
THE SECOND MEAN VALUES OF ENTIRE FUNCTIONS 

pR,f = lim sup 
X->co 

Q. I. RAHMAN 

1. Let / (s) be an entire function of the complex variable z = x + iy defined 
by the everywhere absolutely convergent Dirichlet series 

oo 

(1.1) YJ an exp(A„ z) (0 < \n < \n+i -> oo ). 

If 

m(x,f) = sup \f(x + iy)\, 
—oo<2/<oo 

then log m(x,f) is an increasing convex function of x (2), and 

log log m (x,/) 
x 

is called the Ritt order of/(s). For functions of finite Ritt order (5) 

(1.2) log m(x,f) ~ logm(x,f) as x —»°°. 

Here f stands for the derivative of / . 
Let 

72(x,/) = lim — \f(x + iy)\2 dy. 

Gupta (3, Theorem 2) has proved that, for x > xo, 

(1.3) h(xJ')-h(x,f)(t°gI£Xj)y>0. 

We observe that the difference between I2(x,f) and 

is much greater for large x. In fact, the zero on the right-hand side of (1.3) can 
be replaced by 

~^IM) % IM) log (^û). 
We shall deduce various results for I2(x,f) and I2(x,f) from corresponding 
results involving m(x,f) and m(x,f). 

To illustrate the method, we are going to prove the proposed refinement of 
(1.3). 
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LEMMA. If in (1.1) all the coefficients {a„}, n = 1, 2, . . . , are non-negative, 
then for large values of x, 

f ft\ ^ / .A log mix, f) 
m(x,f) > m(x,f) x ' 

From the fact that logm(x,f) is a non-decreasing convex function of x, it 
follows that 

g(x) = Iogi^fei) 
x 

is non-decreasing for large values of x, say x > x0. Since the coefficients {an}, 
n = 1, 2, . . . , are non-negative, m{x,f) = f(x) and m{x,f) = f(x). If 
x > x0, then 

h->+0 h 

= 1 .mexp{*g(*)i-exp{(*-fe)g(*-ft) j 
h->+0 h 

> n m exp{xg(x) | - exp{(x - h)g(x)} 
a-»+o h 

losf wz- (x f) 
= exp{xg(x)}g(x) = m(x,/) - s ^v ' •" , 

and the lemma is proved. 

Now let f(z) be an entire function defined by (1.1), where the coefficients 
are not restricted to be non-negative. Note that the functions represented by 
the series 

oo oo 

] T |aw|2 exp(An z), J2 ^n K | 2 exp(Xw z) 
n=l w = l 

satisfy the hypothesis of our lemma. The coefficients are clearly non-negative. 
The fact that 

X) K | 2 exp(\nz) 
n=l 

represents an entire function <f>(z) follows, for example, from the fact that, for 
every X < 00, 

max \\an\
2 exp(\nz)\ < \an\

2 exp(2\nX), 
Rez<2X 

and 
°" [2 

_ I On 
71=1 

is convergent, its sum being Iî(X,f). The series 

X) K|2exp(2AwX) 
71=1 

I2(X1f). The series 
CO 

^ Aw |aw |2exp(Xnz) 
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represents the function 4>'{z). Applying the lemma to the functions <j>(z) and 
#' (z), we conclude that for large values of x 

oo 

\ l o & 2 \an\
2 exp(2\nx) / œ \ log 2^ 

(1.4) £ X, \an\
2 exp(2X„ x) > I £ k | 2 exp(2X„ *) ) ^ 

rc=l \ w = l / 

and 
oo 

(1.5) 2Z ^n2K|2 exp(2Xw x) 

yZ) x« |^|2exp(2Xnx)J 
l o g X ^n |^|2exp(2Xnx) 

2x 

Thus if x is large enough, say x > x0, then 

oo 

h(x,f) = 23 V* \an\2 exp(2\nx) 

AOglZ \an\
2 exp(2\nx)\ 

> 

+ (2. 

