , v�) and v′ = (vt−�+1, . . . , vt), in which case we say that v and v′ are �-
connected by P. We say that a k-graph H contains a Hamilton �-path if there is an �-path P in H
with V(P)=V(H).

Definition 2.5. A k-graph H is Hamilton �-path connected if, for any pair of vertex-disjoint tuples
u, v ∈ (V(H))�, there is a Hamilton �-path in H which �-connects u with v.

The next lemma states that k-graphs with large minimum codegree which satisfies the natu-
ral divisibility conditions are Hamilton �-path connected. The proof of Lemma 2.6 is a very
straightforward modification of the original argument of Kühn, Mycroft, and Osthus [23] for
finding Hamilton �-cycles via the absorption method (as can be seen in the special case when
(k− �) | k, where this was done by Glock, Gould, Joos, Kühn, and Osthus as [13, Lemma 3.7]).
For completion, however, we include a proof in an appendix.

Lemma 2.6. Let 1≤ � < k and let 1/n� γ , 1/k satisfy (k− �) � (n− �). If H is an n-vertex k-graph
with δ(H)≥ (δk,� + γ )n (see [1.1]), then H is Hamilton �-path connected.

Now we are ready for the proof of our first main result.

Proof of Theorem 1.2. Let δ = δk,� and let m be such that every k-graph on m′ ≥m/2 vertices
with minimum codegree at least (δ + γ /4)m′ is Hamilton �-path connected (using Lemma 2.6)
and such that 1/m� δ, γ , 1/k. Let n0 and C be such that, for every n≥ n0, 1/n� 1/C � 1/m. Let
H be an n-vertex k-graph with δ(H)≥ (δ + γ )n. By Lemma 2.3, there exist a tuple n= (n1, . . . , nr)
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with
∑

i∈[r] ni = n and, for each i ∈ [r], m≤ ni ≤ 5m and (k− �) | ni, such that V(H) has at least
e−n( n

n1,...,nr
)
partitions that are (n, δ + γ /2)-good.

Now, given a partitionP = (V1, . . . ,Vr) ofV(H), say that a Hamilton �-cycleQ isP-respecting
if, for each i ∈ [r] (for some direction and working modulo r in the subscript), all the vertices in
Vi appear concurrently on Q, and the interval of vertices in Vi on Q is just before the interval of
vertices in Vi+1 on Q. (See Fig. 1 for a Hamilton cycle that is (V1, . . . ,Vr)-respecting.) �
Claim 2.7. For each (n, δ + γ /2)-good partitionP = (V1, . . . ,Vr),H has aP-respecting Hamilton
�-cycle.

Before proving Claim 2.7, let us show how to deduce the theorem from it. Note that any
Hamilton �-cycle in H respects at most 2n partitions (V1, . . . ,Vr) of V(H) with |Vi| = ni for each
i ∈ [r], as choosing a direction and the first vertex of V1 specifies the ordered partition. Then, by
Claim 2.7 and our bound on the number of (n, δ + γ /2)-good partitions of V(H), the number of
Hamilton �-cycles in H is at least

e−n

2n
·
(

n
n1, . . . , nr

)
= e−n

2n
· n!∏

i∈[r] ni!
≥ e−n

2n
· n!
(5m)!n/m ≥ exp(n log n− Cn), (2.5)

using Stirling’s formula and that 1/n� 1/C � 1/m.
Therefore, it is left only to prove Claim 2.7.

Proof of Claim 2.7. Let P = (V1, . . . ,Vr) be an (n, δ + γ /2)-good partition. For each i ∈ [r],
using that |Vi| ≥m≥ �, pick an arbitrary �-tuple vi = (vi,1, vi,2, . . . , vi,�) ∈ (Vi)�. For each i ∈
[r], let Hi =H[Vi ∪ {vi−1,1, . . . , vi−1,�}] (working modulo r in the indices) so that, as P is
(n, δ + γ /2)-good, we have that δ(Hi)≥ (δ + γ /2)|Vi| ≥ (δ + γ /4)|Hi|. Moreover, |Hi| − � =
ni is divisible by k− �. Therefore, by Lemma 2.6, there is a Hamilton �-path in Hi with
vertex sequence vi−1,1vi−1,2 . . . vi−1,�Livi,1 . . . vi,� for some sequence Li. Then, the ordering
L1v1,1 . . . v1,�L2v2,1 . . . v2,�L3 . . . vr−1,1 . . . vr−1,�Lrvr,1 . . . vr,� is an ordering of the vertices of H
which gives a Hamilton �-cycle respecting the partition (V1, . . . ,Vr), as required. �

