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Abstract. We show that for any n and q, the number of real conjugacy classes in
PGL(n, Fq) is equal to the number of real conjugacy classes of GL(n, Fq) which are con-
tained in SL(n, Fq), refining a result of Lehrer [J. Algebra 36(2) (1975), 278–286] and
extending the result of Gill and Singh [J. Group Theory 14(3) (2011), 461–489] that this
holds when n is odd or q is even. Further, we show that this quantity is equal to the number
of real conjugacy classes in PGU(n, Fq), and equal to the number of real conjugacy classes
of U(n, Fq) which are contained in SU(n, Fq), refining results of Gow [Linear Algebra
Appl. 41 (1981), 175–181] and Macdonald [Bull. Austral. Math. Soc. 23(1) (1981), 23–48].
We also give a generating function for this common quantity.

2010 Mathematics Subject Classification. 20G40; 20E45; 05A15

1. Introduction. It was proved by Lehrer [6] that the number of conjugacy classes
in the finite projective linear group PGL(n, Fq) is equal to the number of conjugacy classes
of the finite general linear group GL(n, Fq) which are contained in the finite special lin-
ear group SL(n, Fq). Macdonald [7] showed that the number of conjugacy classes in the
finite projective unitary group PGU(n, Fq) is equal to the number of conjugacy classes of
the finite unitary group U(n, Fq) which are contained in the finite special unitary group
SU(n, Fq) [although this number is different than the number of conjugacy classes in
PGL(n, Fq) in general].

Meanwhile, Gow [5] considered the number of real conjugacy classes in GL(n, Fq)

and in U(n, Fq), where a conjugacy class of a finite group G is real if whenever g is in the
class, then so is g−1. In particular, Gow [5, p. 181] noted that the number of real classes of
GL(n, Fq) is equal to the number of real classes of U(n, Fq).

More recently, Gill and Singh [3, 4] classified the real conjugacy classes of PGL(n, Fq)

and SL(n, Fq). They noted [4, after Theorem 2.8] that when q is even or n is odd, the
number of real classes of PGL(n, Fq) is equal to the number of real classes of GL(n, Fq)

which are contained in SL(n, Fq). In this paper, we prove that this equality holds for all
n and q. Moreover, we show that this number is equal to the number of real classes of
PGU(n, Fq) and is equal to the number of real classes of U(n, Fq) which are contained in
SU(n, Fq). That is, we extend the result of Gill and Singh and give a refinement of the
results of Lehrer, Macdonald, and Gow [5–7].
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This paper is organized as follows: In Section 2, we establish notation for partitions
and linear and unitary groups over finite fields, and we give an overview of the sets of
polynomials over finite fields which we need. We finish this section with an important
enumeration in Lemma 2.1. In Section 3, we describe the real conjugacy classes for the
groups of interest. In particular, in Section 3.1, we give known results for the real classes
in GL(n, Fq) and U(n, Fq), Gill and Singh’s enumeration of the number of real classes of
GL(n, Fq) which are contained in SL(n, Fq), and we explain why this is equal to the number
of real classes of U(n, Fq) which are contained in SU(n, Fq). In Section 3.2, we classify the
real classes of PGU(n, Fq) by following the methods of Gill and Singh for PGL(n, Fq). In
Lemma 3.8, we give an enumeration of the real classes of PGU(n, Fq) and show that this
is equal to the number of real classes of PGL(n, Fq). Finally, in Section 4, we prove our
main result in Theorem 4.1, where the work left to be done is to prove that the number of
real classes of PGL(n, Fq) is equal to the number of real classes of GL(n, Fq) which are
contained in SL(n, Fq). We accomplish this by computing a generating function for each
quantity, which has a particularly nice form.

2. Preliminaries. For positive integers n, m, we denote their greatest common divi-
sor by (n, m). We let |n|2 denote the largest power of 2 which divides n, also called the
two-part of n. That is, if n = 2kb with b odd, then |n|2 = 2k . If G is a group with g ∈ G,
then |g| will denote the order of the element g, and |g|2 will denote the two-part of the
order of g.

2.1. Partitions. Given an integer n ≥ 0, we denote a partition ν of n as

ν = (1m1 2m2 3m3 · · · ),
such that

∑
i≥1 imi = n. Each integer mi = mi(ν) ≥ 0 is the multiplicity of the part i in ν.

We can also denote the partition ν by

ν = (ν1, ν2, . . . , νl),

such that
∑l

j=1 νj = n and νj ≥ νj+1 ≥ 0 for j < l. Then, we have mi(ν) is the number of j
such that νj = i. We also assume each νj > 0 unless n = 0, in which case the unique partition
of 0 is considered the empty partition. We let Pn denote the collection of all partitions of n.

2.2. Linear and unitary groups over finite fields. For any prime power q, we let
Fq denote a finite field with q elements, and we fix an algebraic closure F̄q. We let F×

q and

F̄×
q denote the multiplicative groups of nonzero elements in these fields.

Let GL(n, F̄q) denote the group of invertible n-by-n matrices over F̄q, and we identify
GL(1, F̄q) with F̄×

q . Define the standard Frobenius map F on GL(n, F̄q) by F(aij) = (aq
ij),

and so the fixed points of F give the general linear group over Fq:

GL(n, F̄q)
F = GL(n, Fq).

We let SL(n, Fq) denote the special linear group over Fq or the elements of determinant 1
in GL(n, Fq). The center of GL(n, Fq) is the group of scalar matrices, which is isomorphic
to F×

q . We identify the scalar matrices with the group F×
q by a slight abuse of notation.

The projective linear group, which we denote by PGL(n, Fq), is the general linear group
modulo its center:

PGL(n, Fq) = GL(n, Fq)/F×
q .
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Define the map F̃ on GL(n, F̄q) by composing F with the inverse–transpose map, so for
(aij) ∈ GL(n, F̄q), we have

F̃(aij) = �(aq
ij)

−1 = (aq
ji)

−1.