2x 
( 2] K|2exp(2Xwx) ) 

^T2 ( X K|2exp(2X„x) ) ( log]£ |an|2exp(2Xwx) ) 

f l o g £ \an\
2 exp(2\nx)\ / \ 2 

+ ^ «*./)•<*/,<*,/> log ( l a ^ ) . 

This gives the desired refinement of (1.3). 

THEOREM 1. If the Ritt order of f is finite, then 

log 12 (x, / ' ) ~ log I2 (*, / ) , x -» oo. 

We have proved elsewhere that if the function /(s) defined by (1.1) is of 
finite Ritt order pRtfy then for every e > 0, 

(1.6) fn(x,f) < m{x J) exp{x(pRtf + e)}, 

if x is sufficiently large. Since 

1 CT 
l i m 7?F> \f(x + iy)\2dy < {ni(x,f)\2, 

i represented by tli 
oo 

X |aw|2exp(2Xws) 

the Ritt order of the function represented by the series 
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is at most pR,f. Hence, for every e > 0 and sufficiently large x, 

(1.7) Z 2\n \an\
2 exp(2Xwx) < ( Z \an\

2 exp(2X„x) J exp{x(pRtf + e)}. 
w=l \n=l / 

We know (5) that the Ritt order of a function is the same as the Ritt order of 
its derivative. Therefore the Ritt order of the function represented by the 
series 

oo 

Z 2\n \an\
2 exp(2\nz) 

is not greater than pRJ. From (1.6), we obtain 
CO I OO \ 

(1.8) Z 4XW
2 |aJ2exp(2Xwx) < I Z 2XW K | 2 exp(2Xwx) ) exp{x(pR,f + e)}, 

e > 0, x > X(e). 
Inequalities (1.7) and (1.8) are equivalent to 

(1.9) J2(*, / ' ) = Z 4X„2 k | 2 exp(2Xw x) 
7 1 = 1 

( Z k»j 
\ « = i 

< I ZJ K l exp(2\nx)) exp{2x(pRtf + e)} 

= h(x,f) exp{2x(pR,f+ e)}, e > 0, x > X(e). 

This fact, together with (1.3) and (3, Theorem 3), implies that for functions 
of finite Ritt order 

log h(x,f) ~ log J2(*,/) as x -> oo. 

Azpeitia (1) has proved that if 

(1.10) l i m ^ l o g A = œ > 
n-*x> lOgW 

then 
Xwlog Xn pRtf = lim sup. , ,, ,. . 

^oo Mog( l / | a n | ) 
Hence if f(z), defined by (1.1), is of order pR>f (0 < pRif < °°), the order of 
the function defined by the series 

oo 

Z W\2 exp(2X„s) 

is also pi?,/ if (1.10) holds. Consequently, if (1.10) is satisfied, then 

log l o g Z K l 2 exp(2Xn x) 
) hm sup —-— —— = hm sup 

£->oo % Z-^oo 

If 

(1.11) lim sup ^ i A M = l i m s u p 5=1 = PB,f. 
x->oo % z-^oo X 

(1.12) lim inf z-^5- = -Jr > 0, 
n^œ log» £> 
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then for every e > 0 

\m(x,f)}2 < 1 £ K | 2 exp{2Xre(x + \D + «)} f Z exp{-2X,(iD + e)} 

<Kh(x+ iD + e,f) 

where K is a constant. From this and the inequality 

it follows that 

(1.13) lim inf \£&*SiM<ill _ XR 

where 

A r . , log logm(x,f) 
E,f = l im inf — ^ — - — v J 

is the lower order of/. 

THEOREM 2. / / (1.10) is satisfied, then 

, i m s u p iog{/ 2 (x . r ) / / 2 ( . , / )} = 2 p B / 

and 

(1.14) l i m i n f log{/ 2(x,f )/ / .( . . /)} = 2 X B / > 

provided (1.12) A0W5. 