2.3 Counting powers of tight Hamilton cycles
For Theorem 1.3, we use the following definitions. Let t ≥ k≥ 2 and let H be a k-graph. The
t-clique graph of H, denoted Kt(H), is the t-graph with vertex set V(Kt(H))=V(H) where
{v1, . . . , vt} is an edge of Kt(H) if and only if H[{v1, . . . , vt}] is a k-uniform clique in H.

Our proof of Theorem 1.3 is very similar to the proof of Theorem 1.2, so we do not repeat it
here and only state the differences. The main thing is to note that, given

• a partitionV(H)=V1 ∪ . . . ∪Vr and distinct vertices vi,1, . . . , vi,t−1 ∈Vi, i ∈ [r], such that,
for each i ∈ [r], H[{vi,1, . . . , vi,t−1}] is a (t − 1)-clique, and

• orderings Li, i ∈ [r], of the vertices in Vi \ {vi,1, . . . , vi,t−1} where
vi−1,1, . . . , vi−1,t−1Livi,1, . . . , vi,t−1 is the ordering of a Hamilton tight path in
Kt(H[Vi ∪ {vi−1,1, . . . , vi−1,t−1}]) for each i ∈ [r],

the ordering L1v1,1 . . . v1,t−1L2v2,1 . . . v2,t−1L3 . . . vr−1,1 . . . vr−1,t−1Lrvr,1 . . . vr,t−1 is an ordering
of the vertices of H which gives a (t − k+ 1)th power of a Hamilton tight cycle respecting the
partition (V1, . . . ,Vr). Thus, the proof of Theorem 1.3 follows identically to that of Theorem 1.2
using the following proposition to select the vertices vi,1, . . . , vi,t−1 ∈Vi, i ∈ [r], in place of the
vertices vi,1, . . . , vi,� ∈Vi, i ∈ [r], and the following lemma in place of Lemma 2.6.

Proposition 2.8. Let t ≥ k≥ 2 and let 1/n� γ , 1/t. If H is an n-vertex k-graph satisfying (1.2),
then H contains a t-vertex k-uniform clique.
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Lemma 2.9. Let t ≥ k≥ 2 and let 1/n� γ , 1/t. If H is an n-vertex k-graph satisfying (1.2), then
for every pair of disjoint tuples v, v′ ∈ (V(H))t−1 whose vertices support a (t − 1)-vertex k-uniform
clique in H, there is a Hamilton tight path in Kt(H) with ends v and v′.

Proposition 2.8 can be proved simply by picking the vertices of the clique greedily, where the
codegree bound used is comfortably sufficient for this. The proof of Lemma 2.9 follows the same
ideas as the proof of Lemma 2.6 but uses the results of Pavez-Signé, Sanhueza-Matamala, and
Stein [28] in place of those by Kühn, Mycroft, and Osthus [23]. We comment further on this in
the appendix.

2.4 Counting F-factors
To count factors, we no longer need to connect the different parts of a good partition, but we
do wish to have conditions for different degrees than just the codegree, motivating the following
definition.

Definition 2.10. Let k, d ∈N satisfy 1≤ d ≤ k− 1. Let μ > 0 and n= (n1, . . . , nr) ∈Nr . For an
n-vertex k-graph H, say that a partition V(H)=V1 ∪ . . . ∪Vr is (n, d,μ)-good if, for each i ∈ [r],
|Vi| = ni and δd(H[Vi])≥ μ

( ni
k−d
)
.

With only minor modifications, including using McDiarmid’s inequality (see Lemma 1.2 in [27])
to bound similar events to the events Ei,j, the proof of Lemma 2.3 can be adapted to prove the
following.