We define the unitary group over Fq, which we denote by U(n, Fq), to be the group of
F̃-fixed points in GL(n, F̄q):

GL(n, F̄q)
F̃ = U(n, Fq).

Alternatively, one can define U(n, Fq) to be the group of F̃-fixed points in GL(n, Fq2),
which is also the isometry group of the Hermitian form on the vector space Fn

q2 defined by

〈v, w〉 = �vF(w), where v, w are viewed as coordinate vectors and F is the q-power map on
coordinates. We identify U(1, Fq) with (F̄×

q )F̃ , which is the multiplicative subgroup of F×
q2

of order q + 1. Denote this cyclic group by Cq+1. That is, Cq+1 is the kernel of the norm
map Nm : F×

q2 → F×
q , where Nm(a) = aq+1.

The special unitary group SU(n, Fq) is then defined as the group of determinant 1
elements in U(n, Fq). The center of U(n, Fq) is the group of scalar matrices with diagonal
entries from Cq+1, and we again identify this group of scalars with Cq+1. The projective
unitary group PGU(n, Fq) is the unitary group modulo its center, that is,

PGU(n, Fq) = U(n, Fq)/Cq+1.

When n = 0, we take each of the linear and unitary groups described above to be the group
with one element.

2.3. Polynomials over finite fields. In this section, we define several sets of polyno-
mials over finite fields which we need in order to describe conjugacy classes. Let t be an
indeterminate, and for a finite field Fq, we let Fq[t] denote the collection of polynomials
in t with coefficients from Fq. We will primarily be interested in monic polynomials with
nonzero constant term, and so we denote this collection of polynomials over Fq by Mq[t].

Given a polynomial f (t) ∈ Mq[t] with deg( f (t)) = d, we define the reciprocal polyno-
mial of f (t), denoted by f ∗(t), by

f ∗(t) = f (0)−1tdf (t−1),

so, if f (t) = td + ad−1td−1+ · · · + a1t + a0, then f ∗(t) = td+ a1a−1
0 td−1+ · · · + ad−1a−1

0 t +
a−1

0 . A polynomial f (t) ∈ Mq[t] and its reciprocal f ∗(t) have the relationship that α ∈ F̄×
q is

a root of f (t) if and only if α−1 is a root of f ∗(t) (with the same multiplicity). A polynomial
f (t) ∈ Mq[t] is called self-reciprocal when f (t) = f ∗(t), or when α ∈ F̄×

q is a root of f (t)

if and only if α−1 is a root f (t) with the same multiplicity. Note that the constant term is
a0 = ±1 necessarily for a self-reciprocal polynomial.

Now, let rq,d denote the number of self-reciprocal polynomials in Mq[t] of degree d.
As given in [3, Lemma 2.1] and [1, Lemma 1.3.15(b)], we have for any prime power q and
for d > 0,

rq,d =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2q(d−1)/2 if q is odd and d is odd,

(q + 1)q(d/2)−1 if q is odd and d is even,

q(d−1)/2 if q is even and d is odd,

qd/2 if q is even and d is even.

(2.1)
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Or, more compactly, if we set e = e(q) = (q − 1, 2), so e = 1 if q is even and e = 2 if q is
odd, then for d > 0 we have rq,d = q
d/2� + (e − 1)q
(d−1)/2�. For any prime power q, we
take rq,0 = 1.

Given any polynomial f (t) ∈ Mq2 [t], define f [q](t) by applying the q-power map (the
Frobenius map) to each coefficient of f (t). So, α ∈ F̄×

q is a root of f (t) if and only if αq

is a root of f [q](t) with the same multiplicity, and f (t) = f [q](t) if and only if f (t) ∈ Mq[t].
If f (t) ∈ Mq2 [t] with deg( f (t)) = d, define the ∼-conjugate polynomial of f (t), written as

f̃ (t), by

f̃ (t) = f (0)−qtdf [q](t−1).

So, if f (t) = td + ad−1td−1 + · · · + a1t + a0, then f̃ (t) = td + (a1a−1
0 )qtd−1 + · · · +

(ad−1a−1
0 )qt + a−q

0 . In particular, α ∈ F̄×
q is a root of f (t) if and only if α−q is a root of

f̃ (t) with the same multiplicity. A polynomial f (t) ∈ Mq2 [t] is self-conjugate if f (t) = f̃ (t).
Define Uq[t] to be the collection of self-conjugate polynomials in Mq2 [t], so

Uq[t] = { f (t) ∈ Mq2 [t] | f (t) = f̃ (t)}.

Now, consider some f (t) ∈ Uq[t] which is also self-reciprocal. Then for any α ∈ F̄×
q , we have

α is a root of f (t) if and only if α−1 is, if and only if α−q is, all of the same multiplicity.
But then α−q is a root if and only if αq is, since f (t) is self-reciprocal, which implies α is a
root of f (t) if and only if αq is (of the same multiplicity), and it follows that f (t) must be a
self-reciprocal polynomial in Mq[t]. That is, we have

{
f (t) ∈ Uq[t] | f (t) = f ∗(t)

}= {
f (t) ∈ Mq[t] | f (t) = f ∗(t)

}= Uq[t] ∩ Mq[t]. (2.2)

We will let Td denote the subset of polynomials of degree d in this set, and so |Td| = rq,d

as in equation (2.1).
Now, let f (t) ∈ Mq[t] ∪ Uq[t], with ζ ∈ F×

q if f (t) ∈ Mq[t], and ζ ∈ Cq+1 if f (t) ∈ Uq[t].
With a fixed ζ and deg( f (t)) = d, we define the ζ -reciprocal polynomial of f (t), written as
f̂ (t), by

f̂ (t) = f (0)−1tdf (ζ t−1),

so if f (t) = td + ad−1td−1 + · · · + a1t + a0, then f̂ (t) = td + a1ζa−1
0 td−1 + · · · +

ad−1ζ
d−1a−1

0 t + ζ da−1
0 . The polynomial f (t) is ζ -self-reciprocal if f (t) = f̂ (t), which

is equivalent to the statement that α ∈ F̄×
q is a root if and only if ζα−1 is a root of f (t) with

the same multiplicity.
We will be interested in ζ -reciprocal polynomials in the case that ζ is not a square in

F×
q or Cq+1, respectively, which means we will only be concerned in the case that q is odd.