From (1.3), (1.9), and (1.11), we can deduce the first equation, whereas, 
from (1.3), (1.9), and (1.13) follows the inequality 

(1.15) lim inf l °g!I 2 (* , / ' ) / / 2 (* , / ) i > 2 W 

The sign of inequality in (1.15) can, in fact, be replaced by the equality sign. 
For this we refer to the inequality (5, (14)) 

tn(x,f)<-sm(pc + B,f), Ô > 0, 

valid for the entire function/defined by (1.1). Applying this result successively 
to the entire functions 

00 00 

Z 2XK H 2 exp(2X„(z - 25)), £ \an\
2 exp(2Xn(3 - 5)), 
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we obtain 

oo 

(1.16) I2(pc - 2b, f) = £ 4X„2 K | 2 exp(2\n(x - 2b)) 
w=l 

1 °° 
<-^2\n \an\

2 exp(2Xn(x - b)) 
à n=i 

< ^ E M 2 exp(2Xnx) = -2 h(x,f), b > 0. 

Now, since log I2(x,f) is an increasing convex function of x, we have 

(1.17) log I2(x,f) = log I2(x0,f) + f w(0 * , 

where x0 < x and ^( /) is a non-decreasing function of L From this it follows 
that if XRtf < oo and e is a fixed positive number, then, for a sequence of 
values of x tending to infinity, 

x 
>x+2 

w(t) dt < log I2(x + 2,/) < exp{ (x + 2) (\Btf + e)}, x = Xi, x2, 

Since w(£) is non-decreasing, we obtain 

2w(xn) < exp{(xw + 2)(XBt/ + e)}, » = 1, 2, 

Since e is arbitrary, we can write 

w(xn) < exp{xn(XBf/ + e)} 

for sufficiently large n. Equality (1.17) then gives 

J *Xn 

w{t)dt, 
Xn-28 

where the integral is smaller than 

25 exp{*n(XB>/ + e)}, 
and if we take 

ô = | exp{-xn(\R>f+ e)}, 
we obtain 

log h(xn,f) < log h(xn - 2b J) + 1, 

for sufficiently large n. Substituting this value of b and the corresponding 
estimate for I2(xn,f) in (1.16), we see that, e > 0 being given, there exists a 
sequence of values of x such that 

(1.18) I2(x - 2b, f) < h(x - 2b,f) exp(2x(\R,f + e)). 

Since b < 1, we can even write 

I2(x - 2b,f) < I2(x - 2b,f) exp{2(x - 2b)(\R,f+ e)} 
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instead of (1.18). It follows that 

(1.19) l i m ; n f l o g { / 2 ( x , / 0 / / 2 ( x , / ) } < 2 W 

Thus, if \R,f < oo, the inequality in (1.15) can be replaced by equality. 
If ^B,f = °°> then, from (1.15), 

l i m . n f l o g { J 2 ( x , / 0 / J 2 ( x , / ) } ^ œ j 

2. In this section, we are going to make a certain remark concerning the 
second mean value 

M2(r,/)= Qïj*\f(r°i')\1M)' 
of |/(2;)| on the circle \z\ = r. 

It has been proved by Lakshminarasimhan (4, Lemma 2) that if f(z) is an 
entire function, then for r > TQ > 1 

u f\ ^ ^2(r>/) lQgM2(^,/) - log^fro,/) 
r logr 

By the argument used in the preceding section, we can deduce a somewhat 
better result from an inequality of Vijayaraghavan (6) which states that if 

M(r,f) = m a x | / ( * ) | , 

then for r > r0 

v J J r logT 

We note that if f(z) has the power series representation 
00 

then 

Mr,/))2 = É k|V", 

and if f(z) is an entire function, then the series 

V s I I2 n \ ^ I |2 n 

n=0 n=0 

also represent entire functions. We obtain the following result: 

If f(z) is an entire function, then 

M 2 ( r J ) > r logr 

for r > r0, where r0 is a number depending on f. 
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I am thankful to Professor A. G. Azpeitia with whom I had useful discussions 
on the subject, and also to the referee for his suggestions. 
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