Lemma 2.11. Let 1≤ d ≤ k− 1 and let 1/n� 1/m� γ ,μ, 1/k, 1/t satisfy t | n. Then, there exists
a tuple n= (n1, . . . , nr) ∈Nr, with

∑
i∈[r] ni = n, and m≤ ni ≤ 5m and t | ni for each i ∈ [r], such

that the following holds. If H is an n-vertex k-graph with δd(H)≥ (μ + γ )
( n
k−d
)
, then the number of

(n, d,μ + γ /2)-good partitions in H is at least e−n( n
n1,...,nr

)
.

Recalling that μk,d(F) is defined at the end of Section 1.1, we are now ready for the proof of
Theorem 1.4.

Proof of Theorem 1.4. Let 1≤ d ≤ k− 1 and let F be a fixed k-graph on t vertices. Let m
be such that every k-graph on m′ ≥m vertices, with t |m′, and minimum d-degree at least
(μk,d(F)+ γ /2)

( m′
k−d
)
, contains an F-factor (using the definition of μk,d(F)). Let n0 and C be

such that, for every n≥ n0, 1/n� 1/C � 1/m, and let H be an n-vertex k-graph with δd(H)≥
(μk,d(F)+ γ )nk−d. By Lemma 2.11, there is a tuple n= (n1, . . . , nr), with

∑
i∈[r] ni = n, andm≤

ni ≤ 5m and t | ni for each i ∈ [r], such that the number of (n, d,μk,d(F)+ γ /2)-good partitions
of V(H) is at least e−n( n

n1,...,nr
)
.

For each (n, d,μk,d(F)+ γ /2)-good partition P = (V1, . . . ,Vr), by the definition ofm, there is
an F-factor in H[Vi] for each i ∈ [r], and therefore, H has an F-factor, G, say, where G[Vi] is an
F-factor of H[Vi] for each i ∈ [r]. On the other hand, given an F-factor G, the number of possible
partitions P = (V1, . . . ,Vr), such that G[Vi] is an F-factor of H[Vi] and |Vi| = ni for each i ∈ [r],
is at most (n/t)n/t ≤ exp((n log n)/t). Therefore, the number of distinct F-factors inH is (similarly
to [2.5]) at least

e−n · exp(−(n/t) log n) ·
(

n
n1, . . . , nr

)
≥ e−n · exp(−(n/t) log n) · n!

(5m)!n/m
≥ exp

(
(1− 1

t )n log n− Cn
)
,

as required, where we have used Stirling’s formula and that 1/n� 1/C � 1/m. �
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Appendix A. Proof of Lemmas 2.6 and 2.9
Here we provide a proof for Lemma 2.6. The proof is a straightforwardmodification of the original
argument by Kühn, Mycroft, and Osthus [23] for finding Hamilton �-cycles in dense hypergraphs
via the absorption method.

Definition A.1. Let 1≤ � < k and let H be a k-graph. Say that an �-path P in H, with ends a, b ∈
(V(H))�, can absorb a collection of pairwise disjoint (k− �)-sets S1, . . . , St if

(i) P contains no vertex from
⋃

i∈[t] Si and
(ii) there is an �-path Q with vertex set V(Q)=V(P)∪⋃i∈[t] Si and with ends a and b.

In this case, we say that P is an absorbing path for S1, . . . , St .

We may use a similar definition of absorbing paths that works for powers of tight cycles (for
Lemma 2.9), in which case the absorbing paths are tight paths in the t-clique graph Kt(H) that can
absorb vertices rather than (k− �)-sets (see Definition 7.1 in [28]).

Definition A.2. Let 1≤ � < k and let H be an n-vertex k-graph. Say that a (k− �)-set S⊂V(H) is
(β , t)-good if H contains at least βnt absorbing paths for S, each with exactly t vertices. If S is not
(β , t)-good, we then say that S is (β , t)-bad.

The following result states that most (k− �)-sets are good in k-graphs with linear minimum
codegree.

Lemma A.3 (Lemma 6.2 in [23]). Let k≥ 3 and 1≤ � < k satisfy (k− �) � k, and let 1/n� β �
θ � μ, 1/k. There exists a constant t = t(k, �) such that if H is an n-vertex k-graph with δ(H)≥ μn,
then the number of (β , t)-bad (k− �)-sets in H is at most θnk−�.