If ζ is not a square in F×
q , let SM,d denote the set of ζ -self-reciprocal polynomials in Mq[t]

of degree d, and write rζ

q,d = |SM,d|. Gill and Singh [3, Lemma 2.2] prove that

rζ

q,d =
⎧⎨
⎩ rq,d if d is even,

0 if d is odd.
(2.3)

We need the following analogue of this statement for ζ -self-reciprocal polynomials in Uq[t].
We let SU ,d denote the set of ζ -self-reciprocal polynomials of degree d in Uq[t].
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LEMMA 2.1. Let q be odd and ζ ∈ Cq+1 be a non-square. The number of ζ -self-

reciprocal polynomials in Uq[t] of degree d is equal to rζ

q,d, given in equation (2.3). That
is, |SU ,d| = |SM,d|.

Proof. Let f (t) ∈ Uq[t] be ζ -self-reciprocal of degree d, with f (t) = td + ad−1td−1 +
· · · + a1t + a0. Since f̂ (t) = f (t), then we have a0 = ζ da−1

0 , so a2
0 = ζ d . Since also f̃ (t) =

f (t), we have a−q
0 = a0, so that a0 ∈ Cq+1. Since ζ is a non-square in Cq+1, then this is

impossible with d odd, and so there are no such polynomials in this case.
We now assume d is even, and from a2

0 = ζ d we have a0 = ±ζ d/2, and for any 0 ≤ i ≤ d,

we have a0ζ
i−d = a−1

0 ζ i. From the fact that f̂ (t) = f (t) and f̃ (t) = f (t), we know that for
0 ≤ i ≤ d,

ai = a0ad−iζ
−i and ad−i = aq

i a−q
0 = aq

i a0. (2.4)

Note that, if ai ∈ Fq2 is chosen to satisfy the equations above for 0 < i ≤ d/2, then ai is
determined for d/2 < i < d. Substituting the second part of equation (2.4) into the first
yields

ai = a2
0ζ

−iaq
i = ζ d−iaq

i .

For any i, 0 < i < d, there are q solutions to this equation in Fq2 , given by either ai = 0, or

the q − 1 solutions to aq−1
i = ζ i−d if ai �= 0.

Suppose first that a0 = −ζ d/2. Then for i = d/2, the first part of equation (2.4) gives
ad/2 = −ad/2, so that ad/2 = 0 necessarily. Given that there are q possibilities for each ai

with 0 < i < d/2, we have a total of q(d/2)−1 polynomials in this case.
If a0 = ζ d/2, then there is no such restriction on ad/2, and there are q possibilities for

its value. Taking the q possible values for each ai with 0 < i < d/2, the polynomial f (t)
is determined, and there are qd/2 possibilities in this case. This gives a total of q(d/2)−1 +
qd/2 = rq,d polynomials of degree d which are ζ -self-reciprocal in Uq[t] when d is even, as
claimed.

3. Real conjugacy classes.

3.1. Conjugacy classes and real classes in GL(n, Fq) and U(n, Fq). The conju-
gacy classes of GL(n, Fq) may be parameterized by sequences of polynomials

( f1(t), f2(t), . . .), with fi(t) ∈ Mq[t] such that
∑
i≥1

i deg( fi(t)) = n, (3.1)

as explained by Macdonald [7, Section 1]. In fact, Macdonald uses sequences of polynomi-
als with constant term 1 instead of monic polynomials. This may be seen to be equivalent
to equation (3.1) by replacing the polynomial fi(t) =∏d

j=1(t − αj) with the polynomial∏d
j=1(1 − tα−1

j ). In the parametrization (3.1), for any element g ∈ GL(n, Fq) in the con-
jugacy class corresponding to the sequence ( f1(t), f2(t), . . .), the characteristic polynomial
of g is given by

∏
i≥1 fi(t)i.

As given in [7, Section 6], the conjugacy classes of U(n, Fq) may be similarly
parameterized by sequences of polynomials

( f1(t), f2(t), . . .), with fi(t) ∈ Uq[t], such that
∑
i≥1

i deg( fi(t)) = n, (3.2)

where the characteristic polynomial of any element in this class is given by
∏

i≥1 fi(t)i.
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For the conjugacy class of GL(n, Fq) or U(n, Fq) corresponding to the sequence of
polynomials ( f1(t), f2(t), . . .), we may define the partition

ν = (1m1 2m2 3m3 · · · ), where deg( fi(t)) = mi, (3.3)

corresponding to this conjugacy class, where ν is a partition of n. Fixing a partition ν ∈Pn,
a conjugacy class of GL(n, Fq) or U(n, Fq) is said to be a conjugacy class of type ν if the
class corresponds to the partition ν as given by equation (3.3).

An element g of a group G is said to be real if g is conjugate to g−1 in G. If the
element g is real, then all elements in the conjugacy class of g are real, in which case,
we call this a real conjugacy class of G. A conjugacy class of GL(n, Fq) corresponding
to ( f1(t), f2(t), . . .) is a real class if and only if each fi(t) is self-reciprocal [3, Proposition
3.7]. The same statement is true for real conjugacy classes of U(n, Fq) parameterized by
equation (3.2), as explained in [2, Section 5.2]. Since the set of self-reciprocal polynomials
in Mq[t] is the same as the set of self-reciprocal polynomials in Uq[t] as in equation (2.2),
then the real classes of GL(n, Fq) and of U(n, Fq) may be parameterized by exactly the
same sequences of polynomials, a fact which reflects the observation of Gow [5, p. 181]
that these classes are equal in number.

Let rq,d be the number of self-reciprocal polynomials in Mq[t] (or in Uq[t]) of degree
d, as given in equation (2.1). By considering the number of real conjugacy classes of type
ν for each partition ν, where ν = (1m1 2m2 3m3 · · · ), the number of real classes in GL(n, Fq)

or in U(n, Fq) is given by the coefficient of un in the generating function:

∑
n≥0

⎛
⎝∑

ν∈Pn

∏
i:mi>0

rq,mi

⎞
⎠ un =

∞∏
i=1

⎛
⎝∑

k≥0

(ui)krq,k

⎞
⎠=

∞∏
i=1

(1 + ui)e

1 − qu2i
, (3.4)

where e = e(q) = (q − 1, 2) (see [3, Theorem 3.8] and [5, Theorem 2.9]).
Next consider those real classes of GL(n, Fq) or U(n, Fq) which are contained

in SL(n, Fq) or SU(n, Fq), respectively. Since an element g of the conjugacy class
parameterized by the sequence ( f1(t), f2(t), . . .) has characteristic polynomial

∏
i≥1 fi(t)i,

which has constant term (−1)n det(g), then elements of this class have determinant
1 exactly when this constant term is (−1)n. That is, a real class of GL(n, Fq) or of
U(n, Fq) which is contained in SL(n, Fq) or in SU(n, Fq), respectively, corresponds to a
sequence ( f1(t), f2(t), . . .) of self-reciprocal polynomials such that

∏
i≥1 fi(0)i = (−1)n. In

particular, we have the following observation:

LEMMA 3.1. Let n ≥ 1 and let q be any prime power. Then the number of real classes
of GL(n, Fq) contained in SL(n, Fq) is equal to the number of real classes of U(n, Fq)

contained in SU(n, Fq).

For any partition ν of n, let slν denote the number of real classes of type ν in GL(n, Fq)

which are contained in SL(n, Fq). Gill and Singh [3, Proposition 4.1] compute slν to be

slν =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∏
i:mi>0

rq,mi if q is even or mi = 0 for i odd,

1

2

∏
i:mi>0

rq,mi if q is odd and imi is odd for some i,

hν(q)
∏
i odd:
mi>0

q(mi/2)−1
∏
i even:
mi>0

rq,mi otherwise,

(3.5)
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with hν(q) = 1
2 ((q + 1)ρ + (q − 1)ρ), where ρ is the number of odd i such that mi > 0. We

simplify this expression a bit as follows.

LEMMA 3.2. If q is even, then the number of real conjugacy classes of GL(n, Fq) is
equal to the number of real conjugacy classes of GL(n, Fq) contained in SL(n, Fq). If q is
odd, the number of real conjugacy classes of GL(n, Fq) of type ν which are contained in
SL(n, Fq) is given by

slν =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2

∏
i:mi>0

rq,mi if mi is odd for some odd i,

1

2

⎛
⎜⎝ ∏

i:mi>0

rq,mi +
∏
i odd:
mi>0

q − 1

q + 1
rq,mi

∏
i even:
mi>0

rq,mi

⎞
⎟⎠ if mi is even for all odd i.

Proof. First, if q is even, this statement follows from the first case of equation (3.5).
Note also this follows from the fact that the determinant of any real element of GL(n, Fq)

must be ±1, and so must be in SL(n, Fq) in the case q is even.
Now, suppose q is odd, and we are not in the second case of equation (3.5), so that

mi is even whenever i is odd. First note that in the case that mi = 0 for all odd i, we may
interpret the expression in the first case of equation (3.5) as the expression in the third case,
with ρ = 0 and the product over all i odd with mi > 0 is empty. That is, the first and third
cases in equation (3.5) may be combined. Now, consider the expression in the third case,
so that mi is even whenever i is odd, and note that ρ is exactly the number of contributing
factors in the product over odd i with mi > 0. That is,

hν(q)
∏
i odd:
mi>0

q(mi/2)−1 = 1

2

⎛
⎜⎝∏

i odd:
mi>0

(q + 1)q(mi/2)−1 +
∏
i odd:
mi>0

(q − 1)q(mi/2)−1

⎞
⎟⎠

= 1

2

⎛
⎜⎝∏

i odd:
mi>0

rq,mi +
∏
i odd:
mi>0

q − 1

q + 1
rq,mi

⎞
⎟⎠,

by applying equation (2.1) and the fact that mi is even when i is odd in this case.
Substituting this expression in the third case of equation (3.5) and combining the first and
third cases gives the claimed expression.

3.2. Real classes of PGL(n, Fq) and PGU(n, Fq). We begin by describing the con-
jugacy classes of PGL(n, Fq) and PGU(n, Fq), following [7, Sections 2 and 6]. Let Z be the
center of GL(n, Fq) or U(n, Fq), identified with F×

q or Cq+1, respectively. Let G be either

GL(n, Fq) or U(n, Fq), and let Ḡ = G/Z be either PGL(n, Fq) or PGU(n, Fq), respectively.
If xZ and yZ are elements of Ḡ, then xZ and yZ are conjugate in Ḡ if and only if x and ηy are
conjugate in G for some η ∈ Z. If the conjugacy class of y in G corresponds to the sequence
( f1(t), f2(t), . . .) as in Section 3.1, where deg( fi(t)) = di, then the conjugacy class of ηy
corresponds to the sequence (ηd1 f1(tη−1), ηd2 f2(tη−1), . . .), since α is a root of fi(t) if and
only if ηα is a root of the monic polynomial ηdi fi(tη−1). So, we define the action of Z on
polynomials f (t) and on sequences ( fi(t)) = ( f1(t), f2(t), . . . ) (with d = deg( f (t))) by

η. f (t) = ηdf (tη−1) and η.( fi(t)) = (η. fi(t)) = (η. f1(t), η. f2(t), . . .). (3.6)
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Then the conjugacy classes of Ḡ are parameterized by the orbits of the Z-action on the
sequences ( fi(t)). Note that if the conjugacy class of G corresponding to ( f1(t), f2(t), . . .)

is of type ν, then so is the class corresponding to η.( f1(t), f2(t), . . .). So, we say a conju-
gacy class of Ḡ is type ν if it corresponds to a Z-orbit of classes in G which are of type ν.