The next lemma says that we can find a short path P which can absorb any collection of o(n)
pairwise disjoint good sets and, moreover, every vertex outside P belongs to only a few bad sets.

Lemma A.4 (Lemma 6.3 in [23]). Let k≥ 3 and 1≤ � < k satisfy (k− �) � k, and let 1/n� α �
β � θ � μ, 1/k. If H is an n-vertex k-graph with δ(H)≥ μn and t = t(k, �) from Lemma A.3, then
H contains an �-path P on at most μn vertices such that

(i) every vertex of H −V(P) lies in at most θnk−�−1 (β , t)-bad (k− �)-sets and
(ii) P can absorb any collection of at most αn disjoint (β , t)-good (k− �)-sets of vertices of

H −V(P).

For proving Lemma 2.9, we can show an analogue result in the spirit of LemmaA.4 for the t-clique
graph Kt(H) using Lemma 7.3 in [28] and Step 1 in the proof of Theorem 1.1 in [28].

Next, we have a lemma for when any two disjoint ordered �-sets can be connected by a short
�-path, as follows.
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Lemma A.5 (Corollary 5.4 in [23]). Let k≥ 3 and 1≤ � ≤ k− 1 satisfy (k− �) � k, and let 1/n�
μ, 1/k. If H is an n-vertex k-graph with δ(H)≥ μn, then for any two disjoint ordered �-sets a, b ∈
(V(H))�, there exists an �-path P with ends a and b that contains at most 8k5 vertices.

We have a similar statement in the vein of Lemma A.5 for the clique graph (see [28, Lemma 4.1]),
which states that any two disjoint (t − 1)-sets that support (t − 1)-cliques in H can be connected
in Kt(H) by many short tight paths.

The last two ingredients we need are, first, that the degree conditions are preserved by taking
random subsets and, second, that hypergraphs with large vertex degree have perfect matchings.

Lemma A.6 (Lemma 8.1 in [23]). Let 1≤ d < k and let 1/n� α,μ, 1/k. Let H be an n-vertex k-
graph with δd(H)≥ μ

( n
k−d
)
, and let R⊂V(H) be a random subset of size αn. Then, with probability

1− o(1), we have |NH(S)∩
( R
k−d
)| ≥ μ

(
αn
k−d
)− nk−d− 1

3 for every S ∈ (V(H)
d
)
.

Theorem A.7 (Perfect matching theorem [9]). Let n, k≥ 2 such that k | n. If H is an n-vertex k-
graph with δ1(H)≥ k−1

k (
(n−1
k−1
)− 1), then H contains a perfect matching.

Now we are ready for the proof of Lemma 2.6.

Proof of Lemma 2.6. We begin by choosing constants

1/n� α � β � θ � θ ′ � γ � μ � 1/k,

and let t = t(k, �) from Lemma A.3. Given disjoint �-tuples a= (a1, . . . , a�) and b= (b1, . . . , b�)
in V(H), set H′ =H − {a1, . . . , a�, b1, . . . , b�} and n′ = |H′| = n− 2�, and note that δ(H′)≥
(δk,� + γ /2)n′ as 1/n� 1/k. Using Lemma A.4, find an absorbing �-path P0 in H′ with at most
γ n′/16 vertices which can absorb any collection of at most 2αn′ pairwise disjoint (β , t)-good
(k− �)-sets inV(H′) (here we have used that δ(H′)≥ γ n′/16). LetG be an auxiliary (k− �)-graph
with V(G)=V(H′) and edge set consisting of all those (k− �)-sets in H′ which are (β , t)-good.
By Lemma A.3, for every v ∈V(G) \V(P0), we have

dG(v) ≥
(

n′

k− � − 1

)
− θn′k−�−1 ≥ (1− θ ′)

(
n′

k− � − 1

)
.