The real classes of PGL(n, Fq) were described by Gill and Singh [4, Section 2], and
here we follow their work closely to describe the real classes of PGU(n, Fq). For the rest
of this section, we fix some non-square ζ ∈ Z. An element g ∈ G is ζ -real if g is conjugate
to ζg−1 in G. If xZ ∈ Ḡ, we say xZ lifts to the element g ∈ G if g ∈ xZ. The following is
[4, Lemma 2.4] in the case G = GL(n, Fq), and the proof is exactly the same in the case
G = U(n, Fq).

LEMMA 3.3. If gZ ∈ Ḡ is real in Ḡ, then gZ lifts to real or a ζ -real element in G.

A conjugacy class of G corresponding to ( f1(t), f2(t), . . .) consists of ζ -real elements
if and only if each fi(t) is a ζ -self-reciprocal polynomial. Thus, by Lemma 3.3 in order to
understand the real conjugacy classes of Ḡ, we must understand the Z-orbits of sequences
( f1(t), f2(t), . . .), where every fi(t) is self-reciprocal or every fi(t) is ζ -self-reciprocal. This
essentially requires the understanding of Z-orbits of individual self-reciprocal or ζ -self-
reciprocal polynomials.

As in Section 2.3, we let Td denote the set of self-reciprocal polynomials of degree
d which are in Uq[t], and this is the same as the set of self-reciprocal polynomials of
degree d in Mq[t]. We will let Sd denote either the set SM,d of ζ -self-reciprocal poly-
nomials of degree d which are in Mq[t] or the set SU ,d of these polynomials in Uq[t].
While these are in general distinct sets of polynomials in these two cases, they do have
the same cardinality by Lemma 2.1. Given any f (t) in Mq[t] or Uq[t], we let [ f ] denote
the Z-orbit of f (t), and we let [ f ]T = [ f ] ∩ Td and [ f ]S = [ f ] ∩ Sd when deg( f (t)) = d. In
the rest of this section, we follow the same arguments for G = U(n, Fq) as are given for
G = GL(n, Fq) in [4, Section 2]. Since many of the details are essentially the same, we
will give outlines of proofs with mostly details which are complementary to those given in
[4, Section 2].

The following is the G = U(n, Fq) version of [4, Lemma 2.2].

LEMMA 3.4. Let f (t) ∈ Uq[t], with f (t) = td + ad−1td−1 + · · · + a1t + a0.

(i) If q is even, then [ f ]T contains at most one element (and [ f ]S is empty).
(ii) If q is odd, then [ f ]S and [ f ]T contain at most 2 elements. In particular, [ f ]T

and [ f ]S (when nonempty) may be assumed to be of the form { f (t), η. f (t)} where
η ∈ Cq+1 has order a power of 2.

Proof. Let η ∈ Cq+1. If f (t) and η. f (t) are both in Td or both in Sd , one obtains ηiai =
η−iai for 0 ≤ i ≤ d. That is, |η| must divide 2k whenever ak �= 0.

Suppose |η| is odd. If both f (t) and η. f (t) are in [ f ]S or both in [ f ]T , then |η| divides
k whenever ak �= 0, and so f (t) ∈ Uq[t|η|]. In particular, η. f (t) = f (t). If q is even, then |η|
divides q + 1 and so must be odd, and the result follows in this case.

If q is odd, suppose that for some β, η ∈ Cq+1 of even order we have f (t), η. f (t), and
β. f (t) are all in Td or all in Sd , and that β. f (t) and η. f (t) are distinct from f (t). Thus,
f (t) �∈ Uq[t|η|] ∪ Uq[t|β|], while |β|/2 and |η|/2 both divide k whenever ak �= 0, so f (t) lies
in Uq[t|η|/2] ∩ Uq[t|β|/2] = Uq[tlcm(|η|/2,|β|/2)]. It follows that we must have |η|2 = |β|2, and
then that η. f (t) = β. f (t). Note also that if |η| = 2ks with s odd, and γ = η2k

, then γ

has odd order so γ. f (t) = f (t). Then |ηγ −1| = 2k and ηγ −1. f (t) = η. f (t), and the result
follows.
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The following is very similar to statements contained in [4, Proof of Lemma 2.3].

LEMMA 3.5. Let q be odd, η ∈ Cq+1, and f (t) = td + ad−1td−1 + · · · + a1t + a0 ∈ Uq[t]
with d even.

(i) If f (t) ∈ Sd, then η. f (t) ∈ Td if and only if f (t) ∈ Uq[t|q+1|2 ] and η2 = βζ−1 for some
β ∈ Cq+1 with |β|2 = |q + 1|2.

(ii) If f (t) ∈ Td, then η. f (t) ∈ Sd if and only if f (t) ∈ Uq[t|q+1|2 ] and η2 = βζ for some
β ∈ Cq+1 with |β|2 = |q + 1|2.

Proof. The proofs of (i) and (ii) are almost identical, so we give an outline of (i).
If f (t) ∈ Sd , then from the proof of Lemma 2.1, we have ad−i = aia0ζ

i−d for 0 ≤ i ≤ d.
If we also have η. f (t) is self-reciprocal, then we can compute that (η2)d−iai = ζ i−dai.
Since ai �= 0 if and only if ad−i �= 0, then we have η2i = ζ−i whenever ai �= 0 (and note
η2d = ζ−d since a2

0 = ζ d). Thus η2 = βζ−1 for some β ∈ Cq+1, where |β| divides the great-
est common divisor of all i �= 0 such that ai �= 0. Since ζ is a non-square, then β is also
a non-square, and so |q + 1|2 = |β|2. Thus, |q + 1|2 divides all i such that ai �= 0 and so
f (t) ∈ Uq[t|q+1|2].

The following result is the unitary analog of [4, Lemma 2.3].

LEMMA 3.6. Let q be odd, and let f (t) ∈ Uq[t] with f (t) = td + ad−1td−1 + · · · +
a1t + a0.

(i) If d is odd, then Sd is empty, and if f (t) ∈ Td then |[ f ]T | = 2.
(ii) Suppose d is even and f (t) ∈ Uq[t|q+1|2 ]. If f (t) ∈ Td or f (t) ∈ Sd, then |[ f ]S| =

|[ f ]T | = 1.
(iii) Suppose d is even and f (t) �∈ Uq[t|q+1|2 ]. If f (t) ∈ Sd, then |[ f ]S| = 2 and |[ f ]T | = 0.

If f (t) ∈ Td, then |[ f ]T | = 2 and |[ f ]S| = 0.

Proof. If d is odd, we have already mentioned in Lemma 2.1 that f (t) cannot be
ζ -self-reciprocal, and so Sd is empty. If f (t) ∈ Td , then we know [ f ]T contains at most
two elements by Lemma 3.4(ii). But (−1). f (t) = −f (−t) �= f (t) since d is odd, and so
[ f ]T = { f (t), (−1). f (t)} has two elements in this case, and (i) follows.

Now, suppose d is even and that f (t) ∈ Sd or f (t) ∈ Td . By Lemma 3.4, if f (t) ∈ Sd (or
f (t) ∈ Td , respectively), then we may assume [ f ]S (or [ f ]T ) is of the form { f (t), η. f (t)} for
some η ∈ Cq+1 with order a power of 2. Suppose f (t) ∈ Uq[t|q+1|2 ]. It follows that η. f (t) =
f (t), so [ f ]S = { f (t)} when f (t) ∈ Sd (and [ f ]T = { f (t)} when f (t) ∈ Td). It follows directly
from Lemma 3.5 that if f (t) ∈ Sd , then there is an η ∈ Cq+1 such that η. f (t) ∈ Td (and if
f (t) ∈ Td then η. f (t) ∈ Sd for some η ∈ Cq+1). Thus, |[ f ]S| = |[ f ]T | = 1 in all cases, and
(ii) follows.

Finally, suppose f (t) �∈ Uq[t[q+1]2 ], and let b be the smallest power of 2 such that
f (t) �∈ Uq[tb]. Taking η ∈ Cq+1 such that |η| = b, we have η. f (t) �= f (t), and if f (t) ∈ Sd (or
f (t) ∈ Td), then also η. f (t) ∈ Sd (or η. f (t) ∈ Td). So, by Lemma 3.4(ii), we have |[ f ]S| = 2
(or |[ f ]T = 2). It also follows from Lemma 3.5 that if f (t) ∈ Sd , then |[ f ]T | = 0 and if
f (t) ∈ Td , then |[ f ]S| = 0. Thus, we have (iii).

We are now able to classify the real classes of PGU(n, Fq) in the following, which is
analogous with [4, Lemma 2.6].

LEMMA 3.7. Let q be odd. Consider a conjugacy class of type ν = (1m1 2m2 · · · )
in U(n, Fq) parameterized by the sequence ( f1(t), f2(t), . . .), where deg( fi(t)) = mi. Let
[( fi(t))] denote the Z-orbit of this sequence.
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(i) If some mi is odd, then [( fi(t))] contains no ζ -real classes, and contains either zero
or two real classes.

(ii) If all mi are even and fi(t) ∈ Uq[t|q+1|2 ] for all i, then either [( fi(t))] contains no real
or ζ -real classes, or contains exactly one real class and exactly one ζ -real class.

(iii) If all mi are even and fj(t) �∈ Uq[t|q+1|2 ] for some j, then [( fi(t))] contains either no
real or ζ -real classes, or exactly two real classes and no ζ -real classes, or exactly
two ζ -real classes and no real classes.

Proof. If mj = deg( fj(t)) is odd, then η. fj(t) is never ζ -self-reciprocal for any η ∈ Cq+1.
Thus, [( fi(t))] cannot contain any ζ -real classes. Suppose [( fi(t)] contains a real class,
and without loss of generality suppose ( fi(t)) is a real class, so that every fi(t) is self-
reciprocal. By Lemma 3.4(ii), there can be at most one other real class in [( fi(t))]. As
in Lemma 3.6(i), we have (−1). fi(t) is self-reciprocal for each i. Since mj = deg( fj(t)) is
odd, then (−1). fj(t) �= fj(t), and so (−1).( fi(t)) �= ( fi(t)). Thus [( fi(t))] contains two real
classes.

Now, suppose all mi are even and all fi(t) ∈ Uq[t|q+1|2]. If ( fi(t)) is a ζ -real class (or
a real class, respectively), we may choose η ∈ Cq+1 as in Lemma 3.5(i) (Lemma 3.5(ii),
respectively) so that η.( fi(t)) is a real class (a ζ -real class, respectively). Now, (ii) follows
from Lemma 3.6(ii).

Finally, suppose all mi are even and some fj(t) �∈ Uq[t|q+1|2]. Note that from Lemma 3.5,
if [( fi(t))] contains a real class, then it cannot contain a ζ -real class and vice versa. Now,
let b be the smallest power of 2 such that all fi(t) �∈ Uq[tb], and let η ∈ Cq+1 such that |η| =
b. As in the proof of Lemma 3.6(iii), if ( fi(t)) is a real class (or a ζ -real class), then
η.( fi(t)) is a distinct real class (or a distinct ζ -real class). The statement now follows from
Lemma 3.6(iii).

We may now give the following enumeration of real conjugacy classes in PGU(n, Fq).

LEMMA 3.8. Let ν = (1m1 2m2 · · · ) be a partition of n, and let pguν be the number of
real conjugacy classes of PGU(n, Fq) of type ν. Then we have

pguν =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∏
i:mi>0

rq,mi if q is even, or if q is odd and mi is even for all i,

1

2

∏
i:mi>0

rq,mi if q is odd and mi is odd for some i.

Moreover, if pglν is the number of real classes of PGL(n, Fq) of type ν, then pglν = pguν . In
particular, the number of real classes of PGL(n, Fq) is equal to the number of real classes
of PGU(n, Fq).