Let R⊂V(H′) be a random subset of size αn′. Then, by Lemma A.6, with probability 1− o(1),

(i) dG(v, R)≥ (1− 2θ ′)
( |R|
k−�−1

)
for every v ∈V(G) \V(P0), and

(ii) dH(S, R)≥ (δk,� + γ /4)|R| for every S ∈ (V(H)
k−1

)
.

Moreover, as E[|R∩V(P0)|]= α|P0|, Lemma 2.2 implies that |R∩V(P0)| ≤ 2α|P0| ≤ αγ n′/8
with probability 1− o(1). Therefore, there is a choice of R such that, letting R′ = R \V(P0), we
have

R1 αn′ ≥ |R′| ≥ (1− μ)αn′,

R2 dG(v, R′)≥ (1− μ)
( |R′|
k−�−1

)
for every v ∈V(G) \V(P0), and

R3 dH(S, R′)≥ (δk,� + γ /8)|R′| for every S ∈ (V(H)
k−1

)
.

Let V ′ ⊆V(H′) \ (R′ ∪V(P0)) be a subset obtained by removing at most k− � vertices so that
|V ′| is divisible by k− �. We write H′′ =H[V ′] and note that δ(H′′)≥ (δk,� + γ /16)|H′′|. Use
Theorem 1.1 to find a Hamilton �-cycle in H′′, and hence H′′ contains an �-path P with |P| ≥
|H′′| − 2k. Let x′ = (x′

1, . . . , x′
�) and y′ = (y′

1, . . . , y′
�) be the ends of P0, and let x= (x1, . . . , x�) and
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y= (y1, . . . , y�) be the ends of P. Using LemmaA.5 and R3, we find sequences of vertices Lax′ , Ly′x,
and Lyb such that

• |Lax′ |, |Ly′x|, |Lyb| ≤ 8k5,

• Lax′ , Ly′x and Lyb are pairwise disjoint and contain vertices only from R′, and
• Pax′ = a1 . . . a�Lax′x

′
1 . . . x′

�, Py′x = y′
1 . . . y′

�Ly′xx1 . . . x�, and Pyb = y1 . . . y�Lybb1 . . . b�

are �-paths.

Therefore, the sequence
Q= a1 . . . a�Lax′P0Ly′xPLybb1 . . . b�

is an �-path in H connecting a with b and using at most 24k5 vertices from R′. Let X =V(H) \
V(Q) and note that, because of R1 and R2, every vertex v ∈ X satisfies

dG(v, X)≥ (1− μ)
( |R′|
k− � − 1

)
− 25k5 · |X|k−�−2 ≥ (1− 2μ)

( |X|
k− � − 1

)
, (A.1)

where we have used that |X \ R′| ≤ 24k5 + 2k+ (k− �)≤ 25k5 and 1/n� 1/k. Then, by (A.1)
and Theorem A.7, G[X] contains a perfect matching S1, . . . , Sj, which is a collection of at most
|X| ≤ |R′| + 2k+ (k− �)≤ 2αn pairwise disjoint (β , t)-good (k− �)-sets. Finally, using Lemma
A.4, we can absorb all the vertices from

⋃
i∈[j] Si which concludes the proof. �

The proof of Lemma 2.9 follows a similar strategy. Let us sketch the main steps of the proof
here. Given two disjoint tuples a= (a1, . . . , at−1) and b= (b1, . . . , bt−1) that support (t − 1)-
cliques in H, set H′ =H − {a1, . . . , at−1, b1, . . . , bt−1}. The proof of Lemma 2.9 consists of the
following steps:

• Find a short absorbing path P0 in Kt(H′) capable of absorbing any collection of o(n)
vertices.

• Set aside a reservoir R in H′ −V(P0), and find a Hamilton tight path in Kt(H′ − (V(P0)∪
R)) (this can be done as H′ − (V(P0)∪ R) satisfies (1.2) with a slightly worse error term).

• Using a corresponding connecting lemma ([28, Lemma 4.1]) and the properties of the
reservoir, find an almost spanning path Q with ends a and b which contains P0.

• Finish the embedding using the properties of the absorbing path.

The main difference with the proof of Lemma 2.6 is that, in this case, we do not need to use any
matching result in the absorption step as H contains no bad vertices (see [28, Lemma 7.2]).
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