Proof. Let ( fi(t)) = ( f1(t), f2(t), . . .) correspond to a conjugacy class of type ν in
U(n, Fq). First, if q is even, then it follows from Lemma 3.4(i) that the Z-orbit [( fi(t))]
can contain at most one real class and no ζ -real classes. It follows that the real classes of
PGU(n, Fq) of type ν are in bijection with the real classes of U(n, Fq) of type ν.

We now assume that q is odd. If some mi = deg( fi(t)) is odd, then by Lemma 3.7(i), the
Z-orbit [( fi(t))] contains no ζ -real classes and either contains no or two real classes. Thus,
the real classes of PGU(n, Fq) of type ν correspond to pairs of real classes of U(n, Fq) of
type ν, and so there are half as many real classes of PGU(n, Fq) of type ν as there are of
U(n, Fq).

Finally, suppose every mi = deg( fi(t)) is even, and assume the Z-orbit [( fi(t))] cor-
responds to a real class of PGU(n, Fq), and so contains a real or a ζ -real class of
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U(n, Fq). Then by Lemma 3.7(ii) and (iii), [( fi(t))] contains either two real classes of
U(n, Fq), two ζ -real classes, or one of each. By Lemma 2.1, the number of ζ -self-dual
polynomials of degree mi in Uq[t] is equal to the number of self-dual polynomials of degree
mi in Uq[t] (since mi is even), which is rq,mi . So, there are an equal number of ζ -real classes
and real classes of type ν in U(n, Fq), in this case, each of which are given by

∏
i:mi>0 rq,mi .

Since sequences of such polynomials are paired to form the real classes of PGU(n, Fq) of
type ν, the result follows.

In all cases, this matches the number of real classes in PGL(n, Fq) of type ν obtained
by Gill and Singh in [4, Corollary 2.7 and Theorem 2.8], and so the number of real classes
of PGL(n, Fq) is equal to the number of real classes of PGU(n, Fq).

4. Main result. We finally arrive at our main result.

THEOREM 4.1. Let q be any prime power. Then for any n ≥ 0 we have

the number of real classes in PGL(n, Fq)

= the number of real classes of GL(n, Fq) contained in SL(n, Fq)

= the number of real classes in PGU(n, Fq)

= the number of real classes of U(n, Fq) contained in SU(n, Fq).

If we take e = e(q) = (q − 1, 2), then the generating function for this common quantity is
given by

1

2

( ∞∏
i=1

(1 + ui)e

1 − qu2i
+

∞∏
i=1

1 + uei

1 − qu2i

)
.

Proof. The first and third quantities are equal by Lemma 3.8, while the second and
fourth are equal by Lemma 3.1. So, we just need to show that the number of real classes
in PGL(n, Fq) is equal to the number of real classes of GL(n, Fq) which are contained in
SL(n, Fq). When q is even, these were already observed to be equal by Gill and Singh
[4, after Theorem 2.8] and are both equal to the number of real classes of GL(n, Fq) (by
Lemma 3.2). The generating function for this quantity is given by equation (3.4) with e = 1,
which gives our claim in this case.

We may now assume q is odd, and we first calculate a generating function for the
number of real classes in PGL(n, Fq). If pglν is the number of real conjugacy classes of
PGL(n, Fq) of type ν, then as stated in Lemma 3.8, we have by Gill and Singh [4, Corollary
2.7] that

pglν =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∏
i:mi>0

rq,mi if mi is even for all i,

1

2

∏
i:mi>0

rq,mi if mi is odd for some i.

Applying this and the fact that

∑
ν∈Pn

∃i:mi odd

∏
i:mi>0

rq,mi =
∑
ν∈Pn

∏
i:mi>0

rq,mi −
∑
ν∈Pn

all mi even

∏
i:mi>0

rq,mi ,

https://doi.org/10.1017/S0017089518000551 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000551


104 ELENA AMPARO AND C. RYAN VINROOT

it follows that the generating function that we want may be written as

∑
n≥0

⎛
⎝∑

ν∈Pn

pglν

⎞
⎠ un =

∑
n≥0

un

⎛
⎜⎝ ∑

ν∈Pn
all mi even

∏
i:mi>0

rq,mi +
1

2

∑
ν∈Pn

∃i:mi odd

∏
i:mi>0

rq,mi

⎞
⎟⎠

=
∑
n≥0

un

⎛
⎜⎝1

2

∑
ν∈Pn

∏
i:mi>0

rq,mi +
1

2

∑
ν∈Pn

all mi even

∏
i:mi>0

rq,mi

⎞
⎟⎠. (4.1)

From (3.4) we have

∑
n≥0

⎛
⎝∑

ν∈Pn

∏
i:mi>0

rq,mi

⎞
⎠ un =

∞∏
i=1

(1 + ui)2

1 − qu2i
. (4.2)

Next, we have

∑
n≥0

un

⎛
⎜⎝ ∑

ν∈Pn
all mi even

∏
i:mi>0

rq,mi

⎞
⎟⎠=

∞∏
i=1

∑
k≥0

(ui)2krq,2k =
∞∏

i=1

⎛
⎝1 +

∑
k≥1

(qk + qk−1)u2ik

⎞
⎠

=
∞∏

i=1

⎛
⎝∑

k≥0

(qu2i)k +
∑
k≥0

u2i(qu2i)k

⎞
⎠

=
∞∏

i=1

(
1

1 − qu2i
+ u2i

1 − qu2i

)
=

∞∏
i=1

1 + u2i

1 − qu2i
. (4.3)

Substituting equations (4.2) and (4.3) into equation (4.1) yields the claimed generating
function.

As in Section 3.1, let slν denote the number of real classes of GL(n, Fq) of type ν

which are contained in SL(n, Fq). We now compute the generating function for the number
of real classes of GL(n, Fq) which are contained in SL(n, Fq), which is given by

∑
n≥0

⎛
⎝∑

ν∈Pn

slν

⎞
⎠ un =

∑
n≥0

un

⎛
⎜⎝ ∑

ν∈Pn
mi even ∀i odd

slν +
∑
ν∈Pn

∃i odd:mi odd

slν

⎞
⎟⎠. (4.4)

Consider the first sum in the parentheses of equation (4.4). By applying Lemma 3.2, we
have

∑
n≥0

un

⎛
⎜⎝ ∑

ν∈Pn
mi even ∀i odd

slν

⎞
⎟⎠

= 1

2

⎛
⎜⎝∑

n≥0

un
∑
ν∈Pn

mi even ∀i odd

∏
i:mi>0

rq,mi +
∑
n≥0

un
∑
ν∈Pn

mi even ∀i odd

∏
i odd:
mi>0

q − 1

q + 1
rq,mi

∏
i even:
mi>0

rq,mi

⎞
⎟⎠
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= 1

2

⎛
⎝ ∞∏

i=1

⎛
⎝∑

k≥0

(u2i)krq,k

⎞
⎠ ∞∏

i=1

⎛
⎝∑

k≥0

(u2i−1)2krq,2k

⎞
⎠

+
∞∏

i=1

⎛
⎝∑

k≥0

(u2i)krq,k

⎞
⎠ ∞∏

i=1

⎛
⎝1 +

∑
k≥1

(u2i−1)2k q − 1

q + 1
rq,2k

⎞
⎠
⎞
⎠. (4.5)

Note that

∞∏
i=1

⎛
⎝∑

k≥0

(u2i)krq,k

⎞
⎠=

∑
n≥0

⎛
⎝∑

ν∈Pn

∏
i:mi>0

rq,mi

⎞
⎠ u2n =

∞∏
i=1

(1 + u2i)2

1 − qu4i
, (4.6)

by substituting u2 for u in equation (3.4). Next, we compute

∑
k≥0

(u2i−1)2krq,2k = 1 +
∑
k≥1

(qk + qk−1)(u2i−1)2k

=
∑
k≥0

(qu4i−2)k +
∑
k≥0

u4i−2(qu4i−2)k

= 1 + u4i−2

1 − qu4i−2
. (4.7)

Very similarly, we have

1 +
∑
k≥1

q − 1

q + 1
rq,2k(u

2i−1)2k = 1 +
∑
k≥1

(qk − qk−1)(u2i−1)2k

=
∑
k≥0

(qu4i−2)k −
∑
k≥0

u4i−2(qu4i−2)k

= 1 − u4i−2

1 − qu4i−2
. (4.8)

Substituting equations (4.6)–(4.8) into equation (4.5), we obtain

∑
n≥0

un

⎛
⎜⎝ ∑

ν∈Pn
mi even ∀i odd

slν

⎞
⎟⎠= 1

2

( ∞∏
i=1

(1 + u2i)2

1 − qu4i

1 + u4i−2

1 − qu4i−2
+

∞∏
i=1

(1 + u2i)2

1 − qu4i

1 − u4i−2

1 − qu4i−2

)

= 1

2

( ∞∏
i=1

(1 + u2i)2

1 − qu2i
(1 + u4i−2) +

∞∏
i=1

(1 + u2i)2

1 − qu2i
(1 − u4i−2)

)

(4.9)
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Now, note that

∞∏
i=1

(1 + u2i)2(1 − u4i−2) =
∞∏

i=1

(1 + u2i)(1 − u4i)(1 − u4i−2)

1 − u2i

=
∞∏

i=1

1 + u2i

1 − u2i
(1 − u2i)

=
∞∏

i=1

(1 + u2i).

Using this, equation (4.9) becomes

∑
n≥0

un

⎛
⎜⎝ ∑

ν∈Pn
mi even ∀i odd

slν

⎞
⎟⎠= 1

2

( ∞∏
i=1

(1 + u2i)2

1 − qu2i
(1 + u4i−2) +

∞∏
i=1

1 + u2i

1 − qu2i

)
. (4.10)

For the second sum in the parentheses of equation (4.4), we again apply Lemma 3.2 and
compute

∑
n≥0

un

⎛
⎜⎝ ∑

ν∈Pn
∃i odd:mi odd

slν

⎞
⎟⎠= 1

2

∑
n≥0

un
∑
ν∈Pn

∃i odd:mi odd

∏
i:mi>0

rq,mi

= 1

2

∑
n≥0

un

⎛
⎜⎝∑

ν∈Pn

∏
i:mi>0

rq,mi −
∑
ν∈Pn

mi even ∀i odd

∏
i:mi>0

rq,mi

⎞
⎟⎠

= 1

2

⎛
⎝ ∞∏

i=1

⎛
⎝∑

k≥0

(ui)krq,k

⎞
⎠−

∞∏
i=1

⎛
⎝∑

k≥0

(u2i)krq,k

⎞
⎠ ∞∏

i=1

⎛
⎝∑

k≥0

(u2i−1)2krq,2k

⎞
⎠
⎞
⎠. (4.11)

Now, substitute equations (3.4), (4.6), and (4.7) for each of the infinite products in equation
(4.11). This yields

∑
n≥0

un

⎛
⎜⎝ ∑

ν∈Pn
∃i odd:mi odd

slν

⎞
⎟⎠= 1

2

( ∞∏
i=1

(1 + ui)2

1 − qu2i
−

∞∏
i=1

(1 + u2i)2

1 − qu4i

1 + u4i−2

1 − qu4i−2

)

= 1

2

( ∞∏
i=1

(1 + ui)2

1 − qu2i
−

∞∏
i=1

(1 + u2i)2

1 − qu2i
(1 + u4i−2)

)
. (4.12)

Now, we take the sum of equations (4.10) and (4.12), and (4.4) becomes

∑
n≥0

⎛
⎝∑

ν∈Pn

slν

⎞
⎠ un = 1

2

( ∞∏
i=1

(1 + ui)2

1 − qu2i
+

∞∏
i=1

1 + u2i

1 − qu2i

)
, (4.13)

which matches our generating function for the number of real classes in PGL(n, Fq).
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